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Abstract—Sparse representations using learned dictionaries
are being increasingly used with success in several data processing
and machine learning applications. The availability of abundant
training data necessitates the development of efficient, robust
and provably good dictionary learning algorithms. Algorith-
mic stability and generalization are desirable characteristics
for dictionary learning algorithms that aim to build global
dictionaries which can efficiently model any test data similar
to the training samples. In this paper, we propose an algorithm
to learn dictionaries for sparse representations from large scale
data, and prove that the proposed learning algorithm is stable
and generalizable asymptotically. The algorithm employs a 1-
D subspace clustering procedure, the K-hyperline clustering, in
order to learn a hierarchical dictionary with multiple levels. We
also propose an information-theoretic scheme to estimate the
number of atoms needed in each level of learning and develop
an ensemble approach to learn robust dictionaries. Using the
proposed dictionaries, the sparse code for novel test data can
be computed using a low-complexity pursuit procedure. We
demonstrate the stability and generalization characteristics of
the proposed algorithm using simulations. We also evaluate the
utility of the multilevel dictionaries in compressed recovery and
subspace learning applications.

I. INTRODUCTION
A. Dictionary Learning for Sparse Representations

EVERAL types of naturally occurring data have most of

their energy concentrated in a small number of features
when represented using an linear model. In particular, it has
been shown that the statistical structure of naturally occurring
signals and images allows for their efficient representation as a
sparse linear combination of elementary features [1]]. A finite
collection of normalized features is referred to as a dictionary.
The linear model used for general sparse coding is given by

y = Pa+n, (D

where y € RM is the data vector and W = |11, ... %] €
RM*K is the dictionary. Each column of the dictionary,
referred to as an atom, is a representative pattern normalized
to unit /5 norm. a € R is the sparse coefficient vector and n
is a noise vector whose elements are independent realizations
from the Gaussian distribution N (0, 02).

The sparse coding problem is usually solved as

a = argmin ||a/|o subj. to ||y — ®al|2 <, (2)

a
where ||.||o indicates the ¢, sparsity measure which counts the
number of non-zero elements, ||.||2 denotes the ¢5 norm and e
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is the error goal for the representation. The ¢; norm, denoted
by ||.]l1, can be used instead of £, measure to convexify (2).
A variety of methods can be found in the literature to obtain
sparse representations efficiently [2]—[5]. The sparse coding
model has been successfully used for inverse problems in
images [6], and also in machine learning applications such
as classification, clustering, and subspace learning to name a
few [7]-[16].

The dictionary ¥ used in can be obtained from pre-
defined bases, designed from a union of orthonormal bases
[[17], or structured as an overcomplete set of individual vectors
optimized to the data [18]]. A wide range of batch and online
dictionary learning algorithms have been proposed in the liter-
ature [19]-[27]], some of which are tailored for specific tasks.
The conditions under which a dictionary can be identified
from the training data using an ¢; minimization approach are
derived in [28]. The joint optimization problem for dictionary
learning and sparse coding can be expressed as [6]

min [Y — WA[F subj. 1o [lallo < S, ¥, ;12 = 1, ),
’ 3)

where Y = [y1y2...yr] is a matrix of T training vectors,
A = [ajay...ar] is the coefficient matrix, S is the sparsity
of the coefficient vector and ||.|| 7 denotes the Frobenius norm.

B. Multilevel Learning

In this paper, we propose a hierarchical multilevel dictionary
learning algorithm that is implicitly regularized to aid in sparse
approximation of data. The proposed multilevel dictionary
(MLD) learning algorithm is geared towards obtaining global
dictionaries for the entire probability space of the data, which
are provably stable, and generalizable to novel test data. In
addition, our algorithm involves simple schemes for learning
and representation: a 1-D subspace clustering algorithm (K-
hyperline clustering [29]) is used to infer atoms in each
level, and 1—sparse representations are obtained in each level
using a pursuit scheme that employs just correlate-and-max
operations. In summary, the algorithm creates a sub-dictionary
for each level and obtains a residual which is used as the
training data for the next level, and this process is continued
until a pre-defined stopping criterion is reached.

The primary utility of sparse models with learned dictionar-
ies in data processing and machine learning applications stems
from the fact that the dictionary atoms serve as predictive
features, capable of providing a good representation for some
aspect of the test data. From the viewpoint of statistical
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learning theory [30], a good predictive model is one that
is stable and generalizable, and MLD learning satisfies both
these properties. To the best of our knowledge, there is no
other dictionary learning method which has been proven to
satisfy these properties. Generalization ensures that the learned
dictionary can successfully represent test data drawn from
the same probability space as the training data, and stability
guarantees that it is possible to reliably learn such a dictionary
from an arbitrary training set. In other words, the asymp-
totic stability and generalization of MLD provides theoretical
justification for the uniformly good performance of global
multilevel dictionaries. We can minimize the risk of overfitting
further by choosing a proper model order. We propose a
method based on the minimum description length (MDL)
principle [31] to choose the optimal model order, which in
our case corresponds to the number of dictionary elements in
each level. Recently, other approaches have been proposed to
choose the best order for a given sparse model using MDL
[27], so that the generalization error is minimized. However,
the difference in our case is that, in addition to optimizing the
model order for a given training set using MDL, we prove
that any dictionary learned using MLD is generalizable and
stable. Since both generalization and stability are asymptotic
properties, we also propose a robust variant of our MLD
algorithm using randomized ensemble methods, to obtain an
improved performance with test data. Note that our goal is not
to obtain dictionaries optimized for a specific task [24], but to
propose a general predictive sparse modeling framework that
can be suitably adapted for any task.

The dictionary atoms in MLD are structurally regularized,
and therefore the hierarchy in representation is imposed im-
plicitly for the novel test data, leading to improved recovery
in ill-posed and noise-corrupted problems. Considering dic-
tionary learning with image patches as an example, in MLD
the predominant atoms in the first few levels (see Figure [I)
always contribute the highest energy to the representation. For
natural image data, it is known that the patches are comprised
of geometric patterns or stochastic textures or a combination
of both [32]. Since the geometric patterns usually are of
higher energy when compared to stochastic textures in images,
MLD learns the geometric patterns in the first few levels and
stochastic textures in the last few levels, thereby adhering to
the natural hierarchy in image data. The hierarchical multistage
vector quantization (MVQ) [33]] is related to MLD learning.
The important difference, however, is that dictionaries obtained
for sparse representations must assume that the data lies in a
union-of-subspaces, and the MVQ does not incorporate this
assumption. Note that multilevel learning is also different from
the work in [34f], where multiple sub-dictionaries are designed
and one of them is chosen for representing a group of patches.

C. Stability and Generalization in Learning

A learning algorithm is a map from the space of training
examples to the hypothesis space of functional solutions. In
clustering, the learned function is completely characterized by
the cluster centers. Stability of a clustering algorithm implies
that the cluster centroids learned by the algorithm are not

significantly different when different sets of i.i.d. samples
from the same probability space are used for training [35].
When there is a unique minimizer to the clustering objective
with respect to the underlying data distribution, stability of
a clustering algorithm is guaranteed [36] and this analysis
has been extended to characterize the stability of K-means
clustering in terms of the number of minimizers [37]]. In
[38], the stability properties of the K-hyperline clustering
algorithm have been analyzed and they have been shown to
be similar to those of K-means clustering. Note that all the
stability characterizations depend only on the underlying data
distribution and the number of clusters, and not on the actual
training data itself. Generalization implies that the average
empirical training error becomes asymptotically close to the
expected error with respect to the probability space of data. In
[39], the generalization bound for sparse coding in terms of the
number of samples 7', also referred to as sample complexity,
is derived and in [40] the bound is improved by assuming
a class of dictionaries that are nearly orthogonal. Clustering
algorithms such as the K-means and the K-hyperline can be
obtained by constraining the desired sparsity in (3) to be 1.
Since the stability characteristics of clustering algorithms are
well understood, employing similar tools to analyze a general
dictionary learning framework such as MLD can be beneficial.

