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Is extreme learning machine feasible? A theoretical
assessment (Part Il)

Shaobo Lin, Xia Liu, Jian Fang, and Zongben Xu

Abstract—An extreme learning machine (ELM) can be re-
garded as a two stage feed-forward neural network (FNN)
learning system which randomly assigns the connections vhitand
within hidden neurons in the first stage and tunes the conne@ins
with output neurons in the second stage. Therefore, ELM traning
is essentially a linear learning problem, which significanty
reduces the computational burden. Numerous applicationstow
that such a computation burden reduction does not degrade th
generalization capability. It has, however, been open thawhether
this is true in theory. The aim of our work is to study the
theoretical feasibility of ELM by analyzing the pros and cors
of ELM. In the previous part on this topic, we pointed out
that via appropriate selection of the activation function, ELM
does not degrade the generalization capability in the expéation
sense. In this paper, we launch the study in a different direton
and show that the randomness of ELM also leads to certain
negative consequences. On one hand, we find that the randonsse
causes an additional uncertainty problem of ELM, both in
approximation and learning. On the other hand, we theoretially
justify that there also exists an activation function such hat the
corresponding ELM degrades the generalization capability In
particular, we prove that the generalization capability of ELM
with Gaussian kernel is essentially worse than that of FNN vih
Gaussian kernel. To facilitate the use of ELM, we also provid a
remedy to such a degradation. We find that the well-developed
coefficient regularization technique can essentially impove the
generalization capability. The obtained results reveal tk essential
characteristic of ELM and give theoretical guidance concening
how to use ELM.

Index Terms—Extreme learning machine, neural networks,
generalization capability, Gaussian kernel.

I. INTRODUCTION

is analyzed([10]+[12],[T33]. It is obvious that one of the mai
reasons of the low computational burden of ELM is that only a
few neurons are utilized to synthesize the estimator. Witho
such an attribution, ELM can not outperform other learning
strategies in implementation. For example, as a special afas
ELM, learning in the sample-dependent hypothesis spaee (th
number of neurons equals to the number of sample) [27], [29],
[30] can not essentially reduce the computational complexi
Thus, the universal approximation property of ELM is too
weak and can not capture the essential characteristics Mt EL
Therefore, the generalization capability and approxiorati
property of ELM should be investigated. The former one
focuses on the relationship between the prediction acgurac
and the number of samples, while the latter one discusses the
dependency between the prediction accuracy and the number
of hidden neurons.

The aim of our study is to theoretically verify the feasityili
of ELM by analyzing the pros and cons of ELM. In the first
part on this topic([18], we casted the analysis of ELM into
the framework of statistical learning theory and conclutted
with appropriately selected activation functions (polymal,
Nadaraya-Watson and sigmoid), ELM did not degrade the
generalization capability in the expectation sense. Tréams
that, ELM reduces the computation burden without sacrificin
the prediction accuracy by selecting appropriate activati
function, which can be regarded as the main advantage of
ELM. To give a comprehensive feasibility analysis of ELM, we
should also study the disadvantage of ELM and, consequently
reveal the essential characteristics of ELM.

An extreme learning machine (ELM) is a feed-forward Compared with the classical FNN learning [9], our study in

neural network (FNN) like learning system whose connestiothis paper shows that there are mainly two disadvantages of
with output neurons are adjustable, while the connectidgitts wELM. One is that the randomness of ELM causes an additional
and within hidden neurons are randomly fixed. ELM thebncertainty problem, both in approximation and learninige T
transforms the training of a FNN into a linear problem i®ther is that there also exists a generalization degradatio
which only connections with output neurons need adjustinghenomenon for ELM with inappropriate activation function
Thus the well-known generalized inverse technique [223] [2The uncertainty problem of ELM means that there exists
can be directly applied for the solution. Due to the fagn uncertainty phenomenon between the small approximation
implementation, ELM has been widely used in regressioh, [1@rror (or generalization error) and high confidence of ELM es
classification [[14], fast object recognition [32], illunsince timator. As a result, it is difficult to judge whether a singee
prediction [7], mill load prediction[28], face recognitig21] trail of ELM succeeds or not. Concerning the generalization
and so on. degradation phenomenon, we find that, with the widely used
Compared with the enormous emergences of applicatiofgussian-type activation function (or Gaussian kernettier
the theoretical feasibility of ELM is, however, almost vaou  Sake of brevity), ELM degrades the generalization capgbili

Up till now, only the universal approximation property of AL 0f FNN.
To facilitate the use of ELM, we provide certain remedies to

circumvent the aforementioned drawbacks. On one hand, we
find that multiple times training can overcome the uncetyain
problem of ELM. On the other hand, we show that, by adding
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neurons and implementing coefficient regularization simul- form as

taneously, the generalization degradation phenomenoh/df E n

can be aqued. In partlcu]ar, u5|_i17gcoeff|C|ent regularlzanon_ Hon = Z a;é(w;,x): a; €R Y,

to determine the connections with output neurons, ELM with =

Gaussian kernel can reach the almost optimal learning rate , _ ) _ -

of FNN in the expectation sense, provided the regularimatié/n€ré w;'s are drawn independently and identically (i.i.d.)

parameter is appropriately tuned. according to a specified distributign It is easy to see that
The study of this paper together with the conclusions Itﬁe hypothesis space of ELM is essentially a linear space. In

[18] provides a comprehensive feasibility analysis of ELMthe second stage, ELM tunes the output weights by using the

. . vell developed linear optimization technique. In this pape
To be detall, the performance of ELM depends heavily on tIi/{v%e study the generalization capability of the classical ELM

activation function and the random assignment mechanisHlO] rather than its variants. That is, the linear optimiaat
With appropriately selected activation function and rando . . ) ' .
chnique employed in the second stage of ELM is the least

mechanism, ELM does not degrade the generalization caé% '

bility of FNN learning in the expectation sense. Howeve ’quare.

there also exist some activation functions, with which ELM & 9

degrades the generalization capability for arbitrary cand fr.om = argfgﬁgnz |f (i) —wil”, @)

mechanism. Moreover, due to the randomness, ELM suffers St

from an uncertainty problem, both in approximation anwhere(z;,y;)i, are the given samples.

learning. Our study also shows that both the uncertain probl

and degradation phenomenon are remediable. All thesetsesBl. An uncertainty problem for ELM approximation

lay a solid fundamen_ta_l for ELM and give a guidance of hoW 1o randomness of ELM leads to a reduction of compu-

to use ELM more efficiently. tational burden. However, there also exists a certain defec
The rest of the paper is organized as follows. After givingaused by the randomness. The main purpose of this section

a fast review of ELM, we present an uncertainty problem § o quantify such a defect by studying the approximation

ELM approximation in the next section. In Section 3, we ﬁrséapability of ELM with Gaussian kernel.

introduce the main conception of statistical learning themd  For this purpose, we introduce a quantity called the modulus

then study the generalization capability of ELM with Gaassi of smoothness [4] to measure the approximation capability.

