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Abstract— W e propose an integrated mechanism for discarding
derogatory features and extraction of fuzzy rules based on an
interval type-2 neural fuzzy system - in fact, it isa more general
scheme that can discard bad features, irrelevant antecedent
clauses, and irrelevant rules. High-dimensional input and large
number ofrules, enhance the computational complexity of neural
fuzzy systems (NFSs) and reduce their interpretability. So a

mechanism for simultaneous extraction of fuzzy rules and
reducing the impact of (or eliminating) the inferior features is
necessary. The proposed IT2NFS-SIFE uses type-2 fuzzy sets to
model uncertainties associated with information and data in
designing the knowledge base. Theconsequentpartofthe IT2NFS-
SIFE isof Takagi-Sugeno-Kang (TSK ) type with intervalweights.
The IT2NFS-SIFE possesses self-evolving property that can
automatically generate fuzzy rules as and when required and
discard poor features and antecedentclauses based on the concept
of a membership modulator. The antecedent and modulator
weights are learned using a gradient descent algorithm. The
consequent part weights are turned via the rule-ordered Kalman
filter algorithm to enhance learning effectiveness. Simulation
results exhibit that IT2NFS-SIFE not only simplifies the system
architecture by

eliminating derogatory/irrelevant antecedent

clauses, rules and features but also can maintain excellent

performance.

Index Terms— type-2 fuzzy neural networks, on-line type-2 fuzzy

clustering, fuzzy identification, feature selection.

l. INTRODUCTION

ECENTLY, a considerable number of type-2 fuzzy logic
systems (T2FLS) to contend uncertainties associated with
[1]-[10].

circum stances are uncertain (data are corrupted by noise) to

fuzzy rule bases are proposed in W hen the
determine exact membership grades, T2FLS isa very important
tool to effectively address this problem . Like a type-1 FLS, a
type2 FLS too involves fuzzifier, rule base, fuzzy inference
engine, and output processor. For acquiring a type-1 fuzzy
output and crisp values, in case of T2FLS, the output processor
involves a type-reducer and a defuzzifier. As a result, many
researchers have reported [11]-[15] to construct prem ise parts
of fuzzy rule clause using type-2 fuzzy sets. However, for a
general type-2 fuzzy system, itis difficultto use type-reduction,
which is computationally intensive. Consequently, Type-2
fuzzy systems generally use interval type-2 fuzzy sets. M any
m ethods have been proposed to design ofinterval type-2 neural
fuzzy systems [11], [12], [16]-[30]

(IT2NFS) having the
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capability of fuzzy reasoning to handle uncertain situation and
learning abilities like that of neural networks. The IT2NFSs
have been successfully applied in many applications including
control [19], [29], identification

[11], [16]-[18], bio-

engineering [31], temperature prediction [62], [63] and time
series forecasting [20], [22].1In [17], the self-evolving interval
type-2 NFS is proposed for addressing nonlinear time-varying
plants, where it uses hybrid learning algorithms - a gradient
descent scheme to tune the premise part parameters and the
rule-ordered Kalman filter to tune the <consequent part
parameters. In [29], the authors propose a type-2 fuzzy neural
structure (T2 FNS) for identification and control of time-
varying plants, where the constructed structure is based on type-
2 Takagi-Sugeno-Kang (TSK) fuzzy rules, whose antecedent

parts are derived by interval fuzzy sets and the

type-2
consequent parts use crisp linear functions.

The tasks of identification of the FN N as well as realization
of good performance by the identified system are often
significantly dependent on the input variables. Ifthe inputis in
high dimension, the identification of useful fuzzy systems
becomes very difficult. M oreover, in high dimension, it loses
its interpretability by human beings, where interpretability is
one of the main attractions of a fuzzy system . It is also know n
that more inputs not necessarily favor the system identification
task if there are useless features as well as redundant features.
For afuzzy neural network, a few redundant features may result
in a higher computational cost and lead to more difficulty in
identifying the system . Therefore, for high-dimensional inputs,

use of the useful features as done in [32]-[37] is always
desirable and it could reduce the com putational com plexity. In
[33], the authors have used a measure of fuzzy entropy as the
select useful features in with the

criterion to conjunction

backward elimination method. On the other hand, feature
selection using mutual information for fuzzy random variables
is presented in [36]. According to the authors of [36], use of
features selected by mutual information for fuzzy rule based
system may be desirable because in a fuzzy rule base we use
variables. defined and used mutual

fuzzified Hence they

inform ation between two fuzzified random wvariables. In [35],
authors proposed a method that quantifies the discriminative
power of input features on a fuzzy model and this is used for
feature relation in connection with designing fuzzy models. For
feature selection and fuzzy rule extraction, several studies [31],

[34], [38]-[41] have used neural network-based methods. In,
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[31],[38], [39] the authors proposed use of feature modulators

w hich are tuned through the process of learning to select useful

features in an integrated manner simultaneously with designing

of the decision making system. The modulator functions
associated with the antecedent clauses play significantly roles
in selection of good features (removing the bad features and

associated antecedent clauses). An integrated mechanism to

select useful feature is also proposed in [42] which designs the
rule base for function approximation type problem in the
Takagi-Sugeno framework. Some of these studies [31], [38],
[39], [43], [44] using layered architectures have proposed
integrated mechanisms for feature selection and rule extraction,
which can exploit subtle nonlinear interaction between features
and that between features and the fuzzy rule base to identify
useful features and hence rules.

All of aforementioned models and methods are for type-1
fuzzy systems. To the best of our know ledge, there isno type-2
fuzzy rule based system or neuro-fuzzy system for
simultaneous feature selection and system identification. These
methods either reject a feature or accept it. These methods
cannot deal with situations when a particular feature is useful
forsome rules but not for all. Thisiswhatwe develop here. W e
develop a feature modulator based on a self-evolving interval
feature selection and rule

type-2 NFS with simultaneous

extraction schem es. The proposed method has several

distinguished characteristics as follows: (i) the self-evolving
property in the IT2NFS-SIFE can autom atically evolve the
required network structure and param eters based on the training
data; (ii) the proposed IT2NFS-SIFE enables us to eliminate
derogatory or harm ful features to economize computational
cost. In other words, our proposed network can reject truly bad
features and simplify fuzzy rules); (iii) it can identify partially
useful features that are important for some rules but not for all;
(iv) for the consequent updated param eters, the IT2ZNFS-SIFE
rule-ordered Kalman enhance

uses the filter algorithm to

network’s performance; and (v) the convergence of the

IT2NFS-SIFE is faster, and it achieves a lower RM SE than
other models, as shown in Section V.

