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Is extreme learning machine feasible? A theoretical
assessment (Part II)

Shaobo Lin, Xia Liu, Jian Fang, and Zongben Xu

Abstract—An extreme learning machine (ELM) can be re-
garded as a two stage feed-forward neural network (FNN)
learning system which randomly assigns the connections with and
within hidden neurons in the first stage and tunes the connections
with output neurons in the second stage. Therefore, ELM training
is essentially a linear learning problem, which significantly
reduces the computational burden. Numerous applications show
that such a computation burden reduction does not degrade the
generalization capability. It has, however, been open thatwhether
this is true in theory. The aim of our work is to study the
theoretical feasibility of ELM by analyzing the pros and cons
of ELM. In the previous part on this topic, we pointed out
that via appropriate selection of the activation function, ELM
does not degrade the generalization capability in the expectation
sense. In this paper, we launch the study in a different direction
and show that the randomness of ELM also leads to certain
negative consequences. On one hand, we find that the randomness
causes an additional uncertainty problem of ELM, both in
approximation and learning. On the other hand, we theoretically
justify that there also exists an activation function such that the
corresponding ELM degrades the generalization capability. In
particular, we prove that the generalization capability of ELM
with Gaussian kernel is essentially worse than that of FNN with
Gaussian kernel. To facilitate the use of ELM, we also provide a
remedy to such a degradation. We find that the well-developed
coefficient regularization technique can essentially improve the
generalization capability. The obtained results reveal the essential
characteristic of ELM and give theoretical guidance concerning
how to use ELM.

Index Terms—Extreme learning machine, neural networks,
generalization capability, Gaussian kernel.

I. I NTRODUCTION

An extreme learning machine (ELM) is a feed-forward
neural network (FNN) like learning system whose connections
with output neurons are adjustable, while the connections with
and within hidden neurons are randomly fixed. ELM then
transforms the training of a FNN into a linear problem in
which only connections with output neurons need adjusting.
Thus the well-known generalized inverse technique [22], [23]
can be directly applied for the solution. Due to the fast
implementation, ELM has been widely used in regression [10],
classification [14], fast object recognition [32], illuminance
prediction [7], mill load prediction [28], face recognition [21]
and so on.

Compared with the enormous emergences of applications,
the theoretical feasibility of ELM is, however, almost vacuum.
Up till now, only the universal approximation property of ELM
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is analyzed [10]–[12], [33]. It is obvious that one of the main
reasons of the low computational burden of ELM is that only a
few neurons are utilized to synthesize the estimator. Without
such an attribution, ELM can not outperform other learning
strategies in implementation. For example, as a special case of
ELM, learning in the sample-dependent hypothesis space (the
number of neurons equals to the number of sample) [27], [29],
[30] can not essentially reduce the computational complexity.
Thus, the universal approximation property of ELM is too
weak and can not capture the essential characteristics of ELM.
Therefore, the generalization capability and approximation
property of ELM should be investigated. The former one
focuses on the relationship between the prediction accuracy
and the number of samples, while the latter one discusses the
dependency between the prediction accuracy and the number
of hidden neurons.

The aim of our study is to theoretically verify the feasibility
of ELM by analyzing the pros and cons of ELM. In the first
part on this topic [18], we casted the analysis of ELM into
the framework of statistical learning theory and concludedthat
with appropriately selected activation functions (polynomial,
Nadaraya-Watson and sigmoid), ELM did not degrade the
generalization capability in the expectation sense. This means
that, ELM reduces the computation burden without sacrificing
the prediction accuracy by selecting appropriate activation
function, which can be regarded as the main advantage of
ELM. To give a comprehensive feasibility analysis of ELM, we
should also study the disadvantage of ELM and, consequently,
reveal the essential characteristics of ELM.

Compared with the classical FNN learning [9], our study in
this paper shows that there are mainly two disadvantages of
ELM. One is that the randomness of ELM causes an additional
uncertainty problem, both in approximation and learning. The
other is that there also exists a generalization degradation
phenomenon for ELM with inappropriate activation function.
The uncertainty problem of ELM means that there exists
an uncertainty phenomenon between the small approximation
error (or generalization error) and high confidence of ELM es-
timator. As a result, it is difficult to judge whether a singletime
trail of ELM succeeds or not. Concerning the generalization
degradation phenomenon, we find that, with the widely used
Gaussian-type activation function (or Gaussian kernel forthe
sake of brevity), ELM degrades the generalization capability
of FNN.

To facilitate the use of ELM, we provide certain remedies to
circumvent the aforementioned drawbacks. On one hand, we
find that multiple times training can overcome the uncertainty
problem of ELM. On the other hand, we show that, by adding
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neurons and implementingl2 coefficient regularization simul-
taneously, the generalization degradation phenomenon of ELM
can be avoided. In particular, usingl2 coefficient regularization
to determine the connections with output neurons, ELM with
Gaussian kernel can reach the almost optimal learning rate
of FNN in the expectation sense, provided the regularization
parameter is appropriately tuned.

The study of this paper together with the conclusions in
[18] provides a comprehensive feasibility analysis of ELM.
To be detail, the performance of ELM depends heavily on the
activation function and the random assignment mechanism.
With appropriately selected activation function and random
mechanism, ELM does not degrade the generalization capa-
bility of FNN learning in the expectation sense. However,
there also exist some activation functions, with which ELM
degrades the generalization capability for arbitrary random
mechanism. Moreover, due to the randomness, ELM suffers
from an uncertainty problem, both in approximation and
learning. Our study also shows that both the uncertain problem
and degradation phenomenon are remediable. All these results
lay a solid fundamental for ELM and give a guidance of how
to use ELM more efficiently.

The rest of the paper is organized as follows. After giving
a fast review of ELM, we present an uncertainty problem of
ELM approximation in the next section. In Section 3, we first
introduce the main conception of statistical learning theory and
then study the generalization capability of ELM with Gaussian
kernel. We find that the deduced generalization error bound is
larger than that of FNN with Gaussian kernel. This means that
ELM with Gaussian kernel may degrade the generalization
capability. In Section 4, we provide a remedy to such a
degradation. Using the empirical covering number technique,
we prove that implementingl2 coefficient regularization can
essentially improve the generalization capability of ELM with
Gaussian kernel. In Section 5, we give proofs of the main
results. We conclude the paper in the final section with some
useful remarks.

II. A N UNCERTAINTY PROBLEM OFELM APPROXIMATION

A. Extreme learning machine

The extreme learning machine (ELM), introduced by Huang
et al. [11] can be regarded as a two stage FNN learning system
which randomly assigns the connections with and within
hidden neurons in the first stage and tunes the connections
with output neurons in the second stage. Since then, various
variants of ELM such as evolutionary ELM [35], Bayesian
ELM [25], incremental ELM [13], and regularized ELM [3]
were proposed. We refer the readers to a fruitful survey [15]
for more information about ELM.

As a two stage learning scheme, ELM comprises a choice of
hypothesis space, and a selection of optimization strategy(or
learning algorithm) in the first and second stages, respectively.
To be precise, in the first stage, ELM picks hidden parameters
with and within the hidden neurons randomly to build up the
hypothesis space. This makes the hypothesis space of ELM

form as

Hφ,n =







n
∑

j=1

ajφ(wj , x) : aj ∈ R







,

wherewj ’s are drawn independently and identically (i.i.d.)
according to a specified distributionµ. It is easy to see that
the hypothesis space of ELM is essentially a linear space. In
the second stage, ELM tunes the output weights by using the
well developed linear optimization technique. In this paper,
we study the generalization capability of the classical ELM
[10] rather than its variants. That is, the linear optimization
technique employed in the second stage of ELM is the least
square:

fz,φ,n = arg min
f∈Hφ,n

m
∑

i=1

|f(xi)− yi|2, (1)

where(xi, yi)
m
i=1 are the given samples.

B. An uncertainty problem for ELM approximation

The randomness of ELM leads to a reduction of compu-
tational burden. However, there also exists a certain defect
caused by the randomness. The main purpose of this section
is to quantify such a defect by studying the approximation
capability of ELM with Gaussian kernel.

