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Sparse Density Estimation on the Multinomial Manifold
Xia Hong, Junbin Gao, Sheng Chen, and Tanveer Zia

Abstract— A new sparse kernel density estimator is introduced based
on the minimum integrated square error criterion for the finite
mixture model. Since the constraint on the mixing coefficients of the
finite mixture model is on the multinomial manifold, we use the
well-known Riemannian trust-region (RTR) algorithm for solving this
problem. The first- and second-order Riemannian geometry of the
multinomial manifold are derived and utilized in the RTR algorithm.
Numerical examples are employed to demonstrate that the proposed
approach is effective in constructing sparse kernel density estimators
with an accuracy competitive with those of existing kernel density
estimators.

Index Terms— Minimum integrated square error (MISE),
multinomial manifold, probability density function (pdf), sparse
modeling.

I. INTRODUCTION

The probability density function (pdf) estimation problem
is fundamental to many data analysis and pattern recognition
applications [1]–[6]. The identification of the finite mixture model
is usually based on the expectation-maximization (EM) algorithm [7],
which provides the maximum likelihood (ML) estimator of the
mixture model’s parameters, while the number of mixtures is
preset. This associated ML optimization is generally a highly
nonlinear optimization process requiring extensive computation.
While the EM algorithm for Gaussian mixture model enjoys
an explicit iterative form [8], it is also known that this EM
algorithm-based ML estimation has a low convergence speed.
To tackle the associated numerical difficulties, it is often required
to apply resampling techniques [9], [10]. Alternatively, the Parzen
window (PW) estimator [11] can be regarded as a special case of
the finite mixture model [1], in which the number of mixtures is
equal to that of the training data samples and all the mixing weights
are equal. The point density estimate using the PW estimator for a
future data sample can be computationally expensive if the number
of training data samples is very large.

There is a considerable interest in research on sparse pdf estima-
tion. The support vector machine (SVM) density estimation technique
has been proposed in [12] and [13]. The optimization in the SVM
method is to solve a constrained quadratic optimization problem. This
yields the sparsity-inducing property, i.e., at the optimality, many
kernels’ weights are driven to zeros. Alternatively, a novel regression-
based pdf estimation method has been introduced [14], in which
the empirical cumulative distribution function (cdf) is constructed,
in the same manner as in the SVM density estimation approach,

Manuscript received July 2, 2014; revised January 3, 2015; accepted
January 4, 2015. This work was supported by the Australian Research Council
through the Discovery Project under Grant DP130100364.

X. Hong is with the School of Systems Engineering, University of Reading,
Reading RG6 6AY, U.K. (e-mail: x.hong@reading.ac.uk).

J. Gao and T. Zia are with the School of Computing and Mathematics,
Charles Sturt University, Bathurst, NSW 2795, Australia (e-mail:
jbgao@csu.edu.au; tzia@csu.edu.au).

S. Chen is with the Department of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, U.K., and also with
the Faculty of Engineering, King Abdulaziz University, Jeddah 21589,
Saudi Arabia (e-mail: sqc@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TNNLS.2015.2389273

to be used as the desired response. The orthogonal forward
regression (OFR) approach is an efficient supervised regression model
construction method [15]. The OFR method has been combined with
a leave-one-out test score and local regularization [16], [17]. The
regression-based idea of [14] and the approach in [16] and [17] have
been extended to yield a new OFR-based sparse density estimation
algorithm [18] with a performance comparable with that of the
PW estimator. In [14] and [18], the regressors are the cdfs of
the kernels and the target response is the empirical cdf. A simple
and viable alternative approach has been proposed to use kernels
directly as regressors by adopting the PW estimator as the target
response [19].