The concept of modulator based feature selection for Type-1
distinct

systems is well developed. But there are a few

differences. Al type-1 approaches either select a feature or
discard a feature. Therefore, every rule uses the same set of
linguistic (input) variables. The proposed system, is a further
generalization of the Here we have a

concept. separate

modulator for every atomic antecedent clause. Therefore,
depending on the rule, the number of input variables involved
could be different. The Type-1 approaches can only eliminate
poor features, but the present approach can also eliminate

useless rules. M oreover, this is the first attem pt to use such a
concept for Type-2 systems. M any studies [35,36, 40] used tw o
phases to build a whole framework in terms of feature selection
to find wuseful attributes and then designing neural fuzzy
networks as classifiers. The other studies [50, 58] used the on-
line self-organizing FN N with growing and pruning strategy to
enable the network to optimize the size of the FNN. In this
paper, we present a self-evolving approach that embeds a
pruning strategy into the fuzzy rule generation process for

function approximation. Unlike the mentioned methods, our
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Fig.1. Structure of the IT2NFS-SIFE

m,m,

09
08
07
06}
0s
04
oot () ]
02

01

Fig.2. Anintervaltype-2 fuzzy set of Gaussian shape w ithuncertain

means

proposed method employs a simple function as an attenuating

gate to probe which features may affect the system s

performance adversely to discard them. The method not only
speeds up the structure learning process but also removes less-
useful and invalid weights and rules to achieve a parsimonious
fuzzy neural netw ork w hich can obtain comparable
performance and accuracy. In Section Il,we described the pros
and cons of various approaches.

The remainder of this paper is organized as follows: Section
I'l'illustrates brief survey of some existing methods; Section Il
introduces the IT2NFS-SIFE structure; Section IV presents the
structure and parameter learning in the IT2NFS-SIFE; Section
V outlines the simulation results obtained from the different

cases; and lastly, Section V|1 offers a conclusion.

Il. BRIEFSURVEY OF SOME EXISTING M ETHODS

In real world problems, the obtained inform ation is often

uncertain and im precise and hence itis difficultto analyze using
type-1 FLS. The T2FLS was developed to deal with such
problems. Practical applications of type-2 fuzzy logic system s
have drawn much attention in a wide variety fields such as

control, bio-medical application, temperature prediction and
signal processing [11, 16 - 19, 29, 31, 62, 63]. Since a general

type-2 fuzzy neural network (FNN) s computationally
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intensive, the IT2FLS, which uses interval type-2 fuzzy sets in
the premise part of fuzzy rules, are developed to simplify the
computational com plexity of general type-2 fuzzy systems.
A fterwards, considerable research has been devoted to develop
combinations of T2FLS and NN (named T2NFS) [11], [16]-
[19]1, [27],[29]. In [21], [23] and the dynamic optimal training
forthe two-layerconsequent part of interval T2ZFNN with fixed
fuzzy rules. To yield a better performance, genetic algorithms
(G As) are used to search for the global optimal solutions of the
relevant weights in terms of the premise and consequent fuzzy
clauses. In some literatures [45]-[49], G As are used to evolve
the number of rules required. However, a largernum ber of rules
result in a long complex chromosome and demand high
execution time.

In [29], the structure of a type-2 TSK fuzzy neural system
was presented, and its structure identification was done using a
type-2 type- fuzzy c-means (FCM ) algorithm, which is an
extended version of the type-1 FCM . The use of an FCM type
clustering algorithm demands that data must be collected in
advance, and thus, it is not suitable for addressing dynamic
system modeling. There are many studies [16], [17],[27],[44],
[50]-[52] where researchers have advocated on-line structure
identification and parameter learning approaches in order to
effectively deal with the problem s of time-varying system. One
of well-known on-line learning networks is a self-evolving
interval type-2 fuzzy neural network (SEIT2FNN) [17] with
concurrent structure and parameter learning. Apart from the
natural benefits of using

SEIT2FNN

type-2 FLS, other

from two

advantages of

come sources : the rule adaptation

mechanism that generates rules online as the system receives

the training data and the rule-ordered Kalman filter algorithm

that enhances network’s performance. Consequently,

considerable research effort has been focused on developing a
self-organizing protocol thatissuperior forreal-lifeapplication.

A lthough the aforementioned T2FNNs possesses a

distinguished characteristic that could address wuncertainties

associated with data and inform ation in the knowledge base of

the process very well, it still has no mechanism that can

autom atically discard derogatory features as the learning

proceeds.

Features could be classified four groups [53]: 1) essential
features, which are necessary regardless of the modeling tools
used; 2) features, which must be

derogatory dropped; 3)

indifferent features, which are useless and neither help nor

cause problems except possibly increasing <cost; and 4)
redundant features, which are useful but all of them are not
needed because of dependency. Feature selection is important
not only to reduce the cost of design and decision making but
also to make the learning efficient and easy. In [54]-[56], the
authors, who made important contributions in feature selection,
dealt with a combinatorial optimization problem with two
conflicting objectives: minimization of the number of rules and
maximization of the accuracy. In [36], the authors presented a
novel feature selection scheme using mutual information for
fuzzy random variables that could prevent poor features to
impact the performance of the system. However, these methods

perform feature selection in an offline manner for the

classification task. To tackle this problem , several methods of
integrated feature selection and rule extraction are proposed

using layered networks [31], [38], [42], [50], [57], [58]. The

demerits of some of the proposed networks [31], [38], [42]

include conflicting rules that need to be eliminated by post-

processing. In [57], the authors presented an integrated

mechanism that can account for possible subtle nonlinear

interaction between features for simultaneous extraction of

fuzzy rules and selection of useful features. However, that
approach only discards harm ful features but cannot simplify the
network’s size. In [50] anovel growing and pruning mechanism
is proposed, which optimizes the structure of a fuzzy neural

network. The structure identification relies on sensitivity

analysis. These models do not consider issues like feature

selection to reduce input dimension and rule adaptation.

Reducing the numbers of useless fuzzy rules and/or

insignificant/poor features, which enhances the interpretability
of the system, usually has a positive impacton the performance

of system . Here, the objectives of this study are to select useful

membership functions (antecedent clauses) and features and to

eliminate derogatory features and not-useful membership

functions through a modulation operation that could easily

identify good/bad features during the leaning process, and then

use the significant features to achieve better system

performance.