For this purpose, we introduce a quantity called the modulus
of smoothness [4] to measure the approximation capability.
The r-th modulus of smoothness [4] onA ⊆ Rd is defined
by

ωr,A(f, t) = sup
|h|2≤t

‖∆r
h,A(f, ·)‖A,

where | · |2 denotes the Euclidean norm,‖ · ‖A denotes the
uniform norm onC(A), and ther-th difference∆h,A(f, ·) is
defined by

∆r
h,A(f, x) =

{ ∑r
j=0

(

r
j

)

(−1)r−jf(x+ jh) if x ∈ Ar,h

0 if x /∈ Ar,h

for h = (h1, . . . , hd) ∈ Ad andAr,h := {x ∈ A : x + sh ∈
A, for all s ∈ [0, r]}. It is well known [4] that

ωr,A(f, t) ≤
(

1 +
t

u

)r

ωr,A(f, u) (2)

for all f ∈ C(A) and allu > 0.
Let s ∈ N, we focus on the following Gaussian-type

activation function (or Gaussian kernel),

Kσ,s(t) =

s
∑

j=1

(

s
j

)

(−1)1−j 1

jd

(

2

σ2π

)
d
2

exp

{

− 2t2

j2σ2

}

.

(3)
Then, the corresponding ELM estimator is defined by

fz,σ,s,n = arg min
f∈Hσ,s,n

m
∑

i=1

|f(xi)− yi|2, (4)

where

Hσ,s,n =







n
∑

j=1

ajKσ,s(θj , x), x ∈ Id







,
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Kσ,s(θj , x) := Kσ,s((θj − x)2) := Kσ,s(|θj − x|22),

Id := [0, 1]d and{θ}nj=1 are drawn i.i.d. according to arbitrary
fixed distributionµ on the interval[−a, 1 + a]d with a > 0.

The following Theorem 1 shows that there exists an uncer-
tainty problem of ELM approximation.

Theorem 1:Let d, s, n ∈ N. If f ∈ C(Id), then with
confidence at least1 − 2 exp{−cnσ2d} (with respect toµn),
there holds

inf
gn∈Hσ,s,n

‖f − gn‖Id ≤ C
(

ωs,Id(f, σ) + ‖f‖Idσd
)

,

whereC is a constant depending only ond andr.
It follows from Theorem 1 that the approximation capability

of ELM with Gaussian kernel depends on the kernel parame-
ters,s, σ, and the number of hidden neurons,n. Furthermore,
Theorem 1 shows that, compared with the classical FNN
approximation, there exists an additional uncertainty problem
of ELM approximation. That is, both the approximation error
and the confidence monotonously increase with respect toσ.
Therefore, it is impossible to deduce a small approximation
error with extremely high confidence. In other words, it is
difficult to judge whether the approximation error of ELM is
smaller than arbitrary specified approximation accuracy, which
does not appear in the classical Gaussian-FNN approximation
[31].

We find further in Theorem 1 that the best choice of the
kernel parameter,σ, is a trade-off between the confidence and
the approximation error. An advisable way to determineσ is
to setσ2d = nε−1 for arbitrary smallε ∈ R+. Under this
circumstance, we can deduce that the approximation error of
Hσ,s,n asymptomatically equals toωs,Id(f, n(−1+ε)/(2d)) +
n(−1+ε)/2 with confidence at least1− 2 exp{−cnε}. Finally,
we should verify the optimality of the above approximation
bound and therefore justify the optimality of the selectedσ.
To this end, we introduce the set ofrth-smoothness functions.

Let u ∈ N0 := {0} ∪ N, v ∈ (0, 1], and r = u + v. A
functionf : Id → R is said to berth-smooth if for everyα =
(α1, · · · , αd), αi ∈ N0,

∑d
j=1 αj = u, the partial derivatives

∂uf
∂x1

α1 ...∂xd
αd

exist and satisfy
∣

∣

∣

∣

∂uf

∂x1
α1 · · · ∂xd

αd
(x) − ∂uf

∂x1
α1 · · · ∂xd

αd
(z)

∣

∣

∣

∣

≤ c0|x− z|v2,

wherec0 is an absolute constant. Denote byFr the set of all
rth-smooth functions. Furthermore, for arbitraryf ∈ Fr, it is
easy to deduce [4] that

ωs,Id(f, t) ≤ Ctr, (5)

if s ≥ r. According to Theorem 1 and (5), we obtain that

inf
gn∈Hσ,s,n

‖f − gn‖Id ≤ Cn
−r+ε

2d (6)

holds with confidence at least1 − 2 exp{−cnε} for arbitrary
ε ∈ R+, providedf ∈ Fr, s ≥ r andr ≤ d. In the following
Proposition 1, we show that the approximation rate (6) can
not be essentially improved, at least for the univariate case.

Proposition 1: Let d = s = 1, n ∈ N, β > 0, 0 < ε < 1
and r = 1 − ε. If fρ ∈ Fr and σ = n(−1+ε)/2, then with

confidence at least1 − 2 exp{−cnε} (with respect toµn),
there holds

C1n
− r

2−ε ≤ sup
f∈Fr

inf
gn∈Hσ,r,n

‖f − gn‖Id ≤ C2n
−r+ε

2 . (7)

III. A GENERALIZATION DEGRADATION PROBLEM OF

ELM WITH GAUSSIAN KERNEL

Along the flavor of [18], we also analyze the feasibility
of ELM in the framework of statistical learning theory [2].
We find in this section that there exists a generalization
degradation phenomenon of ELM. In particular, unlike [18],
the result in this section shows that ELM with Gaussian kernel
degrades the generalization capability of FNN.

A. A fast review of statistical learning theory

LetM > 0, X = Id, Y ⊆ [−M,M ] be the input and output
spaces, respectively. Suppose thatz = (xi, yi)

m
i=1 is a finite

set of random samples drawing i.i.d. according to an unknown
but definite distributionρ, whereρ is assumed to admit the
decomposition

ρ(x, y) = ρX(x)ρ(y|x).
Suppose further thatf : X → Y is a function that one uses to
model the correspondence betweenX andY , as induced by
ρ. One natural measurement of the error incurred by usingf
of this purpose is the generalization error, defined by

E(f) :=
∫

Z

(f(x) − y)2dρ,

which is minimized by the regression function [2], defined by

fρ(x) :=

∫

Y

ydρ(y|x).

We do not know this ideal minimizerfρ, sinceρ is unknown,
but we have access to random examples fromX×Y sampled
according toρ. Let L2

ρ
X

be the Hilbert space ofρX square
integrable function onX , with norm denoted by‖ · ‖ρ. Then
for arbitraryf ∈ L2

ρ
X
, there holds

E(f)− E(fρ) = ‖f − fρ‖2ρ (8)

with the assumptionfρ ∈ L2
ρ
X

.

B. The generalization capability of ELM with Gaussian kernel

Let πMf(x) = min{M, |f(x)|}sgn(f(x)) be the truncation
operator onf(x) at levelM . As y ∈ [−M,M ], it is easy to
check [34] that

‖πMfz,σ,s,n − fρ‖ρ ≤ ‖fz,σ,s,n − fρ‖ρ.
Thus, the aim of this section is to bound

E(πMfz,σ,s,n)− E(fρ) = ‖πMfz,σ,s,n − fρ‖2ρ. (9)

The error (9) clearly depends onz and therefore has a
stochastic nature. As a result, it is impossible to say anything
about (9) in general for a fixedz. Instead, we can look at its
behavior in statistics as measured by the expected error

Eρm(‖πMfz,σ,s,n − fρ‖ρ) :=
∫

Zm

‖πMfz,σ,s,n − fρ‖dρm,



4

where the expectation is taken over all realizationsz obtained
for a fixedm, andρm is them fold tensor product ofρ. In
following Theorem 2, we give an upper bound estimate for
(9) in the sense of expectation.

Theorem 2:Let d, s, n,m ∈ N, ε > 0, r ∈ R and
fz,σ,s,n be defined as in (4). Iffρ ∈ Fr with r ≤ s,

σ = m
−1+ε
2r+2d andn =

[

m
d

r+d

]

, then with probability at least

1− 2 exp{−cm
εd

d+r } (with respect toµn), there holds

Eρm(‖πMfz,σ,s,n−fρ‖2ρ) ≤ C
(

m−
(1−ε)r
r+d logm+m−

d(1−ε)
r+d

)

,

(10)
where[t] denotes the integer part of the real numbert, c and
C are constants depending only onM , s, r andd.

