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I. INTRODUCTION

FAULT diagnosis systems (FDSs) are tools designed to
detect, isolate, identify, and, possibly, mitigate the occur-

rence of faults affecting complex systems. FDSs have been 
subject of extensive research for their relevance in real-world
applications, see [1]–[4] for a comprehensive review. In their 
traditional framework, it is required the availability of the
fault-free nominal state and a fault dictionary, containing the
fault signatures. Both requests constitute a strong demand, 
hard to be met in most of real-world applications.

A novel and promising cognitive approach aims at design-
ing FDSs able to automatically learn the nominal and the 
faulty states online, during the operational modality. Cognitive
approaches generally rely on machine learning techniques to 
configure the nominal state and create the faulty ones without
requiring any a priori  information about the fault signature or
on fault time profile [1], [5].

Most of existing cognitive FDSs apply the learning mech-
anism only during the configuration phase [6]–[9], thus
requesting availability of the fault dictionary at training time.
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More in detail, [6] presents a learning methodology for incip-
ient failure detection based on online approximators aiming
at both inspecting variations in the system due to faults and
providing information about the detected faults in an online
manner. In [7], a learning procedure for fault accommodation
is given, under the assumption that the process is linear.
Reference [10] presents a scheme for online adaptive fault
detection and accommodation. There, it is requested that the
nominal fault-free state of the system is known. Differently
from previous solutions, which confine the cognitive aspect
solely to the training phase (hence not allowing the FDS to
improve the fault dictionary during the operational life), [1]
suggests the use of an unsupervised clustering-labeling method
to automatically assign observations either to the nominal or
the faulty class. Unfortunately, no technical details about the
implementation of the solution are given.

There is a large literature addressing the design of cogni-
tive FDSs for specific applications [8], [9], [11]–[20], with
cognitive mechanisms mostly applied during the training
phase of the FDS. For example, [9] presents a supervised
method for fault classification, which exploits a recursive
learning of a radial basis function network in chemical
processes. Reference [8] suggests a cluster-labeling approach
based on self-organizing maps for fault diagnosis applied
to a quality inspection of tape deck chassis. Reference [11]
describes an FDS specifically designed for fault isolation
in power transformers based on evolving neural networks.
Yang et al. [12] propose an intelligent FDS for electric motors
based on ART-Kohonen neural networks: new faults can be
included in the dictionary thanks to the design of a case-
based reasoning learning system. Several FDSs based on fuzzy
neural networks have been presented in [13]–[20], mainly
addressing specific applications (e.g., bearing [14], induc-
tion motors [15], transformers [16], [17], marine propulsion
engines [18], gearboxes [19], and circuit transmission [20]),
while [13] suggests a fault identification technique based on
the joint use of a fuzzy logic and feedforward neural networks.
All presented methods are either application specific or request
availability of the fault dictionary, strong assumptions that we
relax in the sequel.

More in detail, this paper presents a cognitive FDS working
in the parameter space of linear time-invariant (LTI) models
approximating the investigated process dynamics over time.
The proposed FDS, which extends the solution presented
in [21], relies on a novel evolving-clustering algorithm (ECA)
able to learn the nominal state of the process during an
initial training phase and create, update, and maintain the fault



dictionary automatically during the operational life. During
the training phase, the cognitive FDS characterizes the nom-
inal fault-free state and, in the following operational phase,
assesses approximating models by labeling them as fault free,
instances of a new faulty class or outliers. A sound theoretical
framework justifies the use of approximating linear models to
detect changes.

The main contributions of this paper can be summarized as
proposing:

1) the design of an evolving FDS based on an adaptive
clustering algorithm working in the space of approximat-
ing model parameters, able to characterize faults whose
effect induces an abrupt change in the model parameters;

2) the theoretical justification for the use of a sequence
of LTI models approximating the (possibly) nonlinear
dynamic system within a fault diagnosis framework;

3) an ECA that takes advantage of temporal and spatial
dependencies of the estimated parameters, whereas clus-
tering solutions present in the literature usually consider
only the spatial aspect, see [22]–[25].

The structure of this paper is as follows. Section II reviews
the theoretical framework justifying the use of LTI models
as building blocks to construct the cognitive FDS. Section III
introduces the proposed cognitive FDS and Section IV details
the aspects related to the online creation of the fault dictionary.
Experimental results on both synthetic and real data sets are
presented and discussed in Section V. Concluding remarks are
finally given in Section VI.

II. PROBLEM FORMULATION

In the following, we consider a time-invariant dynamic
system whose model description is unavailable and a sensor
network acquiring scalar measurements—or datastreams—
from the system. Selection of the most appropriate placement
for the sensors is outside the scope of this paper (the interested
reader can refer to [26]–[29] for a comprehensive investigation
of the displacement problem). We assume that changes in the
system can be detected by inspecting changes in the functional
relationships among sensor data. Each relationship between
two generic sensors is described as presented in the sequel and
the final decision about the change detection is taken at the
network level, by relying on the framework proposed in [30].