D. Contributions

In this paper, we propose the MLD learning algorithm to
design global representative dictionaries for image patches.
We show that, for a sufficient number of levels, the proposed
algorithm converges, and also demonstrate that a multilevel
dictionary with a sufficient number of atoms per level exhibits
energy hierarchy (Section [[II-B). Furthermore, in order to
estimate the number of atoms in each level of MLD, we
provide an information-theoretic approach based on the MDL
principle (Section [[II-C). In order to compute sparse codes
for test data using the proposed dictionary, we develop the
simple Multilevel Pursuit (MulP) procedure and quantify its
computational complexity (Section [[II-D). We also propose a
method to obtain robust dictionaries with limited training data
using ensemble methods (Section [[II-E). Some preliminary
algorithmic details and results obtained using MLD have been
reported in [41]].

Using the fact that the K-hyperline clustering algorithm is
stable, we perform stability analysis of the MLD algorithm.
For any two sets of i.i.d. training samples from the same
probability space, as the number of training samples 7" — oo,
we show that the dictionaries learned become close to each
other asymptotically. When there is a unique minimizer to
the objective in each level of learning, this holds true even
if the training sets are completely disjoint. However, when
there are multiple minimizers for the objective in at least one
level, we prove that the learned dictionaries are asymptotically
close when the difference between their corresponding training
sets is o(+/T). Instability of the algorithm when the difference
between two training sets is Q(v/T), is also shown for the
case of multiple minimizers (Section C). Furthermore, we
prove the asymptotic generalization of the learning algorithm

(Section [IV-D).
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In addition to demonstrating the stability and the general-
ization behavior of MLD learning with image data (Sections
and [V-B), we evaluate its performance in compressed
recovery of images (Section [V-C). Due to its theoretical
guarantees, the proposed MLD effectively recovers novel test
images from severe degradation (random projection). Inter-
estingly, the proposed greedy pursuit with robust multilevel
dictionaries results in improved recovery performance when
compared to ¢; minimization with online dictionaries, partic-
ularly at reduced number of measurements and in presence of
noise. Furthermore, we perform subspace learning with graphs
constructed using sparse codes from MLD and evaluate its
performance in classification (Section [V-D). We show that
the proposed approach outperforms subspace learning with
neighborhood graphs as well as graphs based on sparse codes
from conventional dictionaries.

II. BACKGROUND

In this section, we describe the K-hyperline clustering, a 1-D
subspace clustering procedure proposed in [29]], which forms a
building block of the proposed dictionary learning algorithm.
Furthermore, we briefly discuss the results for stability analysis
of K-means and K-hyperline algorithms reported in [35]] and
[38] respectively. The ideas described in this section will be
used in Section [IV] to study the stability characteristics of the
proposed dictionary learning procedure.

A. K-hyperline Clustering Algorithm

The K-hyperline clustering algorithm is an iterative proce-
dure that performs a least squares fit of K 1-D linear subspaces
to the training data [29]]. Note that the K-hyperline clustering is
a special case of general subspace clustering methods proposed
in [42], [43], when the subspaces are 1—dimensional and
constrained to pass through the origin. In contrast with K-
means, K-hyperline clustering allows each data sample to have
an arbitrary coefficient value corresponding to the centroid of
the cluster it belongs to. Furthermore, the cluster centroids
are normalized to unit /5 norm. Given the set of 7' data
samples Y = {y;}., and the number of clusters K, K-
hyperline clustering proceeds in two stages after initialization:
the cluster assignment and the cluster centroid update. In
the cluster assignment stage, training vector y; is assigned
to a cluster 7 based on the minimum distortion criteria,
H(y:) = argmin; d(y;, ), where the distortion measure is

dly.¥) = |ly — vy )3 4)

In the cluster centroid update stage, we perform singular
value decomposition (SVD) of Y; = [y;|icc,, Where C; =
{i|H(y:) = j} contains indices of training vectors assigned
to the cluster j. The cluster centroid is updated as the left
singular vector corresponding to the largest singular value of
the decomposition. This can also be computed using a linear
iterative procedure. At iteration ¢ + 1, the j® cluster centroid
is given by

P =Y, YT /Y Y Ty, )

Usually a few iterations are sufficient to obtain the centroids
with good accuracy.

B. Stability Analysis of Clustering Algorithms

Analyzing the stability of unsupervised clustering algo-
rithms can be valuable in terms of understanding their behavior
with respect to perturbations in the training set. These algo-
rithms extract the underlying structure in the training data and
the quality of clustering is determined by an accompanying
cost function. As a result, any clustering algorithm can be
posed as an Empirical Risk Minimization (ERM) procedure,
by defining a hypothesis class of loss functions to evaluate
the possible cluster configurations and to measure their quality
[44]]. For example, K-hyperline clustering can be posed as an
ERM problem over the distortion function class

Ok = {9@(3’) =d(y.9;),j = argmax IyTwll}- (6)
le{1, ,K}

The class G is constructed with functions gg corresponding
to all possible combinations of K unit length vectors from the
RM space for the set W. Let us define the probability space for
the data in RM as (), &, P), where ) is the sample space and
3l is a sigma-algebra on ), i.e., the collection of subsets of )
over which the probability measure P is defined. The training
samples, {yi}iTzl, are i.i.d. realizations from this space.

Ideally, we are interested in computing the cluster centroids
W that minimize the expected distortion E[gg] with respect
to the probability measure P. However, the underlying distri-
bution of the data samples is not known and hence we resort
to minimizing the average empirical distortion with respect to
the training samples {y;}7_; as

T
1
9¢ = argmin — » gw(yi). )
¥ 9EGK T ;
When the empirical averages of the distortion functions in Gx
uniformly converge to the expected values over all probability

measures P,
. 5> _o,

®)
for any § > 0, we refer to the class G as uniform Glivenko-
Cantelli (uGC). In addition, if the class also satisfies a version
of the central limit theorem, it is defined as uniform Donsker
[44]]. In order to determine if Gy is uniform Donsker, we
have to verify if the covering number of Gy with respect
to the supremum norm, N (7Y, Gk ), grows polynomially in
the dimensions M [35]]. Here, ~ denotes the maximum L.,
distance between an arbitrary distortion function in Gg, and
the function that covers it. For K-hyperline clustering, the
covering number is upper bounded by [38, Lemma 2.1]

SR3K + W)MK
’)/ b

where we assume that the data lies in an M -dimensional ¢o
ball of radius R centered at the origin. Therefore, G belongs
to the uniform Donsker class.

