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Abstract—In this paper, we investigate the global exponential in some nonlinear systems and regular networks, see [22]-
stability for complex-valued recurrent neural networks with asyn- - [23] and references therein. Recently, as an important part
chronous time delays by decomposing complex-valued netwd 4 yopjinear complex-valued systems, complex-valued aleur
to real and imaginary parts and construct an equivalent reat twork (CVNN del d . tant t of
valued system. The network model is described by a continugu network ( ) models are proposed as an important part o
time equation. There are two main differences of this paper complex-valued systems, and have attracted more and more
with previous works: (1), time delays can be asynchronous,d., attention from various areas in science and technology, see
delays between different nodes are different, which makesw  [24]-[47] and references therein. CVNN can be regarded as
model more general; (2), we prove the exponential convergea o extension of real-valued recurrent neural networkschvhi

directly, while the existence and uniqueness of the equilium h | lued stat tout fi iaht d
point is just a direct consequence of the exponential convgence. as complex-vajued state, output, connection weight, an

By using three generalized norms, we present some sufficient@ctivation functions. For example, they are suited to deal
conditions for the uniqueness and global exponential stalily —with complex state composed of amplitude and phase. This
of the equilibrium point for delayed complex-valued neural s one of the core concepts in physical systems dealing with
networks. These conditions in our results are less restriote  g|octromagnetic, light, ultrasonic, quantum waves, anorso
because of our consideration of the excitatory and inhibitoy o . .
effects between neurons, so previous works of other reseduers Moreoyer, many applications heavily dep(_end on the dyneiml_ca
can be extended. Finally, some numerical simulations are g¢n  behaviors of networks. Therefore, analysis of these dyoami

to demonstrate the correctness of our obtained results. behaviors is a necessary step toward practical design séthe

Index Terms—Asynchronous, complex-valued, global exponen- Neural networks. In[[35], a CVNN model on time scales
tial stability, recurrent neural networks, time delays. is studied based on delta differential operator. [In| [3&]}[3
discrete-time CVNNs are also discussed. Stability of caxypl

valued impulsive system is investigated ly[40]. Until now,
there have been various methods to study the stability of

Recurrently connected neural networks, including Hopfie@VNNS, such as the Lyapunov functional methad] [41], the
neural network§[1], Cohen-Grossberg neural netwbrks{i2d synthesis method [42], and so on.

cellular neural networks [3]-[4], have been extensivelyd&d  ~ |, paricular, in hardware implementation, time delays

in past decades and found many applications in differépyitaply occur due to the finite switching speed of the
areas, such as signal and image processing, pattern réoagniympjifiers and communication time. What's more, to process
optimization problems, associative memories, and so ofil Uy qying images, one must introduce time delays in the sig-
now, many criteria about the stability of equilibrium arg,qis transmitted among the cells. Furthermore, time deday i
obtained in the literature, se [5]-[20] and referenceseihe oquently a source of oscillation and instability in neura
It is natural to generalize the real-valued systems i,y orks. Therefore, neural networks with time delays have
complex-valued systems_[21], which can be used in thg ch more complicated dynamics due to the incorporation of
nonlinear quantum systems, reaction-advection-diffusigs- ejays  and the stability of delayed neural networks has be-
tems, heat equation, petri nets, chaotic systems, etc. Maye a hot topic of great theoretical and practical impaan
approaches are also obtained, for example, decomposingy 5 great deal of significant results have been reported in
complex-valued system to two real-valued systems is a®plig,q jiterature. For example, [43] investigates the styband
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nodes are generally different. For example, in order to rhodane delay means that at tinte node; receives the informa-
vehicular traffic flow [48]{[49], the reaction delays of deis tion from other nodes at the same time- 7;(¢); while the
should be considered, and for different drivers, the reactiasynchronous time delays mean that at timeode; receives
delays are different depending on physical conditionsiedlsl  the information from other nodes at different times 74 (¢),
cognitive and physiological states, etc. Moreover, in thedl i.e., for nodesk, # ks, 71, (t) and 7y, (t) can be different.
balancing problem[[50], for a computing network consisting Obviously, the network models of asynchronous time delays
of n computers (also called nodes), except for the differehtive a larger scope than that of synchronous time delays.
communication delays, the task-transfer delaysalso should  In this paper, we will investigate the CVNN with asyn-
be considered, which depends on the number of tasks todbeonous time delays as follows:

transferred from nodé: to nodej. More related examples

can be found in[[51] and references therein. Hence, basedi (t) = —d;z;(t)

on above discussions, it is necessary to study the dynamical " "

behavior of neural networks with asynchronous time (vagyin + D agrfilan(®) + D bingr(zr(t = 73x)) + u,
delays. To our best knowledge, there have been few works to k=1 k=1 .

report the stability of CVNNs with asynchronous time delays j=1-,n (1)

see [52], [58]. For example[ [52] focuses on the existencgpqre z; € C is the state ofj-th neuron,C is the set of

unigueness and global robust stability of equilibrium mo"l:omplex numbers; > 0 represents the positive rate with

for CVNNs with multiple time-delays and under parametggpich the;-th unit will reset its potential to the resting state in

uncertainties with respect to two activation functions;ilwh isolation when disconnected from the netwofk(:) : C — C

[53] investigates the dynamical behaviors of CVNNs with g g;(-) : C — C are complex-valued activation functions;
mixed time delays. However,_all these yvor[[4Z[ﬂ[52 matrices A = (a;;) and B = (b;;,) are complex-valued
[53]) apply the homeomorphism mapping approach proposgghnection weight matrices without and with time delays;

by [7] to prove the existence, uniqueness and global slyabiliare asynchronous constant time delays;e C is the j-th
of equilibrium point by two steps: step 1, prove the exis&ng,yiarnal input.

of equilibrium; step 2, prove its stability. ][9] and _[10],
a direct approach to analyze global and local stability ‘ﬂfl
networks was first proposed. It was revealed that the fini®n
of trajectoryz(¢) under some norms, i.ef0°° l(t)||dt < oo,

Remark 1:When;;, = 7, system[{lL) becomes the model
vestigated in[[45]; when activation functiorfs and g, are
Feal functions, systeni(1) becomes the model investigayed b
_ o o ; >°» [A0]. Therefore, this model has a larger scope than previous
IS a sufﬂm_e_nt_condlt_lon for_ the existence, and global ‘ﬂ@b' works, and all the obtained results in the next section can be
of the equilibrium point. This idea was also used.in/[13] Hist applied to these special cases

paper, we will adopt this approa_ch. Moreover, we give sdvera For any complex number, we use:* and=’ to denote its
criteria based on three generalizéd, norm, Ly norm, Lo real and imaginary part respectively, se- 2% +i - 2/, where
norm, respectively. In particular, based ag,-norm, we can i denotes the imaginary unit, thatis= /=1

d's_lt_:#_ss the n_etworks_wrijh tlnf1e|-|vary|rlwg gels. " ve th Now, we introduce some classes of activation functions.

d 'Tgape'f |s_orgzn|ze asio ﬁws. n Iec nl (\j/v(ej?tlvi € Definition 2: Assumef;(z) can be decomposed to its real
model description, decompose the complex-valued difteen _ | imaginary partag; (=) — f2(z%, z1)+if!(=%, =) where
equations to real part and imaginary part, and then recastz it SRpisl fR(): R? - JJQ an(jff(- ] J R? ’_> R Sup-
into an equivalent real-valued differential system, whdse po_se the pa;tiail d’eriv.atives ot (-,-) Vdith’ réspect tozj;b ZIP
mension is double that of the original complex-valued syste " 2" 0 R o iR /a1 arl /o B o /ol s o
Some definitions, lemmas and notations used in the paper ga?tié ?’2 e}ff;ﬁéﬁj é?efz:éiinuci;]s ajgs/it?\fe ::(;Stﬁc:;r:gize
also given. In Section 1Il, we present some criteria for th . o P RI \IR \IT '