In the following, each sensor-to-sensor relationship is mod-
eled as a single time-invariant process P (extension to rela-
tionships described by a finite set of nonoverlapping processes
{P1, . . . ,Pψ } is immediate) and is approximated with an LTI
predictive model belonging to a family M parametrised in
θ ∈ DM, DM ⊂ R

p being a compact C1 manifold. MISO
linear predictive models [31], extreme learning machines [32],
and reservoir computing networks [33] are valuable instances
for M. In this paper, we opt for linear one-step-ahead predic-
tive models in the form

ŷ(t|θ) = f (t, θ, u(t), . . . , u(t − τu), y(t − 1), . . . , y(t − τy))

∀t ∈ N

where f (·) ∈ R is the approximating function in predictive
form [34], e.g., ARX and ARMAX, u(t) ∈ R

m and y(t) ∈ R

are the model input and output at time t , respectively, and τu

and τy are the orders of the input and output, respectively.
Given a training sequence composed of N couples Z N =
{(u(t), y(t))}Nt=1 and a quadratic loss function, we define the
structural risk [34] to be

WN (θ) = 1

N

N∑

t=1

E(u,y)[ε2(t, θ)]

and the empirical risk as

VN (θ) = 1

N

N∑

t=1

ε2(t, θ)

where ε(t, θ) = y(t)− ŷ(t|θ) is the prediction error at time t .
The optimal parameter θo ∈ DM is defined as

θo = arg min
θ∈DM

[
lim

N→+∞WN (θ)

]
.

An estimate θ̂ ∈ DM of θo can be obtained by minimizing
the empirical risk

θ̂ = arg min
θ∈DM

VN (θ). (1)

By relying on the theoretical framework developed in
[34] and [35], under the mild hypotheses that recent past data
suffice to generate accurate approximations of u(t) and y(t),
that f (·) is three time differentiable with respect to θ , and
satisfies Lipschitz conditions, and that the structural risk is a
convex function in DM, minimization of WN (θ) provides a
unique point θo such that

lim
N→∞ θ̂ = θ

o w.p. 1

and

lim
N→∞

√
N�
− 1

2
N (θ̂ − θo) ∼ N (0, Ip) (2)

where

�N =
[
W ′′N (θo)

]−1
UN

[
W ′′N (θo)

]−1

UN = NE
[
V ′N (θo)V ′N (θo)T

]

and Ip is the identity matrix of order p.
The above result assures that, given a sufficiently large N ,

the estimated parameter vector θ̂ follows a multivariate
Gaussian distribution with mean θo and covariance matrix �N .
Interestingly, the results presented in Section II contemplate
the situation where P /∈ M, i.e., a model bias ||M(θo) −
P || 
= 0 is present. This justifies the use of LTI models even
when the dynamic system under investigation is nonlinear.
According to (2), estimated parameters θ̂ follow a multivariate
Gaussian distribution both approximating linear and nonlinear
systems, provided that a sufficiently large data set is available.
We emphasize that, in what follows, we are not interested in
providing a high approximation accuracy, since LTI models
are not used for prediction purposes (where nonlinearities
in the system might induce a high prediction error) but for
fault diagnosis ones. Parameter vectors are the features to be
used for fault diagnosis and, since a change in the probability
density function of the parameter features is associated with



structural changes in the process generating the data (and 
nonlinearity does not introduce structural changes), we can 
design an FDS based on an ECA operating in the parameter 
space.

Although the nonlinearity aspect is contemplated by the 
theory, we might experience numerical problems in correspon-
dence with an ill conditioned Hessian WN

′′ , e.g., following 
highly correlated inputs. However, we must comment that if
WN
′′ degenerates in rank then, given the linearity assumption 

for the considered approximation model, we should simply 
remove the linear dependent variables. In the case, we wish 
to keep them for the (small) innovation they provide, a
Levenberg–Marquardt correction WN

′′ + δ Ip (δ being a small 
positive scalar) should be introduced to grant a definite positive
Hessian.

III. COGNITIVE FDS

The FDS relies on an initial training phase needed to char-
acterize the nominal state � by exploiting a fault-free training
sequence Z M = {(u(t), y(t))}tM=1. Z M is then windowed into 
nonoverlapping batches of length N , each of which used to
provide a parameter vector estimate θ̂. The outcome is the 
sequence 	L = (θ̂1, . . . , θ̂i , . . . , θ̂L ), L = M/N .

The proposed cognitive FDS is given in Algorithm 1. From 
the results delineated in Section II parameter vectors in 	L 
are distributed according to the Gaussian distribution, provided 
that N is large enough, even though the system is nonlinear. 
Thanks to (2), the nominal state � can be described as a 
Gaussian cluster composed by equivalent models (each cluster 
point is a model), whose mean vector θ̄� and covariance 
matrix S� can be estimated on 	L (Line 1). For cognitive 
diagnosis purposes, we assign to the nominal state also the 
number n� of parameter vectors used to estimate θ̄� and S� 
and the last time instant t� for which a θ̂i was associated to the 
nominal state � . At the end of the training phase, n� = L 
and t� = L (Line 2). The extension to multiclass nominal 
states, e.g., representing different regimes of P , would require 
considering a set of Gaussian clusters for � .