Stability implies that the algorithm should produce cluster
centroids that are not significantly different when different
i.i.d. sets from the same probability space are used for training

1 X
Elge] - T ZQ\D(Yi)

i=1

sup

lim supP
gvE€GK

T—oo p
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[35]-[37]. Stability is characterized based on the number of
minimizers to the clustering objective with respect to the
underlying data distribution. A minimizer corresponds to a
function gg € Gx with the minimum expectation E[gg].
Stability analysis of K-means clustering has been reported in
[35], [37]]. Though the geometry of K-hyperline clustering is
different from that of K-means, the stability characteristics of
the two algorithms have been found to be similar [38].

Given two sets of cluster centroids ¥ = {t,..., ¥y}
and A = {A1,..., Ak} learned from training sets of 7" i.i.d.
samples each realized from the same probability space, let us
define the L;(P) distance between the clusterings as

low = 9alucr = [ low) - sa)ldPG). (10)
When T' — oo, and G is uniform Donsker, stability in terms
of the distortion functions is expressed as
P

lgw — gallz,(p) — 0, (11
where = denotes convergence in probability. This holds true
even for ¥ and A learned from completely disjoint training
sets, when there is a unique minimizer to the clustering
objective. When there are multiple minimizers, (IT) holds
true with respect to a change in o(v/7T) samples between
two training sets and fails to hold with respect to a change
in Q(v/T) samples [38]. The distance between the cluster
centroids themselves is defined as [35]]

A(P,A) = max min
1<G<K 1<I<K

[y, M) M2 + (3, A )2
(12)

Lemma 2.1 ( [38]]): If the L, (P) distance between the dis-
tortion functions for the clusterings ¥ and A is bounded as
llgw — gallL, Py < p. for some p > 0, and dP(y)/dy > C,
for some C' > 0, then A(¥, A) < 2sin(p) where

) SrEss
p < 2sin ! [ = | = H
T\ Cco,m

Here the training data is assumed to lie outside an M-
dimensional ¢y ball of radius r centered at the origin, and
the constant CA'Q u depends only on C' and M.
When the clustering algorithm is stable according to (11),
for admissible values of r, Lemma [2.1] shows that the cluster
centroids become arbitrarily close to each other.

(13)

III. MULTILEVEL DICTIONARY LEARNING

In this section, we develop the multilevel dictionary learning
algorithm, whose algorithmic stability and generalizability will
be proved in Section Furthermore, we propose strategies
to estimate the number of atoms in each level and make the
learning process robust for improved generalization. We also
present a simple pursuit scheme to compute representations
for novel test data using the MLD.

TABLE 1
ALGORITHM FOR BUILDING A MULTILEVEL DICTIONARY.

Input

Y = [yi];zl, M x T matrix of training vectors.

L, maximum number of levels of the dictionary.

K, number of dictionary elements in level I, | = {1, 2, ..., L}.
€, error goal of the representation.

Output
W, adapted sub-dictionary for level [.

Algorithm
Initialize: I =1 and Rp =Y.
Ao = {i | ||roi||3 > €1 <4 < T}, index of training vectors with
squared norm greater than error goal.
R() = [roﬂ.’}iGAU .
while A;_; ZQand I < L
Initialize:
A, coefficient matrix, size K; x M, all zeros.
R, residual matrix for level I, size M x T, all zeros.
{®1, A} = KLC(Ry—1, K)).
th = R171 - ‘I’lAl-
r; =rj ; where i = Aj_1(j), Vi =1,..., | A1l
a;; =4a;; where i =Aj_1(j), Vj=1,..,|A_1]
Ap={i|frrll3>€1<i<T}

Ri = [r1 e,
I+ 1+1.
end

A. Algorithm

We denote the MLD as ¥ = [¥;P,.¥;], and the
coefficient matrix as A = [ATAT . AT|T. Here, ¥, is the
sub-dictionary and A; is the coefficient matrix for level [. The
approximation in level [ is expressed as

R, _1=YA+Ry, fori=1,..., L, (14)

where R;_1, R; are the residuals for the levels [ — 1 and
l respectively and Ry = Y, the matrix of training image
patches. This implies that the residual matrix in level [ — 1
serves as the training data for level [. Note that the sparsity
of the representation in each level is fixed at 1. Hence, the
overall approximation for all levels is

L
Y = Z v,A +Ryp.
=1

15)

MLD learning can be interpreted as a block-based dictio-
nary learning problem with unit sparsity per block, where
the sub-dictionary in each block can allow only a 1-sparse
representation and each block corresponds to a level. The
sub-dictionary for level I, ¥, is the set of cluster centroids
learned from the training matrix for that level, R;_1, using
K-hyperline clustering. MLD learning can be formally stated
as an optimization problem that proceeds from the first level
until the stopping criteria is reached. For level [, we solve

argmin |R;_; — ¥;A;||% subject to [la; ;o < 1,
A

fori={1,..,T}, (16)
along with the constraint that the columns of W; have unit
¢y norm, where a;; is the i column of A; and T is the
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number of columns in A;. We adopt the notation {¥;, A;} =
KLC(R;_1, K;) to denote the problem in where K is
the number of atoms in W;. The stopping criteria is provided
either by imposing a limit on the residual representation error
or the maximum number of levels (L). Note that the total
number of levels is the same as the maximum number of
non-zero coefficients (sparsity) of the representation. The error
constraint can be stated as, ||r; ;|3 < e,Vi = 1,...,T, where
r; ; is the i column in Ry, and € is the error goal.

Table[l|lists the MLD learning algorithm with a fixed L. We
use the notation A;(j) to denote the j™ element of the set A;.
The set A; contains the indices of the residual vectors of level [
whose norm is greater than the error goal. The residual vectors
indexed by A; are stacked in the matrix, Rl, which in turn
serves as the training matrix for the next level, [ 4+ 1. In MLD
learning, for a given level [, the residual r; ; is orthogonal to
the representation W;a; ;. This implies that

Iri—1,ill3 = [[®a 3 + [lroqll3- a7

Combining this with the fact that y; = S, @a;, + rz;,
a;; is 1—sparse, and the columns of ¥, are of unit /5 norm,
we obtain the relation

L
lyill3 =D llawill3 + llrz.ill3. (18)

=1

Equation (I8) states that the energy of any training vector is
equal to the sum of squares of its coefficients and the energy
of its residual. From (I7), we also have that,

Ri—1 [ = [ 20A 5 + R (19)

The training vectors for the first level of the algorithm, r ; lie
in the ambient RM space and the residuals, ry ;, lie in a finite
union of RM~1 subspaces. This is because, for each dictionary
atom in the first level, its residual lies in an M — 1 dimensional
space orthogonal to it. In the second level, the dictionary atoms
can possibly lie anywhere in R, and hence the residuals
can lie in a finite union of RM~! and R™~2 dimensional
subspaces. Hence, we can generalize that the dictionary atoms
for all levels lie in R, whereas the training vectors of level
1 > 2, lie in finite unions of RM~1 ... RM~!+! dimensional
subspaces of the RM space.

B. Convergence

The convergence of MLD learning and the energy hierarchy
in the representation obtained using an MLD can be shown by
providing two guarantees. The first guarantee is that for a fixed
number of atoms per level, the algorithm will converge to the
required error within a sufficient number of levels. This is
because the K-hyperline clustering makes the residual energy
of the representation smaller than the energy of the training
matrix at each level (i.e.) |Ry||% < ||R;—1]|%. This follows
from and the fact that || ®;A,[|% > 0.

