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Adaptive Hidden Markov Model With Anomaly
States for Price Manipulation Detection
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Abstract— Price manipulation refers to the activities of those
traders who use carefully designed trading behaviors to manually
push up or down the underlying equity prices for making profits.
With increasing volumes and frequency of trading, price manip-
ulation can be extremely damaging to the proper functioning
and integrity of capital markets. The existing literature focuses
on either empirical studies of market abuse cases or analysis
of particular manipulation types based on certain assumptions.
Effective approaches for analyzing and detecting price manipu-
lation in real time are yet to be developed. This paper proposes
a novel approach, called adaptive hidden Markov model with
anomaly states (AHMMAS) for modeling and detecting price
manipulation activities. Together with wavelet transformations
and gradients as the feature extraction methods, the AHMMAS
model caters to price manipulation detection and basic manip-
ulation type recognition. The evaluation experiments conducted
on seven stock tick data from NASDAQ and the London Stock
Exchange and 10 simulated stock prices by stochastic differential
equation show that the proposed AHMMAS model can effectively
detect price manipulation patterns and outperforms the selected
benchmark models.

Index Terms— Anomaly detection, capital market microstruc-
ture, feature extraction, hidden Markov model (HMM), market
abuse, price manipulation.

I. INTRODUCTION

R ISK management has been a major concern for banks,
portfolio managers, and companies concerned with stock

exchange transactions for many years. However, new aspects
of risk management have been identified by regulators after
the financial crisis in 2008 and especially since the flash
crash in 2010. One important aspect is the surveillance of
financial exchange market for preventing market abuse activ-
ities. The abuse of financial markets can take on a variety
of forms, all of which can be extremely damaging to the
proper functioning and integrity of the market. The forms
contain three primary categories, namely information-based
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manipulation, where false information (financial rumor) is
released to affect the equity price, action-based manipulation,
where the equity price is changed by actions of squeezing the
supply/demand of the equity, and trade-based manipulation,
where the equity price is shifted only by simply buying and
selling [1]. A major format of the trade-based abuse is price
manipulation, where the manipulation tactic targets the equity
bid/ask prices only [1], [2].

Compared with the information and action-based manip-
ulations, trade-based manipulation usually does not contain
any illegitimate actions such as financial rumor spreading and
market resource squeezing but is carried out only by legal
trading activities. With carefully designed selling and buying
sequences, manipulators could make the market bid/ask price
change following their expectation. In the price manipulation
tactics, a series of trading actions are often linked in contextual
relationships. The monitoring of any single action would not
contribute to a thorough detection of the underlying problem.
This is the main challenge of such price manipulation detection
algorithms. Another challenge arises from the fact that the
manipulation behaviors are often not obvious when mixed
with a mass of normal trading records. The evolution of
manipulation strategies over time is also a challenge for the
detection algorithms. Most of the existing related literature
empirically studies the manipulations and the corresponding
market responses. A very few works analyze the features of
different price manipulation strategies and the corresponding
detection approaches.

A number of pioneering papers introduced in [3], such as
trading the foreign exchange by the neuro-wavelet hybrid sys-
tem [4] and forecasting the bond price by least-square support
vector machine [5], opened the door for more advances in
modeling and predicting financial markets using computation-
ally intelligent techniques. These received fresh attention after
the 2007–2009 financial crisis recede. More accurate results
than the traditional models were reported [6], [7]. Inspired
by findings in those literatures, we proposed an approach that
considers the challenges of the price manipulation detection
problem. In this approach, we formulate the problem based on
the analysis of typical cases, extract the intrinsic features of
the manipulation patterns, and present a new model to detect
price manipulation activities. The main contributions of our
work are as follows.

The problem of price manipulation is discussed together
with the analysis of three typical examples, from which the key
feature patterns are extracted. This provides a clear problem
formulation and explains the significance of exploring the
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price manipulation patterns. A hidden Markov model with
anomaly states (HMMAS) is proposed to model and detect the
price manipulation patterns. The HMMAS makes a detection
decision based on a sequence of price information rather than
a single value at a given time instant. The price manipulation
types are also quantified and designated by the HMMAS
based on the features of each manipulation type. To the best
of our knowledge, this is a novel application of traditional
hidden Markov model (HMM) customized to solving market
abuse detection. To enhance the adaptability of the HMMAS,
a traditional retraining mechanism is proposed for automat-
ically tracking the changes in the statistical properties of
the financial time series. Substantial experiments have been
conducted on both real data from primary USA and U.K.
markets for testing the practicability on real life and simulated
data for testing the robustness to nonstationarity. This verifica-
tion mechanism provides a complete spectrum of workability
testing from both business and theoretic perspectives.

The remainder of this paper is organized as follows.
Section II provides a brief review of price manipulation and
the corresponding detection methods as well as the analysis of
the manipulation cases and the formulated detection logic. The
features of basic price manipulation cases are characterized
and extracted by the proposed approaches in Section III.
Section IV presents the proposed AHMMAS approach for
detecting patterns of price manipulation. Performance eval-
uation of the proposed approach is provided in Section V.
Finally, Section VI concludes this paper and discusses poten-
tial improvements and future work.

II. PRICE MANIPULATION AND ITS DETECTION

A. Price Manipulation

In capital markets, limit orders, the instructions to buy or
sell equities, are submitted by investors to the electronic trad-
ing platform of one exchange market. The limit orders indicate
the trading intention of the investor to buy or sell volumes of
a specific equity at a specific price. The trading occurs once
there are eligible matched orders from the investors. Among
those outstanding unmatched limit orders, the highest price
investors are willing to pay for an equity determines the bid
price and the lowest price at which investors are willing to
sell an equity decides the ask price. The gap between the bid
and ask price is defined as the bid-ask spread [8].

Price manipulation can be carried out in many different
forms [9]. One primary form is termed ramping (or goug-
ing [10] and momentum ignition [11]), where one investor
enters a buy/sell order, usually called a spoofing order at a
price which is higher/lower than the bid/ask to create the
appearance of active interest in a security, followed by a bona
fide order on the opposite side of the order book waiting to
be executed, subsequently followed by the withdrawal of the
first order when the bona fide order was mostly executed.
Once the spoofing order is created, a price upward/downward
movement is expected from the manipulator and latter actions
are followed only when there is an enough potential profit for
the investor. Ramping has roughly the same effect as another
two forms of price manipulation, pump and dump and capping

Fig. 1. Price manipulation.

