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Abstract

Regression plays a major role in many scientific and engineering problems. The goal of regression 

is to learn the unknown underlying function from a set of sample vectors with known outcomes. In 

recent years, kernel methods in regression have facilitated the estimation of nonlinear functions. 

However, two major (interconnected) problems remain open. The first problem is given by the 

bias-vs-variance trade-off. If the model used to estimate the underlying function is too flexible 

(i.e., high model complexity), the variance will be very large. If the model is fixed (i.e., low 

complexity), the bias will be large. The second problem is to define an approach for selecting the 

appropriate parameters of the kernel function. To address these two problems, this paper derives a 

new smoothing kernel criterion, which measures the roughness of the estimated function as a 

measure of model complexity. Then, we use multiobjective optimization to derive a criterion for 

selecting the parameters of that kernel. The goal of this criterion is to find a trade-off between the 

bias and the variance of the learned function. That is, the goal is to increase the model fit while 

keeping the model complexity in check. We provide extensive experimental evaluations using a 

variety of problems in machine learning, pattern recognition and computer vision. The results 

demonstrate that the proposed approach yields smaller estimation errors as compared to methods 

in the state of the art.
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I. Introduction

Regression analysis has been a very active topic in machine learning and pattern recognition, 

with applications in many problems in science and engineering. In a standard regression 

problem, a linear or nonlinear model is estimated from the data such that the functional 

relationship between the dependent variables and the independent variables can be 

established. Of late, regression with kernel methods [39, 33] has become popular. The 

success of the kernel methods in regression comes from the fact that they facilitate the 

estimation of nonlinear function using well-defined and - tested approaches in, for example, 

computer vision [40], signal processing [38, 7], and bioinformatics [28].

The underlying idea in kernel methods is to map the data samples from an original space to a 

space of (intrinsically) much higher (or infinite) dimensionality. We refer to the resulting 

space as the kernel space. The goal is to find a mapping that converts the original nonlinear 

HHS Public Access
Author manuscript
IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2016 April 22.

Published in final edited form as:
IEEE Trans Neural Netw Learn Syst. 2014 October ; 25(10): 1879–1893. doi:10.1109/TNNLS.
2013.2297686.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



problem (defined in the original space) into a linear one (in the kernel space) [32]. In 

practise, this mapping is done using a pre-determined nonlinear function. Given this 

function, the main challenge is to fine those parameters of the function that convert a 

nonlinear problem into a linear one. Thus, the selection of these kernel parameters is a type 

of model selection. This is the problem we consider in this paper – to define a criterion for 

the selection of the appropriate parameters of this kernel function.

The selection of the appropriate parameters of a kernel is a challenging one [47]. If the 

parameters were chosen to minimize the model fit, we would generally have an over-fitting 
to the training data. As a consequence, the regressed function would not be able to estimate 

the testing data correctly. A classical solution is to find a good fit, while keeping the 

complexity of the function low, e.g., using a polynomial of lower order [16]. However, if the 

parameters are selected to keep the complexity too low, then we will under-fit the data. In 

both these cases, the regressed function will have a poor generalization, i.e., a high 

prediction error to the testing data. In general, the kernel parameters should be selected to 

achieve an appropriate trade-off between the model fit and model complexity.

To date, the most widely employed technique to do this selection of the kernel parameters is 

k-fold cross-validation (or CV, for short) [16]. In this approach, the performance of the 

prediction models is evaluated by setting aside a validation set within the training set. The 

model which produces the smallest validation error is selected. Unfortunately, this method 

has three known major drawbacks. First, it is computational expensive. Second, only part of 

the training data is used to estimate the model parameters. When doing model selection, one 

wants to employ the largest possible number of training samples, since this is known to yield 

better generalizations [24]. Third, the value of k as a parameter plays a major role in the 

process. Note that the value of k affects the trade-off between the fitting error and the model 

complexity, yet general methods for selecting an appropriate value do not exist.

An alternative to CV is Generalized CV (GCV) [39], an approach originally defined to select 

the ridge parameter in ridge regression. GCV can be directly extended to do model selection 

in regression with kernel approaches, as long as the hat matrix [39], which projects the 

original response vector to the estimated one, can be obtained. However, since this criterion 

is an approximation of the leave-one-out CV (i.e., n-fold CV, n is the number of training 

samples), the estimated result generally has a large variance and small bias, i.e., the 

regressed function is highly variant and dependent of the training data.

Another alternative is to minimize the structural risk [37], which is a function of the model 

fit and the Vapnik-Chervonenkis (VC) dimension of the regressed function. Unfortunately, 

the VC dimension is infinite in regularized Kernel regression approaches with an induced 

infinite dimensional space (e.g, Radial Basis Function), limiting the applicability of such 

approaches [11, 12].

While a single kernel may not be sufficient to describe the data, Multiple Kernel Learning 

(MKL) [21, 34] has attracted much attention recently as a potential alternative. In [28], 

MKL is applied to Support Vector Regression (SVR). The coefficients that determine the 

combination of kernels are learned using a constrained quadratic programming problem. 
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This method was shown to outperform CV in some applications. Unfortunately, the selection 

of its parameters is generally problem specific [6, 46, 28], and while the general problem 

remains unsolved, this is an active area of research. In yet another approach, the kernel 

parameters are selected by maximizing the marginal data likelihood after reformulating the 

regression problem as probabilistic models using Bayesian inference. This approach has 

been used to define the well-known Relevance Vector Machine (RVM) [36] and Gaussian 

processes for regression [45]. It has been shown [30] that the marginal likelihood has the 

nice property of automatically incorporating a trade-off between model fit and model 

complexity. However, since the Bayesian learning generally leads to analytically intractable 

posteriors, approximations are necessary, and, the results are generally computationally very 

expensive. Furthermore, the determination of the priors for the parameters is an intrinsic 

problem in Bayesian learning with no clear solution.

In this paper, we resolve the kernel optimization problem using a completely novel 

approach. In our proposed approach, the two measures of model fitness and model 

complexity are simultaneously minimized using a multiobjective optimization (MOP) 

framework through the study of Pareto-optimal solutions. MOP and Pareto-optimality are 

specifically defined to find the global minima of several combined criteria. To this end, we 

will first derive a new criterion for model complexity which can be employed in kernel 

methods in regression. We then define a method using MOP and derive a new approach 

called modified ε-constraint. We show that this newly derived approach achieves the lowest 

mean square error. We provide extensive comparisons with the state of the art in kernel 

methods for regression and on approaches for model selection. The results show that the 

proposed framework leads to better generalizations for the (unseen) testing samples.

The remainder of this paper is organized as follows. In Section II we derive the two new 

measures of model fitness and model complexity. Then, in Section III, we derive a new 

MOP approach to do model selection. In Section IV, the proposed framework is applied to 

two typical kernel methods in regression. Experimental results are provided in Section V. We 

conclude in Section VI.

