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Abstract—In this paper, we investigate the global exponential
stability for complex-valued recurrent neural networks with asyn-
chronous time delays by decomposing complex-valued networks
to real and imaginary parts and construct an equivalent real-
valued system. The network model is described by a continuous-
time equation. There are two main differences of this paper
with previous works: (1), time delays can be asynchronous, i.e.,
delays between different nodes are different, which makes our
model more general; (2), we prove the exponential convergence
directly, while the existence and uniqueness of the equilibrium
point is just a direct consequence of the exponential convergence.
By using three generalized norms, we present some sufficient
conditions for the uniqueness and global exponential stability
of the equilibrium point for delayed complex-valued neural
networks. These conditions in our results are less restrictive
because of our consideration of the excitatory and inhibitory
effects between neurons, so previous works of other researchers
can be extended. Finally, some numerical simulations are given
to demonstrate the correctness of our obtained results.

Index Terms—Asynchronous, complex-valued, global exponen-
tial stability, recurrent neural networks, time delays.

I. I NTRODUCTION

Recurrently connected neural networks, including Hopfield
neural networks[1], Cohen-Grossberg neural networks[2],and
cellular neural networks [3]-[4], have been extensively studied
in past decades and found many applications in different
areas, such as signal and image processing, pattern recognition,
optimization problems, associative memories, and so on. Until
now, many criteria about the stability of equilibrium are
obtained in the literature, see [5]-[20] and references therein.

It is natural to generalize the real-valued systems to
complex-valued systems [21], which can be used in the
nonlinear quantum systems, reaction-advection-diffusion sys-
tems, heat equation, petri nets, chaotic systems, etc. Many
approaches are also obtained, for example, decomposing
complex-valued system to two real-valued systems is applied
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in some nonlinear systems and regular networks, see [22]-
[23] and references therein. Recently, as an important part
of nonlinear complex-valued systems, complex-valued neural
network (CVNN) models are proposed as an important part of
complex-valued systems, and have attracted more and more
attention from various areas in science and technology, see
[24]-[47] and references therein. CVNN can be regarded as
an extension of real-valued recurrent neural networks, which
has complex-valued state, output, connection weight, and
activation functions. For example, they are suited to deal
with complex state composed of amplitude and phase. This
is one of the core concepts in physical systems dealing with
electromagnetic, light, ultrasonic, quantum waves, and soon.
Moreover, many applications heavily depend on the dynamical
behaviors of networks. Therefore, analysis of these dynamical
behaviors is a necessary step toward practical design of these
neural networks. In [35], a CVNN model on time scales
is studied based on delta differential operator. In [36]-[39],
discrete-time CVNNs are also discussed. Stability of complex-
valued impulsive system is investigated by [40]. Until now,
there have been various methods to study the stability of
CVNNs, such as the Lyapunov functional method [41], the
synthesis method [42], and so on.

In particular, in hardware implementation, time delays
inevitably occur due to the finite switching speed of the
amplifiers and communication time. What’s more, to process
moving images, one must introduce time delays in the sig-
nals transmitted among the cells. Furthermore, time delay is
frequently a source of oscillation and instability in neural
networks. Therefore, neural networks with time delays have
much more complicated dynamics due to the incorporation of
delays, and the stability of delayed neural networks has be-
come a hot topic of great theoretical and practical importance,
and a great deal of significant results have been reported in
the literature. For example, [43] investigates the stability and
synchronization for discrete-time CVNNs with time-varying
delays; [44] studies the stability of complex-valued impulsive
system with delay. The global exponential and asymptotical
stability of CVNNs with time-delays is studied by [45] with
two assumptions of activation functions, while [46] and [47]
point out the mistakes in the proof of [45] and give some new
conditions and criteria to ensure the existence, uniqueness,
and globally asymptotical stability of the equilibrium point of
CVNNs.

In practice, the interconnections are generally asynchronous,
that is to say, the inevitable time delays between different
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nodes are generally different. For example, in order to model
vehicular traffic flow [48]-[49], the reaction delays of drivers
should be considered, and for different drivers, the reaction
delays are different depending on physical conditions, drivers’
cognitive and physiological states, etc. Moreover, in the load
balancing problem [50], for a computing network consisting
of n computers (also called nodes), except for the different
communication delays, the task-transfer delaysτjk also should
be considered, which depends on the number of tasks to be
transferred from nodek to nodej. More related examples
can be found in [51] and references therein. Hence, based
on above discussions, it is necessary to study the dynamical
behavior of neural networks with asynchronous time (varying)
delays. To our best knowledge, there have been few works to
report the stability of CVNNs with asynchronous time delays,
see [52], [53]. For example, [52] focuses on the existence,
uniqueness and global robust stability of equilibrium point
for CVNNs with multiple time-delays and under parameter
uncertainties with respect to two activation functions; while
[53] investigates the dynamical behaviors of CVNNs with
mixed time delays. However, all these works ([45]-[47], [52],
[53]) apply the homeomorphism mapping approach proposed
by [7] to prove the existence, uniqueness and global stability
of equilibrium point by two steps: step 1, prove the existence
of equilibrium; step 2, prove its stability. In [9] and [10],
a direct approach to analyze global and local stability of
networks was first proposed. It was revealed that the finiteness
of trajectoryx(t) under some norms, i.e.,

∫∞

0
‖ẋ(t)‖dt < ∞,

is a sufficient condition for the existence, and global stability
of the equilibrium point. This idea was also used in [13]. In this
paper, we will adopt this approach. Moreover, we give several
criteria based on three generalizedL∞ norm, L1 norm, L2

norm, respectively. In particular, based onL∞-norm, we can
discuss the networks with time-varying delays.

This paper is organized as follows. In Section II, we give the
model description, decompose the complex-valued differential
equations to real part and imaginary part, and then recast it
into an equivalent real-valued differential system, whosedi-
mension is double that of the original complex-valued system.
Some definitions, lemmas and notations used in the paper are
also given. In Section III, we present some criteria for the
uniqueness and global exponential stability of the equilibrium
point for recurrent neural networks models with asynchronous
time delays by using the generalized∞-norm,1-norm, and2-
norm, respectively. Some comparisons with previous M-matrix
results are also presented. In Section IV, some numerical sim-
ulations under constant and time varying-delays are given to
demonstrate the effectiveness of our obtained results. Finally,
conclusion is given and some discussions about our future
investigation of CVNNs are presented in Section V.

II. PRELIMINARIES

In this section, we give some definitions, lemmas and
notations, which will be used throughout the paper.

At first, let us give a definition of asynchronous time delays.

Definition 1: (Synchronous and asynchronous time delays)
For any nodej in a coupled neural network, the synchronous

time delay means that at timet, nodej receives the informa-
tion from other nodes at the same timet − τj(t); while the
asynchronous time delays mean that at timet, nodej receives
the information from other nodes at different timest− τjk(t),
i.e., for nodesk1 6= k2, τjk1

(t) andτjk2
(t) can be different.

Obviously, the network models of asynchronous time delays
have a larger scope than that of synchronous time delays.

In this paper, we will investigate the CVNN with asyn-
chronous time delays as follows:

żj(t) = −djzj(t)

+

n
∑

k=1

ajkfk(zk(t)) +

n
∑

k=1

bjkgk(zk(t− τjk)) + uj ,

j = 1, · · · , n (1)

where zj ∈ C is the state ofj-th neuron,C is the set of
complex numbers;dj > 0 represents the positive rate with
which thej-th unit will reset its potential to the resting state in
isolation when disconnected from the network;fj(·) : C → C

and gj(·) : C → C are complex-valued activation functions;
matricesA = (ajk) and B = (bjk) are complex-valued
connection weight matrices without and with time delays;τjk
are asynchronous constant time delays;uj ∈ C is the j-th
external input.