During the operational life, the proposed FDS estimates 
parameter vectors from incoming nonoverlapping N-sample 
data windows. The corresponding θ̂i s are then either associated 
to the nominal state � or a generic j th faulty one 
 j present 
in the fault dictionary 
 = {
1, . . . ,
φ } (φ represents the 
number of current fault classes in the fault dictionary). If the 
assignment cannot be granted according to a given confidence 
level, the parameter vector is currently considered to be an 
outlier and moved to the outlier set O.

At the beginning, both the fault dictionary and the outlier set 
are empty [Fig. 1(a)] and are populated during the operational 
phase, as data come in. The outlier set is regularly inspected to 
determine whether a new state 
φ+1 has been there contained 
and needs to be generated [Fig. 1(b)]. If a parameter vector 
cannot be associated to either the nominal state or one of 
the faulty states according to the given confidence level, it is 
considered an outlier and moved to the outlier set O [see the 
asterisks near the ellipse in the upper right side of Fig. 1(d)]. 
Similarly, other housekeeping operations are executed on the

Fig. 1. Cognitive FDS: an example. (a) Nominal state (crosses) is character-
ized during the training phase. (b) Number of outliers (asterisks) is increasing
but no faults are identified yet. (c) As soon as enough confidence is gathered
for the presence of a new faulty state, a new cluster is created (circles) and
instances added to it. (d) When a different fault is identified (dots), it is added
to the fault dictionary.

existing structures (outlier and faulty sets), e.g., leading to the
merge of two faulty states, whenever appropriate.

Details about the cognitive FDS algorithm are given in the
sequel, while the creation of the fault set deserves a deeper
discussion (Section IV).

Here, we assume that a fault affecting θo abruptly moves
the process from a stationary state to a new stationary one
(abrupt fault). A faulty state 
 j is hence characterized by a
mean vector θ̄
 j and a covariance matrix S
 j . The FDS stores
the number n
 j of vectors used to estimate θ̄
 j and S
 j and
the latest time instant t
 j , where θ̂i was associated to 
 j .

The distance between a parameter vector θ̂i and the center
of a cluster can be computed by means of the Mahalanobis
distance

m(θ̂i , ϒ) = (θ̄ϒ − θ̂i )
T S−1

ϒ (θ̄ϒ − θ̂i )

where ϒ ∈ {�,
1, . . . ,
φ}. Since � and 
 j ∈ 
 are
Gaussian clusters, a neighborhood centered in θ̄ϒ can be
induced by containing those θ̂i s belonging to ϒ with prob-
ability 1−αs [36], where αs is a given confidence level. More
specifically, the spatial neighborhood is composed by those
θs for which

nϒ(nϒ − p)

p(n2
ϒ − 1)

m(θ,ϒ) ≤ Fp,nϒ−p,αs (3)

hold. Fp,nϒ−p,αs is the Fisher’s distribution quantile of order
1−αs of parameters p and nϒ−p. Similarly, a neighborhood is
assigned to each cluster ϒ ∈ {�,
1, . . . ,
φ} and constitutes
the core of the fault identification phase of the FDS (Lines 6
and 14). The FDS algorithm also contemplates the case of θ̂i

satisfying (3) for multiple clusters. In this case, θ̂i is associated



Algorithm 1 FDS ECA

to the cluster ϒ∗ (either nominal of faulty, Lines 8 and 16)
minimizing

ϒ∗ = min
ϒ∈{�,
1,...,
φ}

nϒ(nϒ − p)

p(n2
ϒ − 1)

m(θ̂i , ϒ). (4)

In other words θ̂i is assigned to the nearest cluster, provided
that confidence αs is attained. Once ϒ∗ has been determined,

we set tϒ∗ = i (Lines 12 and 34). If θ̂i cannot be associated
either to � , or to {
1, . . . ,
φ}, it is considered to be an
outlier and inserted in O (Line 36).

The algorithm, after taking into account the spatial locality
between parameter vectors, analyzes the temporal one, by
evaluating to which level recent θ̂s have been associated to
ϒ∗ (Lines 9 and 17)

|nϒ∗ − i | ≤ ηt (5)

where ηt ∈ N is a temporal threshold (when ηt = 1 the FDS
verifies if two consecutive time vectors θ̂i and θ̂i−1 have been
assigned to the same cluster). This operation is important since
we expect models built over time to be temporally dependent.

If θ̂i satisfies both the spatial (3) and the temporal (5)
membership conditions, for cluster ϒ∗, it is inserted in there
and its statistics are updated, since a new instance has been
received (Lines 10 and 18)

θ̄ϒ∗ ← nϒ∗

nϒ∗ + 1
θ̄ϒ∗ + 1

nϒ∗ + 1
θ̂i (6)

Sϒ∗ ← nϒ∗ − 1

nϒ∗
Sϒ∗ + nϒ∗ + 1

n2
ϒ∗

(θ̂i − θ̄ϒ∗)(θ̂i − θ̄ϒ∗)T (7)

nϒ∗ ← nϒ∗ + 1. (8)

The aforementioned procedure might update cluster ϒ j so
that it partly overlaps with another one ϒk . The algorithm
handles the situation with a cluster merging procedure
(Lines 29–31). The union of clusters ϒ j and ϒk is performed
if the following two conditions are jointly satisfied

nϒ j (nϒk nϒ j − nϒk − p + 1)