II. Regression Models

We start with an analysis of the generalization error of a regression model. Given a training 

set , where , , with the training samples (xi, yi), i = 1, ..., n 
generated from a joint distribution g(x, y), one wants to find the regression model f(x) that 

minimizes the generalization error

(1)

where f(x) is the regression function,  is the 

ith regression function, and L(y, f(x)) is a given loss function, for instance, the quadratic loss 

.
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A. Generalization error

Holmstrom and Koistinen [18] show that by adding noise to the training samples (both x and 

y), the estimation of the generalization error is asymptotically consistent, i.e., as the number 

of training examples approaches infinity, the estimated generalization error is equivalent to 

the true one. The addition of noise can be interpreted as generating additional training 

samples. This means that we can estimate the generalization error by adding the noise to the 

training samples.

For convenience, denote the training set that consists of n pairs of observation vectors and 

prediction vectors by . Then the 

generalization error can be rewritten as

(2)

Assume that the training samples zi are corrupted by the noise ξ. Suppose the distribution of 

ξ is ψ(ξ). The noise distribution is generally chosen to have zero mean and to be 

uncorrelated, i.e.,

(3)

(4)

where ν is the variance of the noise distribution, and δij is the delta function with δij = 1 

when i = j and δij = 0 otherwise.

We consider the following steps for generating new training samples by introducing additive 

noise:

1) Select a a training sample zi randomly from the training set.

2) Draw a sample noise vector ξi from ψ(ξ).

3) Set z = zi + ξi.

Thus, the distribution of a particular sample z generated from the training sample zi is given 

by ψ(ξi) = ψ(z – zi). Then the distribution of z generated from the entire training set is

(5)

The above result can be viewed as a kernel density estimator of the true distribution of the 

data g(z) [18]. The distribution of the noise ψ(.) is the kernel function used in the estimator.

Substituting (5) into (2), we have
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(6)

The result shown above in (6) can also be derived from a known convolution smoothing 

function ψ(.) [9, 35]. This is achieved by approximating the cost function iteratively. While 

this provides further justification for the proposed measure, note that the difference between 

our derivations and those presented in [9, 35] is that we do not require to work with a known 

density or specific regression function.

We now reformulate (6) by approximating the loss function L(., .).

Let z – zi = ξi, then (6) is reformulated as

(7)

We expand L(z + ξ) as a Taylor series in powers of ξ, i.e.,

(8)

Assuming that the noise amplitude is small, the higher order term  can be neglected. 

Combining (8) with (7), (3) and (4), we obtain

(9)

Let L(z) be the quadratic loss, i.e.,  Then, as shown in Appendix 

A, we have

(10)

where yij is the jth entry of vector yi and xij is the jth entry of vector xi. Substituting (10) into 

(9), we have

(11)

with

You et al. Page 5

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(12)

and

(13)

Therefore, the generalization error consists of two terms. The first term Ef measures the 

discrepancy between the training data and the estimated model, i.e., the model fit. The 

second term Ec measures the roughness of the estimated function provided by the first and 

second derivatives of the function, i.e., the model complexity. It controls the smoothness of 

the function to prevent it from overfitting. The parameter ν controls the trade-off between 

the model fit and model complexity.

In order to minimize the generalization error E, we need to minimize both Ef and Ec. 

However, due to the bias and variance trade-off [16], a decrease in the model fit may result 

in an increase in the model complexity and vice-versa. The regularization parameter ν may 

achieve a balance between the model fit and complexity to some extent, however, there are 

two limitations for selecting ν to do model selection. First, a good ν should be chosen 

beforehand. A common way is to use cross-validation, but this suffers from several 

drawbacks as we discussed earlier. Second, note that our goal is to simultaneously minimize 

model fit and model complexity. An ideal solution is that we cannot further decrease one 

without increasing the other. This means that even when the appropriate ν is selected, 

minimizing E is not directly related to our goal. To solve these problems, we derive a 

multiobjective optimization approach in Section III. We first derive the kernel models for 

model fit Ef and model complexity Ec.

B. Model fit

We start by considering the standard linear regression model, f(x) = WTx, where W = 

(w1, ..., wq) is a p × q weight matrix, with . And, we assume all the vectors are 

standardized.

We can rewrite the above model as . In kernel methods for 

regression, each sample x is mapped to ϕ(x) in a reproducing kernel Hilbert space as 

. With this, we can write  . The Representer's 

Theorem [39] enables us to use , where Φ(X) = (ϕ(x1), ..., ϕ(xn)) and αi is an n 
× 1 coefficient vector. Putting everything together, we get

(14)
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where  is the jth element in αi, and κ〈xj, x〉 is a kernel function on xj and x.

Using the results derived thus far, we can write Ef as

(15)

where K = Φ(X)TΦ(X) is the n × n kernel matrix,  is an n × 1 vector, and 

yji is the ith entry of yj.

C. Roughness penalty in RBF

We now derive solutions of Ec for two of the most used kernel functions, the Radial Basis 

Function (RBF) and the polynomial kernels.

The RBF kernel is given by , where σ is the kernel parameter. 

Since , the partial derivatives are given by

Writing this result in matrix form,

where , Wi is a n × p matrix with the jth column equal to 

.

And, the second partial derivatives (see Appendix B-A) are given by

where pij is an n × 1 vector whose mth (m ≠ i) entry is 

 and ith entry is 0. Then 

where . Thus,
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where .

Using the above results, we can define the roughness penalty function in the RBF kernel 

space as

(16)

where , and .

D. Polynomial kernel

A polynomial kernel of degree d is given by . Its partial derivatives 

are,

We can write the above result in matrix form as

where , Ci is a n × p matrix with jth column equal to 

.

The second partial derivatives (see Appendix B-B) are

where gij is a n × 1 vector whose mth (m ≠ i) entry is  and 

the ith entry is . Then, , 

where .
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Thus,

Using the derivations above, the roughness function for the polynomial kernel can be written 

as

(17)

where , and .

E. Comparison with other complexity measure

Thus far, we have introduced a new model complexity measure Ec. Ec is related to the 

derivatives of the regressed function f(x). A commonly seen alternative in the literature is the 

norm of the regression function instead. The L2 norm in the kernel Hilbert space being the 

most common of norms used in this approach [39]. This section provides a theoretical 

comparison between the approach derived in this paper and this classical L2 norm 

alternative. In particular, we show that the L2 norm does not penalize the high frequencies of 

the regression function, whereas the proposed criterion emphasizes smoothness by 

penalizing the high frequency components of this function.

To formally prove the above result, we write generalized Fourier series of f(x),

where  forms a complete orthonormal basis and ak are the corresponding 

coefficients. A commonly used complete orthonormal basis is  in [−π, 
π], with k the index of the frequency component. Using this basis set, f(x) can be written as

(18)

where ak and bk are the coefficients of each frequency components.

Let ∥f∥2 be the L2 norm in the reproducing kernel Hilbert space, then
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(19)

Note that in this case, all the coefficient are equal, regardless of the frequency component.

The complexity measure derived in the present paper and given in (13) can be reformulated 

as

(20)

where we have neglected the constant p−1.