kernel. We find that the deduced generalization error bosindyihe -th modulus of smoothness![4] an C R¢ is defined
larger than that of FNN with Gaussian kernel. This means t

ELM with Gaussian kernel may degrade the generalization wra(fit) = sup [[AL 4(f, )]l 4
capability. In Section 4, we provide a remedy to such a [h|2<t ’
degradation. Using the empirical covering number tecmiqL{Nhere| )
we prove that implementing, coefficient regularization can uniform norm onC(A), and ther-th differenceAp 4(f,-) is
essentially improve the generalization capability of ELMW  yofined by ’
Gaussian kernel. In Section 5, we give proofs of the main , _ ' _

results. We conclude the paper in the final section with somg- (f.z) = { Zj:o (;) (=1)" 7 f(x + jh) !f € Arn
useful remarks. b, AL 0 if o ¢ Ap

forh = (hy,...,hq) € A2 and A, .= {z € A:x+she
A, for all s € [0,7]}. It is well known [4] that

| denotes the Euclidean norrfj, |4 denotes the

II. AN UNCERTAINTY PROBLEM OFELM APPROXIMATION

t T
T 7t S 1 - T 5 2
A. Extreme learning machine wralft) ( + u) wr.a(fu) )
The extreme learning machine (ELM), introduced by Huarfg" @l / € C(A) and allu > 0. _ _
et al. [11] can be regarded as a two stage FNN learning systeny€t 5 € N, we focus on the following Gaussian-type
which randomly assigns the connections with and withiactivation function (or Gaussian kernel),

hidden neurons in the first stage and tunes the connections s 1 9\ % 942
) . . . o S 1—j
with output neurons in the second stage. Since then, variolis,s(t) = Z < j > (=)= <ﬁ> p{ TUQ} .
variants of ELM such as evolutionary ELM _[35], Bayesian j=1 J J
ELM [25], incremental ELM [[13], and regularized ELN|[3] ®)

were proposed. We refer the readers to a fruitful suriey [15]'€N: the corresponding ELM estimator is defined by
for more information about ELM.

As a two stage learning scheme, ELM comprises a choice of fo.0,5m = arg FeHo 2 [f (i) = wil?, )
hypothesis space, and a selection of optimization strategy =t
learning algorithm) in the first and second stages, respdyti Where
To be precise, in the first stage, ELM picks hidden parameters n
with and within the hidden neurons randomly to build up the Hosn = ZajKUVS(Gj,a:), el
hypothesis space. This makes the hypothesis space of ELM j=1



K, s(0;,2) = K, 5((0; — 2)*) = K, +(|0; — z|3), confidence at least — 2exp{—cn°} (with respect tou"),

. ) . there holds
I*:=[0,1]* and{0}7_, are drawn i.i.d. according to arbitrary : s
fixed distributiony: on the interval—a, 1 + a]? with a > 0. Cin2 "< sup  mf [|f —gullja < Con™> )
The following Theoreni]l shows that there exists an uncer- feFT g€ o
tainty problem of ELM approximation. IIl. A GENERALIZATION DEGRADATION PROBLEM OF
Theorem 1:Let d,S,TL € N. If f S C(Id), then with ELM WITH GAUSSIAN KERNEL
. 2d ; n
fr?;r]ldﬁglfj(as at least — 2 exp{—cno™"} (with respect to"), Along the flavor of [18], we also analyze the feasibility
of ELM in the framework of statistical learning theorly! [2].
inf ||f = gnllra < C (wy ra(f.0) + || fllrac?), We find in this section that there exists a generalization
gn€Hosn ' degradation phenomenon of ELM. In particular, unlikel[18],
where( is a constant depending only ahand . the result in this section shows that ELM with Gaussian Kerne

It follows from Theoreni1L that the approximation capabilitflegrades the generalization capability of FNN.
of ELM with Gaussian kernel depends on the kernel parame-
ters, s, o, and the number of hidden neuroms,Furthermore, A. A fast review of statistical learning theory
Theorem[ll shows that, compared with the classical FNN|et s > 0, X = I¢, Y C [-M, M] be the input and output
approximation, there exists an additional uncertaintbfm spaces, respectively. Suppose that (z;,1;)™, is a finite
of ELM approximation. That is, both the approximation erroget of random samples drawing i.i.d. according to an unknown

and the confidence monotonously increase with respeat topyt definite distributiorp, where p is assumed to admit the
Therefore, it is impossible to deduce a small approximatigzcomposition

error with extremely high confidence. In other words, it is
difficult to judge whether the approximation error of ELM is p(z,y) = px (z)p(y|r).

smaller than arbitrary specified approximation accuratyelv - syppose further that : X — Y is a function that one uses to

does not appear in the classical Gaussian-FNN approximatigodel the correspondence betwe¥nand Y, as induced by

[31]. p. One natural measurement of the error incurred by uging
We find further in Theorerfil1 that the best choice of thgf this purpose is the generalization error, defined by

kernel parameteg, is a trade-off between the confidence and

the approximation error. An advisable way to determing E(f) = /(f(:c) —y)3dp,

to seto?? = n~! for arbitrary smalle € R,. Under this z

circumstance, we can deduce that the approximation errorvgfich is minimized by the regression function [2], defined by

Ho.s,n @Symptomatically equals te, ja(f, n(~-1+)/C4) 4

n(~1%)/2 with confidence at least — 2 exp{—cn°}. Finally, fola) := / ydp(ylz).

we should verify the optimality of the above approximatio v

bound and therefore justify the optimality of the selected

To this end, we introduce the set«th-smoothness functions.
Letw € Ny := {0} UN, v € (0,1], andr = u +v. A

functionf : 14 - R is saig to be'th-smooth if for everyn =

Ve do not know this ideal minimizef,, sincep is unknown,
but we have access to random examples flém Y sampled
according top. Let Lf)x be the Hilbert space obx square
integrable function onX, with norm denoted by - ||,. Then
for arbitrary f € Lﬁx, there holds

(a1, -+, aq), 0 € No, D25, aj = u, the partial derivatives
au . .
gt exist and satisfy E(f) = E(fp) = If = foll2 €
o f o f with the assumptiory, € Lf)X.

v
axlal . 'al'dad (:C) - axlal . 'al'dad (Z) S C0|x - Z|27

wherec, is an absolute constant. Denote BY the set of all B. The generalization capability of ELM with Gaussian kérne

rth-smooth functions. Furthermore, for arbitrafye 77, itis ~ Letmaf(z) = min{M, | f(z)[}sgn(f(z)) be the truncation
easy to deducé [4] that operator onf(z) at level M. As y € [—-M, M], it is easy to

check [34] that

||7TMfz,U,s,n - fp”p S Hfz,a,s,n - fp”p-
Thus, the aim of this section is to bound
. —rte
At lf = gnlle < On72 (6) ETrt faoism) — Efo) = |Tatfaosin — Fol 2 (9)

In o,s,m

holds with confidence at leagt— 2 exp{—cn®} for arbitrary The error [[9) clearly depends om and therefore has a
e € Ry, providedf € F7, s > r andr < d. In the following Stochastic nature. As a result, it is impossible to say angth
Proposition[]L, we show that the approximation rafe (6) capout _[@)_in ger_leral for a fixed. Instead, we can look at its
not be essentially improved, at least for the univariatecas behavior in statistics as measured by the expected error
Proposition 1l:Lletd =s=1,n e N, > 0,0<e < 1 m
andr = 1 — e If f, € 7" ando = 01497 then with  Eon (178t fann = Fyllp) := /Z st facsn = Follde™,

ws,Id (fv t) S Otrv (5)
if s > r. According to Theorerl1 and](5), we obtain that



where the expectation is taken over all realizatierabtained [, we can find that the quantity = [m®/("+4)] is selected

for a fixedm, and p™ is them fold tensor product ofp. In to balance the approximation and sample errors. Therefore,
following Theorem[2, we give an upper bound estimate fave can conclude that is optimal in the sense of “bias and
@) in the sense of expectation. variance” balance.