Remark 1:When τjk = τ , system (1) becomes the model
investigated in [45]; when activation functionsfj and gj are
real functions, system (1) becomes the model investigated by
[10]. Therefore, this model has a larger scope than previous
works, and all the obtained results in the next section can be
applied to these special cases.

For any complex numberz, we usezR andzI to denote its
real and imaginary part respectively, soz = zR+ i · zI, where
i denotes the imaginary unit, that isi =

√
−1.

Now, we introduce some classes of activation functions.
Definition 2: Assumefj(z) can be decomposed to its real

and imaginary part asfj(z) = fR
j (zR, zI)+if I

j (z
R, zI) where

z = zR + izI , fR
j (·, ·) : R2 → R andf I

j (·, ·) : R2 → R. Sup-
pose the partial derivatives offj(·, ·) with respect tozR, zI :
∂fR

j /∂zR, ∂fR
j /∂zI , ∂f I

j /∂z
R, and ∂f I

j /∂z
I exist. If these

partial derivatives are continuous, positive and bounded,i.e.,
there exist positive constant numbersλRR

j , λRI
j , λIR

j , λII
j , such

that

0 < ∂fR
j /∂zR ≤ λRR

j , 0 < ∂fR
j /∂zI ≤ λRI

j ,

0 < ∂f I
j /∂z

R ≤ λIR
j , 0 < ∂f I

j /∂z
I ≤ λII

j , (2)

thenfj(z) is said to belong to classH1(λ
RR
j , λRI

j , λIR
j , λII

j ).
Remark 2: If fR

j and f I
j are absolutely continuous, then

their partial derivatives exist almost everywhere.
Definition 3: Assumegj(z) can be decomposed to its real

and imaginary part asgj(z) = gRj (z
R, zI) + igIj (z

R, zI),
wherez = zR+izI , gRj (·, ·) : R2 → R andgIj (·, ·) : R2 → R.
Suppose the partial derivatives ofgj(·, ·) with respect to
zR, zI : ∂gRj /∂z

R, ∂gRj /∂z
I , ∂gIj /∂z

R, and∂gIj /∂z
I exist. If

these partial derivatives are continuous and bounded, i.e., there
exist positive constant numbersµRR

j , µRI
j , µIR

j , µII
j , such that

|∂gRj /∂zR| ≤ µRR
j , |∂gRj /∂zI | ≤ µRI

j ,



3

|∂gIj /∂zR| ≤ µIR
j , |∂gIj /∂zI| ≤ µII

j , (3)

thengj(z) is said to belong to classH2(µ
RR
j , µRI

j , µIR
j , µII

j ).
Remark 3:Definition 3 is the usual assumption for acti-

vation functions in the literature of CVNNs, which can be
found in [45], [52], [53] and references therein. However, the
activation functions defined in Definition 2 is more restrictive,
which will be useful when considering the signs of entries
in connection weights, i.e., there is a trade-off between the
assumption on activation functions and obtained final criteria.

Therefore, by decomposing CVNN (1) to real and imaginary
parts, we can get two equivalent real-valued systems:

żRj (t) = −djz
R
j (t)

+

n
∑

k=1

aRjkf
R
k

(

zRk (t), z
I
k(t)

)

−
n
∑

k=1

aIjkf
I
k

(

zRk (t), z
I
k(t)

)

+

n
∑

k=1

bRjkg
R
k

(

zRk (t− τjk), z
I
k(t− τjk)

)

−
n
∑

k=1

bIjkg
I
k

(

zRk (t− τjk), z
I
k(t− τjk)

)

+ uR
j , (4)

and

żIj (t) = −djz
I
j (t)

+

n
∑

k=1

aRjkf
I
k

(

zRk (t), z
I
k(t)

)

+

n
∑

k=1

aIjkf
R
k

(

zRk (t), z
I
k(t)

)

+

n
∑

k=1

bRjkg
I
k

(

zRk (t− τjk), z
I
k(t− τjk)

)

+

n
∑

k=1

bIjkg
R
k

(

zRk (t− τjk), z
I
k(t− τjk)

)

+ uI
j . (5)

Remark 4:The method of decomposing the CVNNs into
two real-valued networks makes the network dimension grow
two times, which may cause more calculations. However,
this expansion of dimension can also bring some benefits.
For example, the number (or dimension) of equilibria can be
doubled, which enlarges the capacity of neural networks. Itis
a trade-off.

The following three generalized norms are used throughout
the paper.

Definition 4: (See [10]) For any vectorv(t) ∈ Rm×1,
1) {ξ,∞}-norm. ‖v(t)‖{ξ,∞} = maxj |ξ−1

j vj(t)|, where
ξj > 0, j = 1, · · · ,m.

2) {ξ, 1}-norm. ‖v(t)‖{ξ,1} =
∑

j |ξjvj(t)|, where ξj >
0, j = 1, · · · ,m.

3) {ξ, 2}-norm. ‖v(t)‖{ξ,2} = {∑j ξj |vj(t)|2}1/2, where
ξj > 0, j = 1, · · · ,m.

Lemma 1: (See [10]) Let C = (cjk) ∈ Rm×m be a
nonsingular matrix withcjk ≤ 0, j, k = 1, · · · ,m, j 6= k.
Then all the following statements are equivalent.

1) C is an M-matrix, i.e., all the successive principal minors
of C are equivalent.

2) CT is an M-matrix, whereCT is the transpose ofC.
3) The real part of all eigenvalues are positive.
4) There exists a vectorξ = (ξ1, · · · , ξm)T with all ξj >

0, j = 1, · · · ,m such thatξTC > 0, or Cξ > 0.

Notation 1: For any real scalara, denotea+ = max{0, a}.
For any matrixC = (cjk) ∈ Rn×n, denote|C| = (|cjk|).
In the following, we denoten × n matricesAR = (aRjk),
AI = (aIjk), B

R = (bRjk), B
I = (bIjk), and

FRR = diag{λRR
1 , · · · , λRR

n }, FRI = diag{λRI
1 , · · · , λRI

n },
F IR = diag{λIR

1 , · · · , λIR
n }, F II = diag{λII

1 , · · · , λII
n },

GRR = diag{µRR
1 , · · · , µRR

n }, GRI = diag{µRI
1 , · · · , µRI

n },
GIR = diag{µIR

1 , · · · , µIR
n }, GII = diag{µII

1 , · · · , µII
n }.

Notation 2: For any two non-negative functionsf(t), g(t) :
(−∞,+∞) → [0,+∞), f(t) = O(g(t)) means that for all
t ∈ R, there is a positive constant scalarc such thatf(t) ≤
c · g(t). For any symmetric matricA, λmax(A) means its
largest eigenvalue. An-dimensional vectorp = (p1, · · · , pn)T
is called a positive vector, if its all elements are positive, i.e.,
pi > 0, i = 1, · · · , n.

III. M AIN RESULTS

In this section, we prove some criteria for the uniqueness
and global exponential stability of the equilibrium.