Moreover, remember for (11) that the generalization error E can be expressed as 

 [4]. Hence, substituting (18) into (20), yields

(21)

Compared to the L2 norm result shown in (19), the complexity measure (21) of the proposed 

approach penalizes the higher frequency components of the regressed function. This is due 

to the squared of the index of the frequency component seen in (21). By emphasizing lower 

frequencies, the proposed criterion will generally select smoother functions than those 

selected by the L2 norm method.

A numerical comparison is provided in Section V. To do this, we will need the explicit 

equation of the L2 norm of the regression function f in the kernel space. This is given by,

(22)

III. Multiobjective Optimization

The parameters in kernel approaches in regression can now be optimized by simultaneously 

minimizing Ef and Ec of the corresponding fitting function described in the preceding 

section. Of course, in general, the global minima of these two functions are not the same. 

For instance, a decrease in the fitting error may lead to an increase in the roughness of the 

function, and vice-versa. This trade-off is depicted in Figure 1. In the plots in this figure, we 
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show the performance of the two criteria with respect to the their corresponding parameters, 

i.e., the kernel parameter σ and the regularization parameter λ in the case of Kernel Ridge 

Regression (KRR)[16] with an RBF kernel. As can be observed in the figure, the criteria do 

not share a common global minimum. To resolve this problem, we now derive a 

multiobjective optimization approach.

A. Pareto-Optimality

As its name implies, multiobjective optimization (MOP) is concerned with the simultaneous 

optimization of more than one objective function. More formally, MOP can be stated as 

follows,

(23)

where we have k objective functions , and  is the set of possible vectors. 

Denote the vector of objective functions by z = u(θ) = (u1(θ), u2(θ), ..., uk(θ))T, and the 

decision vectors as θ = (θ1, θ2, ...,θp)T.

The goal of MOP is to find that θ* which simultaneously minimizes all uj(.). If all functions 

shared a common minimum, the problem would be trivial. In general, however, the objective 

functions contradict one another. This means that minimizing one function can increase the 

value of the others. Hence, a compromise solution is needed to attain a maximal agreement 

of all the objective functions [25]. The solutions of the MOP problem are called Pareto-
optimal solutions. To provide a formal definition, let us first state another important concept.

Definition 1—A decision vector θ1 is said to dominate θ2 if ui(θ1) ≤ ui(θ2) for all i = 1, ..., 

k and uj(θ1) < uj(θ2) for at least one index j.

This definition now allows us to give the following formal presentation of Pareto-optimality.

Definition 2—A decision vector θ* ∈ S is Pareto-optimal if there does not exist another 

decision vector θ ∈ S for which ui(θ) ≤ ui(θ*) for all i = 1, ..., k and uj(θ) < uj(θ*) for at least 

one index j.

In other words, a Pareto-optimal solution is not dominated by any other decision vector. 

Similarly, an objective vector z* ∈ Z(= u(S)) is called Pareto-optimal if the decision vector 

corresponding to it is Pareto-optimal. We can see that such a vector is the one where none of 

the components can be improved without deteriorating one or more of the others. In most 

problems, there will be many Pareto-optimal solutions. This set of Pareto-optimal solutions 

is called the Pareto-optimal set or Pareto-frontier.

B. The ε-constraint approach

One classical method to find the Pareto-optimal solutions is the ε-constraint approach [15]. 

In this case, one of the objective functions is optimized while the others are considered as 

constraints. This is done by defining constraints as upper-bounds of their objective functions. 

Therefore, the problem to be solved can be formulated as follows,
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(24)

where l ∈ {1, ..., k}.

Figure 2 demonstrates the idea behind this approach. In this figure, we show a bi-objective 

example, k = 2. The Pareto-optimal solution θ is determined by minimizing u1 provided that 

that u2 is upper-bounded by ε.

Before exploring the Pareto-optimality of the ε-constraint method, let us look at a weaker 

definition of the term.

Definition 3—A decision vector θ* ∈ S is weakly Pareto-optimal if there does not exist 

another decision vector θ ∈ S such that ui(θ) < ui(θ*) for all i = 1, ..., k.

From the above definition, we can see that the Pareto-optimal set is a subset of the weakly 

Pareto-optimal set and that a weakly Pareto-optimal solution may be dominated by any 

Pareto-optimal solution.

It has been shown [25] that the solution of the ε-constraint method defined in (24) is weakly 

Pareto-optimal. This means that the solution to (24) cannot be guaranteed to be Pareto-

optimal. Although the solution is determined by the prespecified upper-bounds εj's and some 

εj's may lead to Pareto-optimal solutions, in practice, we do not know how to choose εj's to 

achieve the Pareto-optimal solutions. In the following, we propose a modified version of this 

method and prove that the solution to this modified approach is guaranteed to be Pareto-

optimal.

C. The modified ε-constraint

The main idea of our approach is to reformulate the constraints in (24) as equalities. This 

can be achieved if these equalities are multiplied by a scaler smaller than or equal to s on the 

right. Formally, uj(θ) = hjεj, hj ∈ [0, s], for all j = 1, ..., k, j ≠ l. Let h = (h1, ..., hl–1, hl+1, ..., 

hl)T. Then, the modified ε-constraint method is given by

(25)

where s is a positive constant. We can now prove the Pareto-optimality of (25).

Theorem 4—Select a small scalar s satisfying , where θ* 

∈ S and h* are the solutions of (25). Then, θ* is Pareto-optimal for any given upper-bound 

vector ε = (ε1, ..., εl–1, εl+1, ..., εk)T.

Proof—Let θ* ∈ S and h* be a solution of (25). Since , we 

have ul(θ*) ≤ ul(θ) for all θ ∈ S when uj(θ*) = hjεj, for every j = 1,..., k, j ≠ l. Let us assume 
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that θ* is not Pareto-optimal. In this case, there exists a vector θo ∈ S such that ui(θo) ≤ 

ui(θ*) for all i = 1, ..., k and uj(θo) < uj(θ*) for at least one index j.

If j = l, this means that ul(θo) < ul(θ*). Here we have a contradiction with the fact that ul(θ*) 

≤ ul(θ) for all θ ∈ S.

If j ≠ l, then ul(θo) ≤ ul(θ*), uj(θo) < uj(θ*) = hjεj and ui(θo) ≤ ui(θ*) = hiεi for all i ≠ j and i ≠ 

l. Denote for all i ≠ l. Then, we have l – 1 inequalities  with at least 

one strict inequality . Canceling out εi on each of the inequality and taking their 

sum, yields . This contradicts the fact that the solution to (25) 

minimizes .

We can demonstrate the utility of this modified ε-constraint method in the following two 

examples. In our first example, the objective functions are given by

and u2(x) = (x – 5)2. In our second example, the two functions are given by 

 and

In both these examples, we compare the performance of the proposed modified ε-constraint 

approach and the ε-constraint method. This is illustrated in Figure 3. In these figures, the 

blue stars denote the objective vectors and the red circles represent the solution vectors given 

by each of the two methods. We see that in Figure 3a and 3c, the original ε-constraint 

method includes the weakly Pareto-optimal solutions, whereas in Figure 3b and 3d the 

proposed modified approach provides the Pareto-optimal solutions.