The second guarantee is that for a sufficient number of
atoms per level, the representation energy in level [ will be
less than the representation energy in level [ — 1. To show
this, we first state that for a sufficient number of dictionary

atoms per level, ||®;A,[|%2 > ||Ry||%. This means that for
every [

IRi|% < &A% < [|Ri—1]|%, (20)

because of (19). This implies that |¥,A)[%2 <
|®,_1A;_1]|%, ie., the energy of the representation in
each level reduces progressively from [ = 1 to [ = L, thereby
exhibiting energy hierarchy.

C. Estimating Number of Atoms in Each Level

The number of atoms in each level of an MLD can be
optimally estimated using an information theoretic criteria
such as minimum description length (MDL) [31]]. The broad
idea is that the model order, which is the number of dictionary
atoms here, is chosen to minimize the total description length
needed for representing the model and the data given the
model. The codelength for encoding the data Y given the
model © is given as the negative log likelihood — log p(Y|®).
The description length for the model is the number of bits
needed to code the model parameters.

In order to estimate the number of atoms in each level
using the MDL principle, we need to make some assumptions
on the residual obtained in each level. Our first assumption
will be that the a fraction o of the total energy in each
level E; will be represented at that level and the remaining
energy (1 — «)E; will be the residual energy. The residual
and the representation energy sum up to the total energy
in each level because, the residual in any level of MLD is
orthogonal to the representation in that level. Therefore, at
any level [, the represented energy will be a(1 — )!~!E and
the residual energy will be (1 — a)'FE, where E is the total
energy of training data at the first level. For simplicity, we also
assume that the residual at each level follows the zero-mean
multinormal distribution (0, 071,/). Combining these two
assumptions, the variance is estimated as 07 = 1= (1—a)'E.

The total MDL score, which is an indicator of the
information-theoretic complexity, is the sum of the negative
log likelihood and the number of bits needed to encode
the model. Encoding the model includes encoding the non-
zero coefficients, their location, and the dictionary elements
themselves. The MDL score for level [ with the data R;_q,
dictionary ¥; € RM*X: and the coefficient matrix A; is

T
1
MDL(R;_1|¥;, Ay, K;) = 252 E Iri—1,; — T3
Ui=1

1 1
+ 5T log(MT) + T log(TK1) + 5 Ki M log(MT).  (21)

Here, the first term in the sum represents the data description
length, which is also the negative log-likelihood of the data
after ignoring the constant term. The second term is the
number of bits needed to code the 7' non-zero coefficients
as reals where each coefficient is coded using 0.5log(MT)
bits [45]. The third term denotes the bits needed to code
their locations which are integers between 1 and T K, and
the fourth term represents the total bits needed to code all the
dictionary elements as reals. The optimal model order K; is
the number of dictionary atoms that results in the least MDL
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LEVEL 1 LEVEL 2 LEVEL 4 LEVEL 16

LEVEL 3

Fig. 1. The top 4 levels and the last level of the MLD dictionary where
the number of atoms are estimated using the MDL procedure. It comprises
of geometric patterns in the first few levels and stochastic textures in the last
level. Since each level has a different number of atoms, each sub-dictionary
is padded with zero vectors, which appear as black patches.

score. In practice, we test a finite number of model orders and
pick the one which results in the least score. As an example,
we train a dictionary using 5000 grayscale patches of size 8 X8
from the BSDS dataset [46]]. We preprocess the patches by
vectorizing them and subtracting the mean of each vectorized
patch from its elements. We perform MLD learning and
estimate the estimate the optimal number of dictionary atoms
in each level using o = 0.25, for a maximum of 16 levels. For
the sub-dictionary in each level, the number of atoms were
varied between 10 and 50, and one that provided the least
MDL score was chosen as optimal. The first few levels and the
last level of the MLD obtained using such procedure is shown
in Figure [T} The minimum MDL score obtained in each level
is shown inm From these two figures, clearly, the information-
theoretic complexity of the sub-dictionaries increase with the
number of levels, and the atoms themselves progress from
being simple geometric structures to stochastic textures.

D. Sparse Approximation using an MLD

In order to compute sparse codes for novel test data using a
multilevel dictionary, we propose to perform reconstruction us-
ing a Multilevel Pursuit (MulP) procedure which evaluates a 1-
sparse representation for each level using the dictionary atoms
from that level. Therefore, the coefficient vector for the i data
sample r; ; in level [ is obtained using a simple correlate-and-
max operation, whereby we compute the correlations ¥/ r; ;
and pick the coefficient value and index corresponding to the
maximum absolute correlation. The computational complexity
of a correlate-and-max operation is of order M K; and hence
the complexity of obtaining the full representation using L
levels is of order MK, where K = Zle K is the total
number of atoms in the dictionary. Whereas, the complexity
of obtaining an L sparse representation on the full dictionary
using Orthogonal Matching Pursuit is of order LM K.

E. Robust Multilevel Dictionaries

Although MLD learning is a simple procedure capable of
handling large scale data with useful asymptotic generalization
properties as described in Section (IV-D), the procedure can
be made robust and its generalization performance can be
improved using randomization schemes. The Robust MLD
(RMLD) learning scheme, which is closely related to Rvotes
[47] - a supervised ensemble learning method, improves the
generalization performance of MLD as evidenced by Figure
B The Rvotes scheme randomly samples the training set to
create D sets of Tp samples each, where Tp < T. The
final prediction is obtained by averaging the predictions from

MDL Score

1 .8 1 1 I
1 2 4 6 8 10 12 14 16
Level
Fig. 2. The minimum MDL score of each level. The information-theoretic

complexity of the sub-dictionaries increase with the number of levels.

the multiple hypotheses learned from the training sets. For
learning level [ in RMLD, we draw D subsets of randomly
chosen training samples, {Yl(d)}dD:1 from the original training
set Y; of size T', allowing for overlap across the subsets. Note
that here, Y; = R;_1. The superscript here denotes the index
of the subset. For each subset Yl(d) of size Tp <€ T, we

learn a sub-dictionary \Ill(d) with K; atoms using K-hyperline
clustering. For each training sample in Y;, we compute
1—sparse representations using all the D sub-dictionaries,
and denote the set of coefficient matrices as {Al(d)}(?zl. The
approximation for the i" training sample in level [, y; ;, is
computed as the average of approximations using all D sub-
dictionaries, % Yo \Ill(d)al(z). The ensemble approximations
for all training samples in the level can be used to compute
the set of residuals, and this process is repeated for a desired
number of levels, to obtain an RMLD.

Reconstruction of test data with an RMLD is performed
by extending the multilevel pursuit. We obtain D approxi-
mations for each data sample at a given level, average the
approximations, compute the residual and repeat this for the
subsequent levels. Note that this can also be implemented as
multiple correlate-and-max operations per data sample per
level. Clearly, the computational complexity for obtaining a
sparse representation using the RMLD is of order DMK,
where K = ZiL:1 K.