1. IT2NFS-SIFE STRUCTURE

Here we introduce the structure of the multiple-input-single-
output IT2ZNFS-SIFE. The antecedent partof the IT2NFS-SIFE
uses interval type-2 fuzzy sets with uncertain means and fixed
standard derivation (STD).The consequent partof the IT2NFS-

SIFE is of Takagi-Sugeno-Kang (TSK) type with interval

weights. Fig. 1 shows the proposed five-layered IT2NFS-SIFE
structure. The details of each layer are discussed next.
Layer 1 (Input Layer): Each node in this layer represents a

crisp input variable. The input variables ¥ = (x,, ,x,) are

fed into this layer. Since this is a fan-out layer, there is no
weight to be adjusted in this layer.

Layer 2 (Modulated Membership Function Layer): Each

node in this layer performs the fuzzification task and it also

modulates memberships depending on the wutility of the

associated feature to solve the problem . First,we use a Gaussian

primary M F with a fixed STD and uncertain mean thatacquires
values in [m ,,m ,] (see Fig. 2). Thus given a crisp value of the

input variable, the output of the Gaussian membership function,

- ;i
A;., can be represented as an interval [ﬂ;,}tv]
— J

i 2

1 XjTmy f

= exp{-— :(T) } = N(m],aj;xj) (1)
j

u o
A]

Here Auj is the ith interval type-2 fuzzy set on the input variable

x;,j =1, ,n.The footprintof uncertainty (FOU) of this M F

is represented by the bounded area defined in terms of a lower

. —i
M F,y;, and an upper M F,yj,

where

N(m;l,ol.i;xj), x; < m;l

I
R
I
3

MAJV(XJ) =191, m ; iz (2)
J
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i i . N ) L.
; ; mjtm o, feature is bad, then we do not want it to influence the firing
N(m.z,a.,x.), x, < .
v (x) = J J / J 2 (3) interval of any rule and hence none of the type-2 fuzzy sets
i = . .
= i i "‘};*"‘L'z defined on that harm ful features should affect firing interval of
N(mﬂ'”/'x,)' X/>

For feature selection, our purpose is to modulate the MF

associated with features in this layer. To realize this, we
combine a modulator function and the Gaussian membership
function in a judicious manner. For a harmful feature, the
interval type-2 membership should be changed in such a
manner that it does not influence the firing interval that willbe
comoputed in the next layer. However, there could be features
w hich are useful for some rules and not for some other rules.
To account for this, unlike previous methods here we have
separate modulators for each membership function (linguistic
value, in other words with each antecedent clause). W e shall
explain how to use the modulator in this layer after we look at
how we compute the firing strength in the next layer.

Layer 3 (Firing Strength Layer): Each node in this layer

represents the antecedent part of a fuzzy rule and it com putes
the firing strength. To acquire the spatial firing strength Fi,
each node performs a fuzzy meet operation on inputs that it
receive from layer 2 using an algebraic product operation. In
this layer, there are M nodes, each of which represents one rule.
The firing strength is an interval type-1fuzzy set, involving

upper and lower firing strength, and iscom puted as follows [3]:

f—

F‘:[f_i,f],i:1,~~,M (4)

r=[1a 1=
j=1

total number of

(5)

where M is the

In (5), IL[ is the
modulated membership value.

Now letus get back to the modulator functions that are to be
used in the previous layer. If a feature is not useful for a rule,
then we do not want that feature to influence the firing strength
in (5) of the associated rule. This can be realized if for every
value of that feature, both the lower membership and the upper

membership values of the associated fuzzy set become 1. Ifa

any rule. Hence, for every value of the bad feature, both the
lower membership and the upper membership values should

become 1 for all fuzzy sets defined on that bad features.

Following the idea wused for Type-1 system, we use the

modulator function
M (1) = exp(— (DY) (6)

where A isa modulator param eter thatis ascalar variable — there

will be exactly one modulator parameter for every input

variable. Therefore, the modulated interval M F for the j-th

feature of the i-th rule can be computed as

i M) e M) M)

,uj:(,uj) —[(ﬁj) 1(,uj) ] e
w here

~i i\M(2) i yexp(—(4;)?)

=) = (1)) R (8)

=i EN\M@) - ye(—(4))%)

zujz(luj)M/1 ‘(,Uj)ep 5 (9)

. ~i i
If modulator parameter 2, is close to 0, then ,uj Nluj .0On the

other hand, if magnitude of A is very high, then the modulated

membership value is nearly 1 ([1; z]_). During the learning

process, we shall set appropriate values to the modulator
param eters. Our goal is to make the modulator high ifa feature
is not useful for a rule and make it nearly zero (0) when it is
useful for the rule. This is very general set up. If our intention
is to select useful features, then we associate only one
modulator with each feature as explained. In this case, either a
feature is rejected or used by all rules. This is also done in [42]
for Type-1 systems. In this paper we move one step ahead. In
general, there could be a derogatory feature, which must be
discarded, but there could also be a feature which is useful for
some rules but not required for some other rules. This leads to
the problem of selection of antecedent clause (linguistic value).
Using the concept of modulator we shall learn which antecedent
clause isimportantand which isnot. Ifallantecedent clauses of
arule arenotimportant, then thatrule can be discarded. If some
antecedent clauses are not important, then only the rule and

hence the structure is simplified by removing those antecedent
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clauses. Ifallantecedent clauses defined on a linguistic variable
isnot important, then that variable (feature) can be discarded.

Layer 4 (Consequent Layer): Each node in this layer

represents a TSK-type consequent that is a linear combination

of current input variables, where the weights of a linear

combination are intervals. Each node in this layer receives

inputs from layer 3 as wellas the input data in layer 1. Each rule
node in Layer 3 has its own corresponding consequent node in

Layer 4. The outputis an interval type-1 set and can be denoted
as [wli,w:], w here indices | and I denote left and right lim its,

respectively. Therefore, the node output is expressed by

i

[wiiwi] = Teg = sgreq = ‘

sol] + 2?:1[5;7 sj,c; + s;]p; (10)

where p; = xe , and pll,pzl,m ,p,':,d are the modulated
input values. This modulation isneeded because we do notwant
a poor feature (i.e., if it is rejected by a rule), to influence the

computed consequent values. Thus,

i n i n i i
w =X _,c/p; - T s, lp,l (11)
and
i n i n i i
wi =X gcip, + 2 _,s;lp;l (12)
i .
where p, = 1,i= 1, ,M.