A. Criteria with {ξ,∞}-norm

Theorem 1:For dynamical systems (4) and (5),
suppose the activation functionfj(z) belongs to class
H1(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. If there exists a
positive vectorξ = (ξ1, · · · , ξn, φ1, · · · , φn)

T > 0 andǫ > 0,
such that, forj = 1, · · · , n,

T 1(j) = ξj

(

− dj + ǫ+ {aRjj}+ · λRR
j + {−aIjj}+ · λIR

j

)

+
n
∑

k=1,k 6=j

ξk|aRjk|λRR
k +

n
∑

k=1

φk|aRjk|λRI
k +

n
∑

k=1,k 6=j

ξk|aIjk|λIR
k

+

n
∑

k=1

φk|aIjk|λII
k +

( n
∑

k=1

ξk|bRjk|µRR
k +

n
∑

k=1

φk|bRjk|µRI
k

+

n
∑

k=1

ξk|bIjk|µIR
k +

n
∑

k=1

φk|bIjk|µII
k

)

eǫτjk ≤ 0, (6)

and

T 2(j) = φj

(

− dj + ǫ+ {aRjj}+ · λII
j + {aIjj}+ · λRI

j

)

+

n
∑

k=1

ξk|aRjk|λIR
k +

n
∑

k=1,k 6=j

φk|aRjk|λII
k +

n
∑

k=1

ξk|aIjk|λRR
k

+

n
∑

k=1,k 6=j

φk|aIjk|λRI
k +

( n
∑

k=1

ξk|bRjk|µIR
k +

n
∑

k=1

φk|bRjk|µII
k

+
n
∑

k=1

ξk|bIjk|µRR
k +

n
∑

k=1

φk|bIjk|µRI
k

)

eǫτjk ≤ 0, (7)

then dynamical systems (4) and (5) have a unique equilibrium
Z

R
= (zR1 , · · · , zRn )T andZ

I
= (zI1, · · · , zIn)T , respectively.

Moreover, for any solution

Z(t) = (zR1 (t), · · · , zRn (t), zI1(t), · · · , zIn(t))T , (8)

there hold

‖Ż(t)‖{ξ,∞} = O(e−ǫt), (9)
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‖Z(t)− (Z
RT

, Z
IT

)T ‖{ξ,∞} = O(e−ǫt). (10)

Its proof can be found in Appendix A.
Corollary 1: For dynamical systems (4) and (5),

suppose the activation functionfj(z) belongs to class
H1(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. If there exists a
positive vectorξ = (ξ1, · · · , ξn, φ1, · · · , φn)

T > 0, such that,
for j = 1, · · · , n,

T 3(j) = ξj

(

− dj + {aRjj}+ · λRR
j + {−aIjj}+ · λIR

j

)

+
n
∑

k=1,k 6=j

ξk|aRjk|λRR
k +

n
∑

k=1

φk|aRjk|λRI
k +

n
∑

k=1,k 6=j

ξk|aIjk|λIR
k

+

n
∑

k=1

φk|aIjk|λII
k +

n
∑

k=1

ξk|bRjk|µRR
k +

n
∑

k=1

φk|bRjk|µRI
k

+

n
∑

k=1

ξk|bIjk|µIR
k +

n
∑

k=1

φk|bIjk|µII
k < 0, (11)

T 4(j) = φj

(

− dj + {aRjj}+ · λII
j + {aIjj}+ · λRI

j

)

+

n
∑

k=1

ξk|aRjk|λIR
k +

n
∑

k=1,k 6=j

φk|aRjk|λII
k +

n
∑

k=1

ξk|aIjk|λRR
k

+
n
∑

k=1,k 6=j

φk|aIjk|λRI
k +

n
∑

k=1

ξk|bRjk|µIR
k +

n
∑

k=1

φk|bRjk|µII
k

+

n
∑

k=1

ξk|bIjk|µRR
k +

n
∑

k=1

φk|bIjk|µRI
k < 0, (12)

then any solution of systems (4) and (5) respectively converges
to a unique equilibrium exponentially.

If conditions (11) and (12) hold, then we can find a sufficient
small constantǫ > 0, such that inequalities (6) and (7) hold.
Therefore, this corollary is a direct consequence of Thm. 1.

Corollary 2: For dynamical systems (4) and (5),
suppose the activation functionfj(z) belongs to class
H2(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. If there exists a
positive vectorξ = (ξ1, · · · , ξn, φ1, · · · , φn)

T > 0, such that,
for j = 1, · · · , n,

T 5(j) = −ξjdj +

n
∑

k=1

ξk|aRjk|λRR
k +

n
∑

k=1

φk|aRjk|λRI
k

+
n
∑

k=1

ξk|aIjk|λIR
k +

n
∑

k=1

φk|aIjk|λII
k +

n
∑

k=1

ξk|bRjk|µRR
k

+

n
∑

k=1

φk|bRjk|µRI
k +

n
∑

k=1

ξk|bIjk|µIR
k +

n
∑

k=1

φk|bIjk|µII
k < 0,

(13)

T 6(j) = −φjdj +

n
∑

k=1

ξk|aRj,k|λIR
k +

n
∑

k=1

φk|aRjk|λII
k

+

n
∑

k=1

ξk|aIjk|λRR
k +

n
∑

k=1

φk|aIjk|λRI
k +

n
∑

k=1

ξk|bRjk|µIR
k

+

n
∑

k=1

φk|bRjk|µII
k +

n
∑

k=1

ξk|bIjk|µRR
k +

n
∑

k=1

φk|bIjk|µRI
k < 0,

(14)

then any solution of systems (4) and (5) respectively converges
to a unique equilibrium exponentially.

This result is a direct consequence of Corollary 1.
Remark 5:Theorem 1 can be generalized to the system

with time-varying delays

żj(t) = −djzj(t)

+

n
∑

k=1

ajkfk(zk(t)) +

n
∑

k=1

bjkgk(zk(t− τjk(t))) + uj,

j = 1, · · · , n (15)

whereτjk(t) can be bounded or unbounded. In fact, by The-
orem 1, system (15) has an equilibriumZ = (z1, · · · , zn)T ,
and

d(zj(t)− zj)

dt
= −dj(zj(t)− zj) +

n
∑

k=1

ajk(fk(zk(t)) − fk(zk))

+

n
∑

k=1

bjk(gk(zk(t− τjk(t)))− gk(zk)).

Replacingeǫtż(t) by eǫt(z(t) − Z) in the proof of Theorem
1 and with the similar approach, we can prove that under the
conditions (6) and (7), system (15) has a unique equilibrium,
which is globallyµ stable (for the concept ofµ stability first
proposed in [11] and details, readers can refer to [11], [12]).

B. Criteria with {ξ, 1}-norm

Theorem 2:For dynamical systems (4) and (5),
suppose the activation functionfj(z) belongs to class
H1(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. If there exists a
positive vectorξ = (ξ1, · · · , ξn, φ1, · · · , φn)

T > 0 andǫ > 0,
such that, fork = 1, · · · , n,

T 7(k) = ξk(−dk + ǫ)

+

[

ξka
R
kk +

n
∑

j=1,j 6=k

ξj |aRjk|+
n
∑

j=1

φj |aIjk|
]+

λRR
k

+

[

− ξka
I
kk +

n
∑

j=1,j 6=k

ξj |aIjk|+
n
∑

j=1

φj |aRjk|
]+

λIR
k

+

n
∑

j=1

(

ξj(|bRjk|µRR
k + |bIjk|µIR

k )

+ φj(|bRjk|µIR
k + |bIjk|µRR

k )

)

eǫτjk ≤ 0,

T 8(k) = φk(−dk + ǫ)

+

[

φka
R
kk +

n
∑

j=1,j 6=k

φj |aRjk|+
n
∑

j=1

ξj |aIjk|
]+

λII
k

+

[

φka
I
kk +

n
∑

j=1,j 6=k

φj |aIjk|+
n
∑

j=1

ξj |aRjk|
]+

λRI
k
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+

n
∑

j=1

(

ξj(|bRjk|µRI
k + |bIjk|µII

k )

+ φj(|bRjk|µII
k + |bIjk|µRI

k )

)

eǫτjk ≤ 0,

then dynamical systems (4) and (5) have a unique equilibrium
Z

R
= (zR1 , · · · , zRn )T andZ

I
= (zI1, · · · , zIn)T respectively.