The desirable property of sparsity inducing also happens in the
interesting approach of reduced set density estimator (RSDE) [20],
based on the minimization of the integrated square error between
the estimator and the true density [2], [20], [21] and they introduced
two efficient optimization algorithms. Our extensive experience has
shown that all the sparse density estimators [12], [13], [18]–[20]
discussed here are capable of automatically producing sparse
pdf estimates with a performance comparable with that of the
PW estimator, but the density estimators of [18]–[20] produce much
sparser estimates than the SVM-based density estimator. Recently, a
new sparse kernel density estimator has been introduced for sparse
kernel density estimation with very low computational cost, based on
the MISE and the forward constrained regression (FCR) [22]. In [23]
a recursive algorithm, referred to as the FCR-MISE algorithm, has
been proposed for the selection of significant kernels one at time
using the minimum integrated square error (MISE) criterion for both
kernel selection and the estimation of mixing weights.

Recent years have witnessed great development in Riemannian
optimization algorithms on many types of matrix manifolds, such
as the Stiefel manifold, Grassmann manifold, and the manifold
of positive definite matrices [24, Sec. 3.4]. Since Riemannian
optimization is directly based on the curved manifolds, one can
eliminate those constraints such as orthogonality to obtain an
unconstrained optimization problem that, by construction, will use
only feasible points. This allows one to incorporate Riemannian
geometry in the resulting optimization problems, thus producing far
more accurate numerical results. The recent successful applications of
Riemannian optimization in machine learning, computer vision, and
data mining, citing a few, include fixed low-rank optimization [25],
Riemannian dictionary learning [26], and computer vision tasks [27].

Against this background, this brief introduces a new sparse kernel
density estimator based on the MISE criterion for the finite mixture
model. Recognizing that the constraint on the mixing coefficients
of the finite mixture model is the multinomial manifold, the
well-known Riemannian trust-region (RTR) algorithm can be readily
used for solving this problem. Clearly, the first- and second-order
Riemannian geometry of the multinomial manifold is required and
this is developed in this contribution. The proposed algorithm is
referred to as the RTR-MISE algorithm. Numerical examples are
employed to demonstrate that RTR-MISE is effective in constructing
sparse kernel density estimators with an accuracy competitive with
those of existing kernel density estimators.

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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II. SPARSE DENSITY ESTIMATION USING MINIMAL

INTEGRATED SQUARE ERROR

Given a finite data set DN = {x j }N
j=1 consisting of N data

samples, where the data vector x j ∈ R
m follows an unknown

pdf p(x), the problem under study is to find a sparse approximation
of p(x) based on DN . A general kernel-based density estimator
of p(x) is given by

p̂(x; β, ρ) =
N∑

j=1

β j Kρ(x, x j ) (1)

s.t.

β j ≥ 0, 1 ≤ j ≤ N, and βT 1 = 1 (2)

where β j ’s are the kernel weights, β = [β1, β2, . . . , βN ]T , and
1 is the vector whose elements are all equal to one, while
Kρ(x, x j ) is a chosen kernel function with the kernel centre
vector x j and a suitable kernel width ρ. In this brief, we use the
Gaussian kernel of

Kρ(x, x j ) = 1

(2πρ2)m/2 exp

(
−‖x − x j ‖2

2ρ2

)
(3)

but many other kernels can also be used. The well-known
PW estimator, denoted by p̂Par(x), is a special case of (1) with
β j = (1/N), ∀ j .

The log-likelihood for β can be formed using observed data DN ,
denoted by log L , as

log L = 1

N

N∑

i=1

log p̂(xi ;β, ρ)

= 1

N

N∑

i=1

log

⎛

⎝
N∑

j=1

β j Kρ(xi , x j )

⎞

⎠. (4)

Note that by the law of large numbers, the log-likelihood of (4)
tends to

∫

�m
p(x) log p̂(x; β, ρ)dx (5)

as N → ∞ with probability one. Equation (4) is simply the
negative cross-entropy or divergence between the true density p(x)

and the estimator p̂(x; β, ρ). It can be shown that the PW estimator
βPar

j = (1/N), ∀ j can be obtained as an optimal estimator via the
maximization of (4) with respective to β subject to the constraints
β j ≥ 0, j = 1, . . . , N , βT 1 = 1.