TABLE I

PRICE MANIPULATION

and pegging schemes [10], where the profit making approaches
are different. In pump and dump, the exchange participants
make profit by carrying out a quick flip at the manipulated
price to remove the already held long positions (holding of
shares for a stock is said to be has a long position in the
stock). In capping and pegging, the held derivative (e.g., call
option, defined as an agreement that gives an investor the right
to buy a stock at a specific price within a specific time period)
of the manipulated security is exercised if a price increase is
generated. If the profit is exploited in another market, the form
of price manipulation is then termed as cross order/market.
If the closing price is manipulated, the manipulation is termed
as near close.

In September 2012, an analogous type of ramping was
reported and documented by the Financial Industry Regulatory
Authority of the USA [12]. In this case, a liquidity-enhancing
strategy, quote stuffing, was used for creating the fictitious wild
impression of the buying interest on the bid side. As a result
of the quote stuffing, where a mass of nonbona fide orders was
submitted, the best bid price was pushed up 6.9 bps1 and hence
the bid-ask spread was narrowed by 87.5%. The manipulators
have benefited from the trading on their previous submitted
order on the ask side at the pushed price. The manipulation
process lasted for only 819 ms and the cancellation time of
the nonbona fide orders was only 767 ms.

Quote stuffing is one of the dominant manipulation strategies
in a number of major exchange markets in Europe and
USA [11], [13]. It floods the market with massive numbers
of new orders, which are then cancelled in rapid successions
for creating a large number of successive new best bid/ask
quoting, each potentially acting as a bait of an opposite order,
upon which the potential profit might be realized. The only
difference between ramping and quote stuffing is that the latter
sweeps the order book with more spoofing orders and faster
cancellation time.

As a summary, all of the above-mentioned forms of price
manipulation refer to the same tactic: submitting nonbona fide
orders to the market, taking advantage of the shifted prices

1A basis point is a unit equal to one hundredth of a percentage point.
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(if expected changes occurred), where the profits are made by
distinct ways in various profit-making scenarios, as shown in
Fig. 1 and Table I.

B. Price Manipulation Detection
The detection of price manipulation has however, been less

studied in contrast to the volume of theoretical and empiri-
cal work on the manipulation activities. Two computational
approaches for detecting trade-based manipulation within the
emerging Istanbul Stock Market, logistic regression with an
artificial neural network, and support vector machine, have
been studied and compared [14]. The detection was based on
empirical studies of the statistical features of daily return,
daily trading volume, and daily volatilities. Higher devia-
tions from the nonmanipulated cases indicated manipulation.
Similar work has been done by first studying the manipulated
case pursued by the Securities and Exchange Commission
(SEC) and constructing a manipulated cases data set, then
modeling the returns, liquidity, and volatility as well as the
news and events related to the stocks during the manipulation
period by linear and logistic regression [15]. Evaluations and
comparisons of different techniques were presented in [14]
and [15], yet both studies lack reliable quantitative analysis
of the relationship between the manipulation tactic and the
relevant features such as return, trading volume, liquidity, and
volatility, which in most of the cases are the result of economic
cycles, market (index) moves, and even public events. The
detection models based on the significant deviation of those
market attributes are doomed to suffer from the error rate
of the unusual but legitimate activities that are recognized as
manipulation [14], [15]. Therefore, there is a knowledge gap
between the data features and the detection techniques.

A very simple technique, association rule, has been pro-
posed for detecting the closing price manipulation in the
Thai bond market [16]. The approach was based on the
assumption that the trading time of a trader should be
random regardless of the traders. Therefore, any associa-
tion between a trader and the transaction orders may indi-
cate price manipulation. This approach has been stated as
a supplementary to the existing surveillance system within
the Thai bond market for identifying a specific type of
trade-based manipulation [16] rather than a general detection
approach.

A market close ramping detection algorithm developed by
Smarts Group International, a surveillance technique provider,
and applied in NASDAQ OMX for assisting regulators and
brokers in detecting trade-based manipulation was discussed
in [17]. This paper mainly focused on the empirical study of
relationships between the market efficiency and the manipu-
lations detected by the algorithm from Smarts Group rather
than the analysis of detection algorithms. The algorithm
detected market close ramping according to the historical price
change where the threshold was set as the 99% histogram
distribution cutoff of the historical price change during the
benchmark period. A market close ramping alert was triggered
if the changes of the closing price and the price 15 min
prior were greater than the chosen threshold [17]. Though
straightforward, the market proven detection approach from

Fig. 2. Feature extraction module. (a) Sawtooth pattern. (b) Square pattern.
(c) Pulse pattern.

Smarts Group International provided an industry reference for
the study presented in this paper.

To date, research has mainly focused on the detection of
manipulation in prerecorded data sets according to the assump-
tions from empirical studies. To the best of our knowledge,
only limited efforts appear to have been made in deep analysis
of the strategic behavior of price manipulation tactic [18]
and to a lesser extent on computational modeling of the
manipulation strategies [17], which is the focus of this paper.

C. Problem Formulation

During the price manipulation period, a significant price
change is the expected effect of the spoofing orders by
the manipulators. The change is not realized incidentally by
heuristic attempts of order submission but by careful designs
based on the market microstructure theories, called market
impact, which is defined as the impact of the trader’s own
actions on the market [19]. The quantitative research in [20]
estimated that a quote that is even slightly higher (5 bps) than
the bid price can induce a further 5.95 bps increase of the
market best bid price. For normal traders, measuring and elim-
inating the market impact is crucial for trading models [19].
However, for the market manipulators, the market impact is
what they use in the strategies for making economical profit.

The documented manipulation case of quote stuffing shown
in Fig. 2(a), showed an actual market impact scenario. After
placing a bona fide sell order at an expected price, a number
of nonbona fide buy orders with quotes successively higher
than the best bid price were submitted to make it appear that
there was active buying interest on that equity. Somebody who
was encouraged by the fictitious bid price changes responded
to the bona fide sell order. Immediately after the sell order
was nearly executed, the previous bid quoting orders were all
cancelled, which steeply dropped the bid price to its initial
level. To minimize the risk of the buy spoofing orders being
unintentionally picked up by other investors, the manipula-
tion process usually occurred within an extremely short time
period. By the sequential quotes and quick cancellations, the
nonbona fide orders in Fig. 2(a) made a sawtooth shaped
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market impact on the bid price. Thus, this price manipulation
case can be illustrated as an instantaneous sawtooth pattern on
the bid price time series. The sawtooth pattern, also discovered
in [11] and [21], was identified as one of the highlighted
patterns on bid/ask price time series during manipulation
periods [13].