(nϒk + 1)(nϒ j − 1)p
m(θ̄ϒ j , ϒk)

≤ Fp,nϒk nϒ j−nϒk−p+1, αm
2

(9)

nϒk (nϒ j nϒk − nϒ j − p + 1)

(nϒ j + 1)(nϒk − 1)p
m(θ̄ϒk , ϒ j )

≤ Fp,nϒ j nϒk−nϒ j−p+1, αm
2

(10)

i.e., if the cluster means θ̄ϒ j , θ̄ϒk have probability greater than
1 − αm to belong (to be drawn from) each other clusters.
In (9) and (10), Fp,nϒk nϒ j−nϒk−p+1,αm/2 is the Fisher’s dis-
tribution quantile of order 1 − αm/2, with parameters p and
nϒk nϒ j −nϒk− p+1. Approximated results for the confidence
αm follow from the Bonferroni correction for multiple tests.
If the above conditions are satisfied, the FDS merges the two
clusters ϒ j and ϒk to generate cluster ϒ ′ defined as

θ̄ϒ ′ ←
nϒ j

nϒ j + nϒk

θ̄ϒ j +
nϒk

nϒ j + nϒk

θ̄ϒk (11)

Sϒ ′ ← Sϒ j+Sϒk+
nϒ j nϒk

nϒ j+nϒk

(θ̄ϒ j−θ̄ϒk )(θ̄ϒ j − θ̄ϒk )
T (12)

nϒ ′ ← nϒ j + nϒk (13)

tϒ ′ ← max{tϒ j , tϒk }. (14)

The exact computation of the update for the covariance matrix
is performed as in [37].

After a cluster update or the merge of two clusters, the
proposed FDS checks if parameter vectors in the outlier set O
can now be associated either to the nominal state or one of
the faulty ones (Lines 19–27).



IV. ONLINE CHARACTERIZATION

OF THE FAULT DICTIONARY

We addressed so far the procedure allowing the insertion of 
the parameter vectors in the nominal and faulty clusters and the 
merging of two faulty clusters. The remaining θ̂i are collected 
in the outlier set O, where further inspection is performed 
during the operational phase, to verify whether a new faulty 
state must be created or not.

With reference to Algorithm 2, a new cluster needs to 
be created depending on the outcome of the Kolmogorov–
Smirnov (KS) test (Line 4). The test compares the empirical 
cumulative distribution function (CDF) of all the θ̂s estimated 
by the FDS during both the training and the operational phases 
and the CDF induced by considering the estimated nominal 
state � and faults {
1, . . . ,
φ }. If the distribution of the 
θ̂s is no more coherent with the current set of clusters, a new 
cluster must be created and a new fault class inserted in 
. 
More in detail, the test is designed as

H0 : F̂ = F� versus H1 : F̂ 
= F�

where F̂ is the empirical CDF of all the θ̂s and F� is the dis-
tribution induced by Gaussian clusters � = {�,
1, . . . ,
φ}.
The KS test statistics takes into account the maximum distance
between the two CDFs

D p = max
0≤α≤1

|F̂(Bα)− F�(Bα)|

where Bα is the region in the parameter space such that
F�(Bα) = α (see [38] for further details). As stated in [38],
D p has the same distribution of the monodimensional KS
distribution, so, for the KS test, we can compare it with the
asymptotic form of the KS distribution K [39], [40]. Given a
confidence level αc, the critical region of the KS test (i.e., for
rejecting the null hypothesis H0) is

D p > Kαc (15)

where Kαc is the quantile of order 1 − αc of the monodi-
mensional K distribution. The proposed statistical test suffers
from the curse of dimensionality, i.e., it needs an exponentially
increasing number of samples to be effective as the parameter
vector dimension p increases. Therefore, if needed, we suggest
to apply a dimensionality reduction method to the parameter
vectors θ̂ ∈ O, e.g., based on principal component analysis
[36] or random projection method [41].

Once the KS test provides enough confidence to claim that
a new cluster must be generated from the outlier set (i.e.,
hypothesis H0 is rejected), suitable instances are removed from
O and the new cluster is created. We assume the availability
of a supervisor that is able to label new faulty clusters, e.g.,
by providing the type of encountered fault. This allows us for
creating online the fault dictionary. On the contrary, when the
hypothesis H0 is not rejected, Algorithm 2 returns an empty
set (Line 32).

It is worth noting that the Mahalanobis distance cannot
be considered to measure parameter vector proximities in O,
since the distribution of elements in the outlier set is unknown
(i.e., we cannot assume that θ̂s ∈ O are Gaussian distributed

as they are not). To address this issue, we defined the spatial–
temporal norm on θ̂h, θ̂ j ∈ O, inspired by the metric suggested
in [42]

||θ̂h − θ̂ j ||2λ = λ
||θ̂h − θ̂ j ||2

2 p
+ (1− λ) |h − j |

i

where ||·|| is the Euclidean norm, i is the last batch of data
considered, and λ ∈ [0, 1] is a penalty factor balancing
the spatial locality and the temporal one. A normalization
procedure is required so that both the spatial and temporal
components of the norm are constrained to the [0, 1] interval.
The FDS algorithm adopts the online normalization procedure
described in [43].