Theorem 2:Let d,s,n,m € N, e > 0, »r € R and Based on the above assertions, we compare Thedrem 2 with
fz,0,s,n be defined as in[{4). Iff, € F" with » < s, some related work and propose then the main viewpoint of this
o = m3i22 andn = [m#‘d} then with probability at least section. Imposing the same smooth assumption on the regres-

sion function, the optimal learning rate of the FNN with Gaus
sian kernel was established [n_[17], where Lin et al. deduced
Epn (||70s faosn—foll2) < C (m*% logm + md9+d£)2 . that FNNs can achieve the learning rateras®/ "+ log m.
(1d) They also showed that there a[rmd/(_?”d)] neurons needed
where[t] denotes the integer part of the real numher and to dedU(_:e the almost optimal Igarnlng rate. Slmllarly, Esbgr
C are constants depending only a4, s, r andd. and Stelnw_art [5] have also built an almo_st optimal Iegrnlng

It can be found in Theorerl] 2 that a new quantityis rate anaIyS|s for the support vector machine (SVM.) with the
introduced to quantify the randomness of ELM. It followsrfro Gaussian kernel. They showed that, modulo an arb|_trarylsmal
(10) thate describes the uncertainty between the confidenBYMPer, both the upper and lower bounds of learning rate of
and generalization capability. That is, we cannot obtaith boSV'\Q/I V‘gth dGau55|an can also attain the optimal learning rate,
extremely small generalization error and high confidentés T ”7* /e, However, Theore@Z and Eroposmﬁh 2 imply
means that there also exists an uncertainty problem for EL{t the leaming ra;te of ELM W'tgh Gzauzsmn kernel can not be
learning. Accordingly, Theoreffd 2 shows that it is reasoaabPSter thann /(4. Noting m 2/ Gr+d) < m~r/7+4) and

. . d/(2r+d d/(r+d . ..
to choose a very small, under which circumstance, we car” [Erad) < m@/ (4, we find that the prediction accuracy
deduce a learning rate close o~ =7 log m with a tolerable of ELM with Gaussian kernel is much larger than that of FNN

confidence, provided < d. even though more neurons are used in ELM. Furthermore, it

Before drawing the conclusion that ELM with Gaussiashould be pointed qut thgt if the numbers of utilized neuion;
kernel degrades the generalization capability, we shoeidy ELM and FNN are |der1t|cal, thgnzthedlearmng rate of EI__M is
the optimality of both the established learning rdtel (1a) arfVen worse. Indeed, ifi = [m¥/*r*9], then the learning
the selected parameters suchvaandn. We begin the analysis '3t 02f EdLM with Gaussian kernel can not be faster than
by illustrating the optimality of the learning rate deduded m_ir/( T ﬂ Therefore, we can draw the conclusion that ELM
(I0). For this purpose, we give the following Proposition 2 with Gaussian kernel degrades the generalization capabili

Proposition 2:Letd =s=1,n,me N, 3>0,0<e <
1,r=1—-¢andf,,., be defined as in14). If, € Fr, IV. REMEDY OF THE DEGRADATION
o = m> andn = [mﬁ} then with probability at least As is shown in the previous section, ELM with inappro-

priately selected activation function suffers from the emc
tainty problem and generalization degradation phenomenon
Cim ™ T < E(||7a f2,0,5n — prl%) < CQm—T(ﬁ—T) log m, To circumvent the former one, we can employ a multiple
(11) training strategy which has already been proposed_in [18].
wherec, C; and C, are constants depending only erand The main focus of this section is to tackle the generalizatio
M. capability degradation phenomenon. For this purpose, e us

Modulo an arbitrary small numberand the logarithmic fac- the i* coefficient regularization strategy [30] in the second
tor, the upper and lower bounds 6f111) are asymptomaticafifage of ELM. That is, we implement the following strategy
identical. Therefore, the established learning rate inoféwa to build up the ELM estimator:
is almost essential. This means that the establisheditegarn Lo

femin { } ,

1-— 2exp{—cmd€_+dT} (with respect tou™), there holds

1 — 2exp{—cmT } (with respect tou™), there holds

rate [10) can not be essentially improved, at least for the, , .\, = arg _Z(f(xi) — )2 +2Q(f)
univariate case. mi3

Now, we turn to justify the optimality of the selections . o (12)
of ¢ and n in Theorem[®. The optimality o can be whereX = A\(m) > 0 is a regularization parameter and
directly derived from the uncertainty problem of ELM. To be m n

detail, according to Theoref 1 and Proposifibn 1, the optima (f) = Z |a;|*, for f = ZaiKa,s(@, x) € Hosm-
selection ofo is to seto = n3 . Noting thatn = {mﬁir , =1 =1

The following theorem shows that the generalization ca-
pability of ELM with Gaussian kernel can be essentially
improved by using the regularization technique, provides t
number of neurons is appropriately adjusted.

it is easy to deduce that the optimal selectiorvds mTa,
Finally, we show the optimality of the parameter The
main principle to qualify it is the known “bias and variance'
. " : .
Slemime ] i dechres i  STakney Senie 31106 Tneorem et . & N, © > 0 and oy be
1
. ! i 1 1 T\ < < — —5srrate

variance (sample error). The besis thus obtained when thedeIned In[(IR). Itf, € 77 with d/2 < r < d, o =m” 25,
b_GSt comprise bet‘_"’een Fhe co_nﬂicting requirements of smallrp,e proof of this conclusion is the same as that of Thedrkme2pmit
bias and small variance is achieved. In the proof of Theoranfor the sake of brevity.



n= {mf—id} s>rand\ = m %24 then with confidence  Lemma 2:Let F € C(R?) be a bounded and uniformly
continuous function defined aR?. Then,

|F — Kgs % Flloo < Cowg ga(F,0). (15)

at leastl — 2 exp{—cmds_fr} (with respect tau™), there holds

Cym¥a < Epr |70 frosam— Il < Com™ T2 ¢ log m, Let J be arbitrary compact subset Bf*. For/ > 0, denote

(13) by 7,4 the set of trigonometric polynomials defined drwith
whereC; andC; are constants depending only dnr, s and degree at most. The following Nikol'skii inequality can be
M. found in [1].