Similarly, the market impact triggered by another price
manipulation type, ramping, can also be illustrated by special
patterns on bid/ask price time series. Unlike the activities of
quote stuffing, in ramping, one single spoofing order was usu-
ally placed inside the bid ask spread (higher than the current
bid or lower than the current ask). By this activity, the manip-
ulated bid/ask price can be moved a small percentage and
reverted to its prior level in tiny time intervals. Small square
wave fluctuations were then shown [Fig. 2(c)] as the pattern
of ramping [22], which can also occasionally be a significant
movement, as shown in Fig. 2(b). Although this stunning pulse
rising is rare since most exchange markets such as Euronext
NSC suspend continuous trading if prices change by more than
2% within the defined interval (e.g., 1 s) [20], it is highlighted
as one of the typical manipulation cases in [21].

The sawtooth, square wave, and pulse (Fig. 2) represent
the intrinsic patterns corresponding to the primary manipu-
lation tactics. A mixture of such patterns have been found
in real manipulation cases [11]. Consequently, the problem
of detecting price manipulation activities can be transformed
to the problem of detecting unusual/anomalous patterns in the
bid/ask price time series. This transformation also corresponds
with the stock-volatility rules released in April 2013 by SEC
in the USA, which allows trading only within certain price
bands to avoid unusually volatile trading behaviors [23]. Since
the manipulation activities usually occur in tiny time intervals
within one single trading day, the scope of our problem
is to detect unusual/anomalous patterns in intraday bid/ask
price time series. The time scale is discretely measured in
terms of bid/ask price update event. Hence, the adjustment
speed measured in physical time ultimately depends on the
underlying frequency of order activities and differs across the
market.

In the financial area, it is often believed that the nature of the
bid/ask price follows the mean-reverting feature, the tendency
to randomly oscillate away from and, over time, back toward
an equilibrium price level determined by the long-term mean
of the equity [24]. Studies that support the mean-reversion
features can be traced back to 1930s in the empirical studies
in [25] and then furthered in [26] and [27].

The price fluctuations triggered by the manipulation strate-
gies are merely the unusual short-termed momentary oscilla-
tions with small amplitudes around the equilibrium level of the
price [6.9 bps in Fig. 2(a) and 18.6 bps in Fig. 2(c)]. Those tiny
oscillations are usually considered as the contamination of the
financial data [28], [29]. For studies of financial time series,
it is very important to reveal the true signal from the financial
data series [29], which contains short, high-frequency noisy
transients as well as long, low-frequency movement. For price
manipulation detection, the high-frequency noisy parts are
where the manipulation patterns hide. Accordingly, retrieving
and directly analyzing those high-frequency components as

well as the original price information might help develop an
effective detection model.

III. CHARACTERIZING PRICE MANIPULATION

The detection system proposed in this paper is comprised of
a feature extraction module and a detection model, where the
model is trained based on the features extracted from the
equity bid/ask price by the feature extraction module.

A. Price Manipulation Features

The three patterns that characterize typical price manipula-
tions can be defined in two ways: remarkable pulse [Fig. 2(b)]
or short-term small fluctuations [sawtooth and square in
Fig. 2(a) and (c)]. The intuitive feature of the three patterns
can be extracted as the rate of price (bid/ask) change, which is
defined as the first order derivative of P(t) with respect to t ,
d P(t)/dt = lim�t→0 P(t + �t) − P(t)/�t , where �t is the
time interval between the changes of the ask/bid prices.

Empirical mode decomposition (EMD), continuous wavelet
transform (CWT), and synchrosqueezed transform (SST) are
commonly used for signal decomposition. EMD is limited
by its rather low frequency resolution [30] and the obtain-
able frequency resolution of EMD depends on a critical
frequency limit [31]. CWT can map any signal to a set of
base functions obtained through dilation and translation of
a mother wavelet, and it is able to achieve decomposition
of the signals in different frequency bands and at different
time points [32]. Unlike Fourier transform, which gives a
representation of frequency content of a signal without time
information, the time-frequency localization feature of CWT
describes the frequency content locally in time by scale and
shift parameters [32]. SST extends the CWT by reallocating
the wavelet coefficients through further calculating the first
derivative (instantaneous frequency) of the coefficients, which
is named as synchrosqueezing [33]. SST has been recently
applied as a bandpass filter for removing high frequency
components from a signal in [34]. In our work, to retrieve and
analyze the high-frequency components of the bid/ask prices,
wavelet transform is applied as a feature extraction approach
due to its wide and successful application in finance [29], [35].

The wavelet decomposition of a signal results in levels
of approximation coefficients and detailed coefficients. The
approximation coefficient vector reflects the low-frequency
features and the detail coefficient vector reflects the high-
frequency component of the signal. To retrieve the high
frequency components and remove the low-frequency equi-
librium component, the detail coefficient hard threshold-
ing method, which is usually applied in financial signal
de-noising [29], is applied inversely, so that the wavelet
coefficients outside the thresholds are set to zeros

Tm,n =
{

= Tm,n if
∣∣Tm,n

∣∣ ≤ λ

= 0 if
∣∣Tm,n

∣∣ > λ
(1)

where Tm,n is the detail coefficient, m, n are scale and shifting
parameters of the wavelet function, respectively, and λ is the
fixed threshold. The wavelet and inverse thresholding proce-
dure consist of three steps: 1) calculate the wavelet coefficient
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Fig. 3. Feature extraction module.

vectors {Tm,n, Tm−1,n, . . . , T1,n} by discrete wavelet trans-
form; 2) select a threshold λ and filter the coefficient vectors
by through the hard thresholding in (1); and 3) recompose
the data using the filtered wavelet coefficients. In this paper,
Symlets wavelet is chosen and applied for extracting the high
frequency components (denoted by P̂t ) of an equity price Pt .
Since the short-term small fluctuation is only associated with
high frequency components, we also refer to P̂t as the short-
term small fluctuation.

B. Features Extraction

The first-order derivatives of the original price Pt as well
as the short-term oscillation P̂t with respect to time are
extracted as the features of the patterns of price manipu-
lation. To capture this, the gradient of Pt and P̂t are all
calculated. Among the methods for calculating gradients,
finite difference is chosen and its central difference form
is used since it is widely used in the finance area [36]:
d f (t)/dt ≈ f (t + 1/2�t) − f (t − 1/2�t)/�t , where f (t)
represents Pt and P̂t and �t is the time interval between the
changes of ask/bid prices. As discussed in Section III-A, three
representative manipulation patterns are defined by significant
pulse [Fig. 2(b)] and short-term small fluctuations, where the
former is associated with original price change rate d Pt/dt and
the latter mainly corresponds to the high-frequency oscillations
d P̂t/dt .