Moreover, for any solutionZ(t) defined by (8), equations (9)
and (10) hold, while the norm is{ξ, 1}-norm.

Its proof can be found in Appendix B.
Corollary 3: For dynamical systems (4) and (5),

suppose the activation functionfj(z) belongs to class
H1(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. If there exists a
positive vectorξ = (ξ1, · · · , ξn, φ1, · · · , φn)

T > 0, such that,
for k = 1, · · · , n,

T 9(k) = −ξkdk

+

[

ξka
R
kk +

n
∑

j=1,j 6=k

ξj |aRjk|+
n
∑

j=1

φj |aIjk|
]+

λRR
k

+

[

− ξka
I
kk +

n
∑

j=1,j 6=k

ξj |aIjk|+
n
∑

j=1

φj |aRjk|
]+

λIR
k

+

n
∑

j=1

ξj(|bRjk|µRR
k + |bIjk|µIR

k ) + φj(|bRjk|µIR
k + |bIjk|µRR

k )

< 0,

T 10(k) = −φkdk

+

[

φka
R
kk +

n
∑

j=1,j 6=k

φj |aRjk|+
n
∑

j=1

ξj |aIjk|
]+

λII
k

+

[

φka
I
kk +

n
∑

j=1,j 6=k

φj |aIjk|+
n
∑

j=1

ξj |aRjk|
]+

λRI
k

+

n
∑

j=1

ξj(|bRjk|µRI
k + |bIjk|µII

k ) + φj(|bRjk|µII
k + |bIjk|µRI

k )

< 0,

then any solution of systems (4) and (5) respectively converges
to a unique equilibrium exponentially.

Corollary 4: For dynamical systems (4) and (5),
suppose the activation functionfj(z) belongs to class
H2(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. If there exists a
positive vectorξ = (ξ1, · · · , ξn, φ1, · · · , φn)

T > 0, such that,
for k = 1, · · · , n,

T 11(k) = −ξkdk +

[ n
∑

j=1

ξj |aRjk|+
n
∑

j=1

φj |aIjk|
]

λRR
k

+

[ n
∑

j=1

ξj |aIjk|+
n
∑

j=1

φj |aRjk|
]

λIR
k

+

n
∑

j=1

ξj(|bRjk|µRR
k + |bIjk|µIR

k ) + φj(|bRjk|µIR
k + |bIjk|µRR

k )

< 0, (16)

T 12(k) = −φkdk +

[ n
∑

j=1

φj |aRjk|+
n
∑

j=1

ξj |aIjk|
]

λII
k

+

[ n
∑

j=1

φj |aIj,k|+
n
∑

j=1

ξj |aRjk|
]

λRI
k

+

n
∑

j=1

ξj(|bRjk|µRI
k + |bIjk|µII

k ) + φj(|bRjk|µII
k + |bIjk|µRI

k )

< 0, (17)

then any solution of systems (4) and (5) respectively converges
to a unique equilibrium exponentially.

C. Some comparisons

The following theorem is a direct consequence of Corollary
2, Corollary 4 and the properties of the M-matrix.

Theorem 3:For dynamical systems (4) and (5),
suppose the activation functionfj(z) belongs to class
H2(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. Denote

D =

(

D 0
0 D

)

,

A =

(

|AR| |AI |
|AI | |AR|

)

, F =

(

FRR FRI

F IR F II

)

,

B =

(

|BR| |BI |
|BI | |BR|

)

, G =

(

GRR GRI

GIR GII

)

. (18)

If D−AF −BG is a nonsingular M-matrix, then any solution
of systems (4) and (5) respectively converges to a unique
equilibrium exponentially.

Proof: If D − AF − BG is a nonsingular M-
matrix, according to Lemma 1, there exists vectorξ =
(ξ1, · · · , ξn, φ1, · · · , φn)

T > 0, such that(D−AF −BG)ξ >
0, that is, inequalities (13) and (14) hold. Therefore, the
conclusion is a direct consequence of Corollary 2.

On the other hand, ifD − AF − BG is a nonsingular
M-matrix, according to Lemma 1, there exists vectorξ =
(ξ1, · · · , ξn, φ1, · · · , φn)

T > 0, such thatξT (D − AF −
BG) > 0, that is, inequalities (16) and (17) hold. Therefore,
the conclusion is also a direct consequence of Corollary 4.

Remark 6:Criterion based on M-matrix was also reported
in [45]. However, it neglects the signs of entries in the
connection matricesA andB, and thus, the difference between
excitatory and inhibitory effects might be ignored. Compara-
tively, the criteria given in Theorem 1, Theorem 2, Corollary
1, Corollary 3 are more powerful.

In the following, we give a comparison between Corollary
1 and Theorem 3 by using the matrix theory. Denote matrices

P1 = diag(|aR11| − {aR11}+, · · · , |aRnn| − {aRnn}+);
P2 = diag(|aI11| − {−aI11}+, · · · , |aInn| − {−aInn}+);
P3 = diag(|aI11| − {aI11}+, · · · , |aInn| − {aInn}+).

Obviously, these matrices are all non-negative definite. Define

∆ =

(

P1F
RR + P2F

IR 0
0 P1F

II + P3F
RI

)

, (19)
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so it is also non-negative definite. Using this notation, and
from Corollary 1, the sufficient condition for global stability
is that

D −AF −BG+∆ (20)

should be a nonsingular M-matrix. Obviously, ifD−AF−BG
is a nonsingular M-matrix, the above matrix (20) is also a
nonsingular M-matrix; instead, if matrix (20) is a nonsingular
M-matrix, D −AF −BG may be not.

Therefore, Corollary 1 presents a better criterion than that
by previous works, like [45], because it considers the signs
of entries in the connection matrixA, whose positive effect
is described by the above nonnegative matrix∆ defined in
(19). Moreover, from this result, we can also find that in order
to make the CVNNs have the stable equilibrium,P1, P2, P3

should be as large as possible, so one way is to make all
aRjj , j = 1, · · · , n be negative numbers.

Remark 7:The functionM(t) = maxt maxi=1,··· ,m |ui(t)|
proposed in [10] is a powerful tool in dealing with delayed
systems. In particular, for the time-varying delays.

Remark 8: It can be seen that in computing the integral
∫∞

0
||Ż(t)||dt, the estimation ofddt ||Ż(t)|| plays an important

role.
Let A(t) = (aij)

N
i,j=1, ξi > 0, i = 1, · · · , N and

dw

dt
= Aw(t) (21)

It has been shown that (see [9], [10])

max
d
dt‖w(t)‖{ξ,1}
‖w(t)‖{ξ,1}

= max
j

[ajj +
∑

i6=j

ξi
ξj
|aij |],

max
d
dt‖w(t)‖{ξ,∞}

‖w(t)‖{ξ,∞}
= max

i
[aii +

∑

j 6=i

ξj
ξi
|aij |],

max

d
dt‖w(t)‖2{ξ,2}
‖w(t)‖2{ξ,2}

= λmax(ΞA +ATΞ), Ξ = diag(ξ).

d

dt
‖w(t)‖{ξ,1} =

n
∑

i=1

sign(wi(t))ξi

n
∑

j=1

aijwj(t)

=
n
∑

j=1

[
∑

i

sign(wi(t))
ξi
ξj
aij ]ξjwj(t)

≤
∑

j

[ajj +
∑

i6=j

ξi
ξj
|aij |]|ξjwj(t)|

≤ max
j

[ajj +
∑

i6=j

ξi
ξj
|aij |]‖w(t)‖{ξ,1}

Therefore,

max
d
dt‖w(t)‖{ξ,1}
‖w(t)‖{ξ,1}

= max
j

[ajj +
∑

i6=j

ξi
ξj
|aij |].