The MISE between a pdf estimator and the true density is a
classical goodness of fit criterion of probability density estimation,
both for nonparametric [2], [20] and for parametric models [21]. The
argument β̂ which provides the MISE is given by

β̂ = argminβ

∫
(p(x) − p̂(x; βN , ρ))2dx

= argminβ

{∫
p̂2(x; βN , ρ)dx − 2E[ p̂(x; βN , ρ)]

}
(6)

where the term
∫
(p(x))2dx has been dropped from the cost function

due to its independence to β. E[•] denotes the expectation with
respect to the true density p(x). Substituting (1) into (6), we have

the MISE estimator given as

β̂ = argminβ

⎧
⎨

⎩

N∑

i=1

N∑

j=1

βiβ j

∫
Kρ(x, xi )Kρ(x, x j )dx

−2
N∑

j=1

β j E[Kρ(x, x j )]
⎫
⎬

⎭

= argminβ

{
1

2
βT Qβ − βT p

}
(7)

where Q = {qi, j } ∈ �N×N is a matrix with its elements qi, j as
K√

2ρ
(xi , x j ) and p = [ p̂Par(x1), . . . , p̂Par(xN )]T ∈ �N×1 is a

vector with the elements of p̂Par(x j ) = (1/N)
∑N

i=1 Kρ(xi , x j ),
which is the Parzen pdf estimation for point x j using kernel (3). Note
that in (7), the identity

∫
Kρ(x, xi )Kρ(x, x j )dx = K√

2ρ
(xi , x j )

was applied.
As discussed in [2] and [20], the above MISE estimator over the

constraint (2) will end up setting many β′
j s associated with low

density p̂Par(x j ) as zeros. However, the resultant estimator may
still not be very sparse. In linear-in-the-parameters modeling and
kernel methods, the number of terms in the model is referred as
the l0-norm of the parameter vector. Minimizing such quantity is
related to variable and feature selection, ensuring model sparsity and
generalization [28]. Because of the intractability in the minimization
of the l0-norm, there is considerable research on the approximation
schemes on the l0-norm [28] and the associated computational
complexities. It was analyzed that when combined with the convexity
constraint of the kernel parameter vector, model sparsity can be
achieved by maximizing of the l2-norm of the parameters [29]. Thus,
our optimization problem is given as

min
β∈PN

{
F(β) = 1

2
βT Cβ − βT p

}
(8)

s.t. β j ≥ 0, 1 ≤ j ≤ N, and βT 1 = 1 (9)

where C = Q − δ I , I is the identity matrix. δ is zero or a very
small preset positive number that directly controls the sparsity. The
larger the value δ, the sparser the model.

III. MULTINOMIAL MANIFOLD

In this section, we briefly introduce the concept of multinomial
manifold and the necessary ingredients used in the retraction-based
framework of Riemannian optimization. The main notations on
Riemmann geometry on multinomial manifold in this section is
summarized in Table I as a reference. We refer the readers to [24]
for the general concepts of manifolds.

The multinomial manifold (also called a simplex) is the parameter
space of the multinomial distribution defined by

P
N = {

β = [β1, . . . , βN ]T ∈ �N :
β j > 0, 1 ≤ j ≤ N, βT 1 = 1

}
. (10)

The multinomial manifold P
N is an embedded Riemannian subman-

ifold of the Euclidean space �N equipped with the so-called Fisher
information metric g(uβ , vβ) as [30], [31]

g(uβ , vβ ) =
N∑

i=1

ui vi

βi
(11)

where uβ , vβ ∈ TβP
N ⊂ �N are tangent vectors to P

N at β,
with their i th elements defined as ui and vi , respectively. The inner
product on P

N as defined in (11) determines the geometry, such as
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TABLE I
NOTATIONS FOR MULTINOMIAL MANIFOLD

distance, angle, and curvature on P
N . Note that the tangent space

TβP
N at element β can be described by

TβP
N = {

uβ : uT
β 1 = 0

}
. (12)