IV. STABILITY AND GENERALIZATION

In this section, the behavior of the proposed dictionary
learning algorithm is considered from the viewpoint of algo-
rithmic stability: the behavior of the algorithm with respect
to the perturbations in the training set. It will be shown
that the dictionary atoms learned by the algorithm from two
different training sets whose samples are realized from the
same probability space, become arbitrarily close to each other,
as the number of training samples 7' — oo. Since the
proposed MLD learning is equivalent to learning K-hyperline
cluster centroids in multiple levels, the stability analysis of
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K-hyperline clustering [38]], briefly discussed in Section
will be utilized in order to prove its stability. For each level
of learning, the cases of single and multiple minimizers to
the clustering objective will be considered. Proving that the
learning algorithm is stable will show that the global dictio-
naries learned from the data depend only on the probability
space to which the training samples belong and not on the
actual samples themselves, as T" — oo. We also show that the
MLD learning generalizes asymptotically, i.e., the difference
between expected error and average empirical error in training
approaches zero, as T — oo. Therefore, the expected error
for novel test data, drawn from the same distribution as the
training data, will approach the average empirical training
error.

The stability analysis of the MLD algorithm will be per-
formed by considering two different dictionaries ¥ and A with
L levels each. Each level consists of K; dictionary atoms and
the sub-dictionaries in each level are indicated by ¥; and A,
respectively. Sub-dictionaries ¥; and A; are the cluster centers
learned using K-hyperline clustering on the training data for
level [. The steps involved in proving the overall stability of
the algorithm are: (a) showing that each level of the algorithm
is stable in terms of L (P) distance between the distortion
functions, defined in ([E]), as the number of training samples
T — oo (Section [[V-A), (b) proving that stability in terms of
L,(P) distances indicates closeness of the centers of the two
clusterings (Section [V-B), in terms of the metric defined in
(I2), and (c) showing that level-wise stability leads to overall
stability of the dictionary learning algorithm (Section |[[V-C).

A. Level-wise Stability

Let us define a probability space (V;, 3, P;) where ) is
the data that lies in R, and P, is the probability measure.
The training samples for the sub-dictionaries ¥; and A; are
two different sets of 7" i.i.d. realizations from the probability
space. We also assume that the £ norm of the training samples
is bounded from above and below (i.e.), 0 < r < |ly|l < R <
oo. Note that, in a general case, the data will lie in RM for
the first level of dictionary learning and in a finite union of
lower-dimensional subspaces of R for the subsequent levels.
In both cases, the following argument on stability will hold.
This is because when the training data lies in a union of lower
dimensional subspaces of RM | we can assume it to be still
lying in R, but assign the probabilities outside the union of
subspaces to be zero.

The distortion function class for the clusterings, defined
similar to @, is uniform Donsker because the covering num-
ber with respect to the supremum norm grows polynomially,
according to (9). When a unique minimizer exists for the
clustering objective, the distortion functions corresponding to
the different clusterings ¥; and A; become arbitrarily close,
lgw, —gallz.p) L0, even for completely disjoint training
sets, as T" — oco. However, in the case of multiple minimizers,
lgw, — g9a,ll, (P £, 0 holds only with respect to a change

of o(ﬁ ) training samples between the two clusterings, and
fails to hold for a change of Q(\/T) samples [35], [38]].

B. Distance between Cluster Centers for a Stable Clustering

For each cluster center in the clustering W¥;, we pick the
closest cluster center from A;, in terms of the distortion
measure @), and form pairs. Let us indicate the j*" pair of
cluster centers by 1, ; and A; ;. Let us define 7 disjoint sets
{A;}7_,, in which the training data for the clusterings exist,
such that P;(U]_; A;) = 1. By defining such disjoint sets, we
can formalize the notion of training data lying in a union of
subspaces of RM. The intuitive fact that the cluster centers
of two clusterings are close to each other, given that their
distortion functions are close, is proved in the lemma below.

Lemma 4.1: Consider two sub-dictionaries (clusterings) ¥;
and A; with K; atoms each obtained using the 7' training
samples that exist in the 7 disjoint sets {4;}7_; in the R
space, with 0 < r < |lyll2 € R < oo, and dP,(y)/dy >
C in each of the sets. When the distortion functions become
- gAlHLl(Pl) i 0 as
T — oo, the smallest angle between the subspaces spanned
by the cluster centers becomes arbitrarily close to zero, i.e.,

L An) 22 0,,¥5 € 1,..., K. (22)

Proof: Denote the smallest angle between the subspaces
represented by 1, ; and X\ ; as Z(v;;,\i ;) = pi; and
define a region S( ;. p11/2) = {y|2(d, ;,¥) < p1,;/2.0 <
r < |yl < R < o}. Ify € 5(7 ¥y, p1,5/2), then

yI(I 1pl)]'¢l y < y (I- Ald)\l])y An illustration of this
setup for a 2- ]S case is glven in Figure Bl In this figure, the
arc qiqo is of radius r and represents the minimum value of
|ly||2- By definition, the L; (P,;) distance between the distortion

functions of the clusterings for data that exists in the disjoint
sets {A;}7_, is

g, — gmileacen = 3 /A g9, (v) —
=1 i

For any j and i with a non-empty By ; j = S(v, ;, p1,;/2)NA
we have,

gn,(V)|dP(y). (23)

llge, — ga,llz, (2 2/ lge, (¥) — ga, (¥)|dP(y), (24
1

2%

= /B [y" (I - Az,jA;{j) y

L,i,3

- in (I - ¢1k¢fk) Yy
k=1

I (y closest to "l’z,k) |dPi(y), (25)

2/ [y" (I—Az,jAfg)y—yT (I—wl,jwlT,j) y]dP(y),
By,i,j
(26)

>c thi[(yT¢uJ)2—-(yTALj)2]dy.

We have ga,(y) = y* (I — )\lﬂj)\lj’ﬂj) y in , since A ; is
the closest cluster center to the data in S(v, ;, p1,;/2) N A; in
terms of the distortion measure (). Note that I is the indicator

function and follows from because dP;(y)/ di> C.
(

27

Since by assumption, |lgw, — ga, |z, (P) 50, from , we
have ) 5 p
(") = (¥ Ag)” =0, (28)
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AL

Fig. 3. TIllustration for showing the stability of cluster centroids from the
stability of distortion function.

because the integrand in is a continuous non-negative
function in the region of integration.

Denoting the smallest angles between y and the subspaces
spanned by ), ; and A;; to be 6y, - and 6, ; respectively,

from ( we have ||y||3(cos? Oy, ; = cos® Ox, ;) Ly 0, for
all y. By deﬁmtlon of the reglon B“ > We have 0,,, <
Ox, ;- Since [yl is bounded away from zero and 1nﬁn1ty, if

(cos? 91/)1,,- — cos GAM) L, 0 holds for all y € By ;, then

we have Z(v; ;, A ) L, 0. This is true for all cluster center
pairs as we have shown this for an arbitrary 7 and j. ]

C. Stability of the MLD Algorithm

The stability of the MLD algorithm as a whole, is proved in
Theorem [4.3] from its level-wise stability by using an induction
argument. The proof will depend on the following lemma
which shows that the residuals from two stable clusterings
belong to the same probability space.