Financial data usually contain low-frequency trend com-
ponent upon which a variety of different frequencies are
superimposed [34]. From a financial perspective, d Pt/dt
and d P̂t/dt represent the features of the original and the
de-trended (low-frequency component removed) prices, which
intrinsically correlated with some typical price manipulation
activities as previously discussed. Those two patterns that
emerged with price manipulation activities persist regardless of
the price manipulation forms (Table I). Simultaneously, Pt and
P̂t are correlated with the unusual pulses and large square
patterns.

Accordingly, all of the four values, Pt , P̂t , d Pt/dt and
d P̂t/dt , should be included as features to cover all the
possible manipulation circumstances (sawtooth, pulse, and
square patterns). The structure of the feature extraction module
comprises a wavelet filter and gradient calculator and is shown
in Fig. 3.

An example of the output of the feature extraction module
is shown in Fig. 4. The bid/ask price Pt is filtered by the
Symlets wavelet at level 8. The smoothed equilibrium values
[shown by a dotted line in Fig. 4(a)] are removed and the short-
term oscillation P̂t is extracted [Fig. 4(b)]. The gradients of
Pt and P̂t are both calculated and shown in Fig. 4(c) and (d),
respectively.

Fig. 4. Example of the equity price filtered by the wavelet. (a) Equity price
and removed equilibrium price. (b) Short-term oscillation. (c) Gradient of
original equity price. (d) Gradient of short-term oscillation.

IV. DETECTION MODEL

Financial data are considered nonstationary in nature, mean-
ing that the statistical properties (e.g., mean and variance) of
the data change over time [37]. These changes are caused
by various business and economic cycles in the longer term
and demand-supply microstructures in the short term [38].
Of particular interest is the tendency of any unusual activities
to exhibit a degree of non-stationarity of the extracted features.
That is, the distribution of the extracted features changes over
its duration. This may be interpreted as resulting from some
of the irregular trading behaviors shown in Fig. 2. Hence,
the detection model must be adopted to first capture the
distributions of the extracted features and then detect the shifts
in them.

A. Gaussian Mixture Model and HMM

A common solution for modeling the probability
density function (pdf) of an observed variable is to
approximate its unknown density with a Gaussian mixture
model (GMM) [39]. A GMM is a weighted sum of M
component Gaussian densities as p(x) = ∑M

i=1 wi g(x|μi ,�i ),
where x is a D−dimension continuous-valued data vector,
wi , i = 1, . . . , M , are the mixture weights, and g(x|μi ,�i ),
i = 1, . . . , M, are the component Gaussian densities.
Each component density is a D−variate Gaussian function.
Traditional GMM runs expectation maximization based on
heuristic trials for the number of Gaussian components. To
overcome this, a Dirichlet process GMM (DPGMM) [40],
which provides a statistically principled manner for generating
the number of the GMM components, is applied in our
approach. DPGMM is the same as a regular GMM, except
the component parameters drawn from a Dirichlet process as
a prior probability [40] and the Gibbs sampling from the
posterior probabilities [40].

In the price manipulation detection problem, the pdfs
of extracted features of an equity price are modeled with
DPGMM. The observed changes of the features can be
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detected by testing, which mixture component dominates
the given value. This gives a simplified state view of the
features. The temporal changes of distribution are proba-
bilistically related to the changes of the observed features
and the observed features sequences instead of any single
values decide the potential manipulation. Such cases can be
modeled by a HMM containing two sets of states, observable
feature states and hidden mixture components states, which are
assumed to depend only upon the previous states and modeled
as a standard Markov process.

Usually, the application of a HMM in condition monitoring
problems falls into two categories: signature modeling, where
the detection model is learned from the activities to be recog-
nized and the activities matching the model are reported as the
detection results [41], [42], and anomaly detection, where a
model of normality is learned from only the normal activities
and the testcases against the model according to the predefined
threshold are reported as anomalies [43], [44].

Due to the limited reports of market manipulation and
regulatory rules prohibiting, the disclosure of data, which
represents illegitimate trading behaviors, the availability of
examples of market manipulation behaviors in capital market
is far less than the availability of routine normal behavior.
Consequently, price manipulation detection can be considered
as an anomaly detection problem, which is the identification
of new or unknown data patterns, to which a learning system
has not been exposed during training. In this approach, normal
bid/ask price patterns are modeled and the system will trigger
an alarm when the behavior of the market action does not
match with normal patterns. However, three problems arise in
this approach when applied to price manipulation detection.

1) HMM is usually used to model 1-D sequential data
rather than multiple features.

2) Anomaly detection using HMM usually lacks the ability
of recognizing the anomaly type and the probability
density of being that type.

3) The pdfs of the equity price evolve due to the nonsta-
tionary feature of financial time series.

To address these challenges, an improved adaptive HMM
with anomaly states is developed and is presented in the
following two sections.

B. HMM With Anomaly States

For a bid/ask price of an equity with T points, four features
are extracted by the module shown in Fig. 3. Letting Ft , (t =
1, . . . , T ) be the feature vector at the tth point in time, the
preprocessed four features at time t , Ft = [

Fo
t , Fog

t , Fs
t , Fsg

t

]
,

are described as follows:
1) original price: Fo

t ;
2) gradient of the of original price: Fog

t ;
3) short-term fluctuation: Fs

t ;
4) gradient of the short-term fluctuation: Fsg

t .
The pdfs of the four features are learned separately by the

GMM. Since the pdf of each feature might have multiple
Gaussian components, the changes of the observation distrib-
ution can be detected by testing, which mixture component in
the pdf was most likely to have generated a given value. Those

Fig. 5. Example of the features learned by GMM. The pdf of original equity
price, the short-term oscillation, the gradient of original equity price and the
gradient of oscillation are plotted (Legend: 1: pdf. 2: Components of pdf.
3: thresholds). (a) Equity price (right) and pdf (left). (b) Short-term oscillation
(right) and its pdf (left). (c) Gradient of original equity price (right) and its
pdf (left). (d) Gradient of short-term oscillation (right) and its pdf (left).

mixture components are then designated as hidden states of
the observed equity price. This gives a simplified state view
of time series data.