. . . there exist positive constantnumbegé”‘,)\- Az NS such
unigueness and global exponential stability of the equilii that J 07 00
point for recurrent neural networks models with asynchtmno
time delays by using the generalized-norm, 1-norm, and2- 0< 8fJR/8zR < /\fR, 0< aij/azl < /\fﬂ,
norm, respectively. Some comparisons with previous M-ixatr I/a R IR T oI II

. . ; <\ : <M

results are also presented. In Secfioh IV, some numerical si 0<0fj /0" < X7, 0<0f;/02" <A77, (2)
ulations under constant and time varying-delays are gigenthen fj(2) is said to belong to cIasHl(/\fR, /\fl, /\;TR, /\51)_
demonstrate the effectiveness of our obtained resultallifin  Remark 2:1f f2 and f! are absolutely continuous, then
conclusion is given and some discussions about our futyfir partial derivatives exist almost everywhere.
investigation of CVNNs are presented in Secfion V. Definition 3: Assumeg;(z) can be decomposed to its real
and imaginary part ag;(z) = gl(z%, 27) +ig] (=7, 27),

_ _ I PR.ELIMINARIES o wherez = 2% +iz, gF'(-,-) : R* - Randg/(-,-) : R* —» R.

In .thIS seqtlon, ‘we give some definitions, lemmas ar@uppose the partial derivatives @f(-,-) with respect to
notations, which will be used throughout the paper. 2R 21 0B 1028, 0911927, 0¢! /027, anddg! /02T exist. If

Atfirst, let us give a definition of asynchronous time delayghese partial derivatives are continuous and boundegtfiere
o _ exist positive constant numbeng”, uf7, 1%, !l such that

Definition 1: (Synchronous and asynchronous time delays)

For any nodej in a coupled neural network, the synchronous 01 /02" < iR, |0g) /02" <



|0g1 /02" < bR, |0gl 02" < pi, (3)  Notation 1: For any real scalag, denotea™ = max{0, a}.

i _ . nxn — .
theng;(z) is said to belong to clasi (1%, pft, pif, utl) For any matrixC' = (c;x) € R™, der!ote|01|% 7(|CJ§|)'
J g org ol In the followmg, we denoten x n matricesA"™ = (a3}),
Remark 3:Definition [3 is the usual assumption for acti- , R R I
A ( w) B = (b ), B (bL,), and
vation functions in the literature of CVNNs, which can beFRR d AR /\RR FPgI ~ diag{\F, \RI
found in [45], [52], [53] and references therein. Howevhbg t PR : ollag{ NE v /\IR} e éag{ i e /\%}7
activation functions defined in Definitidd 2 is more restviet q iag{M - R} GRI _ g iag{ ", -
which will be useful when considering the signs of entrle)gm e iag{pf - ’“n b oIT dlag{“ ' ’“n "}
in connection weights, i.e., there is a trade-off betwean t iag{pg", -, fag{pt, -}

Notation 2: For any two non-negative functiorfs{t),g(t) :
—00,4+00) — [0,400), f(t) = O(¢(t)) means that for all
€ R, there is a positive constant scatasuch thatf(t) <

g(t). For any symmetric matricA, \,,..(A) means its
2 (t) = —d;z(t) largest eigenvalue. A-dimensional vectop = (py,--- ,pn)”

n n is called a positive vector, if its all elements are positive.,
+ B A (o£0.40) - S ahfl (£ 540) pi>0i=1-
k=1

k=1

assumption on activation functions and obtained final Gate
Therefore, by decomposing CVNNI (1) to real and imagina
parts, we can get two equivalent real-valued systems:

b ! 1. M AIN RESULTS
Z kg | 2 (= Tik), 2 (8 = 7o) In this section, we prove some criteria for the uniqueness
and global exponential stability of the equilibrium.