Layer 5 (Output Processing Layer): Each node in this layer
receives input from the corresponding node of layer 4 as well

as that from layer 3 because to compute the output both the

firing interval as wellas the consequent values are needed. The

output from a node in this layer is an interval type-1 set [y,,y,],

w here subscripts | and r denote left and right end points,

respectively. W e use the K-M iterative procedure [8] to find L

and R end points, and then compute the type-reduced outputs

y, and y,.. One important norm of using this procedure is that

the consequent parameters must be re-ordered in ascending

order, such that the original consequent parameters w,B6 =

M M .
(w,l,--- ,w, )and w, = (w,l.--- ,w, ) arechanged into the rule-

1 M
reordered consequent parameters v, = (v,, ,v, )and v, =

2

< . <
s = =

1 M h 1< 2< < M d 1<
(v,, ,v, ), where v, < v, < - < v, and v, < v
M
v . The

r between

relationship w,,w,_,v,and v can be

expressed as follows
v, = Q,w,and v, = Q,w, (13)
where @, and @, are M X M appropriate permutation matrices

to reorder the values. These two permutation matrices use

elementary vectors (i.e., vectors, all of whose elements are zero
except one element, which is equal to one) as columns, and

these vectors are arranged (permuted) so as to move elements

in w, and w,_ to new locations in ascending order in the

transformed vectors v, andv,, respectively. Accordingly the

firing strengths fis must also be transformed to the rule-

reordered firing strength gi. Then, the outputs y, and y, can be

computed by
D Iy
Y. = - (14)

L M i
L,._,9 +X g

Y, = B T (15)

Layer 6 (Output layer): Each node in this layer corresponds

to one output variable. Because the output of layer 5 is an

interval set [y,,y,.], nodes in layer 6 compute the defuzzified

value of the output linguistic variable y by computing the

average of y, 6 and y,  as

y = = (16)

Algorithm : Learning Algorithm IT2NFS-SIFE
IF X is the firstincoming data THEN do

{Structure Learning Phase:

Generate a new rule and set initial values of relevant

parameters as follows.

1

1 1 1
[m;,,m;,l=1lx;-a,x;,+al,6" =03 and 2, = 1.6;
1 1 1 1 Ya
c; = 0.05 and s; = 0.005; ¢, = y, and s, = B

10
Compute error function using Eq. (22)

Parameter Learning Phase:

Use the rule-ordered Kalman filter algorithm (Eq. 34) to
tune the consequent param eters.

And then use gradient descent algorithm (Egs. 38-41) to
update the other free param eters.

}

ELSE for each newly incoming data X do

{Structure Learning Phase:

Compute Eq. (19)
1
P )< A,
{M (t+1)=M (t)+1
Generate anew rule and set initial values of relevant

parameters as follows:
M(t)+ 1 M (t)+ 1

[m]1 ,mjz ]: [xj— A,x].+ A],
M (t)+1

" T = 0.3 and 2, = 1.6;

M (t)+1 M (t)+1

El_ = 0.05 and s/_ = 0.005;

M (t)+1 M (t)+ 1 Ya

<, = y, and s, = ;

Parameter Learning Phase:

Use the rule-ordered Kalman filter algorithm (Eq. 34) to
tune the consequent param eters.
And then use gradient descent algorithm (Eqgs. 38-41) to
update the other free param eters.

}

ELSE

{Compute error function using Eq. (22)

Parameter Learning Phase:

Update all of relevant param eters
Use the rule-ordered Kalman filter algorithm (Eq. 34) to
tune the consequent param eters.
And then use a gradient descent algorithm (Eqgs. 38-41)

to update the other free parameters

}
}
IV. IT2NFS-SIFE LEARNING
In this section, the two-phase learning scheme is discussed.
Figure 3 illustrates the entire learning procedure of IT2NFS-

SIFE. The firstphase ison structure learning that discusses how
to construct the IT2ZNFS-SIFE’ s rules. The learning starts with
no rules in the IT2ZNFS-SIFE and all fuzzy rules are evolved by
an on-line structure learning scheme. The second phase is the

parameter learning phase that describes how we use a gradient
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descent algorithm and the rule-ordered Kalman filter algorithm

to learn the parameters of the system .

A. Structure Learning

In structure learning the system determines whether a new
rule should be extracted and added from the training data ornot.

This idea is extended from our previous study on type-1 fuzzy

rule generation [51]. The firstincoming data point X is used to
generate the firstfuzzy rule with mean and width of the fuzzy
mem bership functions as
1 1 —
[y, My, 1 =[x —AX, X; + AX] and o=0y,, .
J:l,...’n’
where Ax is a constant to determine the initial type-2 fuzzy set

interval range and o isapredefined value (weuse ¢

fixed fixed

0.3 in thispaper). The Ax indicates the width of uncertain mean
region. If Ax is made too small, then the type-2 fuzzy set
approximately becomes a type-1 fuzzy set. On the contrary, if
Ax is too large, then a type-2 fuzzy set will cover most of the
inputdomain. Subsequently, attimet, when anew inputcomes,
we compute the firing strengths (firing intervals) of that input
for all M (t) rules and then compute the mean value of firing

strength fci(t) for each rule i as:

, INGETHG!
fo (t) = ==—— (18)
2
f. helps us to determine whether a new rule should be
generated according to a predefined threshold f,, .
Thus, forsubsequent incoming data, we find
I = arg max fct(t), (19)

1sisM(t)

where M (t) isthe number of existing rules at time t. IffE'(t) <
fen then anew fuzzy ruleisgenerated and M (t+1)=M (t)+1.The

idea behind this is that if the current data point does not match
well the existing rules, then a new fuzzy rule is evolved. The
uncertain means of type-2 fuzzy sets associated with this rule
are defined exactly inthe same manner as done forthe firstrule;
i.e., the uncertain means of the corresponding type-2 fuzzy sets
are defined as

Mo(t)+1 M (t)+1
[m | =

[x/.(t) - Ax,xj(t) + Ax],j=1,- ,n

j1 j2
(20)

Butthe width of the new rule is defined as follows:
M (t)+ 1 -5 |Xj— (mjl+m£z |

2

; (21)

where B > 0 determines the overlap degree between two fuzzy

sets. Equation (21) indicates that the initial width is equal to the

Euclidean distance between current input data Xand the center

of the best matching rule for this data point times an

overlapping parameter. Here, g is set to 0.5 in this paper and it
indicates that the width of new type-2 fuzzy set is half of the
Euclidean distance from the best matching center, and a suitable
overlap between adjacent rules is realized. Similar protocols
were also followed in [16],[18],[27].