TheoreniB shows that, up to an arbitrary small real numberLemma 3:Let 1 < p < ¢ < oo, [ > 1 be an integer, and
¢ and the logarithmic factor, the regularized ELM estimatof; € 7,%. Then
(I2) can achieve a learning rate as fastras*/ (" +4) with 4_d
high probability. Noting thatn—2"/(2r+d) < p,=r/(r+d) \e 1TillLacry < Clr™a||Thl Loy,
can draw the conclusion thaf coefficient regularization where the constant depends only onl.
technique can essentially improve the generalizationtwfifya ~ For further use, we also should introduce the following
of ELM with Gaussian kernel. Furthermore, as is shown abovsrobabilistic Bernstein inequality for random variableich
the best learning rates of both SVM and FNN with Gaussiaan be found in[]2].
kernel asymptomatically equal ta=2"/(2+4_ Thus, Theo-  Lemma 4:Let ¢ be a random variable on a probability
rem[3 illustrates that the regularization technique notyonspaceZ with mean E(¢), variancey?(&) = 2. If [¢(z) —
improves the generalization capability of ELM with Gaussiar (¢)| < M, for almost allz € Z. then, for alls > 0,
kernel, but also optimizes its generalization capabilityother
words, implementing? coefficient regularization in the secon 1 & ne
stage, ELM with Gaussian kernel can be regarded as an alrg]gs n Zg(zi) - E() 9 (~2 4 10s
optimal FNN learning strategy. =t (75 +3 55)

However, it should also be pointed out that the utilized By the help of Lemm&l3 and Lemrha 4, we are in a position
neurons of regularized ELM is much larger than that ab give the following probabilistic Marcinkiewicz-Zygmdn
the FNN. Indeed, to obtain the same optimal learning rat@equality for trigonometric polynomials.
m~2/2r+d) there ardm??/(?r+4)] neurons required in ELM  Lemma 5:Let J be a compact subset &7 and0 < p <
with Gaussian kernel, while the number of utilized neurons. If = = {6;}", is a set of i.i.d. random variables drawn
in the traditional FNN learning i$m</(?+4)]. Therefore, al- on .J according to arbitrary distributiop , then

2

25} < 2expg —

though regularized ELM can attain the almost optimal laagni L 5
rate with high probability, the price to obtain such a rate is _||7;||» < — Z Ty (6:)P < || Th|B, VT, € T;*  (16)
higher than that of FNN. 2 ni 2
holds with probability at least
V. PROOFS . et
A. Proof of Theorerh]1 P 1 |’

To prove Theorerh]1, we need the following nine lemmasthereC,, is a constant depending only @hand p.
The first one can be found in_[116], which is an extension of Proof: Since we model the sampling s€tis a sequence

Lemma 2.1 in[[31]. of i.i.d. random variables in/, the sampling points are a
Lemma 1:Let f € C(I%). There exists anF € C(R?) sequence of functiong; = 6,(w) on some probability space
satisfying (©,P). Without loss of generality, we assunij&;||, = 1 for
F(z) = f(z), z e I? arbitrary fixedp. If we set&?(T;) = |T;(6;)[", then we have
such that for arbitrary: € 1%, ||h|| < § < 1, there holds 1« 1
e <o S ITO) - BE = = 3T TP — ITiE,
[Flloc := sup |F(z)| < [If]| = sup [f(z)] = , =
zEeR? zeld where we use the equality
and B¢ = [ [Tne)Pde; = [ 1Ti0)pdo = |7 = 1
Wr R (Fv 5) < Wy 1d (fv 5) (14) J Q / / J P .
To state the next lemma, we should introduce a convolutiirthermore,
operator concerning the kernél, ;. Denote |§§? _ E§f| < ilells)l HTz(9(w))|” _ IITzllg\ < | T3Z, — 1732,
K, % F(x) = / F(y) Ky s(x —y)dy. It follows from Lemma(3B that
R4

d 4
The following Lemma 2 gives an error estimate for the ITilloo < CL7 | Tall, = Ol

deviation of continuous function and its Gaussian convofyt Hence
which can be deduced froml[5, Theorem 2.2]. |§§7 _ E§f| < (c1? - 1).



On the other hand, we have Using Lemmdb and Lemnid 5, we can deduce the follow-
ing probabilistic numerical integral formula for trigonenic

2 _ 2 2
e = E(&)7) - (BE) polynomials.
2 . d = n
Lemma 7:Let J be a compact subset B“. If = = {6, }7
_ 2 i=1
- /Q I72(6(w))[ ™ duw — (/Q |Tl(9(w))|pdw) are i.i.d. random variables drawn according to arbitrasrdi
— T - T2 bution 11, then there exists a set of real numbéts}? ; such
Hizp = 124 that .
Then using LemmBl3 again, there holds /Tl(x)dx _ ZciTz(Gi), VI € T4
14 J -
9 < CETGTRTR — T = (Cif - 1),

. . . holds with confidence at least
Thus it follows from Lemm&l}4 that with confidence at least

C
ne2 1— 2exp{——lldn} ,
1—2exXpd o751
2 (72 + 5 Mee) subject to
ne? ~
> 1-—2exps — , |ei|” < C/n,
- p{ 2 ((C14 = 1) + 3(Cl4 — 1)e) } ;
there holds whereC; andC are constants depending only dn
n Proof: In Lemmal®, we take¥ = 7%, |Ti||x = ||Ti]l,,
1 . . h
ht Z [T, (0P — | T2 < e. and Z to be the set of point evaluation functionglé, }7- ;.
ne= b The operatofl'z is then the restriction map; — T;|z, with
: I . . N
T e peence ol L gondomvarables, 1y [ S r0)mF . 0<p<ce
=P SUP1§i§n{|f(9i)|}a p = 00.
1 —o)|Tp < 1 Z ITV0:) [P < (1 + )| TI7 It follows from Lemma[b withp = 2 that with confidence at
n = least
) N ' Cn
holds with probability at least 1—2exp T
2
1— 2exp{—%} ) there holds|7; || < 2. We now takey to be the functional
3
Then [I6) is verified by setting = 1. n y:1— /JTZ(I)dI-
To state the next lemma, we need introduce the followin ) . )
definitions. LetX be a finite dimensional vector space wittBy Holder inequality,[[y[|lx- < |J|, where|J| denotes the
norm || - |x, and 2 ¢ X* be a finite set. We say tha volume of J. Therefore, Lemm&l6 shows that
is a norm generating set fot' if the mapping7z : X — n
RCO4(2) defined byT=(z) = (2(x)).cz is injective, where /Tl(x)dx = aTi(6))
Card(Z) is the cardinality of the sef andT'z is named as the ! =1
sampling operator. Lé/ := Tz(X') be the range of 'z, then holds with confidence at least
the injectivity of T’z implies thatTZ_1 : W — X exists. Let
R 4(Z) have a normj| - [rearacz), With || - |geeracz)+ being 1- QGXD{—Z%} ;
its dual norm onR“* 4(2)”  EquippingW’ with the induced _
norm, and let| 77| := ||T5||w—x. In addition, let<, be Subject to . )
the positive cone oRC*"¥(2): that is, all(r,) € RC42) 1 3 el \™ 21|
for whichr, > 0. Then the following Lemmal6 can be found n <~ 1/n) — '
in [20]. o . _
Lemma 6:Let Z be a norm generating set faf, with 7,  1herefore, we obtain that>i” , |c;|* < C/n, whereC'is a
being the corresponding sampling operatory IE x* with ~constant depending O”le ah 4 n
lylla- < A, then there exist real numbefs, }.c z, depending ~ Let B = [—a,1 + a]® and P;" be the class of algebraic
only ony such that for every: € X, polynomials defined o3 with degree at most By the help
' of the above lemma, we can get the following probabilistic
y(x) = Z a,z(x), numerical integral formula for algebraic polynomials.
2€Z Lemma 8:If E = {n,;}, are i.i.d. random variables drawn
and according to arbitrary distributiopn, then there exists a set of
(a:) || gearaczr < AITZY. real numberda;}? ; such that