- Z bl 9k (Z;f(t — Tik), 2k (t — Tjk)) +uff, (8

A. Criteria with {&, co}-norm

k=1
and Theorem 1:For dynamical systems [(4) and[](5),
T . suppose the activation functiorf;(z) belongs to class
(1) = _d’z'() Hy(AHE N )\IR ,A) and g;(z) belongs to class
H, (MRR pl gt By Iy 5 = 1,... n. If there exists a
R G oMy oMy s My ’ )
* Zajkfk (Zk ) + Za]kfk ( 7 ( )) pOS|t|Ve VeCtOlf (517 e 7£n7¢17 e 7¢H)T >0 ande > 0,
such that, forj = 1,--- ,n,
- bRI<Rt— %),z (t — )
I; .ﬂilgk Zk;( T]]C) Zk( Tjk) Tl(]) :é- ( d +€+{a }+ )\RR+{ a }+ A1R>

* Zbakgk ( ¢ =), Zﬁ’f—%‘k)) tue @ LY gl +Z¢>k|agk|x + > Gl AR
k=1,k#j k=1,k#j
Remark 4:The method of decomposing the CVNNs into »
two real-valued networks makes the network dimension grow » ~ ¢x[aj, [\ + (Zgﬂbﬁm,’f}% - Z On bl i
two times, which may cause more calculations. However, k=1 =
this expansion of dimension can also bring some benefits.
For example, the number (or dimension) of equilibria can b& ka“’ﬂcm + Z¢k|b 2k ) <0, (6)
doubled, which enlarges the capacity of neural networkis. It ~ #=!
a trade-off. and
th;’he following three generalized norms are used througho%t2(j) _ 4 ( 4+ e+ {al} A 4+ (ol )t )\RI)
paper.
Definition 4: (See [10]) For any vectos(t) € R™*!,
1) {€&,00}-norm. |v(t)|[e,00p = max; |€; v, (t)], where +ng|ajk|A“*+ Z ¢k|ajk|A”+Z§k|ajk|ARR

&>0,5=1,---,m. k=1,k#j k=1
2) {{, 1}-norm. [[v(t)|[(¢,1y = 22, 1&v;(t)], whereg; > -
0,j=1,---,m. ! + Y dklal M+ (Z§k|bﬁ|ﬂﬁR+z¢k|bﬁ|Mil
3) {&2)-norm. [[v(t)l|(e2y = {32, &lv; (1)]*}/?, where h=1.k7 k=1 k=1
§J>Ov.]:157m 67—,
b b * <0 7
Lemma 1:(See [10]) LetC = (cjx) € R™*™ be a + ng' ’“'” + Z¢k| ’“'“ - (7)
nonsingular matrix withc;, < 0,5,k = 1,--- ,m,j # k . S
Then all the following statements are equwalent T}%” dynamlcal systemEI (4) arid (5) have a unique equilibrium

zf, -,z andZ = (z1,--- ,Z0)T, respectively.

1) C'is an M-matrix, i.e., all the successive principal mmorﬁ/lor:over for any solution

of C' are equivalent.
2) C7T is an M-matrix, whereC'” is the transpose of. Z(t) = (2F@), - 2B, 2L (1), -, 2L @)T,  (8)
3) The real part of all eigenvalues are positive. there hold
4) There exists a vectqf = (¢, ,&,)7 with all & >
0,=1,---,m such that”C > 0, or C¢ > 0. 1Z()|l(e,00y = Ole™ ), 9)



—_RT T e
1Z(t) = (Z" .\ Z" ) ll{ey = Oe™).  (10)
Its proof can be found in Appendix A.
Corollary 1: For dynamical systems [J(4) and[](5),

+Z¢k|b +ng|b +Z¢>k|b I

(14)

suppose the activation functiorf;(z) belongs to class then any solution of systenis (4) afd (5) respectively cajagr

Hy(ARENET )\j’R )\”) and g;(z) belongs to
Ho(p RR,;L;“,;LJ i), j o= 1,---,n. If there exists a
positive vectort = (&1, , &, é1, -+, ¢n)T > 0, such that,

forj=1,---,n,

5( d+{a }+ /\RR_’_{G}A—.)\;R)

+ Y Glaf MY arlai M+ D Glaf AT
k=1,k#j k=1 k=1,k#j

n n n
+ > Brlagil M+ D &bl + Y onlbfi
k=1 k=1 k=1

n n
) lbhl ™+ gnlbliuf <0
k=1 k=1

T3(j)

(11)

T4(j)

6 ((— s+ ()T AT+ A

n n n
+) Glall N+ D drla M+ &elaf  MEE

k=1 k= 1k;£j k=1

+ Z ¢k|%k|/\m+z5k|b > ool it
k=1,k#j k=1

+Z§klbk|u +Z¢>k|bk|u (12)

class to a unique equilibrium exponentially.