For the learned pdfs, anomaly thresholds separating the
normal and anomaly are set according to the minimum
acceptable data-likelihood value, which is adopted from the
industry reference detection algorithm from Smart Group [17]:
the 99% cumulative distribution cutoff. That means, the data
are accepted as normal for which P(Ft ) ≥ 99%. This is to
identify the highest and lowest 0.5% frequent values for each
feature. This heuristic method is also applied in a one-class
support vector machine (OCSVM) [45], where the detection
boundary is usually set to include most (e.g., 99%), but not
all, training data to avoid high miss detection rate. By doing
this, the 1% extreme values are not simply assumed to be
abnormalities but generate the dummy anomaly states for the
HMM.

Fig. 5 shows an example of the pdfs of four features of
the time series data. The pdfs of the features are learned
by the GMM. Two thresholds (shown by dotted lines) are
set to 0.5% and 99.5% cumulative probability of each pdf,
separating the normal and anomaly regions. Fig. 5(a) shows
a pdf of an equity price (illustrated by the small circles)
with three Gaussian components (illustrated by the solid line).
The thresholds (illustrated by the dotted lines) are set such
that the 99% cumulative distribution of the equity prices are
accepted as being normal leaving the maximal and minimal
0.5% as being anomalies. By this, the pdf of the original
equity price can be partitioned into four parts: three parts
corresponding to three Gaussian components in the normal
region and one corresponding to the regions with anomalies
values (both maximal and minimal). The four parts can then
be designated as four hidden states respectively for the equity
price feature, as shown in Fig. 6. Defining those hidden states
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Fig. 6. HMM with anomaly states generated from a sequence of observation
of variable. S1, S2, and S3 are normal states and S4 is the abnormal state.

as { f o
jo
, jo = 1, . . . , 4}, we have that the extracted feature

Fo
t ∈ { f o

jo
, jo = 1, . . . , 4}.

Similarly, two hidden states (one anomaly and one normal)
are generated for another three one-component pdfs [shown
by Fig. 5(b)–(d)]. We can also define { f og

jog
, jog = 1, 2},

{ f s
js
, js = 1, 2} and { f sg

jsg
, jsg = 1, 2} as the hidden states of

price gradient, short-term oscillation and oscillation gradients,
respectively. We also have Fog

t ∈ { f og
jog

}, Fs
t ∈ { f s

js
} and

Fsg
t ∈ { f sg

jsg
}, where jog, js, jsg = {1, 2}.

The hidden states of all four features are then combined
as the quantized hidden states of the HMMAS model so that
4 × 2 × 2 × 2 = 32 hidden states are generated.

The quantized 32-state view of the observed bid/ask
price can be represented as S = {Si }; where Si =
[ f o

jo
, f og

jog
, f s

js
, f sg

jsg
]; S is a collection of the feature states Si ,

i ∈ {1, . . . , 32}, jo ∈ {1, . . . , 4} and jog, js, jsg ∈ {1, 2}.
Each hidden state contains a unique combination of the feature
status. The state having all features within the normal region
is considered as the completely normal hidden state and others
having at least one feature within the anomaly region are
considered anomaly hidden states. Thus, only three among
32 states are normal while 29 are anomaly.

According to the official definitions of the price manip-
ulation in market abuse directive [9] and the discussion in
Section II, the typical price manipulation types are associated
with the combinations of different features status. The types,
quote stuffing, momentum ignition, and gouging, which are
featured by instantaneous sweeping of order books, are essen-
tially associated with the significant changes of gradients of
short-term oscillations and the original price ( f sg

jsg
and f og

jog
)

rather than the large price fluctuation. Besides, the types,
ramping, pump and dump, capping and pegging, and near
close are primarily associated with significant changes of the
original price or short-term fluctuations ( f o

jo
and f s

js
) but not

necessarily related to the gradients.
Consequently, according to the features status, the 29 anom-

aly states can be combined into three manipulation states,
namely: quote stuffing, ramping, and other anomalies. The
states with only anomalous gradient features fall into the quote
stuffing while the states with only the anomalous price features
(original and the oscillation) are ramping. The manipulation
state named other anomalies is associated with the ones in
which all of the features are anomalous. By this merging,
the 32 states are further simplified as a six-state view of

Fig. 7. Nonstationary changes shown by different pdfs.

the observed bid/ask price with three normal states and three
anomaly states referring to primary manipulation types. Hence,
the six hidden states provide a complete spectrum as well as
an efficient way for representing the bid/ask price shifting
triggered by the trading behaviors, where, for brevity, only the
transfers in hidden states are shown rather than the observed
temporal dynamics on each feature. In this way, the traditional
HMM is extended to comprise anomaly states that cannot be
otherwise achieved, hence the name HMMAS.

The basic property of HMMAS, inherited from the tra-
ditional HMM, is the probabilities yielded by the Viterbi
algorithms, which determines from an observation sequence
the most likely sequence of underlying hidden states that
might have generated it. Together with the probability of an
observed sequence, HMMAS provides a measure of specific
price manipulation type identification according to the states
and the features.

C. Adaptive HMMAS

Due to the nonstationary feature of financial time series,
the mean and the variance of the pdfs of the equity price
might vary over time. To deal with the nonstationarity of the
time series of bid/ask price, the HMMAS is improved by
an adaptive mechanism [and renamed the AHMMAS], where
the model is trained using the data in previous specific time
periods, defined as a sliding window with length w. During
the course of detecting, the price manipulation activities, the
window is slid forward to maintain the closest w data points
and AHMMAS is updated if significant discrepancies between
the w data points in the current sliding window and the prior
training data are detected.

The deviation between the two data sequences is detected
using the t-test. A simple example of the nonstationarity of
equity price is shown in Fig. 7. Recall that a process is strongly
stationary whenever its distribution is invariant under time
shifts [46]. Part of the Apple stock bid price on 12 June 2012
Pt , t = 1, . . . , 5000 is shown in Fig. 7. If the sliding window
length is set to w = 1670, the variant pdf of the time series in
three windows Pt , t = 1, . . . , 1670, Pt , t = 1671, . . . , 3240,
and Pt , t = 3241, . . . , 5000 (shown as the three parts in Fig. 7)
are detected as significant changes of the statistical features
of the time series by t-test under the significance level 1%.
A t-test module is then designed as a postprocessing block of
AHMMAS for detecting the statistical difference between the
updated data sequence in the sliding window and the previous
training data sequence and a popular significance level, 1%,
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Fig. 8. Training and testing mechanism of price manipulation detection
system.

is chosen for balancing the tradeoff between the computation
load and the performance.