Similarly, we can prove the other two equalities.
These three equalities play very important role in dis-

cussing stability of the neural networks or other dynami-
cal systems. For example, ifmaxj [ajj +

∑

i6=j
ξi
ξj
|aij |] ≤

−α < 0, then d
dt‖w(t)‖{ξ,1} ≤ −α‖w(t)‖{ξ,1}, which implies

‖w(t)‖{ξ,1} = O(e−αt).
It happens that these three equalities are closely relatingto

the matrix measure ofA with respect to three norms.

D. Criteria with {ξ, 2}-norm

Theorem 4:For dynamical systems (4) and (5),
suppose the activation functionfj(z) belongs to class
H1(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. If there exists a
positive vectorξ = (ξ1, · · · , ξn, φ1, · · · , φn)

T > 0 andǫ > 0,
such that, forj = 1, · · · , n,

T 13(j) = 2ξj(−dj + ǫ+ {aRjj}+λRR
j + {−aIjj}+λIR

j )

+

n
∑

k=1,k 6=j

ξj(|aRjk|λRR
k + |aIjk|λIR

k )π1jk

+
n
∑

k=1,k 6=j

ξk(|aRkj |λRR
j + |aIkj |λIR

j )π1−1

kj

+

n
∑

k=1

ξj(|aRjk|λRI
k + |aIjk|λII

k )π2jk

+

n
∑

k=1

ξj(|bRjk|µRR
k + |bIjk|µIR

k )π3jk

+

n
∑

k=1

ξj(|bRjk|µRI
k + |bIjk|µII

k )π4jk

+
n
∑

k=1

φk(|aRkj |µIR
j + |aIkj |µRR

j )ω1−1

kj

+

( n
∑

k=1

ξk(|bRkj |µRR
j + |bIkj |µIR

j )π3−1

kj

+

n
∑

k=1

φk(|bRkj |µIR
j + |bIkj |µRR

j

)

ω3−1

kj )e
2ǫτkj ≤ 0,

T 14(j) = 2φj(−dj + ǫ+ {aRjj}+µRR
j + {aIjj}+µRI

j )

+

n
∑

k=1

φj(|aRjk|µIR
k + |aIjk|µRR

k )ω1jk

+

n
∑

k=1,k 6=j

φj(|aRjk|µII
k + |aIjk|µRI

k )ω2jk

+

n
∑

k=1,k 6=j

φk(|aRkj |µII
j + |aIkj |µRI

j )ω2−1

kj

+

n
∑

k=1

φj(|bRjk|µIR
k + |bIjk|µRR

k )ω3jk

+

n
∑

k=1

φj(|bRjk|µII
k + |bIjk|µRI

k )ω4jk

+

n
∑

k=1

ξk(|aRkj |λRI
j + |aIkj |λII

j )π2−1

kj

+

( n
∑

k=1

ξk(|bRkj |µRI
j + |bIkj |µII

j )π4−1

kj
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+

n
∑

k=1

φk(|bRkj |µII
j + |bIkj |µRI

j )ω4−1

kj

)

e2ǫτkj ≤ 0,

whereπ1jk, π2jk, π3jk, π4jk, ω1jk, ω2jk, ω3jk, ω4jk are pos-
itive numbers. Then dynamical systems (4) and (5) have a
unique equilibriumZ

R
and Z

I
respectively. Moreover, for

any solutionZ(t) defined by (8), equations (9) and (10) hold,
where the norm is{ξ, 2}-norm.

Its proof can be found in Appendix C.

Corollary 5: For dynamical systems (4) and (5),
suppose the activation functionfj(z) belongs to class
H1(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. If there exists a
positive vectorξ = (ξ1, · · · , ξn, φ1, · · · , φn)

T > 0, such that,
for j = 1, · · · , n,

T 15(j) = 2ξj(−dj + {aRjj}+λRR
j + {−aIjj}+λIR

j )

+

n
∑

k=1,k 6=j

ξj(|aRjk|λRR
k + |aIjk|λIR

k )π1jk

+

n
∑

k=1,k 6=j

ξk(|aRkj |λRR
j + |aIkj |λIR

j )π1−1

kj

+

n
∑

k=1

ξj(|aRjk|λRI
k + |aIjk|λII

k )π2jk

+

n
∑

k=1

ξj(|bRjk|µRR
k + |bIjk|µIR

k )π3jk

+
n
∑

k=1

ξj(|bRjk|µRI
k + |bIjk|µII

k )π4jk

+

n
∑

k=1

φk(|aRkj |µIR
j + |aIkj |µRR

j )ω1−1

kj

+

n
∑

k=1

ξk(|bRkj |µRR
j + |bIkj |µIR

j )π3−1

kj

+

n
∑

k=1

φk(|bRkj |µIR
j + |bIkj |µRR

j )ω3−1

kj < 0,

T 16(j) = 2φj(−dj + {aRjj}+µRR
j + {aIjj}+µRI

j )

+

n
∑

k=1

φj(|aRjk|µIR
k + |aIjk|µRR

k )ω1jk

+

n
∑

k=1,k 6=j

φj(|aRjk|µII
k + |aIjk|µRI

k )ω2jk

+
n
∑

k=1,k 6=j

φk(|aRkj |µII
j + |aIkj |µRI

j )ω2−1

kj

+

n
∑

k=1

φj(|bRjk|µIR
k + |bIjk|µRR

k )ω3jk

+

n
∑

k=1

φj(|bRjk|µII
k + |bIjk|µRI

k )ω4jk

+

n
∑

k=1

ξk(|aRkj |λRI
j + |aIkj |λII

j )π2−1

kj

+

n
∑

k=1

ξk(|bRkj |µRI
j + |bIkj |µII

j )π4−1

kj

+

n
∑

k=1

φk(|bRkj |µII
j + |bIkj |µRI

j )ω4−1

kj < 0,

whereπ1jk, π2jk, π3jk, π4jk, ω1jk, ω2jk, ω3jk, ω4jk are pos-
itive numbers. Then any solution of systems (4) and (5)
respectively converges to a unique equilibrium exponentially.

Corollary 6: For dynamical systems (4) and (5),
suppose the activation functionfj(z) belongs to class
H2(λ

RR
j , λRI

j , λIR
j , λII

j ) and gj(z) belongs to class
H2(µ

RR
j , µRI

j , µIR
j , µII

j ), j = 1, · · · , n. If there exists a
positive vectorξ = (ξ1, · · · , ξn, φ1, · · · , φn)

T > 0, such that,
for j = 1, · · · , n,

T 17(j) = −2ξjdj

+

n
∑

k=1

ξj(|aRjk|λRR
k + |aIjk|λIR

k ) +

n
∑

k=1

ξk(|aRkj |λRR
j + |aIkj |λIR

j )

+

n
∑

k=1

ξj(|aRjk|λRI
k + |aIjk|λII

k ) +

n
∑

k=1

ξj(|bRjk|µRR
k + |bIjk|µIR

k )

+
n
∑

k=1

ξj(|bRjk|µRI
k + |bIjk|µII

k ) +
n
∑

k=1

φk(|aRkj |µIR
j + |aIkj |µRR

j )

+
n
∑

k=1

ξk(|bRkj |µRR
j + |bIkj |µIR

j ) +
n
∑

k=1

φk(|bRkj |µIR
j + |bIkj |µRR

j )

< 0,

T 18(j) = −2φjdj

+

n
∑

k=1

φj(|aRjk|µIR
k + |aIjk|µRR

k ) +

n
∑

k=1

φj(|aRjk|µII
k + |aIjk|µRI

k )

+

n
∑

k=1

φk(|aRkj |µII
j + |aIkj |µRI

j ) +

n
∑

k=1

φj(|bRjk|µIR
k + |bIjk|µRR

k )

+

n
∑

k=1

φj(|bRjk|µII
k + |bIjk|µRI

k ) +

n
∑

k=1

ξk(|aRkj |λRI
j + |aIkj |λII

j )

+

n
∑

k=1

ξk(|bRkj |µRI
j + |bIkj |µII

j ) +

n
∑

k=1

φk(|bRkj |µII
j + |bIkj |µRI

j )

< 0,

then any solution of systems (4) and (5) respectively converges
to a unique equilibrium exponentially.