This result is a direct consequence of Corollary 1.
Remark 5:Theorem 1 can be generalized to the system
with time-varying delays

2j(t) = —d;z;(t)
+ ) agefi(z(t) + Y bikgr(z(t — 7i(1) +uj,
k=1 k=1
whereT;(t) can be bounded or unbounded. In fact, by The-
orem 1, system(15) has an equilibriuth= (z1,--- ,%,)7,
and
d(zi(t) —Z;
WO =20 )= ) + 30 apeUinlaxlt) = ul20)
k=1
+ ) biklgr(zr(t — k(1) — 9k (Zk))-
k=1

Replacinge®t(t) by e (z(t) — Z) in the proof of Theorem

1 and with the similar approach, we can prove that under the
conditions [[6) and[{7), systerh (15) has a unique equilibyium
which is globally. stable (for the concept gf stability first
proposed in[[Il1] and details, readers can refef to [11],)[12]

then any solution of systenﬁ (4) ahd (5) respectively caregr B. Criteria with {¢, 1}-norm

to a unique equilibrium exponentially.

If conditions [11) and{22) hold, then we can find a sufficie

Theorem 2:For dynamical systems [J(4) and[](5),

r?>Iuppose the activation functiorf;(z) belongs to class

small constant > 0, such that inequalitie$](6) andl (7) hoIdH ()\RR /\RI )\IR )\11) and g;(z) belongs to class

Therefore, this corollary is a direct consequence of Thm. 1
and[] (5)

Corollary 2: For dynamical systems [](4)
suppose the activation functiorf;(z) belongs to class

()\RR,/\fI,)\IR )\”) and gj(z) belongs to class
Ho (Bt pi B, ptt), j = 1,--- ,n. If there exists a
positive vectort = (&1, , &, é1, -+, 0n)T > 0, such that,

forj=1,---,n,

T5(j) = —&d; + Zmaﬂu’m + meum

k=1

+ Zma;kw + me,ﬁml + ZmbﬁmﬁR
k=1

+ Y onlbfilug
k=1

+Z§k|b ek +Z¢k|b sl <0,

(13)
T6(j) = —¢jd; + > &rlalip M+ drlali M
k=1 k=1
) Glal N drlad M+ &bl
k=1 k=1 k=1

Hy (/LvaNf’I,HJ auj ), 7 = 1,---,n. If there exists a
positive vectort = (51,- ny b1, 0n)T >0 ande > 0,
such that, fork =1,--- ,n,
T7(k) = &k(—dk +¢)
n n JF
+laalr Y glafil+ Y olal] A
j=1,j#k j=1
n n JF
+ |:_€ka£k+ Z §j|a§k|+z¢j|a§%}c|] A
j=1,j#k j=1
O G A EATA
j=1

+ 05 (" + i) e <0,
T8(k) = ¢r(—dp +€)
+ [ dragy + Z jlaf| +Z§7|agk] M
j= 17]7579

+[¢ka£k+ 3 ¢j|a§k|+25j|a;%|] AR

j=1,j#k j=1



+Y <£j<|b§‘2|u§f + |68 k") T12(k) = —¢pdy, + {Z djlaji| + anaék@w
j=1 j=1 j=1

+ o5t + ) ) <0 + | S alalel + Y glafil| A
=1 =1

then dynamical systemE](4) arid (5) have a unique equilibrium _n
78— ZR,. 2T andZ' = (21, ,21)7 respectively. X &5l + (bl + &5 (bf k" + b )
Moreover, for any solutior (t) defined by[(B), equationE](9) 7=l
and [T0) hold, while the norm i§¢, 1}-norm. <0, 17)
Its proof can be found in Appendix B.
Corollary 3: For dynamical systems [J(4) and[](5)
suppose the activation functiorf;(z) belongs to class
Hy(AFE XL NE NT)and  gj(z) belongs to class

then any solution of systenid (4) amd (5) respectively cayaser
to a unique equilibrium exponentially.