It can be found in Theorem 2 that a new quantityε is
introduced to quantify the randomness of ELM. It follows from
(10) thatε describes the uncertainty between the confidence
and generalization capability. That is, we cannot obtain both
extremely small generalization error and high confidence. This
means that there also exists an uncertainty problem for ELM
learning. Accordingly, Theorem 2 shows that it is reasonable
to choose a very smallε, under which circumstance, we can
deduce a learning rate close tom− r

r+d logm with a tolerable
confidence, providedr ≤ d.

Before drawing the conclusion that ELM with Gaussian
kernel degrades the generalization capability, we should verify
the optimality of both the established learning rate (10) and
the selected parameters such asσ andn. We begin the analysis
by illustrating the optimality of the learning rate deducedin
(10). For this purpose, we give the following Proposition 2.

Proposition 2: Let d = s = 1, n,m ∈ N, β > 0, 0 < ε <
1, r = 1 − ε and fz,σ,s,n be defined as in (4). Iffρ ∈ Fr,

σ = m
−1+ε
2r+2 andn =

[

m
1

1+r

]

, then with probability at least

1− 2 exp{−cm
ε

1+r } (with respect toµn), there holds

C1m
− r

1+r ≤ E(‖πMfz,σ,s,n − fρ‖2ρ) ≤ C2m
−

r(1−ε)
1+r logm,

(11)
wherec, C1 andC2 are constants depending only onr and
M .

Modulo an arbitrary small numberε and the logarithmic fac-
tor, the upper and lower bounds of (11) are asymptomatically
identical. Therefore, the established learning rate in Theorem
2 is almost essential. This means that the established learning
rate (10) can not be essentially improved, at least for the
univariate case.

Now, we turn to justify the optimality of the selections
of σ and n in Theorem 2. The optimality ofσ can be
directly derived from the uncertainty problem of ELM. To be
detail, according to Theorem 1 and Proposition 1, the optimal
selection ofσ is to setσ = n

ε−1
2d . Noting thatn =

[

m
d

d+r

]

,

it is easy to deduce that the optimal selection ofσ is m
−1+ε
2r+2d .

Finally, we show the optimality of the parametern. The
main principle to qualify it is the known “bias and variance“
dilemma [2], which declares that a smalln may derive a large
bias (approximation error), while a largen deduces a large
variance (sample error). The bestn is thus obtained when the
best comprise between the conflicting requirements of small
bias and small variance is achieved. In the proof of Theorem

2, we can find that the quantityn =
[

md/(r+d)
]

is selected
to balance the approximation and sample errors. Therefore,
we can conclude thatn is optimal in the sense of “bias and
variance” balance.

Based on the above assertions, we compare Theorem 2 with
some related work and propose then the main viewpoint of this
section. Imposing the same smooth assumption on the regres-
sion function, the optimal learning rate of the FNN with Gaus-
sian kernel was established in [17], where Lin et al. deduced
that FNNs can achieve the learning rate asm−2r/(2r+d) logm.
They also showed that there are

[

md/(2r+d)
]

neurons needed
to deduce the almost optimal learning rate. Similarly, Eberts
and Steinwart [5] have also built an almost optimal learning
rate analysis for the support vector machine (SVM) with the
Gaussian kernel. They showed that, modulo an arbitrary small
number, both the upper and lower bounds of learning rate of
SVM with Gaussian can also attain the optimal learning rate,
m−2r/(2r+d). However, Theorem 2 and Proposition 2 imply
that the learning rate of ELM with Gaussian kernel can not be
faster thanm−r/(r+d). Notingm−2r/(2r+d) < m−r/(r+d) and
md/(2r+d) < md/(r+d), we find that the prediction accuracy
of ELM with Gaussian kernel is much larger than that of FNN
even though more neurons are used in ELM. Furthermore, it
should be pointed out that if the numbers of utilized neuronsin
ELM and FNN are identical, then the learning rate of ELM is
even worse. Indeed, ifn =

[

md/(2r+d)
]

, then the learning
rate of ELM with Gaussian kernel can not be faster than
m−r/(2r+d)1. Therefore, we can draw the conclusion that ELM
with Gaussian kernel degrades the generalization capability.

IV. REMEDY OF THE DEGRADATION

As is shown in the previous section, ELM with inappro-
priately selected activation function suffers from the uncer-
tainty problem and generalization degradation phenomenon.
To circumvent the former one, we can employ a multiple
training strategy which has already been proposed in [18].
The main focus of this section is to tackle the generalization
capability degradation phenomenon. For this purpose, we use
the l2 coefficient regularization strategy [30] in the second
stage of ELM. That is, we implement the following strategy
to build up the ELM estimator:

fz,σ,s,λ,n = arg min
f∈Hσ,s,n

{

1

m

m
∑

i=1

(f(xi)− yi)
2 + λΩ(f)

}

,

(12)
whereλ = λ(m) > 0 is a regularization parameter and

Ω(f) =

m
∑

i=1

|ai|2, for f =

n
∑

i=1

aiKσ,s(θi, x) ∈ Hσ,s,n.

The following theorem shows that the generalization ca-
pability of ELM with Gaussian kernel can be essentially
improved by using the regularization technique, provided the
number of neurons is appropriately adjusted.

Theorem 3:Let d, s, n,m ∈ N, ε > 0 and fz,σ,s,λ,n be
defined in (12). Iffρ ∈ Fr with d/2 ≤ r ≤ d, σ = m− 1

2r+d
+ε,

1The proof of this conclusion is the same as that of Theorem 2, we omit
it for the sake of brevity.
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n =
[

m
2d

2r+d

]

, s ≥ r andλ = m− 2r−d
4r+2d , then with confidence

at least1− 2 exp{−cm
εd

d+r } (with respect toµn), there holds

C1m
−2r
2r+d ≤ Eρm‖πMfz,σ,s,λ,n−fρ‖2ρ ≤ C2m

− 2r
2r+d

+ε logm,
(13)

whereC1 andC2 are constants depending only ond, r, s and
M .

Theorem 3 shows that, up to an arbitrary small real number
ε and the logarithmic factor, the regularized ELM estimator
(12) can achieve a learning rate as fast asm−2r/(2r+d) with
high probability. Noting thatm−2r/(2r+d) < m−r/(r+d) we
can draw the conclusion thatl2 coefficient regularization
technique can essentially improve the generalization capability
of ELM with Gaussian kernel. Furthermore, as is shown above,
the best learning rates of both SVM and FNN with Gaussian
kernel asymptomatically equal tom−2r/(2r+d). Thus, Theo-
rem 3 illustrates that the regularization technique not only
improves the generalization capability of ELM with Gaussian
kernel, but also optimizes its generalization capability.In other
words, implementingl2 coefficient regularization in the second
stage, ELM with Gaussian kernel can be regarded as an almost
optimal FNN learning strategy.

However, it should also be pointed out that the utilized
neurons of regularized ELM is much larger than that of
the FNN. Indeed, to obtain the same optimal learning rate,
m−2r/(2r+d), there are

[

m2d/(2r+d)
]

neurons required in ELM
with Gaussian kernel, while the number of utilized neurons
in the traditional FNN learning is

[

md/(2r+d)
]

. Therefore, al-
though regularized ELM can attain the almost optimal learning
rate with high probability, the price to obtain such a rate is
higher than that of FNN.

V. PROOFS

A. Proof of Theorem 1

To prove Theorem 1, we need the following nine lemmas.
The first one can be found in [16], which is an extension of
Lemma 2.1 in [31].

Lemma 1:Let f ∈ C(Id). There exists anF ∈ C(Rd)
satisfying

F (x) = f(x), x ∈ Id

such that for arbitraryx ∈ Id, ‖h‖ < δ ≤ 1, there holds

‖F‖∞ := sup
x∈Rd

|F (x)| ≤ ‖f‖ = sup
x∈Id

|f(x)|

and
ωr,Rd(F, δ) ≤ ωr,Id(f, δ). (14)

To state the next lemma, we should introduce a convolution
operator concerning the kernelKσ,s. Denote

Kσ,s ∗ F (x) :=

∫

Rd

F (y)Kσ,s(x− y)dy.

The following Lemma 2 gives an error estimate for the
deviation of continuous function and its Gaussian convolution,
which can be deduced from [5, Theorem 2.2].

Lemma 2:Let F ∈ C(Rd) be a bounded and uniformly
continuous function defined onRd. Then,

‖F −Kσ,s ∗ F‖∞ ≤ Csωs,Rd(F, σ). (15)

Let J be arbitrary compact subset ofRd. For l ≥ 0, denote
by T d

l the set of trigonometric polynomials defined onJ with
degree at mostl. The following Nikol’skii inequality can be
found in [1].