To select parameter vectors for the new clusters, we adopted
the mountain method [44]–[46], which identifies the density
center for the θ̂s ∈ O (Lines 8–12). Finally, this algorithm
estimates the density as

�RMM(c j , θ̂h; r) = exp

(
−||θ̂h − c j ||2λ

2r2

)

where c j ∈ R
p is a center and r is an influence radius

parameters. The algorithm iteratively approximates

c∗ = max
c

∑

θ̂h∈O

�RMM(c, θ̂h, r).

The potential function �RMM is robust to outliers (see [46]
for a formal proof) and, since it decreases slowly when
||θ̂h − c j ||λ < r and fast if ||θ̂h − c j ||λ > r , it defines
a neighborhood around each class center c j . For the pur-
pose of the cluster creation, a center will be initialized for
each of the parameter vectors θ̂hs ∈ O. As described in [44],
ηi of Algorithm 2 represents both a tolerance threshold for the
convergence of the iterative procedure to identify the cluster
center and the maximum error of the optimization procedure.
As one might imagine that the method is rather sensitive to
r , which highly influences the clustering results. Here, we
suggested three different heuristics to identify a suitable value
for the radius r :

1) power estimate using correlation [46];
2) median distance criterion [45];
3) maximum edge length of minimum spanning tree under

the normal distribution hypothesis [47].

At the end of the mountain method, each parameter vector is
associated with a set Os (Lines 14 and 15) and Õ, the set
characterized by the largest cardinality, is selected as a new
candidate cluster.

To identify the cluster shape of Õ (we do not have a priori
information about the covariance matrix of the novel cluster),
a minimum covariance determinant search method [48] is
executed (Lines 16–29), i.e., a subset of elements Ō ⊆ Õ is
selected such that the determinant of the parameter covariance
is minimal. This method can be applied when the number of
samples in Õ ≥ p. When this condition is satisfied (Line 16),
a new cluster is created: the mean and the covariance of
the parameter vectors in Ō are computed, n
φ+1 = |Ō|,
t
φ+1 = maxθ̂h∈Ō h, and the algorithm returns Ō (Line 27).



Algorithm 2 Fault Cluster Creation

Otherwise, when Õ < p, the algorithm returns the empty
set ∅ (Line 29).

Note that the algorithm requires at least nϒ = p +1
parameter vectors to create a cluster. More parameter vectors
would allow a better characterization of the cluster itself
since the variance of the estimation of the mean and the
covariance matrix scales asymptotically as 1/nϒ . Moreover,
as time passes, more and more parameter vectors are inserted
into the outlier set. To reduce as much as possible the creation
of false classes, we should consider an oblivion coefficient
on the parameter vectors in the outlier set or mechanisms to
discard the oldest ones (e.g., by setting a maximum value on
the cardinality of the outlier set and keeping the new ones).

The algorithm can be easily modified to take into account this
case.

V. EXPERIMENTAL RESULT

The aim of this section is to evaluate the effectiveness of the
proposed cognitive FDS. As we have observed, each state of
the process (either nominal or faulty) is a cluster of parameter
vectors: creation of the right number of clusters refers to
the ability of the method to correctly identify the number of
states the process explores. Likewise, an accurate aggregation
of parameter vectors coming from the same state refers to
the ability of correctly characterizing the operational state.
As described in Section I, and to the best of our knowledge,
no cognitive FDSs able to characterize the fault dictionary
during the operational life are available in the literature. As a
consequence, to compare the performance of the FDS, we
consider algorithms designed to group unlabeled data, a task
commonly addressed by clustering methods. We consider both
offline clustering algorithms, such as the DBScan (DBS) [49],
the affinity propagation (AP) [50], and the ECM [24]. DBS
and AP process the whole data set and do not require a priori
information about the number of clusters to be created, hence
representing a relevant reference for the proposed FDS. On
the contrary, ECM manages clusters with evolving strategies;
the drawback here is that it requires parameter Dthr, which
is strictly related to the number of clusters the algorithm
will create during the operational life (such information is
obviously unknown in real applications).

To evaluate the performance of the suggested method, we
consider the following figures of merit:

1) nc: the number of created clusters. It represents the
number of states detected by the algorithm. When nc

equalizes the correct number of states, the algorithm
operates well;

2) r : the percentage of experiments where the algorithm
creates the correct number of clusters. Large val-
ues of r suggest that the fault diagnosis method is
able to correctly characterize the number of process
states;

3) a: the accuracy in associating a parameter vector to
the correct cluster. It represents the ability to correctly
identify the state in which the process is operating;

4) po: the percentage of outliers, i.e., the percentage of
parameter vectors, which cannot be associated to any
state. Large values of po imply that the algorithm is not
able to associate parameter vectors to any cluster.

It is worth mentioning that the FDS requires an initial training
phase. The FDS is trained on the training set and tested on a
separate test set, while DBS, AP, and ECM are applied to the
whole training + test set (but their performance are evaluated
only on the test set). Since ECM and AP do not generate
outliers, po is not provided for them.