L ] .
Hz(_png,uf’,u§R,u§1), j = 1,---,n. If there exists a C. Some comparisons
positive vectorg = (&1, -+ ,&n, d1,- -+, ¢,)T > 0, such that,  The following theorem is a direct consequence of Corollary
fork=1,---,n, [2, Corollary(4 and the properties of the M-matrix.

Theorem 3:For dynamical systems [(4) and[](5),
suppose the activation functiorf;(z) belongs to class

n n + RR \RI YIR \II
Hoy(A AN A ) and  gi(z) belongs to  class
R R I RR 2 ) ) ) g
e+ Y glagkl+ ) :¢j|ajk|] Ay Ho (PP, (B0 il ), = 1.+ 1. Denote

T9(k:) = —&rdy

j=1.i#k =1

+ |:_§ka£k+ Z fj|a§k|+z¢j|afk|] A D= ( 0 D )’
J=1,3#k Jj=1 _ |AR| |AI| _ FRR  pRI
- A—< I R>7F—< IR 11>v
+ DG UDRIBER + bl lul®) + 65 (b5 k™ + 167 ™) 4] 1A%] Feor
i=1 F? ( |BR| |BI| ) ai ( GRR GRI ) (18)
< 0’ |BI| |BR| ’ GIR GII .
T10(k) = —¢rdk If D—"AF —BG is a nonsingular M-matrix, then any solution
n n + of systems[(#) and15) respectively converges to a unigue
R R I 17
+ {Qbkakk + Z jlazi| + Zgﬂaa‘k@ Ak equilibrium exponentially.
7=1,j#k g=1 . Proof: If D — AF — BG is a nonsingular M-
I = I = R RI matrix, according to Lemmé]1, there exists vector=
+ |:¢kakk + Z djlajel + Zfﬂ%k@ Ak (€1, Eni i, b)) > 0, such tha{D — AF — BO)E >

3=Li#k =t 0, that is, inequalities[(13) and_(114) hold. Therefore, the

(BB |, RI I 11 (IR |, 1T I | RI conclusion is a direct consequence of Corolldry 2.
+;§J(|b]k|ﬂk g lii) o+ 65 (osilie - [bgilic”) On the other hand, ifD — AF — BG is a nonsingular
M-matrix, according to Lemmall, there exists vector=
(€& dryo e, 00)T > 0, such that¢” (D — AF —
then any solution of systenis (4) afid (5) respectively cayager BG) > 0, that is, inequalities (16) an@ (17) hold. Therefore,
to a unique equilibrium exponentially. the conclusion is also a direct consequence of Cordllarm4.

Corollary 4: For dynamical systems [0(4) and[] (5), Remark 6: Criterion based on M-matrix was also reported

suppose the activation functiorf;(z) belongs to class In [@]._Howevgr, it neglects the signs _of entries in the
Hy(ABE \RI IR \IIy  and g:(z) belongs to class connection matriced andB, and thus, the difference between
2.0 T

<0,

Ho(uBR B IR 1) 5 = 1.... n. If there exists a excitatory and inhibitory effects might be ignored. Congar
positii/e vejctorgjz (5.71 o Ep iy én)T > 0, such that tively, the criteria given in Theorefd 1, Theoréin 2, Corollar
fork—1 .- n oo [, Corollary(3 are more powerful.