Lemma 3:Let 1 ≤ p < q ≤ ∞, l ≥ 1 be an integer, and
Tl ∈ T d

l . Then

‖Tl‖Lq(J) ≤ Cl
d
p
−d

q ‖Tl‖Lp(J),

where the constantC depends only ond.
For further use, we also should introduce the following

probabilistic Bernstein inequality for random variables,which
can be found in [2].

Lemma 4:Let ξ be a random variable on a probability
spaceZ with meanE(ξ), varianceγ2(ξ) = γ2

ξ . If |ξ(z) −
E(ξ)| ≤ Mξ for almost allz ∈ Z. then, for allε > 0,

P

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξ(zi)− E(ξ)

∣

∣

∣

∣

∣

≥ ε

}

≤ 2exp







− nε2

2
(

γ2
ξ + 1

3Mξε
)







.

By the help of Lemma 3 and Lemma 4, we are in a position
to give the following probabilistic Marcinkiewicz-Zygmund
inequality for trigonometric polynomials.

Lemma 5:Let J be a compact subset ofRd and0 < p ≤
∞. If Ξ = {θi}ni=1 is a set of i.i.d. random variables drawn
on J according to arbitrary distributionµ , then

1

2
‖Tl‖pp ≤ 1

n

n
∑

i=1

|Tl(θi)|p ≤ 3

2
‖Tl‖pp, ∀Tl ∈ T d

l (16)

holds with probability at least

1− 2exp

{

−Cpn

ld

}

,

whereCp is a constant depending only ond andp.
Proof: Since we model the sampling setΞ is a sequence

of i.i.d. random variables inJ , the sampling points are a
sequence of functionsθj = θj(ω) on some probability space
(Ω,P). Without loss of generality, we assume‖Tl‖p = 1 for
arbitrary fixedp. If we setξpj (Tl) = |Tl(θj)|p, then we have

1

n

n
∑

i=1

|Tl(θi)|p − Eξpj =
1

n

n
∑

i=1

|Tl(θi)|p − ‖Tl‖pp,

where we use the equality

Eξpj =

∫

Ω

|Tl(η(ωj))|pdωj =

∫

J

|Tl(θ)|pdθ = ‖Tl‖pp = 1.

Furthermore,

|ξpj − Eξpj | ≤ sup
ω∈Ω

∣

∣|Tl(θ(ω))|p − ‖Tl‖pp
∣

∣ ≤ ‖Tl‖p∞ − ‖Tl‖pp.

It follows from Lemma 3 that

‖Tl‖∞ ≤ Cl
d
p ‖Tl‖p = Cl

d
p .

Hence
|ξpj − Eξpj | ≤ (Cld − 1).
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On the other hand, we have

γ2
ξ = E((ξpj )

2)− (E(ξpj ))
2

=

∫

Ω

|Tl(θ(ω))|2pdω −
(
∫

Ω

|Tl(θ(ω))|pdω
)2

= ‖Tl‖2p2p − ‖Tl‖2pp .

Then using Lemma 3 again, there holds

γ2
ξ ≤ Cl2dp(

1
p
− 1

2p )‖Tl‖2pp − ‖Tl‖2pp = (Cld − 1).

Thus it follows from Lemma 4 that with confidence at least

1− 2exp

{

− nε2

2
(

γ2 + 1
3Mξε

)

}

≥ 1− 2exp

{

− nε2

2
(

(Cld − 1) + 1
3 (Cld − 1)ε

)

}

,

there holds
∣

∣

∣

∣

∣

1

n

n
∑

i=1

|Tl(θi)|p − ‖Tl‖pp

∣

∣

∣

∣

∣

≤ ε.

This means that ifX is a sequence of i.i.d. random variables,
then the Marcinkiewicz-Zygmund inequality

(1− ε)‖Tl‖pp ≤ 1

n

n
∑

i=1

|Tl(θi)|p ≤ (1 + ε)‖Tl‖pp

holds with probability at least

1− 2exp

{

− cnε2

ld(1 + ε)

}

.

Then (16) is verified by settingε = 1
2 .

To state the next lemma, we need introduce the following
definitions. LetX be a finite dimensional vector space with
norm ‖ · ‖X , and Z ⊂ X ∗ be a finite set. We say thatZ
is a norm generating set forX if the mappingTZ : X →
RCard(Z) defined byTZ(x) = (z(x))z∈Z is injective, where
Card(Z) is the cardinality of the setZ andTZ is named as the
sampling operator. LetW := TZ(X ) be the range ofTZ , then
the injectivity of TZ implies thatT−1

Z : W → X exists. Let
RCard(Z) have a norm‖ ·‖RCard(Z) , with ‖ ·‖RCard(Z)∗ being
its dual norm onRCard(Z)∗. EquippingW with the induced
norm, and let‖T−1

Z ‖ := ‖T−1
Z ‖W→X . In addition, letK+ be

the positive cone ofRCard(Z): that is, all (rz) ∈ RCard(Z)

for which rz ≥ 0. Then the following Lemma 6 can be found
in [20].

Lemma 6:Let Z be a norm generating set forX , with TZ

being the corresponding sampling operator. Ify ∈ X ∗ with
‖y‖X ∗ ≤ A, then there exist real numbers{az}z∈Z , depending
only on y such that for everyx ∈ X ,

y(x) =
∑

z∈Z

azz(x),

and
‖(az)‖RCard(Z)∗ ≤ A‖T−1

Z ‖.

Also, if W contains an interior pointv0 ∈ K+ and if
y(T−1

Z v) ≥ 0 whenv ∈ V ∩K+, then we may chooseaz ≥ 0.

Using Lemma 6 and Lemma 5, we can deduce the follow-
ing probabilistic numerical integral formula for trigonometric
polynomials.

Lemma 7:Let J be a compact subset ofRd. If Ξ = {θi}ni=1

are i.i.d. random variables drawn according to arbitrary distri-
butionµ, then there exists a set of real numbers{ci}ni=1 such
that

∫

J

Tl(x)dx =

n
∑

i=1

ciTl(θi), ∀Tl ∈ T d
l

holds with confidence at least

1− 2exp

{

−C1n

ld

}

,

subject to
n
∑

i=1

|ci|2 ≤ C/n,

whereC1 andC are constants depending only ond.
Proof: In Lemma 6, we takeX = T d

l , ‖Tl‖X = ‖Tl‖p,
andZ to be the set of point evaluation functionals{δθi}ni=1.
The operatorTZ is then the restriction mapTl 7→ Tl|Ξ, with

‖f‖pΞ,p :=

{

(

1
n

∑n
i=1 |f(θi)|p

)
1
p , 0 < p < ∞,

sup1≤i≤n{|f(θi)|}, p = ∞.

It follows from Lemma 5 withp = 2 that with confidence at
least

1− 2exp

{

−Cn

ld

}

there holds‖T−1
Z ‖ ≤ 2. We now takey to be the functional

y : Tl 7→
∫

J

Tl(x)dx.

By Hölder inequality,‖y‖X ∗ ≤ |J |, where |J | denotes the
volume ofJ . Therefore, Lemma 6 shows that

∫

I

Tl(x)dx =
n
∑

i=1

ciTl(θi)

holds with confidence at least

1− 2exp

{

−Cpn

ld

}

,

subject to
1

n

n
∑

i=1

( |ci|
1/n

)2

≤ 2|J |.

Therefore, we obtain that
∑n

i=1 |ci|2 ≤ C/n, whereC is a
constant depending only ond.

Let B = [−a, 1 + a]d and Pd
l be the class of algebraic

polynomials defined onB with degree at mostl. By the help
of the above lemma, we can get the following probabilistic
numerical integral formula for algebraic polynomials.

Lemma 8: If Ξ = {ηi}ni=1 are i.i.d. random variables drawn
according to arbitrary distributionµ, then there exists a set of
real numbers{ai}ni=1 such that

∫

B

Pl(x)dx =

n
∑

i=1

aiPl(ηi), ∀Pl ∈ Pd
l
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holds with confidence at least

1− 2exp

{

−C1n

ld

}

,

subject to

m
∑

i=1

|ai|2 ≤ C

n
,

whereC1 andC are constanst depending only ond.
Proof: Sincex = (x(1), . . . , x(d)), we have

∫

B

f(x)dx =

∫ 1+a

−a

· · ·
∫ 1+a

−a

f(x(1), . . . , x(d))dx(1) · · · dx(d).