Remark 9:As for how to use the norms|| · ||{ξ,1} and || ·
||{ξ,2} to discuss the time-varying delayed networks, readers
can refer to the papers [15], [16].

IV. N UMERICAL EXAMPLE

In this section, some numerical simulations are presented to
show the effectiveness of our obtained results.

Consider a two-neuron complex-valued recurrent neural
network described as follows:














ż1(t) = −dz1(t) + a11f1(z1(t)) + a12f2(z2(t))
+b11g1(z1(t− 1)) + b12g2(z2(t− 2)) + u1

ż2(t) = −dz2(t) + a21f1(z1(t)) + a22f2(z2(t))
+b21g1(z1(t− 3)) + b22g2(z2(t− 4)) + u2

(22)
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wherezk = zRk + izIk, k = 1, 2, D = diag(d, d) = 19I2, and

A = (ajk)2×2 =

(

−2− 3i 3− i
4− 2i −1 + 2i

)

,

B = (bjk)2×2 =

(

−1 + 2i 2 + i
3− 4i −3 + 2i

)

,

u = (u1, u2)
T = (−3 + i, 2 + 4i)T ,

fk(zk) =
1− exp(−2zRk − zIk)

1 + exp(−2zRk − zIk)
+ i

1

1 + exp(−zRk − 2zIk)
,

gk(zk) =
1

1 + exp(−zRk − 2zIk)
+ i

1− exp(−2zRk − zIk)

1 + exp(−2zRk − zIk)
.

From simple calculations, we have, forj = 1, 2,

0 <
∂fR

j

∂zRj
≤ 1 = λRR

j ; 0 <
∂fR

j

∂zIj
≤ 0.5 = λRI

j ;

0 <
∂f I

j

∂zRj
≤ 0.25 = λIR

j ; 0 <
∂f I

j

∂zIj
≤ 0.5 = λII

j ;

therefore,fj(z) belongs to classH1(1, 0.5, 0.25, 0.5), j =
1, 2. Similarly, we can prove thatgj(z) belongs to class
H2(0.25, 0.5, 1, 0.5), j = 1, 2.

From the notations defined in (18), we haveD = 19I4,

A =









2 3 3 1
4 1 2 2
3 1 2 3
2 2 4 1









, F =









1 0 0.5 0
0 1 0 0.5

0.25 0 0.5 0
0 0.25 0 0.5









,

B =









1 2 2 1
3 3 4 2
2 1 1 2
4 2 3 3









, G =









0.25 0 0.5 0
0 0.25 0 0.5
1 0 0.5 0
0 1 0 0.5









.

Calculations show that eigenvalues ofD − AF − BG
are: −0.7655, 18.6670, 20.9701, 19.8784, so it is not an M-
matrix, which means that Theorem 3 is not satisfied. However,
according to Corollary 1 and Remark 6, we haveP1 =
diag{2, 1}, P2 = diag{0, 2}, P3 = diag{3, 0}, and

∆ = diag{P1 + 0.25P2, 0.5(P1 + P3)},

then eigenvalues of D − AF − BG + ∆ are
0.8488, 20.0717, 22.7947, 21.5348, therefore Corollary 1
holds, so the above system can achieve its equilibrium
exponentially.

The following simulations present the correctness of our
claim. We choose five cases for initial values. Case 1:
z1(t) = −4 + 3i, z2(t) = −5 − i, t ∈ [−4, 0]; Case 2:
z1(t) = 2 + i, z2(t) = −3 + 2.5i, t ∈ [−4, 0]; Case 3:
z1(t) = 3 − 5i, z2(t) = 6 + 3i, t ∈ [−4, 0]; Case 4:
z1(t) = −2 − 4i, z2(t) = −7 + 4i, t ∈ [−4, 0]; Case 5:
z1(t) = 1+4i, z2(t) = −5− 1.5i, t ∈ [−4, 0]. Figures 1-4 de-
pict the trajectories ofzR1 (t), z

I
1(t), z

R
2 (t), z

I
2(t) respectively.

For different initial values, they converge to the same equi-
librium (−0.0351, 0.1423, 0.0912, 0.2239)T , i.e., the unique
equilibrium has the global exponential stability property.

Moreover, if we choose the initial values as Case 1, and
only the external controlu are different, i.e., different external
controls(u1, u2)

T = (−3 + i, 2 + 4i)T and(u′
1, u

′
2)

T = (3 +
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Fig. 1. Trajectories ofzR
1
(t) for different initial values, which show the

global exponential stability of equilibrium

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time t

z
1I
(t

)

Fig. 2. Trajectories ofzI
1
(t) for different initial values, which show the

global exponential stability of equilibrium

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time t

z
2R

(t
)

Fig. 3. Trajectories ofzR
2
(t) for different initial values, which show the

global exponential stability of equilibrium
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global exponential stability of equilibrium
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2
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1
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2
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z
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2
′ )

z
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1
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2
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1
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2
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z
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I (t) under (u

1
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2
′ )

Fig. 5. Trajectories of allzR
i
(t) and zI

i
(t), i = 1, 2 under different

external controllers(u1, u2) and(u′

1
, u′

2
), which means that the equilibrium

is impacted by external control

2i, 4− i)T are added on the CVNNs, figure 5 shows that the
equilibriums are different, therefore, the equilibrium isheavily
impacted by the external control.

In the final simulation, we will consider the time-varying
delays, thus we choose the equation as






























ż1(t) = −dz1(t) + a11f1(z1(t)) + a12f2(z2(t))
+b11g1(z1(t− 1− sin(t)))
+b12g2(z2(t− 2− cos(t))) + u1

ż2(t) = −dz2(t) + a21f1(z1(t)) + a22f2(z2(t))
+b21g1(z1(t− 3 + sin(t)))
+b22g2(z2(t− 4 + cos(t))) + u2

(23)

All the parameters, including the external control,
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Fig. 6. Trajectories ofzR
1
(t) for different initial values, which show the

global exponential stability of equilibrium
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Fig. 7. Trajectories ofzI
1
(t) for different initial values, which show the

global exponential stability of equilibrium

are the same as defined in the above simulations.
Similarly, according to Corollary 1, Remark 5 and
Remark 6, this system can achieve its equilibrium
exponentially. Figures 6-9 depict the trajectories of
zR1 (t), z

I
1(t), z

R
2 (t), z

I
2(t) respectively. Moreover, the

equilibrium is also (−0.0351, 0.1423, 0.0912, 0.2239)T,
i.e., the equilibriums are the same for system (22) and system
(23) even though they have different time delays.