Also, if W contains an interior point, € K, and if / Py(z)dx = Z%‘Pz(m), VP e P
y(Tz'v) > 0 whenv € VNK_, then we may choose. > 0. B =



holds with confidence at least that

Cin ‘/ Ko s(z — y)F(y)dy’
1—2expy——7 ¢ Ri_B
! i s 1 2 \%?
1103 ( 5 ) 5 (55
subject to =N g4 \o?m
m 2|z — ylI3
C X / exp {—,7 dy
Z Jail* < Ev RI-B j2o?
=1 s

s\ 1 9 \4/2
| 135 ( 5 ) 32 ()
where(C; andC' are constanst depending only dn j=1 AN

Proof: Sincex = (2(1),..., %)), We have —a 00 242 d
% ((/ + [ )exp{_ 2 Q}dt)
— 00 a .] o

/ 1+a 1+a s /2
f d:v = / / I(l x(d))d:v(l) - -dl'(d). S 1 2
2||f||1d Z ] j_d %

IN

IN

<
7j=1
Setz;y = (1 + |a|)cosv;, i =1,...,d, then we have e 2at d
e ([l 2))

1+a 1+a —1 d
<

/ Py(x)dx —/ Pi((1+ |a]) < Gl flljaa™ " 0",

whereC, is a constant depending only @handr.
X cosv, ..., (14 |a|)COSUd) On the other hand, foF' € C(B) ands € N, it is well

known [4] that there exists &, € P;! and absolute constants
C1,C5 such that

|F =Rl <C inf [|[F=Plp=CE(F), (17)
PePy

X d(1+]a])cosvy---d(1+ |a|) cosvg = / Tia(v)dv,

Ja

where.J, is a compact subset &¢ and

and
Tiva(v) = (=(1+la))?R((1 + |a]) cosvr,..., (1 + [a]) [Pll5 < Ca||[Flls < Col| fl|ra- (18)
X cosvg)sinvy -« -sinvg. Then, for arbitrary{b;}?_, C R, there holds

Hence, Tiya € 7,4, and then Lemmdl8 can be directly /F( VKo y)dy — Zb Ko, s(x—mn;)
deduced from Lemmi] 7. [ | B

By using LemmaB, we can deduce the following error - /(F(y) — P(y)Keos(z —y)dy
estimator. B '

Lemma 9:Let « > 0, u,l € N. If 2 = {m}~, /P K Dy — - b K —n).(19
is a random variable drawing identically and independently + B 1Y) Ko = y)dy Z iBos(@ = mi)-(19)

. . . =1
according top on [—a, 1 + a], then with confidence at least '

1 — 2exp{—cn/(u+ )%}, there holds Letu € N. Then, for arbitrary univariate algebraic polynomial

q of degree not larger tham, we obtain

Ll e F =g / P Kool — gy — 3 bikp ol — )
i=1
2u
d, —d
< G, (ws,ld(fvl/l)+a||f”0 +o U!O’2>7 _ / H .I'— )—q(x—y))dt
where(; is a constant depending only @hands. + / Py y)dy — Z bi(Kgs(z—y) — qla —n:))
Proof: For arbitrary f € C(I?), let F and K, ¢ * F i=1

defined as in Lemmil 1 and Lemia 2, respectively. Then,

Z big(a — n;).
i=1

Koo x 1" = / Kos(z —y)F(y)dy Since Py(y)q(z — y) € P, (B) for fixed z, it follows from
Lemmal8 that with confidence at leakt- 2exp{ en/(u +
/ Kos(z —y)F(y)dy + / . Kos(e=y)F(y)dy. )%} there exists a set of real numbefs;}”, C R such
Ri-H that
At first, we give an upper bound estimate ff, , Ko s(z— / B(y)ale — y)dy = n POl
y)F (y)dy. It follows from Lemm4dl and the definition &, , B wale —y)dy ; ms)ale = m)



If we seta; = w; P,(n;), then

/BPZ() dy Zal a’s z
_ /B Puy)(Kos(z — y) — qlz — y))dy

n

Z w; Py (n; ) (K

holds with confidence at least-2 exp{—cn/(u+1)%}. Under
this circumstance,

cr,s('r - 771) - Q('r - 771))

/ Pl(y)KU,s( y)dy - ZaiKa,s(' - 771)
B i=1 Id
< / Pu(y)(Kos(- — ) — a(- — 4))dy
B 7d
+ Zwipl(m)(Ka,s(' —ni) —q(- —ni))
=1 Id

To bound the above quantities, denote

2v
L. — =
J (U) exp ] 0_2

where we use the fadtl[5]

/ KU,s(x - y)dy S 1
B

and the known Jackson inequalifyl [4] in the last inequality.
All above together with Lemmial 1 yields that

inf ”Ka,s x* F — gn” < Csws Id(fv 1/1)
In€Gn ’
s 1 9 d/2
J ) j¢ \o3r

+ Callo’+ iy (

j=1
Lj—d

holds with confidence at least — 2 exp{—cn/(u + 1)?}.

Furthermore, it is straightforward to check, using the powe

series[[19, P.136] fo¢§xp{—j§§2} that

s d/2
1 2
()L (X nt g
. J ) it \o3rm q€TH([0,(14a)?]) -

X inf I
q€7,;([0,(14a)?])

—q||
j=1
2u
—d
< Coo ulo?’
Thus, the proof of Lemma 9 is completed. ]

By the help of the above nine lemmas, we can proceed the

Let 72([0, (1 4 a)?]) be the set of univariate algebraic poly-Proof of Theorenill as follows.

nomials of degrees not larger thandefined on[0, (1 + a)?],
and Setqju = arg minqet}([07(1+a)2]d H‘C7 — qH, and

s s 1 9 d/2 ;
qu(v) == ; ( j ) j_d <ﬁ> @ (v).
Then, it follows from [(IB) that

| R

—y) = qu((- —y)*)dy

Id

< Cllfllp ||K(,75(-—y)—qu((-—y)2)|\,d
T - 1 9 d/2

< d . — | —

< Clfll 2_:(3 )= ()

X inf 1£; —ql|.

a€T; ([0,(1+a)?])