The adaptive mechanism of AHMMAS is, as shown in
Fig. 8. The model is initially trained by w data points in the
training window (Ft , t ∈ [ts1, te1], where ts1 and te1 are the
starting and ending time points, respectively). A new incoming
data point is then detected by the model. If detected as normal,
it will be updated into the update window (Ft , t ∈ [ts2, te2])
for testing the statistical difference. As shown in Fig. 8, the
data in the sliding window are tested every time the sliding
window is updated, but the model might be retrained after
working time period t . Since the scope of this paper is to
detect the intraday price manipulation activities, the training
window is set to one day.

D. Detection Algorithm

The algorithm for detecting the price manipulation activities
by AHMMAS can then be summarized as per steps described
in Algorithm 1.

Fig. 8 shows the initial states of the training window and the
testing sequence and the sliding mechanism of each during the
price manipulation detection process. In Fig. 8, the AHMMAS
model was trained with the data in tw1 = P E

ti , ti ∈ [0, w −1].
The first testing sequence was constructed as ts1 = P E

ti , ti ∈
[tw, tw+L−1]. If the detection indicate normal behaviors, the
adaptive mechanism then checks for the significant changes
between the data in the updated training window tw2 =
P E

ti , ti ∈ [tL, tw+L−1] and the original training window tw1.
If no retraining is required, the training window will slide
forward as tw3 and a new testing sequence will be constructed
as ts2 to include the new data point at tw+L and exclude the
point at tw . Similarly, if no anomaly is detected, the data in the
updated training window tw3 = P E

ti , ti ∈ [tL+1, tw+L ] and in
the original training window tw1 are detected for adaptation.
This detection and updating process continues for all incoming
data streams.

V. EXPERIMENTS AND EVALUATION

Evaluating a detection model usually relies on the labeled
benchmarks of both normal and anomaly cases. Since the
absence of the real market anomaly cases, to evaluate the
proposed detection model, it is acceptable to the financial
industry business that all the characteristic patterns of reported
manipulation examples are studied and then reproduced in

Algorithm 1 Price Manipulation Detection

Step 1: For the specific equity E , select a sliding window
length w; Construct the bid/ask price time series P E

t from t0
to the current time point tw−1: P E

ti , ti ∈ [
t0, . . . , tw−1

]
;

Step 2: Calculate the four feature sequences of P E
ti using

wavelet and gradient approaches described above; obtain the
features vector Fti = [

Fo
ti , Fog

ti , Fs
ti , Fsg

ti

]
.

Step 3: Construct the AHMMAS detection model:

1) Calculate the pdf separately for the features,
Fo

ti , Fog
ti , Fs

ti , Fsg
ti , using the GMM and set the

corresponding anomaly thresholds;
2) Construct the substates for each attributes and then

construct the hidden states by combining four attributes
according to discussion in Section IV-B and the illustra-
tion shown in Fig.6.

Step 4: Train the AHMMAS model using the observed
features and the constructed hidden states.
Step 5: If the testing sequence is not constructed: select a
detection sequence length L; the first testing sequence is then
constructed as P E

ti , ti ∈ [
tw, tw+L−1

]
.

1) calculate the four features of the sequence using the
wavelet and gradient blocks,

2) feed the features into AHMMAS model for calculating
the probability of being specific states.

Step 6: If the state is identified as any anomaly states, the alert
is triggered with the identified possible manipulation type and
the probability of being the type.
Step 7: If the state is among the normal states, the bid/ask
price in sliding window tL to tw+L−1 are fed to the adaptive
mechanism for model updating check. If model updating is
needed, the algorithm flow goes to Step 1.
Step 8: If the model updating is not needed, the testing
sequence is afterward updated as P E

ti , ti ∈ [
tw+1, tw+L

]
and

the algorithm flow goes to Step 5.

other financial data context to synthesize exploratory manipu-
lation cases [47]. Synthetic exploratory financial data are also
accepted in academia for evaluating the proposed model when
real market data are hard to collect [48]–[50]. Thus, in this
approach, the manipulation cases are synthetically generated
and injected in any financial time series data while maintaining
the normal statistical features such as the mean, variance, and
volatility.

A. Experimental Setup

The experimental data used in this paper involves two
categories. The data examples in the first category involve real
market data of seven representative stocks: Google, Microsoft,
Intel, and Apple from NASDAQ (obtained from the LOBSTER
project [51]) and ARM, BARCLAYS, and Vodafone from
London Stock Exchange. The selection of these data sets is
due to their relatively high trading volumes and price volatility,
the factors that might increase the likelihood of manipulation
across the exchanges [18], [52]. This data set covers tick data
over five trading days (June 11–15, 2012), and consists of
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Fig. 9. 10 simulated prices paths.

more than 2 000 000 data points in total for each stock. The
data sets have been examined by our financial partners to
guarantee that no data are related to any reported manipulation
cases by the regulators. Additionally, a statistical test widely
used in trading firms [11] is performed on those data sets
targeting intraday volatility anomalies. The testing is defined
as: an anomalous pattern starting at time t if σt−s,t ≤ 2σ̄
and σt,t+s > 2σ̄ , where s is defined as 1 h, σt1,t2 is the
volatility over the period (t1, t2), and σ̄ is the average intraday
volatility across the whole data set. According to the manual
examination and testing, no manipulation as well as volatility
spikes are involved in those data sets.

The data examples in the second category are simulated
stock prices generated using the stochastic differential equation
(SDE): d St = A(L − St )dt + stochastic term, where A
is the rate of the mean reversion, L is the value around
which the process St tends to oscillate, and the stochastic
term is a Brownian motion process. The end result is that
the stock price tends to be a modulated nonstationary process
of periodic waves and stochastic oscillations [53]. It should be
noted that the price is not assumed to be 100% following the
SDE but is merely to test the validity and robustness of the
detection model under any nonstationary randomness of equity
processes. In this category, there are 10 simulated prices paths,
each containing 2 000 000 time points, as shown in Fig. 9.

Three typical manipulation patterns, shown in Fig. 2, are
reproduced within each equity following the original charac-
teristics: 6.9-bps sawtooth patterns in 819 ms, 18.6-bps square
wave in 0.1 s and 800-bps pulse in 1 s. Those anomalies are
then injected into the corresponding time series making the
test data a mixture of both normal and anomaly patterns. The
trained models are deployed on the mixed test data to detect
anomaly patterns. This is practical and acceptable to business
people [54], especially when it is very costly to obtain real
manipulation cases.