V. CONCLUSION AND DISCUSSIONS

In this paper, we first propose a complex-valued recurrent
neural network model with asynchronous time delays. This
feature is the first difference of this paper with previous works.
Then under the assumptions of activation functions, we prove
the exponential convergence directly by using the∞-norm,
1-norm and2-norm respectively, the existence and uniqueness
of the equilibrium point is a direct consequence of the ex-
ponential convergence; while previous works in the literature
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2
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global exponential stability of equilibrium

always use two proving steps: step 1, prove the existence of
equilibrium; step 2, prove the stability. This is also a novelty
of this paper for investigating the equilibrium of CVNNs.
Moreover, considering the signs of coupling matrix, some
sufficient conditions for the uniqueness and global exponential
stability of the equilibrium point are presented, which aremore
general and less restrictive than previous works, i.e., theM -
matrix property ofD − AF − BG is just a special case of
criteria for exponential stability. These are our main theoretical
results. Finally, three numerical examples are given to show
the correctness of our obtained results.

In the end, we give some discussions about future directions
of the complex-valued neural networks:

1) This paper deals with complex-valued neural network
by decomposing it to real and imaginary parts and
constructing an equivalent real-valued system. To ensure
this decomposition, we assume the partial derivatives of
activation functions exist and bounded, see Definition

2. How to find an efficient way to analyze complex-
valued system using the complex nature of system and
consider its properties on complex planes will be our
future direction.

2) In this paper, we consider the asynchronous time delays,
which can be regarded as discrete delays. However, a
distribution of propagation delays can exist for neural
networks due to the multitude of parallel pathways
with a variety of axon sizes and lengths. Therefore,
continuously distributed delays can be a good choice,
so investigation of stability under distributed delays will
also be our future direction.

3) As for the dynamical behaviors of complex-valued
neural networks, the global existence and exponential
stability is just an aspect, there are also many other
interesting dynamical behaviors for future research, for
example, the multistability, the robustness of uncertain
neural networks, the existence and stability of periodic
(or almost periodic) solutions, chaotic behaviors for
(delayed) complex-valued neural networks, etc.

APPENDIX A: THE PROOF OFTHEOREM 1

Proof: Define

xj(t) = eǫtżRj (t), yj(t) = eǫtżIj (t), j = 1, 2, · · · , n. (24)

Then we have

ẋj(t) = (−dj + ǫ)xj(t)

+
n
∑

k=1

aRjk

[

∂fR
k

∂zRk
xk +

∂fR
k

∂zIk
yk

]

−
n
∑

k=1

aIjk

[

∂f I
k

∂zRk
xk +

∂f I
k

∂zIk
yk

]

+

n
∑

k=1

bRjke
ǫτjk

[

∂gRk
∂zRk (τjk)

xk(τjk) +
∂gRk

∂zIk(τjk)
yk(τjk)

]

−
n
∑

k=1

bIjke
ǫτjk

[

∂gIk
∂zRk (τjk)

xk(τjk) +
∂gIk

∂zIk(τjk)
yk(τjk)

]

,

(25)

and

ẏj(t) = (−dj + ǫ)yj(t)

+

n
∑

k=1

aRjk

[

∂f I
k

∂zRk
xk +

∂f I
k

∂zIk
yk

]

+

n
∑

k=1

aIjk

[

∂fR
k

∂zRk
xk +

∂fR
k

∂zIk
yk

]

+

n
∑

k=1

bRjke
ǫτjk

[

∂gIk
∂zRk (τjk)

xk(τjk) +
∂gIk

∂zIk(τjk)
yk(τjk)

]

+

n
∑

k=1

bIjke
ǫτjk

[

∂gRk
∂zRk (τjk)

xk(τjk) +
∂gRk

∂zIk(τjk)
yk(τjk)

]

,

(26)

where ∂fa
k /∂z

b
k denotes ∂fa

k (z
R
k (t), z

I
k(t))/∂z

b
k, a, b =

R, I; xk(τjk) = xk(t − τjk), and yk(τjk) =

yk(t − τjk); while ∂fa
k /∂z

b
k(τjk) denotes

∂fa
k (z

R
k (t− τjk), z

I
k(t− τjk))/∂z

b
k(t− τjk), a, b = R, I.

Let

X(t) = (x1(t), · · · , xn(t), y1(t), · · · , yn(t))T ∈ R2n×1,
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so X(t) = eǫtŻ(t), and ‖X(t)‖{ξ,∞} =
max{maxj{|ξ−1

j xj(t)|},maxj{|φ−1

j yj(t)|}}.

Case 1: For X(t), if j0 = j0(t), which depends ont, is
such an index that|ξ−1

j0
xj0(t)| = ‖X(t)‖{ξ,∞}, then

ξj0
d‖X(t)‖{ξ,∞}

dt
=

d|xj0 (t)|
dt

=sign{xj0(t)}
{

ξj0(−dj0 + ǫ)ξ−1

j0
xj0(t)

+

n
∑

k=1

ξka
R
j0k

∂fR
k

∂zRk
ξ−1

k xk +

n
∑

k=1

φka
R
j0k

∂fR
k

∂zIk
φ−1

k yk

−
n
∑

k=1

ξka
I
j0k

∂f I
k

∂zRk
ξ−1

k xk −
n
∑

k=1

φka
I
j0k

∂f I
k

∂zIk
φ−1

k yk

+
n
∑

k=1

ξkb
R
j0k

∂gRk
∂zRk (τj0k)

· eǫτj0kξ−1

k xk(τj0k)

+
n
∑

k=1

φkb
R
j0k

∂gRk
∂zIk(τj0k)

· eǫτj0kφ−1

k yk(τj0k)

−
n
∑

k=1

ξkb
I
j0k

∂gIk
∂zRk (τj0k)

· eǫτj0kξ−1

k xk(τj0k)

−
n
∑

k=1

φkb
I
j0k

∂gIk
∂zIk(τj0k)

· eǫτj0kφ−1

k yk(τj0k)

}

≤ξj0(−dj0 + ǫ+ {aRj0j0}+λRR
j0 + {−aIj0j0}+λIR

j0 )|ξ−1

j0
xj0(t)|

+
n
∑

k=1,k 6=j0

ξk|aRj0k|λ
RR
k · ‖X(t)‖{ξ,∞}

+

n
∑

k=1

φk|aRj0k|λRI
k · ‖X(t)‖{ξ,∞}

+

n
∑

k=1,k 6=j0

ξk|aIj0k|λIR
k · ‖X(t)‖{ξ,∞}

+
n
∑

k=1

φk|aIj0k|λ
II
k · ‖X(t)‖{ξ,∞}

+

n
∑

k=1

ξk|bRj0k|µ
RR
k · eǫτj0k‖X(t− τj0k)‖{ξ,∞}

+

n
∑

k=1

φk|bRj0k|µ
RI
k · eǫτj0k‖X(t− τj0k)‖{ξ,∞}

+

n
∑

k=1

ξk|bIj0k|µIR
k · eǫτj0k‖X(t− τj0k)‖{ξ,∞}

+

n
∑

k=1

φk|bIj0k|µ
II
k · eǫτj0k‖X(t− τj0k)‖{ξ,∞}

=

{

ξj0

(

− dj0 + ǫ+ {aRj0j0}
+λRR

j0 + {−aIj0j0}
+λIR

j0

)

+
n
∑

k=1,k 6=j0

ξk|aRj0k|λ
RR
k +

n
∑

k=1

φk|aRj0k|λ
RI
k

+

n
∑

k=1,k 6=j0

ξk|aIj0k|λIR
k +

n
∑

k=1

φk|aIj0k|λII
k

}

· ‖X(t)‖{ξ,∞}

+

{ n
∑

k=1

ξk|bRj0k|µRR
k +

n
∑

k=1

φk|bRj0k|µRI
k +

n
∑

k=1

ξk|bIj0k|µIR
k

+

n
∑

k=1

φk|bIj0k|µ
II
k

}

eǫτj0k‖X(t− τj0k)‖{ξ,∞}.