On the other hand, since.; ; |w;| < /n) ;. |w;]? < C

we also obtain

iwiﬂ(m)(&,s( — i) = qu((- — m)2))||
< anmy ()5 (&)

Jj=1
Thus, the only thing remainder is to boun

X inf 1£5 —4ll-
Pi(y))Ky.(x — y)dy. It follows from (I7) that

a€T,; ([0,(1+a)?])

(F(y) —

[ (P ) - P Kol —y>dyH

/KUS

< E(F y)dy < Csw, Rd(F 1/1),

Proof of Theoreni]1:Since

g ei’}r-tlf ”f_gnHId < ||f_KU,s*F||Id+HKU,S*F_gnHIda

Settingo = 1~1/2, it follows from Lemma 2 and Lemma 9
that

dnf 17 = gallge < Co (wars(£,172) +all o

n o,8,mn

+ od (3202)u)

2uy!

holds with confidence at least— 2 exp{—cn/(u + 1)¢}. By
the Stirling’s formula, it is easy to check that

4 (820.2)11,
2uq!

2)4 u?
< Oy (u/ < < (O]—4/2
<Cu il = C(2d)u < Cl

with v = 2dl. Therefore, we obtain

. _ —1/2 —d/2
dnf I = gull < Co (wapa (17 +allFl72)

n o,8,mn

with confidence at least — 2 exp{—cn/I?}. Therefore, The-
orem[1 follows by noticingr = 1/v/1. (]

B. Proof of Propositiof 1

To prove Propositiohl1, we need the following two lemmas,
the first one concerning Bernstein inequality & s ,, can be
easily deduced froni_[6, eqs (3.1)].

Lemma 10:Let d = 1, s = 1, ando > n~1/2. Then, for
arbitrary g, € H, s, there holds

grlljo,1) < Cn1/2||gn|\[071],

whereC' is an absolute constant.



By the help of the Bernstein inequality, the standard methddhen,

in approximation theory[[4, Chap. 7] yields the following

Lemmal1l.
Lemma 1liletd = 1,s =1, r € N, ¢ > n /2 and
fech). if

< 00,

> o 2dist(f, Hoan)
n=1

then f € F7, where distf, Ho,1,n) = infgep, ., |f — gl
Proof: Let g, := arginfyey, , , ||f —gl/;2. For arbitrary
n € N, setng such that

om0 < < 2notl,
It is easy to see that

Z nT/Q_ldiSt(fa Hd,l,n) < 09,

n=1

implies distf,H,1,) — 0 in C(I'). Indeed, if it does
not hold, then there exists an absolute constarguch that
dist(f,H,1.,) > C > 0. Therefore,

C i nt
n=1

which is impossible. So we have

<Y n27Mist(f, Ho1m) < 00,

n=1

f=gomo =Y gait1 — goi- (20)

j=no
By Lemmal10, we then have
ghr — ghs |l < C2UTV2dlist(f, Hyp g 05).
Then direct computation yields that
0o 27
DI
§=1k=2i-141

C> kPTHistf, o ) < o0.
k=1

< k2N dist(f, Ho 1 k)

||géj+1 —géij =
<
So{gs; } is the Cauchy sequence &f". Differentiating [20),

we have
Z g2i+1 — g2i,

Jj=no

92%0 =

Since {g,; } is the Cauchy sequence ¢, we havef’ —
ghno — 0 Whenng — oo, which impliesf € F". [ |
Now we continue the proof of Propositih 1.
Proof of Propositioril: Lete € (0,1), andr =1 —e¢. It
is obvious that there exists a functian satisfyingh,. € F"
andh, ¢ F"' with 1/ > r. Assume

inf ||f —gl| < COn7r/2E
€

o,1,n

holds for all f € F", whereC' is a constant independent of

n. Then,
inf ||k, — g|| < Cn7"/27¢,

o,1,n

oo

> nt 2 disthy, Ho i n) =

oo
n=1 n=1

Therefore, it follows from LemmB_11 that. € F!, which is
impossible. Hence,

71 5/2

sup inf ||f —g| > Cn~"/?7¢,

feFr9€toin

This together with Theoref 1 finishes the proof of Propaositio
[ |

C. Proof of Theorerfil2

The main tool to prove Theorelh 2 is the following Lemma
[I2, which can be found in[8, Chap.11].
Lemma 12:Let f, s, be defined as i {4). Then

Em||7TMfza'sn_

INCE

for some universal constant C.
Now, we use Propositidd 1 and Lemmad 12 to prove Theorem

logm + 1)n
fp||2 <OM2( g —~ )

(21)

in x)2dpx

(rsn

+ 8

2.
Proof of Theorenf]2: Since H, 5, is a n-dimensional
linear space, then Lemniall2 yields that

(logm + 1)n
m

E m||7TMfza'sn_fp||2 <OM2

JNCE

Therefore, it suffices to bound

/U@—ﬁmfﬁ.
X fe

From Theoreni1, it follows that

”g - prX <C (ws,ld(fpvo) + pr”ad)

in x)|?dp.

(rsn

+ 8

I1f = follx-

inf
Ho,s,n

inf
fe€Ho,s,n

inf

o,s,mn

holds with probability at least— 2 exp{—cno??}. Notingr <
s and f, € F", with probability at least — 2 exp{—cno??},
there holds

If = folx <C (6> +0°%).

inf
f

o,8,mn

Settingo = n(~112)/(24) ' we observe that with probability at
least]l — 2 exp{—n°}, there holds
4 n71+s) .

Finally, choosing: = m7a , we obtain that with probability
at leastl — 2 exp{—n*}, there holds
d(1—¢) )
r+d .

inf _ 2 <C( —r/d+re/d
i - lsc(n

_(=e)r _
=+ logm + m

EPm ||7TMfz,a',s,n _fp”i <C (m

This finishes the proof of Theoreph 2.
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D. Proof of Proposition 2 for everyP € H, s, andu € [1/2,1]. Sincex; € [1/2,1] and
nf € [1/2,1], thenv; +u —1 € [0,1] for eachi = 1,2,....r.

To prove Proposition]2, we need the following three le . ' _ ,
P P . g ptegrating on the intervdl /2, 1] with respect tau, we obtain

mas. The first one is the interpolation theorem of IineA
functionals, which can be found ial[1, P.385]. 1 gl (u)]

Lemma 13:Let C(Q) be the set of real valued continuous /1 (Cln1/2> (u)
functions on the compact Hausdorff spagelLet S be ann-

/2

T 1
dimensional linear subspace 6fQ) overR. Let L # 0 be < Z/ les|(1gn (vi + 1 — 1)) dpx (w)
a real-valued linear functional of. Then there exist points = ye
r1,%2,...,2, IN @ and nonzero real numbets, as, ..., a,, Tl 1
wherel < r < n, such that < Z/ |cild(|gn (t)])dpx (t) S/ ¢(lgn (t)])dt,
, i=1"0 0
L(s) = ZaiS(fci), ses in which >-7_ |¢;| = 1 has been used.
i=1 It can be shown exactly in the same way that
and 1/2 ' (u 1
: [ o (250 doxw < [ otaudox o,
0 n 0
IL]| = sup{|L(s)| : s € S, [lsllo <1} =D |asl. - , » .
i=1 Combining the last two inequalities and choosing) = 22,
. we finish the proof of Lemma_14. [

By using Lemma$_13 arld 10, we can obtain the following
Bernstein inequality for ELM with Gaussian kernel in th
metric of L? .