Setx(i) = (1 + |a|) cos vi, i = 1, . . . , d, then we have

∫

B

Pl(x)dx =

∫ 1+a

−a

· · ·
∫ 1+a

−a

Pl((1 + |a|)

× cos v1, . . . , (1 + |a|) cos vd)
× d(1 + |a|) cos v1 · · · d(1 + |a|) cos vd =

∫

Ja

Tl+d(v)dv,

whereJa is a compact subset ofRd and

Tl+d(v) = (−(1 + |a|))dPl((1 + |a|) cos v1, . . . , (1 + |a|)
× cos vd) sin v1 · · · sin vd.

Hence, Tl+d ∈ T d
l+d and then Lemma 8 can be directly

deduced from Lemma 7.
By using Lemma 8, we can deduce the following error

estimator.

Lemma 9:Let a > 0, u, l ∈ N. If Ξ := {ηi}ni=1

is a random variable drawing identically and independently
according toµ on [−a, 1 + a], then with confidence at least
1− 2 exp{−cn/(u+ l)d}, there holds

inf
gn∈Hσ,s,n

‖Kσ,s ∗ F − gn‖

≤ Cr

(

ωs,Id(f, 1/l) + a‖f‖σd + σ−d 2u

u!σ2

)

,

whereCs is a constant depending only ond ands.
Proof: For arbitrary f ∈ C(Id), let F and Kσ,s ∗ F

defined as in Lemma 1 and Lemma 2, respectively. Then,

Kσ,s ∗ F =

∫

Rd

Kσ,s(x− y)F (y)dy

=

∫

B

Kσ,s(x− y)F (y)dy +

∫

Rd−B

Kσ,s(x− y)F (y)dy.

At first, we give an upper bound estimate for
∫

Rd−B Kσ,s(x−
y)F (y)dy. It follows from Lemma 1 and the definition ofKσ,s

that
∣

∣

∣

∣

∫

Rd−B

Kσ,s(x− y)F (y)dy

∣

∣

∣

∣

≤ ‖f‖Id

s
∑

j=1

(

s
j

)

1

jd

(

2

σ2π

)d/2

×
∫

Rd−B

exp

{

−2‖x− y‖22
j2σ2

}

dy

≤ ‖f‖Id

s
∑

j=1

(

s
j

)

1

jd

(

2

σ2π

)d/2

×
((
∫ −a

−∞

+

∫ ∞

a

)

exp

{

− 2t2

j2σ2

}

dt

)d

≤ 2‖f‖Id

s
∑

j=1

(

s
j

)

1

jd

(

2

σ2π

)d/2

×
(
∫ ∞

a

exp

{

− 2at

j2σ2

}

dt

)d

≤ Cs‖f‖Ida−1σd,

whereCs is a constant depending only ond andr.
On the other hand, forF ∈ C(B) and s ∈ N, it is well

known [4] that there exists aPl ∈ Pd
l and absolute constants

C1, C2 such that

‖F − Pl‖ ≤ C1 inf
P∈Pd

l

‖F − P‖B =: C1El(F ), (17)

and
‖Pl‖B ≤ C2‖F‖B ≤ C2‖f‖Id. (18)

Then, for arbitrary{bi}ni=1 ⊂ R, there holds
∫

B

F (y)Kσ,s(x − y)dy −
n
∑

i=1

biKσ,s(x− ηi)

=

∫

B

(F (y)− Pl(y))Kσ,s(x− y)dy

+

∫

B

Pl(y)Kσ,s(x− y)dy −
n
∑

i=1

biKσ,s(x− ηi).(19)

Let u ∈ N. Then, for arbitrary univariate algebraic polynomial
q of degree not larger thanu, we obtain

∫

B

Pl(y)Kσ,s(x− y)dy −
n
∑

i=1

biKσ,s(x− ηi)

=

∫

B

Pl(y)(Kσ,s(x− y)− q(x− y))dt

+

∫

B

Pl(y)q(x − y)dy −
n
∑

i=1

bi(Kσ,s(x− y)− q(x− ηi))

−
n
∑

i=1

biq(x − ηi).

SincePl(y)q(x − y) ∈ Pd
l+u(B) for fixed x, it follows from

Lemma 8 that with confidence at least1 − 2 exp{−cn/(u +
l)d}, there exists a set of real numbers{wi}ni=1 ⊂ R such
that

∫

B

Pl(y)q(x− y)dy =

n
∑

i=1

wiPl(ηi)q(x− ηi).
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If we setai = wiPl(ηi), then
∫

B

Pl(y)Kσ,s(x− y)dy −
n
∑

i=1

aiKσ,s(x − ηi)

=

∫

B

Pl(y)(Kσ,s(x− y)− q(x− y))dy

−
n
∑

i=1

wiPl(ηi)(Kσ,s(x− ηi)− q(x− ηi))

holds with confidence at least1−2 exp{−cn/(u+l)d}. Under
this circumstance,

∥

∥

∥

∥

∥

∫

B

Pl(y)Kσ,s(· − y)dy −
n
∑

i=1

aiKσ,s(· − ηi)

∥

∥

∥

∥

∥

Id

≤
∥

∥

∥

∥

∫

B

Pl(y)(Kσ,s(· − y)− q(· − y))dy

∥

∥

∥

∥

Id

+

∥

∥

∥

∥

∥

n
∑

i=1

wiPl(ηi)(Kσ,s(· − ηi)− q(· − ηi))

∥

∥

∥

∥

∥

Id

To bound the above quantities, denote

Lj(v) := exp− 2v

j2σ2
.

Let T 1
u ([0, (1 + a)2]) be the set of univariate algebraic poly-

nomials of degrees not larger thanu defined on[0, (1 + a)2],
and setqju = argminq∈T 1

u ([0,(1+a)2]d ‖Lj − q‖, and

qu(v) :=

s
∑

j=1

(

s
j

)

1

jd

(

2

σ2π

)d/2

qju(v).

Then, it follows from (18) that
∥

∥

∥

∥

∫

B

Pl(y)(Kσ,s(· − y)− qu((· − y)2))dy

∥

∥

∥

∥

Id

≤ C‖f‖Id ‖Kσ,s(· − y)− qu((· − y)
2
)‖Id

≤ C‖f‖Id

r
∑

j=1

(

r
j

)

1

jd

(

2

σ2π

)d/2

× inf
q∈T 1

u ([0,(1+a)2])
‖Lj − q‖.

On the other hand, since
∑n

i=1 |wi| ≤
√

n
∑n

i=1 |wi|2 ≤ C,
we also obtain

∥

∥

∥

∥

∥

n
∑

i=1

wiPl(ηi)(Kσ,s(· − ηi)− qu((· − ηi)
2))

∥

∥

∥

∥

∥

≤ C‖f‖Id
s
∑

j=1

(

s
j

)

1

jd

(

2

σ2π

)d/2

× inf
q∈T 1

u ([0,(1+a)2])
‖Lj − q‖.

Thus, the only thing remainder is to bound
∫

B
(F (y) −

Pl(y))Kσ,s(x− y)dy. It follows from (17) that
∥

∥

∥

∥

∫

B

(F (y)− Pl(y))Kσ,s(x− y)dy

∥

∥

∥

∥

≤ El(F )×
∫

B

Kσ,s(x− y)dy ≤ Csωs,Rd(F, 1/l),

where we use the fact [5]
∫

B

Kσ,s(x− y)dy ≤ 1

and the known Jackson inequality [4] in the last inequality.
All above together with Lemma 1 yields that

inf
gn∈Gn

‖Kσ,s ∗ F − gn‖ ≤ Csωs,Id(f, 1/l)

+ Csa‖f‖σd + C‖f‖
s
∑

j=1

(

s
j

)

1

jd

(

2

σ2π

)d/2

× inf
q∈T 1

u ([0,(1+a)2])
‖Lj − q‖

holds with confidence at least1 − 2 exp{−cn/(u + l)d}.
Furthermore, it is straightforward to check, using the power
series [19, P.136] forexp{− 2v

j2σ2 } that

s
∑

j=1

(

s
j

)

1

jd

(

2

σ2π

)d/2

inf
q∈T 1

u ([0,(1+a)2])
‖Lj − q‖

≤ Csσ
−d 2u

u!σ2
.