Furthermore, define

M(t) = sup
t−τ≤s≤t

‖X(s)‖{ξ,∞}, (27)

where τ = maxjk τjk. Then ‖X(t)‖{ξ,∞} ≤ M(t), and if
‖X(t)‖{ξ,∞} = M(t), we have

ξj0
d‖X(t)‖{ξ,∞}

dt
≤ T 1(j0) ·M(t) ≤ 0. (28)

Case 2: For X(t), if j0 = j′0(t), which depends ont, is
such an index that|φ−1

j′
0

yj′
0
(t)| = ‖X(t)‖{ξ,∞}, then

φj′
0

d‖X(t)‖{ξ,∞}

dt
=

d|yj′
0
(t)|

dt

=sign{yj′
0
(t)}

{

φj′
0
(−dj′

0
+ ǫ)φ−1

j′
0

yj′
0
(t)

+

n
∑

k=1

ξka
R
j′
0
k

∂f I
k

∂zRk
ξ−1

k xk +

n
∑

k=1

φka
R
j′
0
k

∂f I
k

∂zIk
φ−1

k yk

+

n
∑

k=1

ξka
I
j′
0
k

∂fR
k

∂zRk
ξ−1

k xk +

n
∑

k=1

φka
I
j′
0
k

∂fR
k

∂zIk
φ−1

k yk

+

n
∑

k=1

ξkb
R
j′
0
k

∂gIk
∂zRk (τj′0k)

e
ǫτj′

0
kξ−1

k xk(τj′
0
k)

+

n
∑

k=1

φkb
R
j′
0
k

∂gIk
∂zIk(τj′0k)

e
ǫτj′

0
kφ−1

k yk(τj′
0
k)

+

n
∑

k=1

ξkb
I
j′
0
k

∂gRk
∂zRk (τj′0k)

e
ǫτj′

0
kξ−1

k xk(τj′
0
k)

+

n
∑

k=1

φkb
I
j′
0
k

∂gRk
∂zIk(τj′0k)

e
ǫτj′

0
kφ−1

k yk(τj′
0
k)

}

≤
{

φj′
0

(

− dj′
0
+ ǫ+ {aRj′

0
j′
0

}+λII
j′
0

+ {aIj′
0
j′
0

}+λRI
j′
0

)

+
n
∑

k=1

ξk|aRj′
0
k|λIR

k +
n
∑

k=1,k 6=j′
0

φk|aRj′
0
k|λII

k +
n
∑

k=1

ξk|aIj′
0
k|λRR

k

+

n
∑

k=1,k 6=j′
0

φk|aIj′
0
k|λRI

k

}

‖X(t)‖{ξ,∞}

+

{ n
∑

k=1

ξk|bRj′
0
k|µIR

k +

n
∑

k=1

φk|bRj′
0
k|µII

k +

n
∑

k=1

ξk|bIj′
0
k|µRR

k

+
n
∑

k=1

φk|bIj′
0
k|µRI

k

}

e
ǫτj′

0
k‖X(t− τj′

0
k)‖{ξ,∞}.

From the definition of (27), we have‖X(t)‖{ξ,∞} ≤ M(t),
and if ‖X(t)‖{ξ,∞} = M(t),

φj′
0

d‖X(t)‖{ξ,∞}

dt
≤ T 2(j′0) ·M(t) ≤ 0. (29)

Therefore, for the above two cases, according to (28) and
(29), one can get thatM(t) decreases monotonely, which
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implies ‖X(t)‖{ξ,∞} = O(1) and

‖Ż(t)‖{ξ,∞} = O(e−ǫt),

i.e., żRj (t) = O(e−ǫt) and żIj (t) = O(e−ǫt), j = 1, 2, · · · , n.
Consequently, for anyt1, t2 ∈ R, t1 > t2, there exists a

constantC > 0, such that

‖Z(t1)− Z(t2)‖{ξ,∞} = ‖
∫ t1

t2

Ż(t)dt‖ ≤
∫ t1

t2

‖Ż(t)‖dt

≤
∫ t1

t2

Ce−ǫtdt =
C

ǫ
(e−ǫt2 − e−ǫt1) ≤ C

ǫ
e−ǫt2 .

By Cauchy convergence principle, we conclude that

lim
t→+∞

Z(t) = Z, for someZ = (Z
RT

, Z
IT

)T . It is easy

to get thatZ is an equilibrium point of the systems (4) and
(5).

Next, we prove that the equilibrium point is unique. LetZ
be any equilibrium point of the systems (4) and (5). By the
same arguments, we can prove that

‖Z(t)− Z‖{ξ,∞} = ‖
∫ ∞

t

Ż(t)dt‖ ≤ C

ǫ
e−ǫt.

which means that any solutionZ(t) converges toZ exponen-
tially and the equilibrium point is unique.

APPENDIX B: PROOF OFTHEOREM 2

Proof: Recall the definition ofxj(t) andyj(t) defined in
(24), we can define a Lyapunov function as

L1(t) =

n
∑

j=1

ξj |xj(t)|+
n
∑

j=1

φj |yj(t)|

+

n
∑

j,k=1

αjke
ǫτjk

∫ t

t−τjk

|xk(s)|ds

+

n
∑

j,k=1

βjke
ǫτjk

∫ t

t−τjk

|yk(s)|ds,

where

αjk = ξj(|bRjk|µRR
k + |bIjk|µIR

k ) + φj(|bRjk|µIR
k + |bIjk|µRR

k );

βjk = ξj(|bRjk|µRI
k + |bIjk|µII

k ) + φj(|bRjk|µII
k + |bIjk|µRI

k ).

DifferentiatingL1(t) along equations (25) and (26), using
some calculations (the details are left to interested readers),
we have

L̇1(t) ≤
n
∑

k=1

T 7(k) · |xk(t)|+
n
∑

k=1

T 8(k) · |yk(t)| ≤ 0.

By similar arguments used in the proof of Theorem 1, it is
easy to see that the equilibrium point is unique.

APPENDIX C: PROOF OFTHEOREM 4

Proof: Recall the definition ofxj(t) andyj(t) defined in
(24), we can define a Lyapunov function as

L2(t) =

n
∑

j=1

ξjx
2
j(t) +

n
∑

j=1

φjy
2
j (t)

+

n
∑

j,k=1

α′
jke

2ǫτjk

∫ t

t−τjk

x2
k(s)ds

+

n
∑

j,k=1

β′
jke

2ǫτjk

∫ t

t−τjk

y2k(s)ds,

where

α′
jk =

n
∑

k=1

ξj(|bRjk|µRR
k + |bIjk|µIR

k )π3−1

jk

+
n
∑

k=1

φj(|bRjk|µIR
k + |bIjk|µRR

k )ω3−1

jk ;

β′
jk =

n
∑

k=1

ξj(|bRjk|µRI
k + |bIjk|µII

k )π4−1

jk

+

n
∑

k=1

φj(|bRjk|µII
k + |bIjk|µRI

k )ω4−1

jk .

DifferentiatingL2(t) along equations (25) and (26), using
some calculations (the details are left to interested readers),
one can get that

L̇2(t) ≤
n
∑

j=1

T 13(j)x2
j(t) +

n
∑

j=1

T 14(j)y2j (t) ≤ 0.

By similar arguments used in the proof of Theorem 1, it is
easy to see that the equilibrium point is unique.
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