We considered two different hierarchies of model family
M(θ):

1) the autoregressive with exogenous input ARX(na, nb)
linear model family, where na and nb are the auto-
regressive and exogenous orders, respectively. Here, the



p = na + nb dimensional parameter vector θ ∈ R
p is

θ = (θ1, . . . , θna θna+1, . . . , θna+nb)

2) the reservoir network (RN) [51] model defined as

x(t) = g (W x(t − 1)+ Winu(t))
ŷ(t) = θx(t)

where ŷ(t) ∈ R is the prediction value at time t ∈ N,
u(t) ∈ R

m is the input observation vector at time t ,
x(t) ∈ R

p is the internal state of the network at time t ,
W ∈ R

p×p is the internal weight matrix, and Win ∈
R

p×m is an input weight matrix, both randomly chosen.
g : R

p → R
p is an activation function (e.g., gi(·) =

tanh(·), i ∈ {1, . . . , p}) and θ ∈ R
p is an output weight

vector to be learned (model parameter vector).

We considered ARX and RN model families since they
satisfy the hypotheses required by the theoretical framework
described in Section II. The structural risk is the squared
error; the Bayesian information criterion [52] was considered
to identify model orders. In the following, batches of N = 400
not overlapping data are considered to estimate the parameters
of the approximating models. The proposed FDS has been
developed in MATLAB and can be freely downloaded from
[53] and [54].

The performance of the proposed FDS system has been
compared with those of DBS, AP, and ECM methods applied
to three different applications: a synthetic one, a simulation
of the Barcelona water distribution network (BWDN) and
a real-world application related to rock collapse forecasting.
On the aforementioned applications, faults are of abrupt type
as requested by the proposed FDS. Three applications are
detailed in the sequel.

A. General Remarks on the FDS Method
Key parameters describing the FDS algorithm are given in

Table I. In particular few parameters are described as follows:
1) the spatial confidence αs has been set to 0.03 (3).

This parameter controls the rate of structural outliers
generated by the FDS. Large values of αs would create
more compact clusters and be sensitive to new states,
at the expenses of a larger outlier set. On the contrary,
small values of αs would reduce the number of outliers
at the expenses of a reduced sensitivity in identifying
new states;

2) the temporal threshold ηt has been set to one, meaning
that cluster statistics in (8) are updated when two consec-
utive parameter vectors are inserted in the same cluster.
Larger values of ηt update the cluster statistics with less
restrictive conditions. ηt = 1 represents a conservative
choice for this parameter;

3) the merging confidence αm has been set to 0.05. It
represents the confidence of the hypothesis test designed
to assess whether two clusters need to be merged or not;

4) the cluster creation confidence αc has been set to 0.1.
It represents the confidence of the KS hypothesis test,
meant to assess if a new cluster must be created by
looking at the distribution of the parameter vectors in
the outlier set.

TABLE I

PARAMETERS OF THE PROPOSED FDS

Since the FDS creates clusters with as low as p+1 parameter
vectors (required by the minimum covariant determinant pro-
cedure, see Section IV for details), we set the DBS parameter
minPts to p + 1 to have a fair comparison. Parameter ε of
DBS has been set using the heuristics described in [49]. The
ECM parameter Dthr was set to 0.1, as suggested in [24].

B. APP D1: Synthetic Application

Synthetic data are generated according to model

y(t) = sin (a1y(t − 1)+ a2y(t − 2)+ b1u(t − 1))+ d(t)

(16)

where a1 = 0.1, a2 = 0.2, b1 = −0.1, and d(t) ∼
N (0, 10−4). The exogenous input follows the model

u(t) = 0.4u(t − 1)+ ε(t)
with ε(t) ∼ N (0, 1).

The length of each experiment is 60 300 samples with
the first 24 120 ones used to train the FDS. Faults affecting
the system have been modeled as abrupt changes in the
parameters of (16). This models the situation where a fault
affecting the system induces a change in the dynamics of
the relationship between input and output. The first fault
affects the system in sample interval [24 120, 36 180], inducing
an abrupt change, which shifts the parameters from θ =
(a1 a2 b1) to θδ = (1 + δ)θ , δ being a positive scalar con-
trolling the intensity of the perturbation. Afterward, the data-
generating process returns to the nominal state. Then, another
fault affects the system in sample interval [48 240, 60 300],
inducing a change in the parameters from θ to θδ =
(1− δ)θ . As a consequence, the total number of states for this
application is three (i.e., the nominal state and the two faulty
ones). We considered different scenarios for this application
by taking into account abrupt changes in the parameters with
magnitude δ ranging from 0.01 to 0.3. For each scenario, we
generated 200 experiments; averaged results are presented in
Tables II and III.