In addition to assigning the initial antecedent param eters, the
initial consequent parameters should also be assigned when a
new ruleis generated. The initialconsequent parameters cé, i =
1, , M, are set to the desired output y, corresponding to the
current input x. Other initial param eters cji,j =1, ,N,are set

to small values, e.g. 0.05. A parameter S is used to define the

output interval range. If the interval range is too small, the
output is similar to singleton. On the other hand, if the interval

range istoo large, then itwould cover thewhole output dom ain.

In this study we use parameters s; = 0.005,j =1, ,n for all
variables.
B. Parameter Learning

The param eter learning isalso done during the learning of the
structure. All free parameters of the IT2NFS-SIFE are adjusted
with each incoming training data regardless of whether a rule is

new ly generated or already existing. The antecedent

param eters, involving m ,, m ,, and A, in the IT2ZNFS-SIFE are

adjusted with each incoming input by gradient descent

algorithm that is suitable for supervised method. The
consequent part parameters are tuned through a rule-ordered
Kalman filter algorithm to improve the network accuracy. Here
we consider the single output case just forclarity. The training

algorithm minimizes the error function

E:%[y(t-i-l)—yd(t—f-l)]z : (22)

where y(t + 1) represents the actual network output and
ya(t + 1) represents the desired output. Note that (22)
represents the instantaneous square error and with each

incoming data point, only one step of update of all param eters

is done wusing gradient descent (the learning rules will be

derived later). As reported in [17],arule-ordered Kalman filter

algorithm is applied for the |learning of the consequent

parameters. Next, we describe the rule-ordered Kalman filter

algorithm explicitly. Based on K-M iterative procedure for

computing y, and y_in (14) and (15), the consequent values w,

and w,_ should be re-arranged in ascending order. As the

consequent values w and w, change, their orders and

L

corresponding rule orders should also change accordingly.
Equation (13) indicates the relationship between the original
and arranged values. As in [1], Eqns. (14) and (15) can be re-
expressed as the following rule-ordered form .

_ TQETEQw + TQTE]E,Qw

Y, . - (23)
Q)+ (Qf)
y f7Q/ E;EaQrWr+;TQEIE4QrWr (24)
2 Q)+ 2 Q)

- =) iR
El=(91,ez,""euo,“"0)ESRLXM ' (25)
E, =00, &, ) eRMI (26)
E3:(el,ezv---,eR,O,---,O)e‘J’i’RXM , (27
E,=(0,,0,&,& &) e RM M (28)

and ei and Ei are unitvectors. The rule-ordered Kalman filter

algorithm tunes the consequent parameters in the IT2NFS-

SIFE. Therefore, Eqs. (23) and (24) can be re-expressed as
T
Yy, = ¢, w,
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foelElE 101+fT01TEzTEzQz .
where ¢, = B € R (29)
DI @r TN CITY
Ve = ¢, w,
f_TquE:egar+f_thfEfE4or
where ¢ . = R = € ‘,RMXI (30)
DI (Qrf)x+2 _rae1@r i
Thus, the output y in (16) can be re-expressed as
yi+y _1 o1 2| W
_ 71 ro_ T T _ T T |
- __(¢I\Nl+¢rwr)_[¢l ¢r]
2 2 W,
. n -
11 1 1
2.CiPi— XS] ‘PJ“
i=0 i=0
n n
M M M M
2c'p - 2s) ‘p,— ‘
T —- j=0 j=0
_[¢Il ¢|M ¢r1 '¢r|v|] n n
11 1 1
2CiP+ S ‘p,—‘
j=0 j=0
n n
M M M M
PSR I ‘pj ‘
L i=0 i=0 i
(31)
where d>l= 0.5¢, and ¢ = 0.5¢, During the n-line
structure learning, the dimension of w, and w_ increases with

time, and the positions of c].i and s/.i change accordingly within

the same vector. For keeping the position of c]i and sji unaltered

in the vector, the rule-ordered Kalman filtering algorithm
2M (n+1
rearranges elements inrule order in (31). Let WI'SK GSR (n+D)
denote all of consequent parameters. That is
_rAl 1 .1 1 M M M M T
_[Co"'cn Sp Sy °Cy +-C. S, "Sn] (32)
where the consequent parameters are placed according to the
rule order. Equation (31) can then be expressed as
_ T
y_¢TSKWTSK
=Td. 0t d.0t —d. |ot---—a. | ot 33
=[dupo - baPn — 0 p0| a1 |Pn (33)
iy M iy M iy M
PmPo = PmPn ~ P |po | ~ G |00 W

where ¢cj :ﬂj +¢rj and ¢Sj :¢rj _ﬂj’ j=1,"',M . The

consequent param eter vector WTSK isupdated by executing the

following rule-ordered Kalman filtering algorithm

Wrsk (t +1) = Wagy (t) + S(t +l)arsr< (t +1)(yd (t +1) - ¢TT;K (t +1)WTSK (t))
S(t+1)= 1[S(t) - S(t)gﬁrTSK (t+ D (8 +Ds(),
K K+ ro (T+D)S () g (L +1)

(34)

where K is a forgetting factor (0 < x < 1).1In this study, we

of vectors WTSK and ¢TSK’

W hen a

have used K =1. The dimensions
and matrix S increases when a new rule is evolved.
new rule is generated at time t+1, the dimension of @TSK vWTSK
, and S(t) can be expanded and expressed by the following

formulas.

7
b €+ =[A5 ©) FrnXor o X
SK SK c(M+1)”*0 c(M+1)"*n
R 2(M+1)(n+1)
s(M+1)|XO| s(M+1)|X |]E‘R
(35)
Woee (8) = Twog, (e) el T Mg Mgt
e g 2MFD(M+D) (36)
and
S(t) = block diag [S(t) c1] e R>M D+ 1yx2@+i(n+1)
(37)
w here C is a large positive constant and | is an identity matrix.

N ote that the dimension of initial S is a 1x1. For convergence

analysis of the Kalm an filterw ith varying inputdimensions, the
proposed network uses resetting of the matrix S to C1l after ten
iterations of learning. This resetting operation keeps S bounded
and helps avoid a divergence problem .