Using the solution defined above, we can formulate the parameter optimization problem as 

follows,

(26)

Note that given different ε's, we may have different Pareto-optimal solutions. In our 

parameter optimization problem, we only need one Pareto-optimal solution. Hence, our next 

goal is to define a mechanism to determine an appropriate value for ε.

You et al. Page 13

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To resolve this problem, we select ε such that the corresponding Pareto-optimal objective 

vector is as close to the ideal point as possible. Specifically, let θε be a Pareto-optimal 

solution given ε, then the optimal ε is

(27)

where  and  are the ideal vectors of Ef(θ) and Ec(θ), respectively, and wf, wc are the 

weights associated to each of the objective functions. The incorporation of these weights can 

drive the optimization to favor one objective function over the other. If Ef(θε) (or Ec(θε)) is 

close to its ideal value , then wf (wc) should be relatively small. But if Ef(θε) (Ec(θε)) 

is far apart from it ideal value , then wf (wc) should be large. This can be formally 

stated as follows,

(28)

where ε0 is the initialization for ε. The proposed modified ε-constraint approach is 

summarized in Algorithm 1.

D. Alternative Optimization Approaches

Thus far, we have derived a MOP approach for model selection based on Pareto-optimality. 

The most pressing question for us is to show that this derived solution yields lower 

prediction errors than simpler, more straight forward approaches. Two such criteria are the 

sum and product of the two terms to be minimized [47], given by

(29)

and

(30)

where ν and γ are regularization parameters needed to be selected. Note that minimizing 

(30) is equivalent to minimizing

(31)

which is the logarithm of (30). We could use cross-validation to select the regularization 

parameters ν and γ. Experimental results comparing these two alternative optimization 

approaches with the proposed approach will be given in the experiments section.

IV. Applications to Regression

Let us derive two kernel-based regression approaches using the kernels and MOP criteria 

derived above. In particular, we use our derived results in Kernel Ridge Regression (KRR) 

[16] and Kernel Principal Component Regression (KPCR) [31].

You et al. Page 14

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2016 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Kernel Ridge Regression

Ridge regression (RR) is a penalized version of the ordinary least squares (OLS) solution. 

More specifically, RR regularizes the OLS solution with a penalty on the norm of the weight 

factor. This regularization is used to avoid overfitting. Formally, RR is defined as

(32)

where X = (x1, ..., xn), Ip is the p × p identity matrix, , and λ is the 

regularization parameter.

We can now extend the above solution using the kernel trick. The resulting method is know 

as Kernel Ridge Regression (KRR), and is given by

(33)

where, as above, K is the kernel matrix.

In KRR, there are two parameters to optimize: the kernel parameter (e.g., σ in the RBF 

kernel) and the regularization parameter λ. In the following, we derive a gradient descent 

method to simultaneously optimize the two.

Since both, the residual sum of squares term ER and the curvature term EC, are involved in 

our parameter optimization problem, we need to derive the gradient of these terms with 

respect to their parameters.

We start with the derivations of the RBF kernel. In this case, we have

where , ○ defines the Hadamard product of two matrices of the same 

dimensions, i.e., , with Aij denoting the (i, j)th entry of matrix A. 

 is the matrix of pairwise sample distances, and 

. And,

where
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 is a n × p matrix whose (j, k)th entry is , and

 is the ith column of , ,  is a n × 1 vector whose mth (m ≠ i) entry is 

 and ith entry is 

0.

Seemingly, deriving with respect to the regularization parameter λ, yields

where  And,

When using the polynomial kernel, we cannot employ a gradient descent technique for 

finding the optimal value of d, because this is discrete. Thus, we will have to try all possible 

discrete values of d (within a given range) and select the degree yielding the smallest error. 

The derivations of Ef with respect to λ are the same for any kernel, and 

.

B. Kernel Principal Component Regression

Solving an overdetermined set of equations is a general problem in pattern recognition. The 

problem is well studied when there are no collinearities (i.e., close to linear relationships 

among variables), but special algorithms are needed to deal with them. Principal Component 

Regression (PCR) is a regression approach designed to deal with collinearities in the 

exploratory variables. Instead of using the original predictor variables, a subset of principal 

components of these are selected. By deleting the principal components with small 

variances, a more stable estimate of the coefficient {wi}i=1...,q, can be obtained. In this way, 
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the large variances of {wi}i=1,...,q, which were caused by multicollinearities, will be greatly 

reduced. More formally,

(34)

where ai is the eigenvector of the covariance matrix associated to the ith largest eigenvalue.

The above formulation can once again be calculated in the kernel space as,

(35)

where vi is the eigenvector of the centered kernel matrix  associated to the ith largest 

eigenvalue λi. This algorithm is known as Kernel Principal Component Regression (KPCR).

In KPCR, we need to optimize two parameters – the kernel parameter and the number of 

eigenvectors m we want to keep. Since m is discrete, the cost function with respect to m is 

non-differentiable. But testing all possible value for m is computationally expensive, because 

the range of m is dependent on the size of the training set. Here, we present an alternative 

approach to select the optimal subset. The basic idea is to use the percentage of the variance 

, t is the rank of . Note that r can now change continuously (from 0 to 1) and can 

thus be incorporated in a gradient descent framework.

Since KPCR differs from KRR in the solution vector {αi}i=1,...,q, we need to derive αi. The 

derivative with respect to σ is given by,

where ,  [22], and A+ is the pseudoinverse of the 

matrix A.

The partial derivative with respect to r cannot be given, because an explicit definition of αi 

as a function of r does not exist. We resolve this issue by deriving an approximation to 

using a Taylor expansion. That is,

Combining the two equations above, we have
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Therefore, we can write

where m1 and m2 are selected such that 

and .

V. Experimental Results

In this section, we will use the Pareto-optimal criterion derived in this paper to select the 

appropriate kernel parameters of KRR and KPCR. Comparisons with the state of the art as 

well as the alternative criteria (i.e., sum and product) defined in the preceding section are 

provided.