In particular, Table II shows the number of created clusters
nc for the considered algorithms, model hierarchies, and fault
magnitudes. As expected, the ability to create the correct
number of clusters increases with the magnitude of δ (a strong
fault is easy to be identified). Interestingly, the FDS with ARX
is able to correctly create three clusters even with very low
fault magnitudes (e.g., δ = 0.015). ECM creates an excessive
number of clusters making this algorithm not useful in this
application. The reason of this behavior resides in the incorrect
setting of Dthr [49]. Unfortunately, as explained above, it is
hard to set this parameter for fault diagnosis purpose, since



TABLE II

NUMBER OF CLUSTERS CREATED FOR THE CONSIDERED APPLICATIONS. AVERAGE VALUES IS GIVEN

AND STANDARD DEVIATION IN BRACKETS

it is related to the number of clusters to be created, which is
obviously unknown a priori. Interestingly, both DBS and AP
with ARX are able to create the correct number of clusters, for
large δ magnitudes, i.e., δ ≥ 0.05 and δ ≥ 0.3, respectively.
Despite the evolving approach, the proposed FDS with ARX is
more effective in creating the correct number of clusters once
compared with nonevolving algorithms, such as the DBS and
the AP even for small δs. The rationale behind this refers to
the fact that the FDS is able to simultaneously consider both
temporal and spatial dependencies among parameter vectors.

RNs provide lower performance than ARX. The reason of
this behavior can be associated to the fact that the performance
of RNs is highly influenced by the choice of the random
network topology. In fact, training the network topology is
entirely based on nominal state samples. This leads to an
RN modeling the nominal state, but does not necessarily guar-
antee the ability to identify new states during the operational
life. However, the ability to create the correct number of
clusters increases with δ and the FDS with RN is able to
identify the correct number of faults with magnitude δ ≥ 0.2.

Then, to evaluate the ability to correctly identify the states
where the process operates over time, we focus only on
those experiments for which the number of created clusters
is correct. Table III shows r , a, and p0 for ARX, RNs, and
fault magnitudes, when the number of clusters created by the
algorithm is correct (i.e., nc = 3 for APP D1).

As expected, the FDS improves its performance both in
terms of percentage of experiments, which identified the
correct number of clusters r , and in terms of the classifi-
cation accuracy a as the magnitude of the fault increases.
Interestingly, when δ < 0.015, the FDS with ARX reduces its
effectiveness in the clustering (i.e., r = 12.0% and a = 51.7%)

meaning that small fault magnitudes represent challenging
situations for the proposed approach. In our opinion, this
behavior is due to the fact that the neighborhood of probability
1−αs induced by the covariance matrix�N includes also some
faulty states when δ ≤ 0.01.

Furthermore, the analysis of p0 allows us to evaluate the
effect of the choice of the FDS parameters on performance.
Specifically, as explained in the previous section, the parameter
αs controls the percentage of structural outliers of the FDS and
this is particularly evident by the values of po in Table III,
which are in line with what expected from the theory. On the
contrary, the percentage of outliers of DBS decreases, when
the fault magnitude increases. This is reasonable since the
method does not contemplate a fixed percentage of structural
outliers.

By inspecting accuracy a, we observe that the FDS with
ARX provides higher performance than the one with RN in
the small perturbation case (δ ≤ 0.025). As the magnitude δ
increases, there is no strong evidence for selecting a specific
model family. Nevertheless, the standard deviation of the
accuracy of ARX model is lower than the RN model one.
This behavior is in line with the difficulties in selecting the
RN topology following the discussions given for Table II.

As expected, non evolving clustering methods, such as DBS
or AP, provide higher performance than FDS when δ = 0.3.
This is reasonable since these algorithms work in an offline
way, by analyzing the whole data set at once. On the contrary,
the proposed FDS provides better performance than DBS and
AP with small values of δ, making it suitable to manage
subtle and not evident faults. Even in this case, the reason
of this behavior resides in the ability of the method to exploit
temporal dependencies among parameter vectors during the



TABLE III

EXPERIMENTAL RESULTS FOR THE CONSIDERED APPLICATIONS. AVERAGE VALUE IS GIVEN AND STANDARD DEVIATION IN BRACKETS

operational life (while not evolving algorithms do not exploit
time dependencies in the clustering phase). ECM was never
able to correctly identify the number of clusters, in line with
comments following Table II.

We also performed a robustness analysis to evaluate the
effects of variations of the main parameters of the FDS,
i.e., αs , αm , ηt , and λ, on the considered figures of merit.
In the considered scenario APP D1, which is characterized
by a stationary process affected by abrupt changes, parameter
αs revealed to be the most sensitive one and its behavior is
deeply investigated in the sequel. Fig. 2(a) and (b) shows how
the figures of merit a, p0, r , and nc range with αs ranging
in the interval [2.5E−3; 2.5E−1]. As expected, p0 increases
with αs and this is quite obvious since we are creating clusters
that are more and more compact. For the considered scenario,
αs = 0.025 guarantees the highest value of r . Interestingly,
lower values of αs create a reduced number of clusters,
while larger ones create an excessive number of clusters. This
behavior is evident by looking at the values of nc in Fig. 2(b).
The behavior of the classification accuracy a is particularly
interesting: small values of αs create very large clusters, hence
possibly misclassifying estimated parameters that belong to
a different state (e.g., a faulty one); on the contrary, large
values of αs create very small clusters, hence generating many
outliers (and this is evident by looking at the behavior of p0
when αs increases).