Thus, the proof of Lemma 9 is completed.
By the help of the above nine lemmas, we can proceed the

proof of Theorem 1 as follows.
Proof of Theorem 1:Since

inf
gn∈Hσ,s,n

‖f−gn‖Id ≤ ‖f−Kσ,s∗F‖Id+‖Kσ,s∗F −gn‖Id ,

Settingσ = l−1/2, it follows from Lemma 2 and Lemma 9
that

inf
gn∈Hσ,s,n

‖f − gn‖Id ≤ Cs

(

ωs,Id(f, l−1/2) + a‖f‖σd

+ σ−d (s
2σ2)u

2uu!

)

holds with confidence at least1 − 2 exp{−cn/(u+ l)d}. By
the Stirling’s formula, it is easy to check that

σ−d (s
2σ2)u

2uu!
≤ Cud (u/2)

u

2uu!
≤ C

ud

(2d)u
≤ Cl−d/2

with u = 2dl. Therefore, we obtain

inf
gn∈Hσ,s,n

‖f − gn‖ ≤ Cs

(

ωs,Id(f, l−1/2) + a‖f‖l−d/2
)

,

with confidence at least1 − 2 exp{−cn/ld}. Therefore, The-
orem 1 follows by noticingσ = 1/

√
l.

B. Proof of Proposition 1

To prove Proposition 1, we need the following two lemmas,
the first one concerning Bernstein inequality forHσ,s,n can be
easily deduced from [6, eqs (3.1)].

Lemma 10:Let d = 1, s = 1, andσ ≥ n−1/2. Then, for
arbitrarygn ∈ Hσ,s,n, there holds

‖g′n‖[0,1] ≤ Cn1/2‖gn‖[0,1],

whereC is an absolute constant.
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By the help of the Bernstein inequality, the standard method
in approximation theory [4, Chap. 7] yields the following
Lemma 11.

Lemma 11:Let d = 1, s = 1, r ∈ N, σ ≥ n−1/2 and
f ∈ C(I1). If

∞
∑

n=1

nr/2−1dist(f,Hσ,1,n) < ∞,

thenf ∈ Fr, where dist(f,Hσ,1,n) = infg∈Hσ,1,n ‖f − g‖I1 .
Proof: Let gn := arg infg∈Hσ,1,n ‖f − g‖I1 . For arbitrary

n ∈ N, setn0 such that

2n0 ≤ n ≤ 2n0+1.

It is easy to see that

∞
∑

n=1

nr/2−1dist(f,Hσ,1,n) < ∞,

implies dist(f,Hσ,1,n) → 0 in C(I1). Indeed, if it does
not hold, then there exists an absolute constantC such that
dist(f,Hσ,1,n) ≥ C > 0. Therefore,

C

∞
∑

n=1

n−1 <

∞
∑

n=1

n
r
2−1dist(f,Hσ,1,n) < ∞,

which is impossible. So we have

f − g2n0 =

∞
∑

j=n0

g2j+1 − g2j . (20)

By Lemma 10, we then have

‖g′2j+1 − g′2j‖I1 ≤ C2(j+1)r/2dist(f,Hσ,1,2j ).

Then direct computation yields that

‖g′2j+1 − g′2j‖I1 ≤ C
∞
∑

j=1

2j
∑

k=2j−1+1

kr/2−1dist(f,Hσ,1,k)

≤ C

∞
∑

k=1

kr/2−1dist(f,Hσ,1,k) < ∞.

So {g2j} is the Cauchy sequence ofFr. Differentiating (20),
we have

f ′ − g′2n0 =
∞
∑

j=n0

g2j+1 − g2j ,

Since {g2j} is the Cauchy sequence ofFr, we havef ′ −
g′2n0 → 0 whenn0 → ∞, which impliesf ∈ Fr.

Now we continue the proof of Proposition 1.
Proof of Proposition 1: Let ε ∈ (0, 1), andr = 1− ε. It

is obvious that there exists a functionhr satisfyinghr ∈ Fr

andhr /∈ F r′ with r′ > r. Assume

inf
g∈Hσ,1,n

‖f − g‖ ≤ Cn−r/2−ε

holds for all f ∈ Fr, whereC is a constant independent of
n. Then,

inf
g∈Hσ,1,n

‖hr − g‖ ≤ Cn−r/2−ε.

Then,

∞
∑

n=1

n1/2−1dist(hr,Hσ,1,n) =

∞
∑

n=1

n−1−ε/2 < ∞.

Therefore, it follows from Lemma 11 thathr ∈ F1, which is
impossible. Hence,

sup
f∈Fr

inf
g∈Hσ,1,n

‖f − g‖ ≥ Cn−r/2−ε.

This together with Theorem 1 finishes the proof of Proposition
1.

C. Proof of Theorem 2

The main tool to prove Theorem 2 is the following Lemma
12, which can be found in [8, Chap.11].

Lemma 12:Let fz,σ,s,n be defined as in (4). Then

Eρm‖πMfz,σ,s,n − fρ‖2ρ ≤ CM2 (logm+ 1)n

m

+ 8 inf
f∈Hσ,s,n

∫

X

|f(x)− fρ(x)|2dρX (21)

for some universal constant C.
Now, we use Proposition 1 and Lemma 12 to prove Theorem

2.
Proof of Theorem 2: SinceHσ,s,n is a n-dimensional

linear space, then Lemma 12 yields that

Eρm‖πMfz,σ,s,n − fρ‖2ρ ≤ CM2 (logm+ 1)n

m

+ 8 inf
f∈Hσ,s,n

∫

X

|f(x)− fρ(x)|2dρ.

Therefore, it suffices to bound

inf
f∈Hσ,s,n

∫

X

|f(x) − fρ(x)|2 ≤ inf
f∈Hσ,s,n

‖f − fρ‖2X .

From Theorem 1, it follows that

inf
g∈Hσ,s,n

‖g − fρ‖X ≤ C
(

ωs,Id(fρ, σ) + ‖fρ‖σd
)

holds with probability at least1−2 exp{−cnσ2d}. Notingr ≤
s andfρ ∈ Fr, with probability at least1− 2 exp{−cnσ2d},
there holds

inf
f∈Hσ,s,n

‖f − fρ‖2X ≤ C
(

σ2r + σ2d
)

.

Settingσ = n(−1+ε)/(2d), we observe that with probability at
least1− 2 exp{−nε}, there holds

inf
f∈Hσ,s,n

‖f − fρ‖2X ≤ C
(

n−r/d+rε/d + n−1+ε
)

.

Finally, choosingn =
[

m
d

r+d

]

, we obtain that with probability

at least1− 2 exp{−nε}, there holds

Eρm‖πMfz,σ,s,n−fρ‖2ρ ≤ C
(

m−
(1−ε)r
r+d logm+m−

d(1−ε)
r+d

)

.

This finishes the proof of Theorem 2.
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D. Proof of Proposition 2

To prove Proposition 2, we need the following three lem-
mas. The first one is the interpolation theorem of linear
functionals, which can be found in [1, P.385].

Lemma 13:Let C(Q) be the set of real valued continuous
functions on the compact Hausdorff spaceQ. Let S be ann-
dimensional linear subspace ofC(Q) over R. Let L 6= 0 be
a real-valued linear functional onS. Then there exist points
x1, x2, . . . , xr in Q and nonzero real numbersa1, a2, . . . , ar,
where1 ≤ r ≤ n, such that

L(s) =

r
∑

i=1

ais(xi), s ∈ S

and

‖L‖ = sup
{

|L(s)| : s ∈ S, ‖s‖Q ≤ 1
}

=
r
∑

i=1

|ai|.

By using Lemmas 13 and 10, we can obtain the following
Bernstein inequality for ELM with Gaussian kernel in the
metric ofL2

ρX
.