A. Standard data-sets

We select fifteen data-sets from the UCI machine learning databases [5] and the DELVE 

collections [1]. Specifically, these databases include the following sets (in parenthesis we 

show the number of samples/number of dimensions): Boston housing (506/14), auto mpg 

(398/8), slump(103/8), price(159/16), diabetes(43/3), wdbc(194/33), servo(167/5), 

puma-8nm (8192/9), puma-8nh (8192/9), puma-8fm (8192/9), puma-8fh (8192/9), kin-8nm 

(8192/9), kin-8nh (8192/9), kin-8fm (8192/9) and kin-8fh (8192/9). The Boston housing 

data-set was collected by the U.S. Census Service and describes the housing information in 

Boston, MA. The task is to predict the median value of a home. The auto mpg set details 

fuel consumption predicted in terms of 3 discrete and 4 continuous attributes. In the slump 

set, the concrete slump is predicted by 7 different ingredients. The price data-set requires 

predicting the price of a car based on 15 attributes. In the diabetes set, the goal is to predict 

the level of the serum C-peptide. In the Wisconsin Diagnostic Breast Cancer (wdbc) set, the 

time of the recurrence of breast cancer is predicted based on 32 measurements of the 

patients. The servo set concerns a robot control problem. The rise time of a servomechanism 

is predicted based on two gain settings and two choices of mechanical linkages. The task in 

the Pumadyn is to predict angular accreditation from a simulation of the dynamics of a robot 

arm. And, the Kin set requires us to predict the distance of the end-effector from a target in a 

simulation of the forward dynamics of an 8 link all-revolute robot arm. There are different 

scenarios in both Pumadyn and Kin data-sets according to the degree of non-linearity (fairly-

linear or nonlinear) and the amount of noise (moderate or high).

When using the ε-constraint criterion, we employ the interior-point method of [19]. Recall 

that in our proposed modified ε-constraint criterion, we also need to select a small scalar s. 
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We tested for values of s = {10−1, 10−2, 10−3} obtaining the same results regardless of the 

value of this parameter. The results reported in the present paper are for s = 10−3.

We compare our model selection approaches to the two typical criteria used in the literature, 

Cross-Validation (CV) and Generalized Cross-Validation (GCV) [39]. In particular, we 

employ a 10-fold CV. The kernel parameter in the RBF is searched in the range [μ – 2δ, μ 
+ 2δ], where μ and δ are the mean and standard deviation of the distances between all 

pairwise training samples. In the polynomial kernel, its degree is tested in the range of 1 to 

6. The regularization parameter in KRR is selected among the set {10−5, . . . ,104}, and the 

percentage of variance r in KPCR is searched in the range [0.8, 1]. Moreover, we compare 

our modified ε-constraint approach with the original ε-constraint method.

To test all the different algorithms, for each data-set, we generate five random permutations 

and conduct 10-fold cross-validation on each one. This yields a total of 50 estimated errors. 

Herein, we report their means and the standard deviations (stdv). Unless otherwise noted, in 

the experiments below, we report the Root Mean Squared Error (RMSE) as our measure of 

the deviation between the true response yi and the predicted response ŷ , i.e., 

. It is important to that the random permutations utilized 

at this testing stage is different from the one employed for parameter selection. Note also 

that in order to provide a fair comparison, we tested all the algorithms using the same sets. 

In addition, the Bonferroni-Dunns test and a two-sided paired Wilcoxon signed rank test [44, 

17, 20] are used to check for statistical significance. Errors in bold mean that they were 

significantly smaller than the others with significance level of .05.

Table I shows the regression results of KRR using both the RBF and the polynomial kernels. 

We see that regardless of the kernel used, the proposed modified ε-constraint approaches 

consistently provide the smallest RMSE. We also note that the modified ε-constraint 

approach obtains smaller RMSE than the ε-constraint method.

Table II shows the regression results of KPCR using the RBF and polynomial kernels. Once 

more, the proposed approach generally outperforms the others. Additionally, as in KRR, the 

modified ε-constraint approach generally yields the best results.

A major advantage of the proposed approach over CV is that it uses all the training data for 

training. In contrast, CV needs to use part of the training data for verification purposes. This 

limits the amount of training data used to fit the function to the data.

B. Comparison with the state of the art

We now provide a comparison with the methods available in the literature and typically 

employed in the above databases. Specifically, we compare our results with Support Vector 

Regression (SVR) [37] with the RBF and polynomial kernels, Multiple Kernel Learning in 

SVR (MKL-SVR) [28], and Gaussian Processes for Regression (GPR) [45]. In SVR, the 

parameters are selected using CV. In MKL-SVR, we employ three kernel functions: the 

RBF, the polynomial and the Laplacian defined as . The RBF 

kernel parameter is set to be the mean of the distances between all pairwise training samples; 
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the degree of the polynomial kernel is set to 2; and β in the Laplacian kernel is set as 

, where n is the number of training samples. MOSEK [3] is 

used to solve the quadratically constrained programming problems to get the combinational 

coefficients of the kernel matrices. In GPR, the hyperparameters of the mean and covariance 

functions are determined by minimizing the negative log marginal likelihood of the data.

We compare the results given by the above algorithms with those obtained by our approach 

applied to KRR and using the RBF kernel, because this method tends to yield more 

favorable results. The comparisons are shown in Table III. Note that our approach generally 

yields smaller RMSE.

Furthermore, for each of the data-sets described above, we provide a comparison between 

our results and the best results found in the literature. For the Boston housing data-set, [36] 

reports the best fits with Relevance Vector Machine (RVM); for the Auto mpg data-set, the 

best result is obtained by MKL-SVR [28]; for the Slump data, [8] proposes a k nearest 

neighbor based regression method and shows its superiority over others; for the price data-

set, [41] reports the best result with pace regression; Diabetes data-set is used in [10] and the 

best results is obtained using Least Angle Regression; for the servo data-set, [13] shows that 

regression with random forests gets best results; and for the last eight data-sets, Gaussian 

processes for regression trained with a maximum-a-posteriori approach is generally 

considered to provide state of the art results [43]. The comparison across all the data-sets is 

given in Table IV. We see that our approaches provide better or comparable results to the top 

results described in the literature but with the main advantage that a single algorithm is 

employed in all data-sets.

C. Alternative Optimizations

In Section III-D, we presented two alternatives for combining different objective functions – 

the sum and the product criteria. Here we provide a comparison of these criteria and the 

approach derived in this paper. In particular, we combine model fit Ef and model complexity 

Ec via the summation and product in KRR and KPCR. The regularization term in (29) and in 

(31) is selected by 5-fold CV. Table V shows the corresponding regression results. In this 

table,  and  denote the method  with a RBF and a polynomial kernel, respectively. 

We see that these two alternative criteria generally perform worse than the Pareto-optimal 

based approach.

D. Comparison with the L2 norm

We provide a comparison between our complexity measure Ec and the commonly used L2 

norm. This was done by plugging in the L2 norm as the constraint in the modified ε-

constraint algorithm. The RMSE results are shown in Table VI. We see that the proposed 

complexity measure generally outperforms the L2 norm in penalizing the regression 

function.
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E. Age estimation

In the last two sections we want to test the derived approach on two classical applications – 

age estimation from faces and weather prediction.

The process of aging can cause significant changes in human facial appearances. We used 

the FG-NET aging database described in [2] to model these changes. This data-set contains 

1,002 face images of 82 subjects at different ages. The age ranges from 0 to 69. Face images 

include changes in illumination, pose, expression and occlusion (e.g., glasses and beards). 

We warp all images to a standard size and constant position for mouth and eyes as in [23]. 