Lemma 4.2: When the training vectors for the sub-
dictionaries (clusterings) ¥; and A; are obtained from the
probability space (Y;,3;, P;), and the cluster center pairs
become arbitrarily close to each other as T" — oo, the resid-
ual vectors from both the clusterings belong to an identical
probability space (Y41, Xi+1, Pit1)-

Proof: For the ;' cluster center pair ), j» A1, define
¥, ; and A;; as the projection matrices for their respective
orthogonal complement subspaces ¢l and )\l Define the
sets Dy, . = {y € U, (8 + dB) + ¢, ;o) and Dy, =
{y € AZ7J(5+dB) + A ja}, where —0 < a < oo, B
is an arbitrary fixed vector, not orthogonal to both ¥, ; and
A1, and d@ is a differential element. The residual vector set
for the cluster v, R when y € Dd, i is given by, Ty, €
{¥,;yly € Dy, .}, or equivalently rwl e{¥,;(B+ dﬁ)}
Similarly for the Cluster A, wehavery, € {Ay;(B+dB)}.
For a 2-D case, Figure E] shows the 1-D subspace 1, ;, its
orthogonal complement "Pz j» the set Dy, and the residual
set {;(8 + dB)}.

In terms of probabilities, we also have that Pj(y € Dy, ; ) =
Priai(ry,, € {¥,;(B + dB)}), because the residual set

Y

Fig. 4. The residual set {®¥; ;(B+ dB)}, for the 1-D subspace VP, ;. lying
in its orthogonal complement subspace wf:j.

{®,;(B + dB)} is obtained by a linear transformation of
Dy, .. Here P, and Py, are probability measures defined
on the training data for levels | and [ + 1 respectively.
Similarly, Pl(y € D>\z,j) Pl+1(r)\l,j € {Al,j(/a + dIB)})
When T' — oo, the cluster center pairs become arbitrarily
close to each other, i.e., 4(¢l,ja)\l,j) £, 0, by assumption.
Therefore, the symmetric difference between the sets Dy,
and Dy, ; approaches the null set, which implies that P;(y e
Dy, ;) — Pi(y € Dy, ;) — 0. This implies,

Prii(ry, , € {®;(B+dB)})—
Pryi(ra,,; € {A;(B+dB)}) — 0,

for an arbitrary 3 and dB3, as T — oo. This means that the
residuals of 4, ; and A;; belong to a unique but identical
probability space. Since we proved this for an arbitrary [ and j,
we can say that the residuals of clusterings ¥; and A; belong
to an identical probability space given by (Y41, Xi+1, Pi41)-

|

Theorem 4.3: Given that the training vectors for the first
level are generated from the probability space (Vy,31, P1),
and the norms of training vectors for each level are bounded
as 0 <7 < |yll2 < R < oo, the MLD learning algorithm is
stable as a whole.

Proof: The level-wise stability of MLD was shown in
Section for two cases: (a) when a unique minimizer
exists for the distortion function and (b) when a unique
minimizer does not exist. Lemma proved that the stability
in terms of closeness of distortion functions implied stability
in terms of learned cluster centers. For showing the level-wise
stability, we assumed that the training vectors in level [ for
clusterings ¥; and A; belonged to the same probability space.
However, when learning the dictionary, this is true only for the
first level, as we supply the algorithm with training vectors
from the probability space ()1, %1, Py).

We note that the training vectors for level [+ 1 are residuals
of the clusterings ¥; and A;. Lemma showed that the
residuals of level [ for both the clusterings belong to an
identical probability space (Y41, 21+1, Pi+1), given that the
training vectors of level ! are realizations from the probability

(29)



LEARNING STABLE MULTILEVEL DICTIONARIES FOR SPARSE REPRESENTATIONS 9

| —&— Number of Training Samples = 1000
—# ~Number of Training Samples = 5000
—E&— Nurnber of Training Samples = 10000
| =P ruumbser of Training Samples = 50000
{| —F—Number of Training Samples = 100000 |:

Frobenius Norm between Dictionaries

10 ; ; ; L

P

10 0 10 10
Difference in Number of Training Samples

Fig. 5. Demonstration of the stability behavior of the proposed MLD
learning algorithm. The minimum Frobenius norm between difference of two
dictionaries with respect to permutation of their columns and signs is shown.
The second dictionary is obtained by replacing different number of samples
in the training set, used for training the original dictionary, with new data
samples.

space (V;,X;,P) and T — oc. By induction, this along
with the fact that the training vectors for level 1 belong to
the same probability space ()1, X1, P;), shows that all the
training vectors of both the dictionaries for any level [ indeed
belong to a probability space (), ¥;, P;) corresponding to
that level. Hence all the levels of the dictionary learning are
stable and the MLD learning is stable as a whole. Similar to
K-hyperline clustering, if there are multiple minimizers in at
least one level, the algorithm is stable only with respect to a
change of o(+/T') training samples between the two clusterings
and failts to hold for a change of Q(v/T') samples. ]

D. Generalization Analysis

Since our learning algorithm consists of multiple levels, and
cannot be expressed as an ERM on a whole, the algorithm can
be said to generalize asymptotically if the sum of empirical
errors for all levels converge to the sum of expected errors, as
T — oo. This can be expressed as

1 L T L p
722 0w (i) = D Erlgw]| =0, (0)
=1

=1 =1

where the training samples for level [ given by {y;;}L ; are
obtained from the probability space (};, 3, P;). When
holds and the learning algorithm generalizes, it can be seen
that the expected error for test data which is drawn from the
same probability space as that of the training data, is close to
the average empirical error. Therefore, when the cluster centers
for each level are obtained by minimizing the empirical error,
the expected test error will also be small.

In order to show that @]) holds, we use the fact that
each level of MLD learning is obtained using K-hyperline
clustering. Hence, from , the average empirical distortion
in each level converges to the expected distortion as 7" — oo,

T

1

7 29w (vis) — Enlgw)| 5 0. 31)
=1

-6-Train Data (BSDS) 7
~5-Test Data (Stdimages)

MSE

= = =

@ = &

T T
/V,‘/

LA

B e o - o .

0.2

|
5 10 15 20 25
Number of Rounds in Each Level of RMLD

Fig. 6.  Choosing the number of rounds (R) in RMLD learning. In this
demonstration, RMLD design was carried out using 100,000 samples and
we observed that beyond 10, both the train MSE and the test MSE do not
change significantly.

The validity of the condition in (30) follows directly from the
triangle inequality,

1 L T L
72D 0w (i) = D Erlow]
=1

=1 1i=1

L T
<> %Zg\m(yz,i) —Ep[gw,]|- (32)

=1 i=1

If the MulP coding scheme is used for test data, and
the training and test data for level 1 are obtained from
the probability space ()1, X1, Py), the probability space for
both training and test data in level [ will be (), P).
This is because, both the MulP coding scheme and MLD
learning associate the data to a dictionary atom using the
maximum absolute correlation measure and create a residual
that is orthogonal to the atom chosen in a level. Hence, the
assumption that training and test data are drawn from the same
probability space in all levels hold and the expected test error
will be similar to the average empirical training error.