In previous studies [1],[8],[17],a gradient descent algorithm

i

. . i i i
is used for the parameter learning, and letm ;,, m og;,and 4;

represent the antecedent and modulator parameters, then the
learning rules are :
oE
L) =ml () - ——— (38)
M s omi, (t)
oE
Lt+D)=ml(t) - 77 (39)
J2 " Jz(t)
i oE
o (t+1 t (40)
()=o) - Upyymy o
: - oE
LAt+D)=101t)-n'—— (41)
(t+D) =41 "a,l;(t)
where 77 and 77' are learning coefficients for the antecedent
parameters and the modulators respectively. Now we can
compute the learning rules as follow s:
E_E[yy Ny,
oA, oy | oy, o] ay OA!
_1 _ ayl ayr afl ’uJ ayl ayr 8fl a
=V G g an e o 6/1'
(42)
and where )
N VG . bioyd (43)
of' fle +f'd, of' flc+f'd,
a—yl.Z _bli_yldli %Z—a:’_yr_cli (44)
oft  fle+f'd, of flc,+f'd,
31“ aﬂj Fio gl o) —i
6 61' =-2xf'x1; xe xln‘,uj‘ (45)
o ——2><f'></1'><e ><In|ui.| (46)
8 8/1' =

where

a :QlTE1TE1Q|W| emMX1~ bl =Q|TE2TE2Q|W| e RM (47)
G :Q|T P, e R™, d, :Q|Tg| e RM

(48)
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_NTrcT Mx1 AT
_Qr E3 ESQrWr €N ' br _Qr E4 E4QrWr (49)
N M x1 e Mx1
C,=Q peR"™. d =Q09 R (50)
Similarly, if Wi[ represents m;l,m;:z, and th’ the derivation of
premise parts can be expressed as
OE _CE[ Oy o% Oy Oy
i i i
ow, oy | oy, ow, ay ow;
Fi AT A i AGi i
:l(y_y) (8YI azr of' a'ul 6‘ul (%% ai a a‘gl
27 of'" oy om; ow; of' of'’ oy oy ow,
(51)
Ifw].l = mil, then we have
i
i i i A= A i i i i ~Mi <mi
of of of' ou 8/1]- f'xe ><,uj><—( i)z y X <my
i i =i —i i ]
ow;  om;,  Op; Op; omy .
0, otherwise
(52)
i i i
oo ot op au | fixe kI s Tt
— — g | g | i '
_——— ={- o 2
ow;  omy, "o jayj (’5mj1 (@) )
- = \ otherwise
(53)
Consequently, if w].i = m;Z, then we have
. —. — (202 . X-—mi- )
o o 8f aﬂl aluj flxe(/lj) xﬁ}xj(—i)zlz’xj>m'jl
—_— = = o
i i ]
ow; omy, 6/1]6 j6mj2 .
0, otherwise
(54)
i
oot ot oF du | Fixe ™ x g x I < Mt s
- == = El E_i — HJ' (O_I)Z L 2
i i ~i i i ]
ow; omy, Ou; O, om;, )
0, otherwise
(55)
Finally, if th = cr],then we have
v X; —mt )2 _
fixe ™ xﬁ!xu X, <m!
i (6{)3 L] i1
g F A Om |y (xmm) .
— ks Wt N i )" i Jz i
o ool omomool | E T TGy XM
j O- /‘l] /‘l] O- ( )
0, otherwise
(56)
i 2 i i
fixe—(l;)zx,uix(xj_mjz) m;, +mj,
oA A ot omaom |” e 2
TS A T T AT A AT ) i\2 i i
8\Nj 80'j 8&. 6&. 60'j fixefui)zxy}x(xji.msjl) X, m;, +mj,
= = (c}) 2
(57)
For each piece of incoming data only one epoch of the
gradient descent algorithm and the rule-ordered Kalman filter
algorithm is performed irrespective of whether it is an old
sample from repeated offline learning or a new sample from
online learning. To begin the learning process, we need to
initialize the modulator parameters, As. For an effective

learning, we initialize the A values in such a manner that at the

beginning all features as well as all antecedent clauuses are

unimportant, i.e., all modulated mem bership values are close to

1.So we set the initial A values to 1.6. Then with iteration, the

modulators for useful antecedent clauses are adapted (reduced)

faster as those can reduce the error, while for bad features/not-

useful antecedent clauses the values of A will increase and the

modulated membership will approach 1. The entire learning

process is summarized as an algorithm named “Learning

Algorithm IT2NFS-SIFE”. This Algorithm specifies how a rule

and its membership functions are initialized.

V. SIMULATIONS

In this section, we describe four examples: System

identification (Example 1), Hang data (Example 2), Chem data

(Example 3) and Auto MPG6 (Example 4), to assess the

performance of the IT2ZNFS-SIFE. Table | shows the summary

of the dataset used. Our simulation studies dem onstrate thatthe

IT2ZNFS-SIFE is able to effectively prune redundant features

and simplify structure simultaneously with online learning of

the system .

A. Example 1 (System Identification)

This example uses the IT2ZNFS-SIFE to demonstrate that the

use of modulator function is able to remove redundant inputs

TABLE |
SUMMARY OFTHE DATA SETS USED
Data No.ofSamples No.ofFeatures No.ofderogatory
Features

SIN C 200 4 2

HANG 50 4 2

CHEM 70 5 2

Auto-M PG 392 7 2
and simplify the network architecture. The plant has been
presented in [17], [51], and is described by the difference
equation

yd()
+ Y4 (t)

is generated with u(t) = sin(2mnt/
in the IT2ZNFS-SIFE are u(t)

ya(t + 1) .

+u’(t)

(58)

Ya(t+1) =

w here the training signal

100),t =1, ,200. The inputs

and y,(t) and the desired output is Here for

observing the merit of IT2NFS-SIFE, we artificially generate

two irrelevant input variables. These derogatory inputs are
scaled in the range [0, 1]. As a performance criterion, we use
the root mean square error (RM SE)
200
RMSE = Z[y(t+1) y, (t+D)] (59)

where y(t+ 1) represents IT2NFS-SIFE output. The structure

threshold and learning rate are setto 0.02 and 0.07, respectively.