Lemma 14:Let d = 1, s = 1, andσ ≥ n−1/2. Then, for
arbitrarygn ∈ Hσ,s,n, there holds

‖g′n‖ρ ≤ Cn1/2‖gn‖ρ,

whereC is an absolute constant.
Proof: We apply Lemma 13 withQ = [1/2, 1], S =

Hσ,s,n, andL(s) = s′(1). It follows from Lemma 10 that

‖L‖ = |s′(1)| ≤ Cn1/2|s(1)| = C1n
1/2. (22)

We deduce that there arev1, v2, . . . , vr in [1/2, 1] and
a1, a2, . . . , ar ∈ I1 so that for everys ∈ Hσ,s,n,

|s′(1)|
C1n1/2

=
|∑r

i=1 ais(vi)|
C1n1/2

≤
r
∑

i=1

∣

∣

∣

∣

ai
C1n1/2

∣

∣

∣

∣

|s(vi)|

with 1 ≤ r ≤ n. By (22) we have

r
∑

i=1

∣

∣

∣

∣

ai
C1n1/2

∣

∣

∣

∣

≤ 1.

So there is a sequence of numbers{ci} with
∑r

i=1 |ci| = 1
such that

|s′(1)|
C1n1/2

≤
r
∑

i=1

|ci||s(vi)|.

Now let φ : [0,∞) → [0,∞) be a nondecreasing convex
function. Using monotonicity and convexity, we have

φ

( |s′(1)|
C1n1/2

)

≤ φ(
r
∑

i=1

|cis(vi)|) ≤
r
∑

i=1

|ci|φ(|s(vi)|).

Applying this inequality withs(t) = gn(t+ u− 1) ∈ Hσ,s,n,
we get

φ

( |g′n(u)|
C1n1/2

)

≤
r
∑

i=1

|ci|φ(|P (vi + u− b)|)

for everyP ∈ Hσ,s,n andu ∈ [1/2, 1]. Sincexi ∈ [1/2, 1] and
u ∈ [1/2, 1], thenvi + u− 1 ∈ [0, 1] for eachi = 1, 2, . . . , r.
Integrating on the interval[1/2, 1] with respect tou, we obtain

∫ 1

1/2

φ

( |g′n(u)|
C1n1/2

)

dρX(u)

≤
r
∑

i=1

∫ 1

1/2

|ci|φ(|gn(vi + u− 1)|)dρX(u)

≤
r
∑

i=1

∫ 1

0

|ci|φ(|gn(t)|)dρX(t) ≤
∫ 1

0

φ(|gn(t)|)dt,

in which
∑r

i=1 |ci| = 1 has been used.
It can be shown exactly in the same way that
∫ 1/2

0

φ

( |g′n(u)|
C1λn

)

dρX(u) ≤
∫ 1

0

φ(|gn(t)|)dρX(t).

Combining the last two inequalities and choosingφ(x) = x2,
we finish the proof of Lemma 14.

Using almost the same method as that in the proof of
Lemma 11, the following Lemma 15 can be deduced directly
from Lemma 14

Lemma 15:Let d = 1, s = 1, r ∈ N, σ ≥ n−1/2 and
f ∈ C(I1). If

∞
∑

n=1

nr/2−1dist(f,Hσ,1,n)ρ < ∞,

thenf ∈ Fr, where dist(f,Hσ,1,n)ρ = infg∈Hσ,1,n ‖f − g‖ρ.
Now, we proceed the proof of Proposition 2.

Proof of Proposition 2: With the help of the above
lemmas, we can use the almost same method as that in the
proof of Proposition 1 to obtain

sup
f∈Fr

inf
g∈Hσ,1,n

‖f − g‖ρ ≥ Cn−r/2−ε.

Then, Proposition 2 can be deduced from the above inequality
by using the conditions,σ = m

−1+ε
2+2r andn =

[

m
1

1+r

]

.

E. Proof of Theorem 3

To prove Theorem 3, we need the following concepts and
lemmas. Let(M, d̃) be a pseudo-metric space andT ⊂ M a
subset. For everyε > 0, the covering numberN (T, ε, d̃) of T
with respect toε and d̃ is defined as the minimal number of
balls of radiusε whose union coversT , that is,

N (T, ε, d̃) := min







l ∈ N : T ⊂
l
⋃

j=1

B(tj , ε)







for some {tj}lj=1 ⊂ M, where B(tj , ε) = {t ∈ M :

d̃(t, tj) ≤ ε}. The l2-empirical covering number [27] of a
function set is defined by means of the normalizedl2-metric
d̃2 on the Euclidean spaceRd given in with d̃2(a,b) =
(

1
m

∑m
i=1 |ai − bi|2

)
1
2 for a = (ai)

m
i=1,b = (bi)

m
i=1 ∈ Rm.

Definition 1: LetG be a set of functions onX , x = (xi)
m
i=1,

and
G|x := {(f(xi))

m
i=1 : f ∈ G} ⊂ Rm.
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Set N2,x(G, ε) = N (G|x, ε, d̃2). The l2-empirical covering
number ofG is defined by

N2(F , ε) := sup
m∈N

sup
x∈Sm

N2,x(G, ε), ε > 0.

Let Hσ be the reproducing kernel Hilbert space ofKσ,s

[26] andBHσ
be the unit ball inHσ. The following Lemmas

16 and 17 can be easily deduced from [26, Theorem 2.1] and
[27], respectively.

Lemma 16:Let 0 < σ ≤ 1, X ⊂ Rd be a compact subset
with nonempty interior. Then for all0 < p ≤ 2 and allν > 0,
there exists a constantCp,ν,d,s > 0 independent ofσ such that
for all ε > 0, we have

logN2(BHσ
, ε) ≤ Cp,µ,d,sσ

(p/2−1)(1+ν)dε−p.

Lemma 17:Let F be a class of measurable functions on
Z. Assume that there are constantsB, c > 0 andα ∈ [0, 1]
such that‖f‖∞ ≤ B andEf2 ≤ c(Ef)α for everyf ∈ F . If
for somea > 0 andp ∈ (0, 2),

logN2(F , ε) ≤ aε−p, ∀ε > 0, (23)

then there exists a constantc′p depending only onp such that
for any t > 0, with probability at least1− e−t, there holds

Ef − 1

m

m
∑

i=1

f(zi) ≤
1

2
η1−α(Ef)α + c′pη

+ 2

(

ct

m

)
1

2−α

+
18Bt

m
, ∀f ∈ F , (24)

where

η := max

{

c
2−p

4−2α+pα

( a

m

)
2

4−2α+pα

, B
2−p

2+p

( a

m

)
2

2+p

}

.

The next lemma states a variant of Lemma 4, which can be
found in [24]

Lemma 18:Let ξ be a random variable on a probability
spaceZ with varianceγ2 satisfying|ξ −Eξ| ≤ Mξ for some
constantMξ. Then for any0 < δ < 1, with confidence1− δ,
we have

1

m

m
∑

i=1

ξ(zi)−Eξ ≤ 2Mξ log
1
δ

3m
+

√

2σ2 log 1
δ

m
.

From the proof of Lemma 9, we can also deduce the
following Lemma 19

Lemma 19:Let d, s, n ∈ N. Then with confidence at least
1− 2 exp{−cnσ2d}, there exists af0 ∈ Hσ,s,n such that

‖fρ − f0‖2ρ + λΩ(f0) ≤ C(ωs,Id(fρ, σ)
2 + σ2d + λ/n),

whereC is a constant depending only ond, s andM .
Proof: Let

f0 =

n
∑

i=1

aiKσ,s(x− ηi) =

n
∑

i=1

wiPl(ηi)Kσ,s(x− ηi),

where{wi}ni=1 andPl are the same as those in the proof of
Lemma 9. Then, it has already been proved that

‖fρ − f0‖ρ ≤ C(ωs,Id(fρ, σ) + σd).

Furthermore, it can be deduced from Lemma 8 and (18) by
taking f = fρ that

Ω(f0) =

n
∑

i=1

|wi|2|Pl(ηi)|2 ≤ ‖fρ‖2
n
∑

i=1

|wi|2 ≤ C/n.

This finishes the proof of Lemma 19.
Now we proceed the proof of Theorem 3.

Proof of Theorem 3:Let fz,σ,s,λ,n andf0 be defined as
in (12) and Lemma 19, respectively. Define

D := E(f0)− E(fρ) + λΩ(f0)

and

S := Ez(f0)− E(f0) + E(πMfz,σ,s,λ,n)− Ez(πMfz,σ,s,λ,n),

whereEz(f) = 1
m

∑m
i=1(yi−f(xi))

2. Then, it is easy to check
that

E(πMfz,σ,s,λ,n)− E(fρ) ≤ D + S. (25)

As fρ ∈ Fr, it follows from Lemma 19 that with confidence
at least1− 2 exp{−cnσ2d} (with respect toµn), there holds

D ≤ C(σ2r + σ2d + λ/n). (26)

Upon using the short hand notations

S1 := {Ez(f0)− Ez(fρ)} − {E(f0)− E(fρ)}
and

S2 := {E(πMfz,σ,s,λ,n)−E(fρ)}−{Ez(πMfz,σ,s,λ,n)−Ez(fρ)},
we have

S = S1 + S2. (27)

We first turn to boundS1. Let the random variableξ on Z
be defined by

ξ(z) = (y − f0(x))
2 − (y − fρ(x))

2 z = (x, y) ∈ Z.