All the pictures are warped to a common size of 60 × 60 pixels and converted to 8-bit 

graylevel images. Warped images of one individual are shown in Figure 4. We represent 

each image as a vector concatenating all the pixels of the image, i.e., the appearance-based 

feature representation.

We generate five random divisions of the data, each with 800 images for training and 202 for 

testing. Results in Table VII are presented using the Mean Absolute Errors (MAE). Here, we 

report the MAE rather than the RMSE because it is the common measure reported in the 

literature in age estimation [14] and thus facilitates comparison with the state of the art. We 

can see that the modified ε-constraint method outperforms the other algorithms. In [48], the 

authors represent the images using a set of highly redundant Haar-like features and select 

relevant features using a boosting method. We implemented this method using the same five 

divisions of the data. Our approach is slightly better using a simpler appearance-based 

representation.

F. Weather prediction

The weather data of the University of Cambridge [42] is used in this experiment. The 

maximum temperature of a day is predicted based on several parameters measured every 

hour during the day. These parameters include pressure, humanity, dew point (i.e., the 

temperature at which a parcel of humid air must be cooled for it to condense), wind knots, 

sunshine hours and rainfall. We use the data in a period of five years (2005-2009) for 

training and the data between January and July of the year 2010 for testing. This 

corresponds to 1,701 training samples and 210 testing samples. The results are in Table VIII. 

In [29], the authors employed support vector regression and report state of the art results. 

Our experiment shows that our approach performs better than their algorithm. The 

predictions obtained from the modified ε-constraint approach are also plotted in Figure 5. 

We observe that our approach can provide the prediction of the daily maximum temperature 

with high accuracy.

VI. Conclusions

Non-linear regression is a fundamental problem in machine learning and pattern recognition 

with multiple applications in science and engineering. Many approaches have been proposed 

for linear regressions, but their non-linear extensions are known to present several 

limitations. A major limitation is the lack of regularization of the regressor. Without proper 

regularization, the complexity of the estimated function (e.g., the degree of the polynomial 
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describing the function) increases very rapidly, yielding poor generalizations on the unseen 

testing set [27]. To resolve this problem, we have derived a roughness penalty that measures 

the degree of change (of the regressed function) in the kernel space. This measure can then 

be used to obtain estimates that (in general) generalize better to the unseen testing set. 

However, to achieve this, the newly derived objective function needs to be combined with 

the classical one measuring its fitness (i.e., how well the function estimates the sample 

vectors). Classical solutions would be to use the sum or product of the two objective 

functions [47]. However, we have shown that these solutions do not generally yield desirable 

results in kernel methods in regression. To resolve this issue, we have proposed a multiple 

optimization approach based on the idea of Pareto-optimality. In this MOP framework, we 

have derived a novel method: the modified ε-constraint approach. While the original ε-

constraint method cannot guarantee Pareto-optimal solutions, we have proven that the 

derived modified version does. Extensive evaluations with a large variety of databases has 

shown that this proposed modified ε-constraint approach yields better generalizations than 

previously proposed algorithms. Although the proposed method was applied to classical 

non-linear regression methods such as KRR and KPCR, our methodology is general enough 

that can be applicable to other regularized regression approaches methods such as [26].

The other major contribution of the paper has been to show how we can use the derived 

approach for optimizing the kernel parameters. In any kernel method, one always has to 

optimize the parameters of the kernel mapping function. The classical approach for this task 

is CV. This technique suffers from two main problems. First, it is computationally expensive. 

Second, and arguably most important, it cannot use the entire sample set for training, 

because part of it is employed as a validation set. But, we know that (in general) the larger 

the training set, the better. Our proposed MOP framework is ideal for optimizing the kernel 

parameters, because it yields nice objective functions that can be minimized with standard 

gradient descent techniques.

We have provided extensive comparisons of the proposed approach against CV and GCV 

and the other state of the art techniques in kernel methods in regression. We have also 

compared our results to those obtained with the sum and product criteria. And, we have 

compared our results to the best fits found in the literature for each of the databases. In all 

cases, these comparisons demonstrate that the proposed approach yields fits that generalize 

better to the unseen testing sets.
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Appendix A

Partial Derivatives of the quadratic loss function

Let  be the quadratic loss then (10) is given by
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Appendix B

Partial derivatives of the roughness function

Sections B-A and B-B show the derivations to obtain the second partial derivatives for the 

RBF and polynomial kernels. Note that this is a key component for the roughness function 

Ec. To do so, recall that the regression function is defined as 

A. RBF Kernel

The RBF kernel is given by , where σ is the kernel parameter. 

Then the second partial derivative of fl with respect to xij is

B. Polynomial kernel

The polynomial kernel is given by , where d is the kernel parameter. 

The second partial derivative of fl(.) with respect to xij is
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Appendix C

Running Time

Table C.1 presents the running time for four different model selection algorithms: Modified 

ε-constraint, ε-constraint, CV and GCV. These values correspond to the execution time for 

KRR with an RBF Kernel using the cross-validation testing procedure described in Section 

V.

TABLE C.1

Running time for KRR with a Gaussian Kernel in Seconds

Data set Modified ε-constraint ε-constraint CV GCV

HOUSING 1562.1 10502.3 1282.3 757.7

MPG 878.1 3083.9 1233.7 904.2

SLUMP 412.7 935.6 37.8 29.9

PRICE 573.7 4064.2 71.8 20.2

DIABETES 24.3 203.3 4.7 10.4

WBDC 1735.3 20689.2 88.7 248.3
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Fig. 1. 
The two plots in this figure show the contradiction between the RSS and the curvature 

measure with respect to: (a) the kernel parameter σ, and (b) the regularization parameter λ in 

Kernel Ridge Regression. The Boston Housing data-set [5] is used in this example. Note that 

in both cases, while one criterion increases, the other decreases. Thus, a compromise 

between the two criteria ought to be determined.
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Fig. 2. 
Here we show a case of two objective functions. u(S) represents the set of all the objective 

vectors with the Pareto frontier colored in red. The Pareto-optimal solution θ can be 

determined by minimizing u1 given that u2 is upper-bounded by ε.
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Fig. 3. 
Comparison between the proposed modified and the original ε-constraint methods. We have 

used ‘*’ to indicate the objective vector and ‘o’ to specify the solution vector. Solutions 

given by (a) the ε-constraint method and (b) the proposed modified ε-constraint approach on 

the first example, and (c) the ε-constraint method and (d) the modified ε-constraint approach 

on the second example. Note that the proposed approach identifies the Pareto-frontier, while 

the original algorithm identifies weakly Pareto-solutions, since the solution vectors go 

beyond the Pareto-frontier.
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Fig. 4. 
Sample images showing the same person at different ages.
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Fig. 5. 
This figure plots the estimated (lighter dashed curve) and actual (darker dashed curve) 

maximum daily temperature for a period of more than 200 days. The estimated results are 

given by the algorithm proposed in this paper.
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TABLE I

Results for KRR. Mean RMSE and standard deviation (in parentheses).