4
The learning rate for modulator param eters is set to 2><10 .
Training is performed for 200 epochs each with 200 steps and

three fuzzy rules are generated. A fter training, the RM SE

obtained is 0.018. Figure 4 shows that the convergence curve of

training process is quite fast. Fig. 5 shows a very good m atch

between the actual output and the network output. For this

example we also compare the performance of IT2NFS-SIFE

with two well-known models as shown in Table Il. Table 1l

exhibits the network performance, the number of

RM SE

including

rules, test and compares them with its competitors

presented in [17], [51]. Table Il reveals that IT2ZNFS-SIFE
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outperforms the other com petitors. To compare with a feed-
forward type-1 FNN, we use a self-organizing neural fuzzy
inference network (SONFIN) [51],which isapowerfulnetwork
with both structure and parameter learning abilities. The
consequent part of the SONFIN is of Mamdani type. All free
parameters in SONFIN are learned using a gradient descent
algorithm . W e also com pare with another a feed forward type-

2 FNN, which is the self-evolving interval type-2 fuzzy neural

RMSE

lteration

n

ig.4. RM SE valuesobtained during training process (Example 1)

T

Output

o 20 40 60 80 100 120 140 160 180 200
Time Step

Fig.5. Comparisonof theoutputsof IT2NFS-SIFE with the actualvalues

using all fourinputvariables (Example 1)

network (SEIT2FNN) [17]. This network too possesses

simultaneous structure and parameter learning abilities. The
consequent part in the IT2NFS-SIFE is of Takagi-Sugeno-—

Kang (TSK) type. Parameter learning

is the same as that of IT2ZNFS-SIFE. These two

philosophy of
SEIT2FNN
well-known models are applied to investigate whether two
invalid inputs will significantly affect the final output. The test
root mean square error (RM SE) of SONFIN is obtained as
0.0198 when inputs do not involve two invalid variables. The
test RM SE of the SEIT2FNN is obtained as 0.0166 with three
From these

rules. SEIT2FNN

RM SE of

fuzzy results, we see that
outperforms SONFIN. Table Il shows that the
SONFIN and SEIT2FNN respectively increases to 0.088 and
0.071. Thus, the two irrelevant inputs significantly affect the
identified systems and their outputs and add to com putational
complexity. But our proposed network could effectively reduce
the impact of the two derogatory inputs without degrading the
network performance.

Here, we can see an interesting phenomenon in Table Ill-the
modulator parameter for all antecedent clauses defined on the
irrelevant inputs (x3and x4) have increased from their original
value of 1.6 and they have become bigger than the modulator
values for all antecedent clauses defined on the original inputs
(x1and x2). This suggests that we can discard both xsand x4 and
simplify the network structure. Since there isno rule for which

all modulator param eters are high, we cannot delete any rule.

B. Example 2 (Hang Data)

Now we consider the Hang data [32], [42] that is a synthetic

data set to demonstrate the distinguished characteristic of
IT2NFS-SIFE. This data set is generated by the following
equation

y=L+x"+x"°)?,  1<x,X%, <5 (0

where x1 and x2 are input variables for the IT2ZNFS-SIFE input
layer and y represents a single output. To obtain the training
data, Equation (60) has generated 50 I-O data points random ly

from 1 < x,,x, < 5.To show the capability of our system, we

have augmented this data set by adding two useless variables x3

and x4 with random values in [1, 5]. Fig. 6 depicts a pictorial

representation of the Hang data. The structure threshold and

learning rate are set as 0.1 and 0.07, respectively. The learning

rate for modulator function issetto 7 x 10 *

A fter 200 epochs of training, three rules are generated. Like
TABLE Il

PEFFORMANCE COMPARISON OF IT2NFS-SIFE AND OTHER
MODLESIN EXAMPLE 1

Models SONFIN [51] SEIT2FNN [17] IT2N FS-SIFE

Tterations 200 200 200

No.ofRules 6 3 3

Test RM SE 0.088 0.071 0.021
TABLE Il

MODULATORVALUESASSOCIATED WITH INPUTS AND
RULES FOR EXAMPLE1FORA TYPICAL RUN

A Rule 1 Rule 2 Rule 3

X 1.064 0.723 0.976

X, 1.104 1.042 0.981

Xy 1.734 1.643 1.672

Xy 1.658 1.788 1.776
TABLE IV

MODULATORVALUESASSOCIATED WITH INPUTS AND
RULES FOREXAMPLE1WHENT7RULES ARE USED

Rule Rule Rule Rule Rule Rule Rule
* 1 2 3 4 S 6 7

X 1.066 1.024 1.045 1.037 1.063 0.873 0.934
X, 1.006 0.919 1.155 1.057 1.097 1.005 0.933
X3 1.625 1.615 1.612 1.580 1.627 1.663 1.591
Xy 1.638 1.639 1.622 1.564 1.678 1.603 1.599
Train 0.0057
RM SE
Test 0.0062
RM SE

the previous example, we compare the performance of IT2NFS-
SIFE with that of SONFIN and SEIT2FNN. As used by
IT2NFS-SIFE these two models, SONFIN and SEIT2FNN,
employ the identical data set obtained from [32]. The RM SE on
the test data for the SONFIN and SEIT2FN N are respectively
0.226 and 0.207, when they use only the two useful (original)
features x1and x2. W hen the irrelevant features are used by these
two systems, the test RM SE increases to 0.385 and 0.313 as
shown in Table V. Butusing all four features, the test RM SE of
our system is only 0.228. W e note that the results in Table V
are obtained using a five-fold cross-validation framework as we
have fixed data set without any training-test partition. Thus
from Table V we find that the performance of SONFIN and
SEIT2FNN is severely affected by the presences of derogatory
features, but our system is not. The modulator values in Table

VI indicate that x3, x4 are bad features and should be discarded
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and Rules is also not important as it does not affect the system
output and hence can be discarded without any loss. Note that,
the wearlier attem pts that use

modulators for Type-1 fuzzy

systems do not have the capability of removing a rule.

C. Example 3 (Chem D ata)

This example uses the IT2ZNFS-SIFE to address a real-world
problem relating to operator’s control of a chemical plant for
producing a polymer by polymerization of some monomers
[32]. There are five inputs and one output. The input variables

(u1),
flow rate (us3), and two local

(us4 and wus). The

are: monomer concentration change of monomer

concentration (u2), monomer

tem peratures inside the plant output 'y
represents the set point for monomer flow rate. This data set
contains 70 samples. In [32], the authors indicate that us and us
do not influence the system output. Various other authors [32],
[42] also confirmed the same observation. Hence for this data
set we do not add any extra feature and use the five features to

analyze the influence of irrelevant features on our network. The

Fig.6 A pictorialrepresentation of HAN G (Example 2)