Since the length of the sliding window for the adaptive
mechanism is set to be one day, for the real market data in
the first testcase category, the data on June 11, 2012, the first
day among the five, are chosen as the training data set, which
contains around 4 00 000 points. The fivefold cross-validation
is used on the 4 00 000 data points for training the detection
model. The data from June 12–15, 2012 are set as the testing
data set. Similarly, for the simulated stock price in the second
category, the data are equally partitioned into five sets, each of
which contains exactly 4 00 000 points. The training data set
consists of the first set and the testing data set consists of the
other four sets. The five-folder cross-validation is used on the
training data set for constructing the detection model. Since
the manipulation activities usually occur in an extremely short

time period, the testing sequence length L (Fig. 8) is set to 1
min, which is sufficient for one or two manipulation patterns.

To ensure comprehensive assessment of the approach, mul-
tiple testing data sets are built on both real market data and
simulated data. For real stock prices, 300 synthesized patterns
are injected to each data set with each type having 100 exam-
ples (one pattern in Fig. 2 is considered as one anomaly
example.). For the simulated stock prices, five groups of test-
cases n = 1, . . . , 5 are generated and injected to each data set,
where group n = 1 contains 10 (examples/type)×3(types) =
30 total numbers of injected anomaly examples; group n = 2
has 20 × 3 = 60 numbers and group n = 3, 4, 5 has 40 × 3 =
120, 80 × 3 = 240, and 100 × 3 = 300 total numbers of
injected anomaly examples, respectively.

As discussed in Section II-B, some generic computational
models were used for manipulation detection such as SVM,
neural network and logistic regression in [14] and [15] as well
as the rule-based algorithms in [16] and [17]. Since the rule-
based algorithms were specific for the special manipulation
scenarios discussed in [16] and [17], they are not suitable
for general manipulation detection problems. According to
those related work, we choose three popular computational
models as the benchmarks of our model: OCSVM [45], k
nearest neighbor (kNN) [39], and GMM [39]. Those bench-
mark models are applied on the same feature vector Ft =
[Fo

t , Fog
t , Fs

t , Fsg
t ]. In our experiments, LIBSVM [55] and

DDTool [56], are used as the implementation of the benchmark
models. All the model parameters (i.e., kernel width for
OCSVM, k value for kNN, and the number of components for
GMM) are fine-tuned through five-folder cross-validation on
each different data set for stable and optimized testing results.

The performance evaluation of the proposed model is based
on two types of metrics, the receiver operating characteristic
(ROC) and F-measure. Both of them are based on the con-
fusion matrix, where false positive (FP), is defined as manip-
ulation cases detected as normal and false negative (FN) is
defined as normal cases detected as manipulation, true positive
(TP) is defined as normal cases detected as normal, and true
negative (TN) is defined as manipulation cases detected as
manipulation. The ROC curve is a widely used metric for
evaluating and comparing binary classifiers [57]. The ROC
curve plots the true positive rate [(TPR) (TP/TP + FN)]
against the false positive rate [(FPR) (FP/FP + TN)] while
the discrimination threshold of the binary classifier is varied.
To assess the overall performance of a binary classifier, one
can measure the area under the Area Under ROC curve (AUC).
The maximum value of AUC is 1 and therefore larger AUC
values indicate generally better classification performance. The
ROC curve and AUC are used as the performance measure
on seven real stock data sets. The F-measure integrates both
precision and sensitivity into one single metric and widely
used in anomaly/novelty detection area [58]. The F-measure
is used for evaluating the testing performance on simulated
data sets.

B. Experimental Results

The ROC curves of four models on seven real-stock data
sets with 3 × 100 = 300 numbers of injected novelties in



CAO et al.: AHMMAS FOR PRICE MANIPULATION DETECTION 327

Fig. 10. ROC of four models on seven stock data sets (TPR and FPR).

TABLE II

AUC OF FOUR DETECTION MODELS ON SEVEN REAL STOCK DATA SETS

each data set are shown in Fig. 10. To compute such a curve,
the discrimination thresholds are set from 0.1 to 0.9 with
increment, 0.01, for each model. The calculated AUC values
for four models are summarized in Table II.

The AHMMAS model achieved the highest AUC on all
of the seven real stock price data sets and it outperforms
the benchmark models. The best AUC value for AHMMAS
model appears on the Intel data set (0.8971), which is 22%,
29%, and 42% higher than OCSVM (0.6970), kNN (0.6280),
and GMM (0.5200) models, respectively. The second best
AUC value for AHMMAS model is on the Vodafone data set
(0.8775), which is around 15%–20% better than other three
models. The lowest AUC value for AHMMAS model is on
the Microsoft data set (0.7336) and is still 12%, 14%, and 7%
higher than OCSVM (0.6419), kNN (0.6250), and GMM
(0.6802) models, respectively. The performance difference
between the AHMMAS model and other three models in terms
of the AUC values are calculated on seven stock data sets
as (AUCAHMMAS-AUCothers)/AUCAHMMAS and are shown in Fig. 11,
where the legends, OCSVM, kNN, and GMM, represent the
performance differences between AHMMAS and OCSVM,
kNN, and GMM models, respectively.

The lowest value of the difference is between the AHMMAS
and kNN models on Apple data set, where the AHMMAS
model (0.8142) performed 2.6% better than the kNN model
(0.7926). The minimum value indicates the roughly identi-
cal performance of AHMMAS and kNN models on Apple

Fig. 11. Performance difference between AHMMAS and other models on
seven data sets.

Fig. 12. F-measure of four models on simulated prices (x-axis: number of
anomalies. y-axis: F-measure).

data set. The largest value of the difference is between
the AHMMAS and GMM models on Intel data set, where
AHMMAS model (0.8971) performed 42% better than GMM
model (0.5200). This is where AHMMAS performs the best
among all the testcases. From Fig. 11, it is also obvious that
the performance difference between AHMMAS and OCSVM
models is relatively stable in range from 12% to 30% over
different data sets while the other two performance differences
are both volatile in range from 2% to 46%.

The performance comparison shows that the AHMMAS
model retains its advantage over all other models on seven real
market data sets. It also indicates the performance stabilities
of the three benchmark models, among which, OCSVM model
performed relatively steady while the kNN and GMM model
performed volatile across the different data sets.

The performance of the four models on 10 simulated prices
data sets is evaluated based on F-measure metrics as shown
in Fig. 12 where the horizontal axis represents the number
of injected anomaly examples and the vertical axis represents
the value of the F-measure. As discussed before, the models
are tested on 10 simulated data sets, each of which contains
five groups of injected anomaly examples. Thus, 50 different
experiments are carried out as a robust evaluation plan for
each model.
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From the results in Fig. 12, the AHMMAS model achieved
the highest F-measure among the four models on most of the
10 data sets. In the case of simulated price #6 with 10 injected
anomaly examples, the initial F-measure for the AHMMAS
model (0.8081) is lower than that of OCSVM (0.8791). How-
ever, the performance of AHMMAS increased on this testcase
as the number of anomaly examples increased. Another case
is on simulated price #7 with 10 injected anomaly examples,
the F-measure for AHMMAS model (0.8535) is very close
to kNN model (0.8506) but increased on the testcases with
20 injected anomaly examples.