C. APP D2: BWDN

The second testbed refers to data generated from the BWDN
simulator [55]. By relying on a network of 17 tanks, 26 pumps,
35 valves, and nine external sources of the BWDN, this

simulator allows to artificially inject faults in a specific flow
sensor of the network (i.e., the iOrioles pump), by spec-
ifying the fault signature, the fault magnitude, and the fault
time horizon. Four different scenarios have been considered:

BW1 An abrupt additive fault affecting the measurements of
the iOrioles pump is injected in sample interval
[9546, 17 472]. The magnitude of the additive fault is
−20% of the signal dynamic (i.e., the range between
the maximum and minimum value of the signal). The
length of the data set is 17 472 samples;

BW2 A sensor degradation fault is injected in sample inter-
val [18 282, 26 208]. This fault consists in an additive
Gaussian noise with zero mean and standard deviation
equal to 30% of the signal one. The length of the data
set is 26 208 samples. The first 17 472 samples are equal
to the BW1 case;

BW3 A stuck-at fault is injected in sample interval
[27 018, 34 944]. The length of the data set is 34944
samples. The first 26 208 samples are equal to the BW2
case;

BW4 An abrupt additive fault affecting the measurements of
the iOrioles pump is injected in sample interval
[35 754, 43 680]. The magnitude of the additive fault is
20% of the range of the signal. The length of the data
set is 43 680 samples. The first 34 944 samples are equal
to the BW3 case.

The FDS has been trained on the first 8736 samples (repre-
senting one year of observations in the BWDN simulator) in
all the four considered scenarios; as a reference model we
consider the ARX.

Results given in Table II are particularly interesting and
show how the proposed FDS is able to correctly identify the



Fig. 2. Robustness analysis result for αs . (a) Average accuracy a, outlier
percentage po, and percentage of experiments where the algorithm creates the
correct number of clusters r are reported for the experiments where nc = 3.
(b) Average number of cluster nc created with different values of αs .

number of clusters in all the four considered scenarios. All
other considered methods do not identify the correct number
of clusters (with the exception of AP in the BW3 scenario).
In line with the synthetic application experiments, AP and
DBS usually detect a smaller (1–2) and larger (4–6) number
of clusters than necessary, respectively, while ECM creates an
excessive number of clusters, i.e., from 38 to 59. These results
corroborate the ability of the proposed FDS method to cor-
rectly characterize the states explored by the process over time.

In Table III, the value of r is either zero or 100, since
here we are considering a single experiment. FDS accuracy
decreases from 95.5% in BW1 to 81.8% in BW2, while
there is no further significant reduction in accuracy in the
other scenarios. In our opinion in scenario BW2, the injected
degradation fault is particularly hard to be detected, since its
effect on the estimated parameter vectors is not as evident as
those induced by the other considered faults.

D. APP D3: A Monitoring System for Landslide Forecasting

In this application, data are gathered from a monitoring
system for landslide forecasting, [56] deployed at the Towers
of Rialba site in Northern Italy. The data set, available at [53],
consisting in 35 652 samples, has been acquired in 2011, with

Fig. 3. APP D3: the measurements acquired from two clinometers of the
monitoring system deployed at the Towers of Rialba.

a sampling period of 5 min. This data set, which is shown in
Fig. 3, collects measurements coming from two clinometers.

Two different scenarios have been considered:

R1 An abrupt additive fault affecting the measurements of
the clinometer, regarded as output, is injected in sample
interval [17 468, 24 956]. The magnitude of the additive
fault is −20% of the signal dynamics;

R2 The first 24956 samples are equal to the R1 case. Then,
a degradation fault is injected in the same clinometer in
sample interval [28164, 35652]. The degradation fault
consists in an additive Gaussian noise with zero mean
and standard deviation equal to 30% of the signal one.

We emphasize that, to ease the comparison, R1 and R2 in
APP D3 correspond to BW1 and BW2 in APP D2, respec-
tively. In this application, the first 14260 samples have been
used to train the FDS. The chosen model hierarchy was ARX.

Experimental results on this application are particularly
interesting since data are coming from a real monitoring
system.

By looking at Table II, we observe that the number of states
of the process is correctly recognized by the FDS in both
scenarios whereas other methods are never able to create the
correct number of clusters. These results are in line with APP
D1-D2: AP and ECM are creating more clusters than necessary
and DBS is creating a single cluster.

The FDS accuracy in R1 and R2, presented in Table III, are
similar (i.e., 90.6% in R1 and 92.5% in R2), showing that we
are able to deal effectively with multiple faults. With respect
to the BWND application, here we do not have a decrease in
performance as the degradation fault appears, suggesting that,
in this application, the effect of the degradation fault is more
easy to be perceived by the FDS.

VI. CONCLUSION

This paper presents an evolving mechanism for cognitive
fault diagnosis able to detect and cluster faults by charac-
terizing the nominal state and the fault dictionary (initially
empty) during the operational phase. The novelty of the
proposed approach resides in the evolving mechanisms and
the theoretically grounded framework that allows to work in
the space of linear approximating models, even if the system
under investigation is nonlinear. The cognitive approach allows
us to characterize the faults during the operational phase by
introducing clusters in the parameter vector space and updating



them in an evolving manner. The experimental section shows 
the effectiveness of the proposed solution once compared with 
the existing clustering algorithm applied to both synthetic and 
real data. Results show the better ability of the proposed 
method over the ones present in the literature to correctly 
identify the states the process encounters over time.
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