TABLE V
PEFFORMANCE COMPARISON OFIT2NFS-SIFE AND OTHER
MODLESFORHANGDATA IN EXAMPLE 2

Models SONFIN [51] SEIT2FNN [17] IT2N FS-SIFE

Iterations 100 100 100

No.ofRules 5 3.2 3.2

Test RM SE 0.385 0.313 0.228
TABLE VI

COEIFFIEIENT OF MODULATORFUNCTION ASSOCIATE
W ITH INPUTS AND RULES forEXAMPLE 2

A Rule 1 Rule 2 Rule 3
X 1.333 -0.407 -4.000
X, -0.027 0.825 -4.000
X, 2.417 2.812 4.000
X, 4.000 4.000 4.000

structure threshold and learning rate for modulators for this data
set are set to 0.4 and 3><1074, respectively. There are 4 fuzzy
rules generated after 100 epochs of training. Fig. 7 depicts the
outputs of the Chem data and those of the IT2ZNFS-SIFE. The
RM SE on this data set for SONFIN and SEIT2FNN, without
involving two local temperatures, are respectively 148.64 and
84.37. As depicted in Table VII these RM SEs enhances to
193.74 and 126.25 for SONFIN and SEIT2FN N, respectively
when all five features are used. Table VIl depicts that when all
five features are used, then the RM SEs for SONFIN and
SEIT2FNN are more than 5.3 and 3.4 times respectively as that
of IT2ZNFS-SIFE. The terminal modulator values in Table V III

also suggests that the two temperatures, u4 and us, are not
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Fig.7. Plotofthe estimated results and theactual observed valuesfor the

Chem data (Example 3)

TABLE VII
PERFORMANCE COMPARISON OF IT2NFS-SIFE AND OTHER
MODLESIN EXAMPLE 3

Models SONFIN [51] SEIT2FNN [17] IT2N FS-SIFE

Tteration 100 100 100

No.ofRules 6 4 4

Test RM SE 193.74 126.25 36.76
TABLE VI

COEIFFIEIENT OF MODULATORFUNCTION ASSOCIATE WITH
INPUTS AND FUZZY RULES FOR EXAMPLE 3

A Rule I Rule 2 Rule 3 Rule 4
u 0.600 0.543 1.156 0.601
u, 0.533 -0.296 1.120 0.602
u; -0.062 0.443 0.385 0.602
u, -1.902 1.988 2.905 2.202
u 1.732 1.684 3.306 2.201

importantas the absolute values of their modulators for allrules

are high.

D. Example 4 (Auto-M PG6)

This is a real dataset that involves the prediction of

autom obile city-cycle fuel consumption in miles per gallon
contains 392

(MPG). The data set samples and can be

downloaded California-lrvine (UCI)

(http://archive.ics.uci.edu/m /). As done in [59], [60], the data

from University of

set divided two subsets with 320 samples for training and
remaining 72 samples for test. There are seven input variables,
involving cylinders (x1), displacement (x2), horsepower (x3),
weight (xs), acceleration (xs5), model year (xe) and origin (x7),
and one output variable, mpg (y). It is evident from the
description of the input features that xe and x7 are not relevant
features and thatis why other studies such as in [61], these two
features are ignored. But we shall use all seven features to
investigate whether our system can eliminate these to irrelevant
features or not. The structure threshold and learning rate for
modulators are used as 0.005 and 6 x 10_5, respectively. In all
other examples, the learning rates for the premise and
consequent parameters are taken as 0.07 but for this example,
we arerequired to use a lower value of the learning coefficient
fora smooth convergence of the training. After 100 epochs of
training, there are three fuzzy rules generated. W hen the system

uses the five features, (x,, ,x;), the RM SEs obtained for

SONFIN and SEIT2FNN are 2.98 and 2.81, respectively. In

[61], the authors also use five significant features (x,, - , x) to
predict autom obile city-cycle fuel consum ption.
As can be seen in Table IX, both for SONFIN and

SEIT2FNN use of the two irrelevant features leads to a
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degradation in performance. As revealed by Table IX the test
RM SE of IT2ZNFS-SIFE can obtain lower than its com petitors.
Table X shows that the input variables xs and x7 are not
importantas theirmodulator values are high forallrules. Table
X shows that the modulation parameters of xe and x7 are bigger
than those of other input variables, and therefore, input
variables xs and x7 can be discarded to enhance performance

further.

Ideal output B
IT2NFS-SIFE

Output

©
Time Step
Fig.8. Plotof theestimated results and the actualobserved values for the
auto-M PG data (Example 4)

TABLE IX
PERFORMANCE COMPARISON OFIT2NFS-SIFE AND OTHER
MODLESIN EXAMPLE 4

Models RBFNN - SO N FIN SEIT2FNN IT2NFS-

SFC [59] [51] [171] SIFE
Iteration - 100 100 100
Number of 6 5 3 3
Rules
Test 6.77 4.66 4.45 4.23
RMSE

TABLE X

MODULATORVALUESASSOCIATED WITH INPUTS AND
RULES FOR EXAMPLE 4

A Rule 1 Rule 2 Rule 3
X, 0.640 0.633 0.632
x5 0.639 0.631 0.736
x5 1.137 0.729 0.628
x, 0.842 0.781 1.038
x5 0.740 0.932 0.887
X4 1.621 1.562 1.604
X, 1.648 1.704 1.699
VI. CoNCLUSION

In this paper, we propose new interval type-2 neural fuzzy
system called IT2NFS-SIFE thatcan reduce the effect of bad or
derogatory features (in factcan remove bad features), itcan also
simply network structure by removing antecedent clauses that
are not important for a rule. Unlike most self-organizing fuzzy
neural networks, it has the flexibility of learning differentrules
involving different sets of variables, if that makes the system
identification easier. To our know ledge, this is the first Type-2
fuzzy neural system

that can selects features and adapts its

structure and learn parameters simultaneously. It uses the
concept of membership modulators that eliminate the impactof
a type-2 fuzzy membership function on the output if that
membership function (hence the associated antecedent clause)
isnot useful. The self-evolving ability in our network enables
it to efficiently identify the required structure of the network

and does not need to set any initial IT2ZNFS-SIFE structure in

11

advance. For the parameter learning in the IT2NFS-SIFE, the
antecedent partand modulation param eters are trained using the
error back-propagation learning, and the rule-ordered Kalman
filter algorithm helps improve network accuracy by tuning the
consequent part parameters. To demonstrate the effectiveness
of IT2ZNFS-SIFE we have tested iton four commonly used data
sets and com pared itsperformance with that of two com petitive
algorithms. For all four case, not only system was able to yield
better performance intermsof RM SE, butalso could simply the
system IT2ZNFS-SIFE was able

drastically. identify the

irrelevant features as well as irrelevant rules and irrelevant

clauses.
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