V. SIMULATION RESULTS

In this section, we present experiments to demonstrate the
stability and generalization characteristics of a multilevel dic-
tionary, and evaluate its use in compressed recovery of images
and subspace learning. Both stability and generalization are
crucial for building effective global dictionaries that can model
patterns in any novel test image. Although it is not possible
to demonstrate the asymptotic behavior experimentally, we
study the changes in the behavior of the learning algorithm
with increase in the number of samples used for training.
Compressed recovery is a highly relevant application for global
dictionaries, since it is not possible to infer dictionaries with
good reconstructive power directly from the low-dimensional
random measurements of image patches. It is typical to employ
both ¢; minimization and greedy pursuit methods for recover-
ing images from their compressed measurements. Though ¢;
minimization incurs higher computational complexity, it often
provides improved recovery performance when compared to
greedy approaches. Hence, it is important to compare its
recovery performance to that of the MLD that uses a simple
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Fig. 7. Reconstruction of novel test data using MLD and RMLD dictionaries
for the case 7" = 100, 000. The approximation error is plotted against the
number of levels used for reconstruction with both the dictionaries.

greedy pursuit. Subspace learning is another application that
can benefit from the use of multilevel dictionaries. In subspace
learning, it is common to obtain a linear embedding from the
training data, and apply it to novel test data for dimensionality
reduction, classification, and visualization. These approaches
can be unsupervised (eg. Principal Component Analysis, Lo-
cality Preserving Projections) or can use the class label infor-
mation while learning the embedding (eg. Linear Discriminant
Analysis, Local Discriminant Embedding). Several subspace
learning algorithms can be unified under the framework of
graph embedding [48]], wherein an undirected graph describing
the relation between the data samples is provided as the input.
We propose to use graphs constructed based on sparse codes,
from a multilevel dictionary, for subspace learning in both
supervised and unsupervised settings.

All simulations for stability/generalization, and compressed
recovery use dictionaries trained on image patches from
the Berkeley Segmentation Dataset (BSDS) [46]]. The BSDS
dataset contains a total of 400 images and the number of
patches used in our experiments vary between 5000 and
400,000. The images were converted to grayscale and no
other preprocessing was performed on these images. We used
patches of size 8 x8 and no noise was added to the patches. For
evaluating the performance of the dictionaries, we considered 8
standard images (Barbara, Boat, House, Lena, Couple, Finger-
print, Man, Peppers). For the subspace learning simulations,
we used the Forest Covertype dataset [49] which consists of
581,012 samples belonging to 7 different classes. As per the
standard procedure, we used the first 15,120 samples (2160
per class) for training and the rest for testing.

A. Stability

In order to illustrate the stability characteristics of MLD
learning, we setup an experiment where we consider a mul-
tilevel dictionary of 4 levels, with 8 atoms in each level.
We trained multilevel dictionaries using different number of
training patches 7'. As we showed in Section asymptotic
stability is guaranteed when the training set is changed by not
more than o(v/T') samples. The inferred dictionary atoms will
not vary significantly, if this condition is satisfied. We fixed
the size of the training set at different values 7' = {1000,

0.8

MSE

-©-MLD
-8-RMLD

0.6-

0.4

e
0.2 )\E\E\‘E\aﬂ

i
100,000
Number of Training Samples

10,000

Fig. 8. Demonstration of the generalization characteristics of the proposed
MLD and RMLD algorithms. We plot the MSE obtained by representing
patches from the test dataset, using dictionaries learned with different number
of training patches.

5000, 10,000, 50,000, 100,000} and learned an initial set
of dictionaries using the proposed algorithm. The second set
of dictionaries were obtained by replacing different number
of samples from the original training set. For each case of
T, the number of replaced samples was varied between 100
and 7. For example, when 7' = 10,000, the number of
replaced training samples were 100, 1000, 5000, and 10, 000.
The amount of change between the initial and the second set
of dictionaries was quantified using the minimum Frobenius
norm of their difference with respect to permutations of their
columns and sign changes. In Figure [5| we plot this quantity
for different values of T' as a function of the number of
samples replaced in the training set. For each case of T, the
difference between the dictionaries increases as we increase
the replaced number of training samples. Furthermore, for a
fixed number of replaced samples (say 100), the difference
reduces with the increase in the number of training samples,
since it becomes closer to asymptotic behavior.

B. Generalization

Generalization of a dictionary learning algorithm guarantees
a small approximation error for a test data sample, if the
training samples are well approximated by the dictionary. In
order to demonstrate the generalization characteristics of MLD
learning, we designed dictionaries using different number of
training image patches, of size 8 x 8, and evaluated the sparse
approximation error for patches in the test dataset. The test
dataset consisted of 120,000 patches chosen randomly from
the 8 standard images. For multilevel learning, we fixed the
number of levels at 32, and used the approach proposed in
Section [[II=Cl to estimate the number of atoms needed in each
level (a« = 0.5). Similarly, we fixed the number of levels at
32 for the RMLD learning. Since RMLD learning does not
require careful choice of the number of atoms in each level, we
fixed Ky, = 32. Though learning multiple sets of atoms in each
level can lead to improved generalization, the benefit seems
to level off after a certain number of rounds. As an example,
let us consider the case where 7' = 100,000 and vary the
number of rounds in RMLD between 2 and 25. As described
in Section [[II-E] increasing the number of rounds results in
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higher computational complexity while evaluating the sparse
codes. Figure [0] illustrates the MSE on the training data and
the test data obtained using RMLD with different number of
rounds in each level. Since the MSE did not vary significantly
beyond 10 rounds, we fixed R = 10 in our reconstruction
experiments.

Figure [/| compares the approximation error (MSE) obtained
for the test dataset with MLD and RMLD (10 rounds) re-
spectively, for the case of 7' = 100, 000. The figure plots the
MSE against the number of levels used in the reconstruction
algorithm. Figure [§] shows the approximation error (MSE)
for the test image patches obtained with MLD and RMLD
dictionaries learned using different number of training samples
(varied between 5000 and 400,000). Since we proved in
Section the MLD learning generalizes asymptotically,
we expect the approximation error for the test data to reduce
with the increase in the size of the training set. From both these
figures, it is clear that the RMLD scheme results in improved
approximation of novel test patches when compared to MLD.

C. Application: Compressed Recovery

In compressed recovery, an image is recovered using the
low-dimensional random projections obtained from its patches.
The performance of compressed recovery based on random
measurement systems is compared for MLD, RMLD and
online dictionaries. For the case of online dictionaries learned
using the algorithm described in [[19], we report results ob-
tained using both ¢; minimization and the OMP algorithm.
Sensing and recovery were performed on a patch-by-patch
basis, on non-overlapping patches of size 8 x 8. The multilevel
dictionaries were obtained with the parameters described in the
previous section, using 400, 000 training samples. The online
dictionary was trained using the same training set, with the
number of atoms fixed at 1024. The measurement process can
described as x = ®W¥a + n where ¥ is the dictionary, ®
is the measurement or projection matrix, 17 is the AWGN
vector added to the measurement process, x is the output
of the measurement process, and a is the sparse coefficient
vector such that y = Wa. The size of the data vector y is
M x 1, that of ¥ is M x K, that of the measurement matrix
® is N x M, where N < M, and that of the measured
vector x is N x 1. The entries in the random measurement
matrix were independent realizations from a standard normal
distribution. We recover the underlying image from its com-
pressed measurements, using online (OMP, ¢;), MLD, and
RMLD dictionaries. For each case, we present average results
from 100 trial runs, each time with a different measurement
matrix. The recovery performance was evaluated for the set of
standard images and reported in Table [l Figure [9)] illustrates
the recovered images obtained using different dictionaries with
8 random measurements under noise (SNR = 15 dB). We
observed that the MulP reconstruction using the proposed
MLD dictionary resulted in improved recovery performance,
at different measurement conditions, when compared to using
greedy pursuit (OMP) with the online dictionary. However,
both the MulP reconstruction for RMLD and ¢;-based re-
construction with the online dictionary perform significantly

better than the other two approaches. In particular, the RMLD
reconstruction achieves improved recovery at reduced number
of measurements (8, 16) and in presence of noise.