KERNEL RBF POLYNOMIAL

DATA SET/METHOD MODIFIED ε-CONSTRAINT ε-CONSTRAINT CV GCV MODIFIED ε-CONSTRAINT ε-CONSTRAINT CV GCV

HOUSING
2.89

*
(0.77)

3.01(0.78) 3.25(0.84) 4.01(1.01) 3.71(0.87) 4.38(0.99) 4.24(1.03) 8.67(6.78)

MPG
2.51

*
(0.52) 2.59

*
(0.57) 2.72

*
(0.40)

2.61(0.52) 2.82(0.45) 3.25(0.58) 3.24(0.57) 3.21(0.80)

SLUMP
6.62

*
(1.49)

7.36(2.29) 6.70(1.53) 22.1(8.95) 7.09(1.22) 8.85(2.05) 9.86(1.53) 7.20(1.77)

PRICE
2.21

*
(0.90)

2.73(1.54) 2.42(0.90) 8.88(5.43) 3.08(1.20) 3.29(1.50) 4.01(1.48) 3.41(1.5)

DIABETES
0.55

*
(0.23)

0.72(0.33) 0.57(0.19) 0.88(0.31)
0.52

*
(0.17)

0.60(0.20) 2.31(0.87) 0.62(0.33)

WDBC
31.46

*
(1.59) 32.15

*
(4.86) 31.50

*
(4.37)

50.30(9.13) 34.11(4.23) 35.12(5.21) 46.61(6.89)
32.04

*
(4.35)

SERVO
0.51

*
(0.29)

0.56(0.30) 0.59(0.32) 0.81(0.52) 0.70(0.25) 0.70(0.25) 0.75(0.25) 0.65(0.27)

PUMA-8NM
1.44

*
(0.02)

1.51(0.03) 2.42(0.05)
1.44

*
(0.03) 1.42

*
(0.02)

1.89(0.04) 1.89(0.04) 1.46(0.02)

PUMA-8NH 3.65(0.03) 3.64(0.03) 3.98(0.06)
3.56

*
(0.04)

5.08(1.26) 5.28(0.19) 4.11(0.14)
3.61

*
(0.06)

PUMA-8FM
1.13

*
(0.01)

1.19(0.02) 1.19(0.01)
1.14

*
(0.02)

1.27(0.01) 1.37(0.09) 1.29(0.005) 1.27(0.01)

PUMA-8FH
3.23

*
(0.01)

3.45(0.02)
3.23

*
(0.01) 3.23

*
(0.01)

3.78(0.16) 4.86(0.14) 3.23(0.01)
3.24

*
(0.02)

KIN-8NM
0.11

*
(0.002)

0.15(0.003) 0.16(0.002) 0.19(0.02) 0.18(0.0008) 0.24(0.03) 0.22(0.002) 0.19(0.01)

KIN-8NH
0.18

*
(0.001)

0.18(0.002) 0.19(0.002) 0.18(0.002) 0.20(0.002) 0.29(0.006) 0.24(0.003) 0.22(0.003)

KIN-8FM 0.016(0.002) 0.016(0.03)
0.013

*
(0.0001)

0.339(0.202)
0.013

*
(0.0001)

0.02(0.0001) 0.16(0.003) 0.015(0.0001)

KIN-8FH 0.07(0.002) 0.061(0.002)
0.043

*
(0.0002) 0.043

*
(0.0002)

0.046(0.0002) 0.046(0.0002) 0.16(0.003) 0.050(0.0003)

In each kernel, the best result is in bold.

*
The symbol is used to indicate the top result over all methods and kernels.
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TABLE II

Results for KPCR. Mean RMSE and standard deviation (in parentheses).

KERNEL RBF POLYNOMIAL

DATA SET/METHOD MODIFIED ε-CONSTRAINT ε-CONSTRAINT CV GCV MODIFIED ε-CONSTRAINT ε-CONSTRAINT CV GCV

HOUSING 4.04*(0.88) 4.56(0.67) 9.14(1.10) 11.99(6.89) 8.45(1.72) 9.12(2.30) 6.05(0.95) 9.37(1.77)

MPG 3.00*(0.58) 4.64(0.82) 7.71(0.90) 3.64(1.63) 7.30(0.81) 7.82(1.54) 5.92(1.00) 8.16(1.78)

SLUMP 6.39*(1.53) 7.55(1.68) 9.28(1.94) 7.64(1.42) 7.68(1.88) 8.15(2.11) 8.48(2.80) 9.49(3.00)

PRICE 3.90*(2.16) 4.67(2.15) 12.62(2.02) 9.78(2.98) 6.06(1.93) 6.27(2.29) 5.79(1.49) 6.61(1.61)

DIABETES 0.76*(0.33) 0.96(0.43) 0.99(0.53) 0.74*(0.34) 1.01(1.47) 0.73*(0.80) 1.85(1.92) 1.23(1.31)

WDBC 30.66*(4.71) 35.32(5.87) 33.5(4.53) 43.53(7.05) 34.47(10.27) 56.68(7.71) 47.21(13.44) 41.13(14.89)

SERVO 0.71*(0.30) 1.35(0.33) 1.41(0.34) 1.29(0.40) 1.13(0.25) 1.11(0.25) 0.74(0.24) 0.81(0.24)

PUMA-8NM 3.69(0.02) 3.66(0.02) 2.42(0.05) 1.75*(0.07) 3.71(0.32) 4.12(0.25) 4.13(0.53) 4.15(0.70)

PUMA-8NH 4.39(0.04) 4.39(0.02) 4.56(0.13) 3.65*(0.08) 4.58(0.29) 4.84(0.22) 4.56(0.16) 5.59(0.58)

PUMA-8FM 1.28*(0.05) 1.73(0.77) 4.04(1.13) 1.26*(0.01) 1.29*(0.005) 1.46(0.36) 1.56(0.61) 1.81(0.44)

PUMA-8FH 3.22*(0.01) 3.33*(0.28) 3.49(0.08) 3.26*(0.07) 3.75(0.24) 3.92(0.41) 3.99(0.39) 5.04(0.74)

KIN-8NM 0.19*(0.01) 0.19*(0.01) 0.22(0.02) 0.22(0.01) 0.22(0.04) 0.21(0.03) 0.26(0.05) 0.30(0.07)

KIN-8NH 0.21*(0.007) 0.21*(0.01) 0.23(0.01) 0.24(0.01) 0.25*(0.05) 0.30(0.09) 0.27(0.05) 0.33(0.07)

KIN-8FM 0.05(0.01) 0.06(0.04) 0.03(0.007) 0.04(0.01) 0.02*(0.0001) 0.05(0.08) 0.08(0.11) 0.10(0.13)

KIN-8FH 0.06*(0.01) 0.07(0.02) 0.05(0.006) 0.06*(0.01) 0.07*(0.07) 0.07*(0.07) 0.12(0.12) 0.12(0.12)
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TABLE III

Mean and standard deviation of RMSE of different methods.