Using almost the same method as that in the proof of
(?_emmall_l, the following Lemmal5 can be deduced directly

from Lemmal1h
. _ _ —1/2
Lemma l4:letd =1, s = 1, ando > n~"/%. Then, for | 156t d = l,s=1r€N,o>n2and
arbitrary g, € Ho 5., there holds fech).f

lgnlly < Cn' 2l gnll,o, i3
’ ’ >SS, o1, < 00,
whereC' is an absolute constant. n—1
Proof: We apply Lemmd 13 withQ = [1/2,1], S = ’ ; .
D then f € 7", where distf, Ho1.n), = inf en lf=gll,-
! ) s L,n)p g o,1,n P
Ho,s,n, and L(s) = '(1). It follows from Lemmal1D that Now, we proceed the proof of Propositibh 2.

L[| = |s'(1)] < Cn'/2|s(1)| = Crnl/2. (22) Proof of Proposition[R: With the help of the above
- lemmas, we can use the almost same method as that in the
We deduce that there are;,vs,...,v,. in [1/2,1] and proof of Propositiorifl to obtain
,ao,...,a, € I' so that for everys € Hy o . ]
ai, a2 a ¥ )8, sup inf ”f _ g”p > Cn—r/2—5.
o feFr9€Ho,n

W] _ [ X as)l _ 5
< Z Cinl/?

Cinl/? Cinl/?

[5(vi)] Then, Propositiof]2 can be deduced from the above inequality

=t by using the conditionsy = m =% andn = [mf} n

with 1 < r < n. By (22) we have

XT: “ |, E. Proof of Theorernl3
Cint/2| = To prove Theorem]3, we need the following concepts and

=1 ~
. . , lemmas. Let(M, d) be a pseudo-metric space aiid- M a
So there is a sequence of numbgrs} with >, [ei = 1 subset. For every > 0, the covering numbet/(T' e, d) of T
such that with respect tos andd is defined as the minimal number of

C|;S/(11)/|2 < i leills(s)]. balls of radiuss whose union cover%', that is,
1n —

l
Now let ¢ : [0,00) — [0,00) be a nondecreasing convex N(T,e,d) := min {l eN:Tc | B(tjvf)}
function. Using monotonicity and convexity, we have J=1
15/ (1))| r r for some {t;}\,_, C M, where B(tj,e) = {t € M :
) (C n1/2) <o) lessi)]) < leild(|s(vi)])- d(t,t;) < e}. The I*>-empirical covering number [27] of a
! i=1 i=1 function set is defined by means of the normqlilédnetric
Applying this inequality withs(t) = g,.(t + 1 — 1) € He.s.n, ds on the Eucliderim spacR? given in with da(a,b) =
we get (7 2imy lai = bif*)? for a = (a;)f2y, b = (b))%, € R™

m

Definition 1: Let§ be a set of functions o, x = (z;)",,

¢<|QZ(U)|> SZ|Ci|¢(|P(Ui+U_b)|) and

Crnl 2 Ol = {(f(@)y : f € G} C R™
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Set Moy (G,e) = N(Glx,e,ds). The [2-empirical covering Furthermore, it can be deduced from Lemiha 8 dnd (18) by

number ofG is defined by taking f = f, that
No(F,¢e) :== sup sup Nax(G,e), €>0. - -
2(Foe) = sup sup Max(Gr6) Afo) = 3 i PIRG)E < 1,123 wil? < Cfn.
=1 =1

Let H, be the reproducing kernel Hilbert space &f, o
[26] and By, be the unit ball inf,. The following Lemmas 1 1is finishes the p(;o:])f of Le;nnfi%:}[g. 3 u
and 1V can be easily deduced frami[26, Theorem 2.1] and oW we proceed the proof o eordmh 3. .

[27], respectively Proof of Theorerll3:Let f, , s 1 @and fo be defined as

Lemma 16:Let0 < o < 1, X C R be a compact subset” (12) and Lemma 19, respectively. Define
with nonempty interior. Then for _al] <p<2andallv >0, D :=E(fo) — E(fp) + A2 fo)
there exists a constant, , 4. > 0 independent of such that and

for all e > 0, we have
S = gz(fO) - g(fO) + g(ﬂ-lwfz,a,s,)\,n) - 5z(7TMfz,U,s,)\,n)a
where&, (f) = 2 Y- (y;— f(x;))?. Then, itis easy to check

T m

log N2(By,,€) < prﬂydﬂsa(p/z_l)(1+”)da_p.

Lemma 17:Let F be a class of measurable functions Ofhat
Z. Assume that there are constafdsc > 0 and« € [0, 1] £ _< <D+S 25
such that| f||c < B andEf2 < ¢(Ef)* for every f € F. If (Tat faasrm) = ELfp) < ' (25)
for somea > 0 andp € (0,2), As f, € F", it follows from Lemma& 1P that with confidence
at leastl — 2 exp{—cno??} (with respect tou™), there holds
log No(F,e) <ae™P, Ve>0, (23)
D < C(6* + 0% + \/n). (26)

then there exists a constatjt depending only o such that

for any ¢ > 0, with probability at leastt — e~¢, there holds Upon using the short hand notations

St = {&(fo) = &(fp)} — {€(fo) — E(fp)}

1 = . 1 11—« a /
Bf = o0 2 1) < g1 BN+ and
ﬁ 82 = {g(ﬂl\lfz,a',s,)\,n)_g(f )}_{EZ(WI\f{fZ,G’,S,A,n)_EZ(f )}7
+ 2<C—t) + B8 vrer, (24) ’ ’
we have
Where S = 81 + 82. (27)
2-p a4\ T5eTrs  _2-p [ G\ 3t5 We first turn to boundsS;. Let the random variablé on Z
7) := max { cT-2atpa (E) , B7Fp (E) : be defined by
The next lemma states a variant of Lemiiha 4, which can be £(z) = (y — fo(2))*> — (y — fo(2))* z = (2,y) € Z.
found in [24] Since|f,(z)| < M and

Lemma 18:Let ¢ be a random variable on a probability
spaceZ with variancey? satisfying|¢ — E¢| < M, for some
constantM,. Then for any0 < ¢ < 1, with confidencel — 4,
we have

[fol < D lwil [P 1K o5 (0, 2)] < [ Foll D i < CM

i=1 i=1
hold almost everywhere, we have
m 1 2100 L
LS (o) - Be < 2M§1°g6 42 oes €@ = (folx) = o)) 2y — folx) — fol))
=i m mn < (M+CM)(M+CM) < Mg := (3M + CM)?
From the proof of Lemmd]9, we can also deduce thgq almost surely
following Lemmal19

Lemma 19:Let d, s, n € N. Then with confidence at least € — E¢| < 2Me.
1 — 2exp{—cno??}, there exists &y € H, s, such that Moreover. we have

o= foly 4 A0 J0) < Clanselfpn a4 a5 MM (e = [ (fofa) + £y(0) ~ 207 (ola) — fo(@)dp
zZ

where(C is a constant depending only ah s and M.