D. Application: Subspace Learning

In this section, we evaluate the use of sparse codes obtained
with multilevel dictionaries in unsupervised and supervised
subspace learning. In particular, we use the locality preserv-
ing projections (LPP) [50] and local discriminant embedding
(LDE) [51]] approaches to perform classification on the Forest
Covertype dataset. LPP is an unsupervised embedding ap-
proach which computes projection directions such that the
pairwise distances of the projected training samples in the
neighborhood are preserved . Let us define the training data
as {y;|y; € RM}L . An undirected graph G is defined, with
the training samples as vertices, and the similarity between
the neighboring training samples are coded in the affinity
matrix W € RT*T. In the proposed setup, we learn a
dictionary using the training samples and compute the affinity
matrix W = |ATA|, where A is the matrix of sparse
coefficients. Following this, we sparsify W by retaining only
the 7 largest similarities for each sample. Note that this
construction is different from the ¢; graph construction in
[16] and computationally efficient. Let us denote the graph
Laplacian as L = D — W, where D is a degree matrix with
each diagonal element containing the sum of the corresponding
row or column of W. The d projection directions for LPP,
V € RMXd where d < M, can be computed by optimizing

trace(VIYLY V).

min

(33)
trace(VTYDYTV)=I

Here Y is a matrix obtained by stacking all data samples
as its columns. The embedding for any data sample z can
be obtained as z = V”y. In a supervised setting, we define
the intra-class and inter-class affinity matrices, W and W'
respectively, as

Ta;| ifm; =m; AND j € N, (i
iy — lala;| if w .7rj j € N-(3), (34)
0 otherwise,
Ta;| if i AND j € N, (i),
ng _ laj a;| if m 7£.7TJ j (7) (35)
0 otherwise,

where 7; is the label of the i training sample, and N (i)
and N/ (i) are the sets that contain the indices of 7 intra-
class and 7' inter-class neighbors of the i" training sample.
The neighbors of a sample ¢ are sorted based on the order of
decreasing absolute correlations of their sparse code with a;.
Using these affinity matrices, local discriminant embedding is
performed by solving

Tr[VIXTL/'XV]

Tr[VIXTLXV] (36)

argmax
\Y%

For both the subspace learning approaches, we varied the
number of training samples between 250 and 2160 per class
and fixed the embedding dimension d = 30. For MLD and
RMLD learning, we fixed the number of levels at 32 and
the number of rounds, R, for RMLD was fixed at 30. For
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TABLE 11
PSNR (DB) OF THE IMAGES RECOVERED FROM COMPRESSED MEASUREMENTS OBTAINED USING GAUSSIAN RANDOM MEASUREMENT MATRICES.
RESULTS OBTAINED WITH THE ONLINE (OMP), ONLINE (¢1), RMLD (MULP), AND MLD (MULP) ALGORITHMS ARE GIVEN IN CLOCKWISE ORDER
BEGINNING FROM TOP LEFT CORNER. HIGHER PSNR FOR EACH CASE IS INDICATED IN BOLD FONT.

| SNR (dB) ” # Measurements ” Boat ” House ” Lena ” Man ” Peppers

3 21.43 | 2232 || 2243 | 23.36 || 23.13 | 24.05 || 22.23 | 23.13 19.08 | 20.01

21.60 | 22.43 || 22.86 | 23.76 || 23.52 | 24.39 || 22.43 | 23.28 || 19.55 | 20.43

0 16 22.19 | 23.19 || 23.31 | 24.39 || 24.02 | 25.03 || 22.98 | 2397 || 1997 | 21.05
22.67 | 23.60 || 24.18 | 25.15 || 24.76 | 25.75 || 23.51 | 24.46 || 20.96 | 21.95

1 23.50 | 24.18 || 24.94 | 2548 || 25.54 | 26.08 || 24.26 | 2495 || 21.71 | 22.14

24.18 | 25.15 || 2594 | 27.03 || 2646 | 27.54 || 25.02 | 26.02 || 22.87 | 23.90

3 22777 | 23.65 || 23.95 | 24.97 || 24.61 | 25.60 || 23.58 | 24.46 || 20.61 | 21.68

23.48 | 2445 || 25.11 | 26.14 || 25.69 | 26.70 || 24.34 | 25.31 || 21.90 | 22.90

15 16 2394 | 26.33 || 25.36 | 28.65 || 26.03 | 28.92 || 24.74 | 27.08 | 22.28 | 2543
2529 | 26.56 || 27.43 | 28.71 || 27.83 | 29.12 || 26.09 | 27.36 || 24.34 | 25.60

0 26.33 | 30.19 || 28.16 | 33.59 || 28.55 | 33.17 || 26.48 | 30.64 || 25.21 | 29.78

28.13 | 29.96 || 30.77 | 33.41 || 30.88 | 32.94 || 28.81 | 30.44 || 27.48 | 29.47

3 22.82 | 23.73 || 24.01 | 25.09 || 24.66 | 25.70 || 23.63 | 24.54 || 20.67 | 21.83

23.62 | 24.56 || 2527 | 26.30 || 25.85 | 26.83 || 24.47 | 2542 || 22.05 | 23.04

25 16 24.00 | 26.57 || 25.44 | 29.11 || 26.10 | 29.30 || 24.81 | 27.32 || 22.37 | 25.87
25.55 | 26.84 || 27.80 | 29.23 || 28.15 | 29.48 || 26.35 | 27.63 || 24.68 | 25.99

1 26.38 | 30.77 || 28.71 | 34.81 || 28.61 | 33.98 || 27.13 | 31.15 || 25.97 | 30.74

28.72 | 3045 || 31.67 | 34.57 || 31.63 | 33.67 || 29.37 | 30.87 || 28.28 | 30.54

(a) Online-OMP (24.73 dB)

(b) Online-¢; (25.69 dB)

Fig. 9.
each case the PSNR of the recovered image is also shown.

comparison, we use learned iterative dictionaries of size 1024,
using ¢; minimization in the SPAMS toolbox and the
Lagrangian dual method (SC-LD) . Finally, classification
was performed using a simple 1—nearest neighbor classifier.
Table [l and Table [V] show the classification accuracies
obtained using the different dictionaries, for both the subspace
learning approaches. As it can be observed, graphs constructed
with the proposed multilevel dictionaries provide more dis-
criminative embeddings compared to the other approaches.

VI. CONCLUSIONS

We presented a multilevel learning algorithm to design
generalizable and stable global dictionaries for sparse rep-
resentations. The proposed algorithm uses multiple levels
of 1—-D subspace clustering to learn dictionaries. We also
proposed a method to infer the number of atoms in each level,
and provided an ensemble learning approach to create robust

(c) MLD-MulP (26.02 dB)  (d) RMLD-MulP (27.41 dB)

Compressed recovery of images from random measurements (N = 8, SNR of measurement process = 15dB) using the different dictionaries. In

dictionaries. We proved that the learning algorithm converges,
exhibits energy hierarchy, and is also generalizable and stable.
Finally, we demonstrated the superior performance of MLD
in applications such as compressive sensing and subspace
learning. Future research could include providing an online
framework for MLD that can work with streaming data, and
also developing hierarchical dictionaries that are optimized for
robust penalties on reconstruction error.
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