A. Riemannian Gradient

Let the Riemannian gradient of a scalar function F(β) on P
N

be denoted by gradF(β), and its classical gradient as seen in the
Euclidean space as GradF(β). Its gradient in �N endowed with
the metric g is scaled as GradF(β) 
 β, where 
 is element-wise
multiplication. We then have [31]

gradF(β) = Projβ (GradF(β) 
 β) (13)

where Projβ(z) is the orthogonal projection into tangent space, which
can be computed as

Projβ (z) = z − αβ (14)

where α = zT 1.
As a canonical way of identifying nearby tangent spaces, the

Riemannian connection is typically given in the form of a covariant
derivative which specifies how a tangent vector vβ varies along
the direction of another tangent vector uβ on the manifold P

N.
To compute the Riemannian Hessian [24, Sec. 5.5], we need to use
the notion of Riemannian connection on the manifold P

N denoted
by ∇uβ vβ . Since P

N is a Riemannian submanifold of �N endowed
with the metric g, the connection can be computed via

∇uβ vβ = Projβ(∇uβ vβ ) (15)

where ∇uβ vβ is the connection on the manifold �N endowed with
the metric g. The connection ∇uβ vβ in �N is computed using the
Koszul formula, and after a few steps of computations it admits of
matrix characterization [32]

∇uβ vβ = Dvβ [uβ ] − 1

2
(uβ 
 vβ ) � β (16)

where � denotes the elementwise division. Dvβ [uβ ] is the Euclidian
direction derivative of vβ in the direction of uβ .

B. Riemannian Hessian

The Riemannian Hessian of F(β) is defined as the connection

HessF(β)[uβ ]
= ∇uβ gradF(β)

= Projβ

(
DgradF(β)[uβ ] − 1

2
(uβ 
 gradF(β)) � β

)
(17)

where DgradF(β)[uβ ] is the Euclidean gradient directional deriv-
ative of the Riemannian gradient in the direction of uβ ∈ TβP

N ,

which is calculated as

DgradF(β)[uβ ]
= DProjβ(GradF(β) 
 β)[uβ ]
= DGradF(β) 
 β[uβ ] − D(GradF(β) 
 β)T 1β[uβ ]
= DGradF(β)[uβ ] 
 β + GradF(β) 
 uβ

−(GradF(β) 
 β)T 1uβ − D(GradF(β) 
 β)T 1[uβ ]β
= DGradF(β)[uβ ] 
 β + GradF(β) 
 uβ

−(GradF(β) 
 β)T 1uβ − (GradF(β) 
 uβ )T 1β

−(DGradF(β)[uβ ] 
 β)T 1β (18)

by making use of (14) and (15), where DGradF(β)[uβ ] is the
Euclidean directional derivative of the Euclidean gradient GradF(β)
in the direction uβ ∈ TβP

N .

C. Retraction Mapping

An important concept in the recent retraction-based framework of
Riemannian optimization is retraction mapping [24, Sec. 4.1]. The
exponential map Expβ is the canonical choice for the retraction
mapping; however, in this brief, we propose using the following
standard approximation as the retraction mapping:

βt = Rβ (tuβ) := (β 
 exp(t (uβ � β)))
(
1T (β 
 exp(t (uβ � β)))

)

where t is called the step size, exp(·) is an operator applied to
matrices element by element. The retraction mapping is used to
locate the next iterate on the manifold along a specified tangent
vector, such as a search direction in line search in Newton’s
algorithm or the suboptimal tangent direction in the trust-region
algorithm, see [24, Ch. 7].

IV. SPARSE DENSITY ESTIMATION USING RIEMANNIAN

TRUST-REGION ALGORITHM

Since the constraint set of (2) is the multinomial manifold, our
Riemannian optimization problem is simply formulated as

min
β∈PN

{
F(β) = 1

2
βT Cβ − βT p

}
. (19)

The RTR algorithm retains the superlinearly convergent properties
of the Euclidean trust-region method of a second-order algorithm,
and it is suitable for large-scale optimization on Riemannian mani-
folds [33], [34]. Each iteration consists of two steps: 1) approxi-
mating the solution of the so-called trust-region subproblem and
2) computing a new iterate based on a retracting mapping. The trust
region subproblem is given by

min
uβ∈TβPN ,‖uβ‖≤�

F(β) + g(gradF(β), uβ )