2
Proof: Let < Mellfo = foll,
n n which implies that the variance? of ¢ can be bounded as
fo=Y aiKou(e =n) = Y wiPi(n)Kes(e =), 7* < E(%) < McD. Now applying Lemm418, we obtain
=1 1=1
. 4M¢log 2 2M¢Dlog 2
where{w;}?_, and P, are the same as those in the proof of S < €085 +1/ §7 085
Lemmal®. Then, it has already been proved that 3m m

7BM +CM)*log2 1
Il.fo = foll, < C(Ws,ld (fpr0) + Ud)' = 3m + §D (28)




holds with confidencé — g (with respect top™).

To boundsS,, we need apply Lemnmiall7 to the $bi, where

Gr = {(y — 7 f(2))* = (y = fp(2))* : f € Br}

and

BR = {f = ZbiKU,S(ni7x) : Z |b1|2 S R} .
=1 =1
Each functiong € Gg has the form

9(2) = (y = f(2))* = (y = fo(2))*, feBr
and is automatically a function off. Hence

Eg = £(f) = &(f) = lmmf = fll;

and

m

LS g(e0) = Ealmar )~ Ea(Fy)

wherez; := (xi,y_i). Observe that
9(2) = (mar f(x) = fo(2))((mm f(2) —y) + (fp(z) — ).

Therefore,
lg(2)| < 8M>

and

B = / 2y — ot f(x) — £, (@) 2 (mar () — £,(x))%dp

< 16M?Eg.

For g1, 92 € Fg, and arbitrarym € N, we have

Lo 1/2
(E Z(gl(zi) - gz(zi))2>
< (W Z(fl(ffi) - fz(iﬂi))z) :
=1
It follows that

No 2 (Gr,e) < Nox (BR, ﬁ) < Nox (31, ﬁ%) )

which together with Lemm@a_16 implies
10g N2.2(Gr, &) < Cpuao ™ OTIAMR)Pe.

By Lemmal[l¥ withB = ¢ = 16M?, o = 1 anda =

—2

Cppao = AH44MR)P, we know that for any € (0, 1),
with confidencel — %, there exists a constaiit depending

only ond such that for ally € Gr

1 — 1 log(4/96)
Eg— — ) < -E M+1)2 =L
g m;g(z>_2 g+Cn+C(M+1)?—=—
Here

2— 2 2 -2 2
n={16M2}>7 O hm~ 7o 7 (Hns R

Hence, we obtain
1 1 21222 Ty
Eg— —> g(z) < 5Eg+ {16(M +1)*}7 C7%,
=1

2 p—2 2 2p
x m Tz Mg R g

[STIIEN
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Now we turn to estimate?. It follows form the definition of
.fz,cr,s,)\,n that

MU frosam) < E(0) +X-0< M2

Thus, we obtain that for arbitrarf§ < p < 2 and arbitrary
v > 0, there exists a constat depending only ond, v, p
and M such that

S < %{g(ﬂ'l\{fz,a',s)\,n) - g(fp)}

4
+ Cloggm pESTes

2 (p—2)(A+wv)d —2p
2+p

AT (29)

with confidence at least — % (with respect top™).
From [25) to [ZB), we obtain

E(ﬂ'Mfz,cr,s)\,n) - g(fp)

log 4
< C<0’2T—|—0'2d+/\/n+ g5

3am

n %{gwfz,g,ﬂ,n) —&(f,)}

__2 (»=2d+4v)d —2p
+ log 5m g 2P /\2+P>
holds with confidence at leaét — ) x (1 — 2 exp{—cno??})
(with respect top™ x p™).

Seto = m_ﬁ“, n = m?fid, A=m9 = m_%,
vV = m and
2d+2e(2r+d) —2(1+v) +2(2r + d)e(1 +v)d
p:

2r+d)(2a+de+vde —e)+2r — (1+v)d

Sincer > d/2, it is easy to check that > 0, and0 < p < 2.
Then, we get

E(Tr fooorm) — E(f,) < Cm~ 751+ log 45
+ mo Tt 4 logddm A
Noting further thatr < d, we obtain
E(mr frosam) — E(f,) < Cm~ 751+ log 46.
Noticing the identity

B (€€ una)) = | T PE)—E(fana) > ),

direct computation yields the upper bound [ofl(13). The lower
bound can be found in[8, Chap.3]. This finishes the proof of
Theoren{B. [ |

VI. CONCLUSIONS

The ELM-like learning provides a powerful computational
burden reduction technique that adjusts only the output con
nections. Numerous experiments and applications have gemo
strated the effectiveness and efficiency of ELM. The aim of
our study is to provide theoretical fundamentals of it. Afte
analyzing the pros and cons of ELM, we found that the theo-
retical performance of ELM depends heavily on the activatio
function and randomness mechanism. In the previous cousin
paper[18], we have provided the advantages of ELM in theory,
that is, with appropriately selected activation functi@i,M



reduces the computation burden without sacrificing the gengo]
alization capability in the expectation sense. In this pawe
discussed certain disadvantages of ELM. Via rigorous progfl]
we found that ELM suffered from both the uncertainty and
generalization degradation problem. Indeed, we provet th@2l
for the widely used Gaussian-type activation function, ELM
degraded the generalization capability. To facilitate uke of [13]
ELM, some remedies of the aforementioned two problem are
also recommended. That is, multiple times trials can avoﬁ
the uncertainty problem and thé coefficient regularization
technique can essentially improve the generalizationlitiya [1°]
of ELM. All these results reveal the essential characiesst
of ELM learning and give a feasible guidance concerning how
to use ELM .

We conclude this paper with a crucial question about ELIW]
learning.

Question 1:As is shown in [18] and the current paperl18l
the performance of ELM depends heavily on the activation
function. For appropriately selected activation functi@hM [19]
does not degrade the generalization capability, whilectiaégo
exists an activation function such that the degradatiostexi [,q;
As it is impossible to enumerate all the activation funcsion
and study the generalization capabilities of the corredjan
ELM, we are asked for a general condition on the activatic;%l]
function, under which the corresponding ELM degrade (or
doesn’t degrade) the generalization capability. In otherds, [22]
we are interested in a criterion to classify the the actrati 3
functions into two classes. With the first class, ELM degsade
the generalization capability and with the other class, ELI4
does not degrades the generalization capability. We wibke
working on this interesting project, and report our progres [25]
a future publication.
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