Since|fρ(x)| ≤ M and

|f0| ≤
n
∑

i=1

|wi||Pl(ηi)||Kσ,s(ηi, x)| ≤ ‖fρ‖
n
∑

i=1

|wi| ≤ CM

hold almost everywhere, we have

|ξ(z)| = (fρ(x) − f0(x))(2y − f0(x)− fρ(x))

≤ (M + CM)(3M + CM) ≤ Mξ := (3M + CM)2

and almost surely

|ξ −Eξ| ≤ 2Mξ.

Moreover, we have

E(ξ2) =

∫

Z

(f0(x) + fρ(x)− 2y)2(f0(x) − fρ(x))
2dρ

≤ Mξ‖fρ − f0‖2ρ,
which implies that the varianceγ2 of ξ can be bounded as
γ2 ≤ E(ξ2) ≤ MξD. Now applying Lemma 18, we obtain

S1 ≤ 4Mξ log
2
δ

3m
+

√

2MξD log 2
δ

m

≤ 7(3M + CM)2 log 2
δ

3m
+

1

2
D (28)
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holds with confidence1− δ
2 (with respect toρm).

To boundS2, we need apply Lemma 17 to the setGR, where

GR :=
{

(y − πMf(x))2 − (y − fρ(x))
2 : f ∈ BR

}

and

BR :=

{

f =

n
∑

i=1

biKσ,s(ηi, x) :

n
∑

i=1

|bi|2 ≤ R

}

.

Each functiong ∈ GR has the form

g(z) = (y − πMf(x))2 − (y − fρ(x))
2, f ∈ BR

and is automatically a function onZ. Hence

Eg = E(f)− E(fρ) = ‖πMf − fρ‖2ρ
and

1

m

m
∑

i=1

g(zi) = Ez(πMf)− Ez(fρ),

wherezi := (xi, yi). Observe that

g(z) = (πMf(x)− fρ(x))((πMf(x) − y) + (fρ(x)− y)).

Therefore,
|g(z)| ≤ 8M2

and

Eg2 =

∫

Z

(2y − πMf(x)− fρ(x))
2(πMf(x)− fρ(x))

2dρ

≤ 16M2Eg.

For g1, g2 ∈ FRq
and arbitrarym ∈ N, we have
(

1

m

m
∑

i=1

(g1(zi)− g2(zi))
2

)1/2

≤
(

4M

m

m
∑

i=1

(f1(xi)− f2(xi))
2

)1/2

.

It follows that

N2,z(GR, ε) ≤ N2,x

(

BR,
ε

4M

)

≤ N2,x

(

B1,
ε

4MR

)

,

which together with Lemma 16 implies

logN2,z(GR, ε) ≤ Cp,µ,dσ
p−2
2 (1+ν)d(4MR)pε−p.

By Lemma 17 withB = c = 16M2, α = 1 and a =

Cp,µ,dσ
p−2
2 (1+ν)d(4MR)p, we know that for anyδ ∈ (0, 1),

with confidence1 − δ
2 , there exists a constantC depending

only on d such that for allg ∈ GR

Eg − 1

m

m
∑

i=1

g(zi) ≤
1

2
Eg + Cη + C(M + 1)2

log(4/δ)

m
.

Here

η = {16M2}
2−p

2+pC
2

2+p

p,ν,dm
− 2

2+p σ
p−2
2 (1+ν)d 2

2+pR
2p

2+p .

Hence, we obtain

Eg − 1

m

m
∑

i=1

g(zi) ≤
1

2
Eg + {16(M + 1)2}

2−p

2+pC
2

2+p

p,ν,d

× m− 2
2+pσ

p−2
2 (1+ν)d 2

2+pR
2p

2+p log
4

δ
.

Now we turn to estimateR. It follows form the definition of
fz,σ,s,λ,n that

λΩ(fz,σ,s,λ,n) ≤ Ez(0) + λ · 0 ≤ M2.

Thus, we obtain that for arbitrary0 < p ≤ 2 and arbitrary
ν > 0, there exists a constantC depending only ond, ν, p
andM such that

S2 ≤ 1

2
{E(πMfz,σ,sλ,n)− E(fρ)}

+ C log
4

δ
m− 2

2+p σ
(p−2)(1+ν)d

2+p λ
−2p
2+p (29)

with confidence at least1− δ
2 (with respect toρm).

From (25) to (29), we obtain

E(πMfz,σ,sλ,n)− E(fρ)

≤ C

(

σ2r + σ2d + λ/n+
log 4

δ

3m

+
1

2
{E(πMfz,σ,sλ,n)− E(fρ)}

+ log
4

δ
m− 2

2+p σ
(p−2)(1+ν)d

2+p λ
−2p
2+p

)

holds with confidence at least(1− δ)× (1− 2 exp{−cnσ2d})
(with respect toρm × µn).

Set σ = m− 1
2r+d

+ε, n = m
2d

2r+d , λ = m−a := m− 2r−d
4r+2d ,

ν = ε
2d(2r+d) and

p =
2d+ 2ε(2r + d)− 2(1 + ν) + 2(2r + d)ε(1 + ν)d

(2r + d)(2a+ dε+ νdε− ε) + 2r − (1 + ν)d
.

Sincer ≥ d/2, it is easy to check thatν > 0, and0 < p ≤ 2.
Then, we get

E(πMfz,σ,sλ,n)− E(fρ) ≤ Cm− 2r
2r+d

+ε log 4δ

+ m− 2d
2r+d

+ε + log 4δm− 2r+3d
4r+d .

Noting further thatr ≤ d, we obtain

E(πMfz,σ,sλ,n)− E(fρ) ≤ Cm− 2r
2r+d

+ε log 4δ.

Noticing the identity

Eρm(E(fρ)−E(fz,λ,q)) =
∫ ∞

0

Pm{E(fρ)−E(fz,λ,q) > ε}dε,

direct computation yields the upper bound of (13). The lower
bound can be found in [8, Chap.3]. This finishes the proof of
Theorem 3.

VI. CONCLUSIONS

The ELM-like learning provides a powerful computational
burden reduction technique that adjusts only the output con-
nections. Numerous experiments and applications have demon-
strated the effectiveness and efficiency of ELM. The aim of
our study is to provide theoretical fundamentals of it. After
analyzing the pros and cons of ELM, we found that the theo-
retical performance of ELM depends heavily on the activation
function and randomness mechanism. In the previous cousin
paper [18], we have provided the advantages of ELM in theory,
that is, with appropriately selected activation function,ELM
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reduces the computation burden without sacrificing the gener-
alization capability in the expectation sense. In this paper, we
discussed certain disadvantages of ELM. Via rigorous proof,
we found that ELM suffered from both the uncertainty and
generalization degradation problem. Indeed, we proved that,
for the widely used Gaussian-type activation function, ELM
degraded the generalization capability. To facilitate theuse of
ELM, some remedies of the aforementioned two problem are
also recommended. That is, multiple times trials can avoid
the uncertainty problem and thel2 coefficient regularization
technique can essentially improve the generalization capability
of ELM. All these results reveal the essential characteristics
of ELM learning and give a feasible guidance concerning how
to use ELM .

We conclude this paper with a crucial question about ELM
learning.

Question 1:As is shown in [18] and the current paper,
the performance of ELM depends heavily on the activation
function. For appropriately selected activation function, ELM
does not degrade the generalization capability, while there also
exists an activation function such that the degradation exists.
As it is impossible to enumerate all the activation functions
and study the generalization capabilities of the corresponding
ELM, we are asked for a general condition on the activation
function, under which the corresponding ELM degrade (or
doesn’t degrade) the generalization capability. In other words,
we are interested in a criterion to classify the the activation
functions into two classes. With the first class, ELM degrades
the generalization capability and with the other class, ELM
does not degrades the generalization capability. We will keep
working on this interesting project, and report our progress in
a future publication.
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