+1

2
g(HessF(β)[uβ ], uβ ) (20)
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Fig. 1. Riemannian trust-region algorithm for sparse density estimation,
referred to as RTR-MISE algorithm.

where � is an appropriate trust-region radius and ‖uβ‖ = g(uβ , uβ ).
For our objective function, it is easy to check that Euclidean
gradient GradF(β) and Euclidean Hessian DGradF(β)[uβ ] can be
calculated as

GradF(β) = Cβ − p (21)

and

DGradF(β)[uβ ] = Cuβ (22)

from which the Riemannian gradient and Hessian of the objective
function F(β) on the multinomial manifold can be calculated accord-
ing to (13), (17), and (18).

With all the ingredients already, we can form the following
algorithm for sparse density estimation in Fig. 1. The RTR algorithm
is well implemented in the Manifold Optimization Toolbox Manopt
http://www.manopt.org [35].

V. SIMULATION STUDY

Four numerical examples are provided in this section, with the
first two as simulated probability density estimation experiments.
The proposed approach is applied to solve the classification problem
in the other two examples. In each of the first two examples, a
data set of N = 500 points was randomly drawn from a known
distribution p(x) and used to construct the PDF p̂(x; β, ρ) using
the proposed RTR-MISE approach. A separate test data set of
Ntest = 10 000 points was used for evaluation according to

L1 = 1

Ntest

Ntest∑

k=1

|p(xk ) − p̂(xk ;β, ρ)|. (23)

The experiment was repeated for 100 different random runs. The
other five methods used for comparison for the first two exam-
ples are: 1) the well-known PW estimator; 2) the sparse density
construction (SDC) algorithm [18]; 3) the sparse kernel density
construction (SKD) algorithm [19]; 4) the RSDE with multiplicative
nonnegative quadratic programming (RSDE-MNQP) [20]; and 5) the
FCR-MISE algorithm [23]. We briefly point out the basic ideas in the
above algorithms 2)–5). The SDC algorithm [18] is a regression-based
pdf estimation method, in which the empirical cdf is constructed
and used as the desired response. The sparse pdf is constructed
by selecting one kernel forwardly. The SKD algorithm is also a
regression-based pdf estimation method, in which the PW estimator is

TABLE II
PERFORMANCE OF KERNEL DENSITY ESTIMATES FOR

(a) EXAMPLE 1 AND (b) EXAMPLE 2

constructed and used as the desired response [19]. The RSDE-MNQP
algorithm solves problem (7) using the MNQP algorithm [20]. Also
aimed at solving (7), the FCR-MISE algorithm [23] formulates the
density estimation in a forward constrained regression manner by
selecting one kernel forwardly. We also point out that MISE cost
function is used in PW estimator using grid search for an optimal
kernel width. However, the kernel width for the other algorithm needs
to be preset since its optimization process will become computational
prohibitive.

Example 1: The density to be estimated for this 2-D example was
given by the mixture of two densities of a Gaussian and a Laplacian,
as defined by

p(x) = 1

4π
exp

(
− (x1 − 2)2

2

)
exp

(
− (x2 − 2)2

2

)

+0.35

8
exp(−0.7|x1 + 2|) exp(−0.5|x2 + 2|). (24)

Example 2: The density to be estimated for this 6-D example was
defined by

p(x) = 1

3

3∑

i=1

1

(2π)3
√

det(�i )

× exp

(
−1

2
(x − μi )

T �−1
i (x − μi )

)
(25)

with μ1 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]T , μ2 = [−1.0, −1.0, −1.0,
−1.0, −1.0, −1.0]T , μ3 = [0, 0, 0, 0, 0, 0]T, �1 = diag{1.0, 2.0, 1.0,
2.0, 1.0, 2.0} �2 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}, and
�3 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}.