C. Discussion

The experiments on real and simulated price data sets have
shown that the AHMMAS model outperforms the other three
benchmark models: OCSVM, kNN, and GMM. The robustness
can be explained by the inherited nature from HMM on time
series data modeling, where the algorithm does not simple-
mindedly accept the most likely state for a given time instant,
but takes a decision based on the whole sequence. Thus, if
there are some particularly normal events midway through a
sequence of anomalies, this will not matter provided the whole
context of what is seen is reasonable. This is particularly
valuable in price manipulation detection where normal and
manipulation trading behaviors may be interleaved, but the
overall sense of the events may be detectable. However, other
detection models are trained for building tightly enclosed
boundaries, which consider the testing examples as a set of
separate points.

Another reason for the robust test results is the adaptive
mechanism. Due to the nonstationary feature, the distribution
of financial time series data xt1, . . . , xtl may deviate from
xt1+τ , . . . , xtl+τ . Detecting the statistically deviated data by
a constant model increases the risk of obtaining incorrect
detections. The mechanism of capturing the significant differ-
ence and updating the detection model provides a reasonable
compensation for the nonstationarity.

The AHMMAS model performs distinctly on different data
sets. In Table II, most of the AUC values for AHMMAS
model go beyond 0.8, which is considered as a threshold of
good performance for a classifier [57]. However, the result
for Microsoft data set is lower than others (0.7336) and is
even 8.5% lower than the second lowest AUC (0.8025) on
Google data set. Further investigation showed that the small
AUC on Microsoft data set is due to the relatively high FN
numbers (normal cases detected as anomaly) decreasing the
TPR on each discrimination threshold. After examining the FN
misclassification cases and comparing the training and testing
data sets, it was discovered that the normal patterns in the
testing data set that failed to be detected as normal were in
fact identical to the anomaly patterns shown in Fig. 2 and were
never seen in the training data set. In the example of the normal
Microsoft testing data set (no anomaly pattern injected) shown
in Fig. 13, the bid price from 8:00:00 to 8:01:00 A.M. on June
12, 2012. Oscillated unusually and showed mixed patterns of
sawtooth and square wave, which are very easily identified as
the anomalies by the detection model.

Fig. 13. Microsoft stock bid price from 8:00:00 to 8:01:40 A.M. on June
12, 2012. Normal data showed anomaly patterns.

Consultation with financial experts from industry sug-
gested that although rarely, such normal but wild oscillation
sometimes happen especially when experiencing high fre-
quency trading (HFT). Although HFT is out of the scope
of this paper due to its hyper-fast trading speed (e.g., 1000
updates in 1 ms), the wild oscillations in Fig. 13 show
analogous patterns as the manipulation algorithm triggered
by HFT. The oscillation also conforms with the recent report
from Nanex [59] that stock of Paychex showed the wild
sawtooth oscillation when being hit by a HFT algorithm. The
wild pattern is identical to the manipulation case documented
in 2012 [Fig. 2(a)] although not reported by regulators yet.
Therefore, although the FN cases (normal cases misclassified
as anomaly) seem to decrease the detection performance, most
of them referred to suspicious trading activities which are
identical to the reported manipulation cases.

From the experimental results and the analysis of the mis-
classification, it can be concluded that the AHMMAS model
is better suited for the price manipulation detection problem
based on a bid/ask price time series and its performance is
consistently superior to OCSVM, kNN, and GMM models
under most of the randomness of the nonstationarity of the
underlying equity price.

Based on the consultations with financial experts, real-time
surveillance in practice is required by the trading floor to
recognize any unusual patterns, which are used as a reference
to adapt their trading behaviors accordingly. Therefore, they
do not conclusively determine the intention behind every
anomaly or the contextual relation between those patterns but
mitigate any possible negative impacts on their portfolios from
the obvious problems in the market (e.g., the flash crash).
Instead, the proposed method determines the manipulation by
considering the anomalies as well as their contextual relations
(through the Markov chain). The detection increases the accu-
racy while sacrificing the efficiency for real-time detection,
which essentially may not be the first priority for regulators.
Therefore, AHMMAS best suits the overnight detection in
real world considering the computational complexity of the
proposed method.

VI. CONCLUSION

This paper presented a computational intelligence approach
for price manipulation detection. Typical price manipulation
cases were studied, where special patterns of the bid and
ask price during a manipulation period were analyzed for
extracting reliable features. Based on the extracted features,
an AHMMAS was proposed for detecting the anomalies
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in the bid and ask prices. The AHMMAS considers the
anomaly states according to the thresholds of four extracted
features set by the pdfs of the features. A system has been
developed and intensively tested on both real-life stock prices
and simulated prices. The comparison of proposed approach
with other benchmark models, OCSVM, kNN, and GMM,
has shown that the AHMMAS performs better in terms of
the area under ROC curve and the F-measure, respectively.
Finally, the experimental results were analyzed and misclas-
sification cases were discussed and further explained with
examples.

In the AHMMAS model, the pdfs of the four extracted
features are learned individually using DPGMM. However,
the use of a joint-pdf may offer a more accurate approach
for future studies since there is no empirical study showing
the independence relationship of the four features and this
will be the focus of our future work. Furthermore, mod-
eling the bid/ask time series with the corresponding order
information may provide a mechanism for decreasing the
FNR mentioned before. SST may also provide an enhanced
signal decomposition technique by extending the traditional
wavelet. Meanwhile, the exploration of coupled behaviors
of the bid and ask prices of one stock might help to
enhance the detection results of potential price manipulation
strategies that target both bid and ask price for maximizing
profits.

Additionally, the adaptive mechanism compensated the non-
stationary features of the financial time series. However, the
retraining processes increased the computational complexity.
The rapidly growing trading frequency increased the nonsta-
tionarity of the time series and at the same time decreased
the tolerance of latency for model retraining. However, an
increased nonstationarity requires more retraining. To solve
this contradictory problem, additional to the adaptive mech-
anism, one strand of the future works might be building a
method that removes or partially removes the nonstationarity
while maintaining the necessary statistical features.
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