DATA SET/METHOD MODIFIED ε-CONSTRAINT SVRrbf SVRpol MKL-SVR GPR

HOUSING 2.89(0.77) 3.45(1.04) 5.66(1.88) 3.34(0.70) 3.05(0.82)

MPG 2.51(0.52) 2.69(0.60) 4.03(0.96) 2.67(0.61) 2.64(0.50)

SLUMP 6.62(1.49) 6.77(1.90) 8.37(2.86) 6.90(1.41) 6.88(1.51)

PRICE 2.21(0.90) 2.40(0.84) 3.72(1.55) 2.51(0.91) 11.2(2.26)

DIABETES 0.55(0.23) 0.68(0.31) 0.78(0.39) 0.65(0.35) 0.59(0.20)

WDBC 31.46(1.59) 32.08(4.76) 44.1(9.87) 32.20(4.65) 31.60(4.3)

SERVO 0.51(0.29) 0.61(0.35) 1.37(0.41) 0.60(0.36) 0.57(0.30)

PUMA-8NM 1.44(0.02) 1.44(0.03) 3.35(0.11) 1.51(0.02) 1.47(0.03)

PUMA-8NH 3.65(0.03) 3.67(0.06) 4.55(0.07) 3.78(0.05) 3.65(0.03)

PUMA-8FM 1.13(0.01) 1.17(0.02) 2.04(0.05) 1.21(0.03) 1.17(0.02)

PUMA-8FH 3.23(0.01) 3.24(0.02) 3.84(0.06) 3.35(0.05) 3.23(0.01)

KIN-8NM 0.11(0.002) 0.12(0.002) 0.21(0.003) 0.16(0.03) 0.12(0.002)

KIN-8NH 0.18(0.001) 0.19(0.003) 0.23(0.01) 0.20(0.002) 0.18(0.002)

KIN-8FM 0.016(0.002) 0.043(0.002) 0.048(0.001) 0.045(0.002) 0.013(0.00009)

KIN-8FH 0.07(0.002) 0.047(0.0009) 0.06(0.006) 0.05(0.001) 0.043(0.0007)
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TABLE IV

Comparison of our results with the state of the art.

Housing Mpg Slump Price Diabetes servo Puma-8nm

BEST 3.46(0.93) 2.67(0.61) 6.79(1.89) 2.62(0.87) 0.68(0.25) 0.59(0.30) 1.47(0.03)

OURS 2.89(0.77) 2.51(0.50) 6.62(1.49) 2.21(0.90) 0.55(0.23) 0.51(0.29) 1.44(0.02)

Puma-8nh Puma-8fm Puma-8fh Kin-8nm Kin-8nh Kin-8fm Kin-8fh

BEST 3.65(0.03) 1.17(0.02) 3.23(0.01) 0.12(0.002) 0.18(0.002) 0.013(0.00009) 0.043(0.0007)

OURS 3.65(0.03) 1.13(0.01) 3.23(0.01) 0.11(0.002) 0.18(0.002) 0.016(0.002) 0.07(0.002)
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TABLE VI

Comparison with L2 norm.

Method KRRR KRRP PCRR PCRP

Data set Ours L2 norm Ours L2 norm Ours L2 norm Ours L2 norm

HOUSING 2.89(0.77) 3.45(0.95) 3.71(0.87) 4.96(0.92) 4.04(0.88) 4.36(0.96) 8.45(1.72) 7.40(1.72)

MPG 2.51(0.52) 3.09(0.51) 2.82(0.45) 4.19(2.23) 3.00(0.58) 3.45(0.75) 7.30(0.81) 7.42(1.29)

SLUMP 6.62(1.49) 6.98(1.48) 7.09(1.22) 14.97(2.23) 6.39(1.53) 6.43(1.47) 7.68(1.88) 8.12(2.08)

PRICE 2.21(0.90) 2.81(1.21) 3.08(1.20) 2.45(3.77) 2.35(1.04) 2.73(1.31) 6.06(1.93) 5.88(1.73)

DIABETES 0.55(0.23) 0.68(0.25) 0.52(0.17) 0.78(0.20) 0.76(0.33) 0.87(0.43) 1.01(1.47) 0.94(1.40)

WDBC 31.46(1.59) 32.10(4.56) 34.11(4.23) 42.69(13.41) 30.66(4.71) 30.69(4.66) 34.47(10.27) 45.79(15.69)

SERVO 0.51(0.29) 0.90(0.31) 0.70(0.25) 0.96(0.34) 0.71(0.30) 0.73(0.31) 1.13(0.25) 1.03(0.25)

PUMA-8NM 1.44(0.02) 1.47(0.03) 1.42(0.02) 3.84(0.04) 3.69(0.02) 3.37(0.04) 3.71(0.32) 4.21(0.16)

PUMA-8NH 3.65(0.03) 3.75(0.03) 5.08(1.26) 4.66(0.06) 4.39(0.04) 4.19(0.14) 4.58(0.29) 4.61(0.31)

PUMA-8FM 1.13(0.01) 1.23(0.01) 1.27(0.01) 1.63(0.49) 1.28(0.05) 1.26(0.003) 1.29(0.005) 1.58(0.64)

PUMA-8FH 3.23(0.01) 3.23(0.01) 3.78(0.16) 4.06(0.03) 3.22(0.01) 3.30(0.12) 3.75(0.24) 3.97(0.52)

KIN-8NM 0.11(0.002) 0.17(0.001) 0.18(0.0008) 0.21(0.03) 0.19(0.01) 0.16(0.03) 0.22(0.04) 0.22(0.03)

KIN-8NH 0.18(0.001) 0.20(0.001) 0.20(0.002) 0.26(0.007) 0.21(0.007) 0.21(0.002) 0.25(0.005) 0.29(0.09)

KIN-8FM 0.016(0.002) 0.020(0.0003) 0.013(0.0001) 0.024(0.0005) 0.05(0.01) 0.03(0.003) 0.02(0.0001) 0.05(0.08)

KIN-8FH 0.07(0.002) 0.06(0.0007) 0.046(0.0002) 0.067(0.0005) 0.06(0.01) 0.06(0.004) 0.07(0.07) 0.05(0.003)
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TABLE VII

MAE of the proposed approach and the state of the art in age estimation.

Modified ε-constraint CV GCV SVRrbf SVRpol MKL-SVR GPR [48]

MAE 5.85 6.59 13.83 6.46 6.95 7.18 15.46 5.97
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TABLE VIII

RMSE of several approaches applied to weather prediction.

Modified ε-constraint CV GCV SVRrbf SVRpol MKL-SVR GPR

RMSE 0.81 0.83 0.90 0.87 0.95 1.07 2.53
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Algorithm 1

Modified ε-constraint algorithm

Input: Training set {(x1, y1), ..., (xn, yn)}, θ0, h0, ε0, s.

1. Calculate the ideal vector point z f
∗, zc

∗
.

2. Specify the weights wf and wc using (28).

3. Obtain ε* using (27).

4. Obtain θ* using (26).

Return: The optimal model parameter θ*.
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