The results for Examples 1 and 2 were listed in Table II(a) and (b),
respectively. For the PW pdf estimator, the kernel width was
determined by MSIE [2]. For RSDE-MNQP, FCR-MISE, and
the proposed RTR-MISE algorithm, the kernel width was empiri-
cally set. The results for SDC, SKD, and FCR-MISE are quoted
from [18], [19], and [23], respectively. For the proposed RTR-MISE
algorithm, we set δ = 10−5 for both examples. It is seen that the
proposed algorithm can construct sparse kernel density estimators
with an accuracy competitive with those of a PW estimator and other
existing sparse kernel density estimators.

Provided a training data set of multiclass classification data
sets C j , j = 1, . . . , M , respectively, the proposed method is readily
applicable to the estimation of M conditional probability density
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TABLE III
PERFORMANCE COMPARISON FOR EXAMPLE 3

functions p̂(x; βC j
, ρC j |C j ), respectively. The Bayes decision rule

given by

x belongs to Ck, k = arg max
j

p̂(x; βC j
, ρC j |C j ) (26)

can be applied to the test data set to obtain the corresponding clas-
sification error rate as demonstrated in the following two examples.

Example 3: 2-D synthetic data set [36]. The data set was taken from
http://www.stats.ox.ac.uk/PRNN/. The training set has 250 points
with 125 points for each class (class 0: C0 and class 1: C1). The
test set has 1000 points with 500 points for each class. The optimal
Bayes error rate based on the true probability distribution is known
to be 8%. For the same data set, the test error rate of 10.6% and 9.3%
have been reported for a support vector machine using 38 Gaussian
kernels and a relevance vector machine, using four Gaussian kernels,
respectively [37]. Table III lists the classification results obtained
by the three kernel density estimators, the PW and FCR-MISE, and
the proposed RTR-MISE algorithm. The widths for these algorithms
were set empirically by minimizing the test error rate. We point
out that the proposed RTR-MISE algorithm selects only two or
three kernels for conditional pdf estimator for each class, while the
PW-based conditional pdf of each class has 125 kernels using the
full training data set. Clearly, the proposed RTR-MSIE algorithm has
a classification performance comparable with those of PW, with all
being very close to the known optimal Bayes error rate.

Example 4: Optical recognition of handwritten digits [38]. The data
set was created by extracting normalized bitmaps of handwritten dig-
its from a preprinted form. From a total of 43 people, 30 contributed
to the training set and different 13 to the test set. 32 × 32 bitmaps
are divided into nonoverlapping blocks of 4 × 4 and the number of
on pixels are counted in each block. This generates an input matrix
of 8 × 8, resulting in 64 input features. The produced data set has
10 classes, and the training/test set has 3823 and 1797 data points,
both with balanced class distribution. The accuracy on the testing
sets [38] with k-nn using Euclidean distance as the metric ranges
from 97.38% for k = 2% to 98% for k = 1. We extract training data
set for each class and applied the proposed algorithm with/without
initialization, respectively, as p̂(x; βC j

, ρC j |C j ), with ρC j = 5.
Equation (26) is used to obtain the predicted class labels.
In each case (with/without) initialization the classification accuracy
achieved 98%, which is comparable with that of the nearest neighbor
approach (k = 1). For this example, when equal weighting
initialization is applied, the resultant models are actually obtained as
nonsparse PW estimators. However, in the case of no initialization,
i.e., when the default option is set in the RTR algorithm, 10 sparser
models are obtained using 258/376, 263/389, 260/380, 263/389,
262/387, 258/376, 258/377, 262/387, 260/380, and 258/382 of the
data points.

VI. CONCLUSION

We have introduced a new sparse kernel density estimator for
the finite mixture model based on the MISE criterion. The recently
established RTR algorithm is used by exploiting the multinomial
manifold, which forms the parameter search space of the mixing
coefficients of the finite mixture model. We have derived the
first- and second-order Riemannian gradients on multinomial
manifold that are needed to implement the RTR algorithm.

Numerical examples are employed to demonstrate the effectiveness
of the proposed approach with an accuracy competitive with those of
existing kernel density estimators.
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