In the following, we give a comparison between Corollary
[ and Theoreril3 by using the matrix theory. Denote matrices

T11(k) = —&edy + {Zéﬂafﬂ + Z ¢j|a§k|} M\ER
j=1 j=1

P = d1ag(|aﬁ| - {allql}-i_a T 7|arjz%n| - {agn}-’_);

" - P, = dia aI - _aI +7"'aa7lzn_ _aflszr;

T {Z{”a;k'_i_z%mﬁ@/\i}% 2 . g(l }1| { ) 113’ |1 | {1 " 1)
j=1 j=1 Py = diag(laq;| — {a11} " s lan,] — {an,} )

= Obviously, these matrices are all non-negative definitdinBe
) GUR R + 1bh ™) + b5 (05 |1k + bl nf ™) y 9
Jj=1

RR IR
x_ < PF" + P F 0 >7 (19)

<0, (16) 0 P F 4 p3pRI



so it is also non-negative definite. Using this notation, anda < 0, then% [lw(t)||¢1; < —af|lw(t)| (¢,1}, which implies
from Corollary[1, the sufficient condition for global statyil |jw(t)|/(¢13 = O(e™**

is that It happens that these three equalities are closely rel&ting
- = the matrix measure aofl with respect to three norms.
D-AF-BG+A (20) X measure ai with resp
should be a nonsingular M-matrix. Obviously/¥— AF — BG
is a nonsingular M-matrix, the above matrix120) is also B- Criteria with {, 2}-norm

nonsingular M-matrix; instead, if matrik (0) is a nonsit@u  Theorem 4:For dynamical systems [0(4) and [ (5),

M-matrix, D — AF — BG may be not. suppose the activation functiorf;(z) belongs to class
Therefore, Corollary]l presents a better criterion than thg, (ARR ARI \IR )\11) and g;(z) belongs to class

by previous works, like[[45], because it considers the signg, ( JRRMRJ’M 1), j = 1,---,n. If there exists a
of entries in the connection matriA, whose positive effect positive vejctor§7 (571 bty 6T > 0 ande > 0

is described by the above nonnegative mathixdefined in such that, forj = 1,-
(I9). Moreover, from this result, we can also find that in orde
to make the CVNNs have the stable equilibriu®, P, Ps
should be as large as possible, so one way is to make all

e

T13(j) = 265 (—dj + € + {ali }ARE 4 {—al } TN

alt,j=1,---,nbe negative numbers. + Z & (|at INER + Jal, IMF)rL
Remark 7:The functionM (¢) = max;, max;=1.... .m |u;(t)] k=1 k)
proposed in[[10] is a powerful tool in dealing with delayed n
systems. In particular, for the time-varying delays. + Z k(lafy AT+ lag; | AL
Remark 8:1t can be seen that in computing the integral k=1,k#j
J° 11Z(t)]|dt, the estimation of& || Z(t)|| plays an important n
role. t + 2 G Uafk M+ lad A2
Let A(t) = (aij)}j=1, & > 0,i=1,--- ,N and -
d + (b5 ™ 4 1B i) 735
It has been shown that (séé [9].[10]) + Zé} 075 i+ bl k)
d k=1
aillw®)l e,y &
0 d o e maa; + 37 2agl), -
lw(®)[le,1y i ; & + Z o (|akj|u + |akj|uRR)w1 !
d k=1
2w (@)l {¢,00) 3 n
S = max{a + ) 2agl], _
o[ 2 o (S ¢ e
d 2 k=1
E”w(t)H{g 2} T . n
max ————=—"= = \,.z(ZA + A" 2), E=dia . _ e
Tl e GATATE: SO S a4 bl s <0,

~
Il

=

=

S B
<

qS(d—l—e—I—{aRJrRR—i—{al +RI)

)

65 (lage ik + laji k™ )wl e

n

d
SOl = Y sign(uwilt

i=1

)& Z agjw; (t

_|_
o

=1
= sign(wi(t au]&w;( ) !
Z Z + > dillagiluk’ + lafi i w2;e
k=1,k#j
< Z ajj + Z |a” |&w; (1)] n " o )
i & + Y eellaglpd! + lag; |nf w2y,
k=1,k#j
< maxfag; + 3 Flaglllw)le .
J oy & R
J + Z &7 (15l + bl i )3k
Therefore, k=1
Zlw@®)ley §i + > i (b5 k" + [l wd i
e®len ax| jj+z—_|aij|] =
{e.1) J 7 S
RI I 17 —1
Similarly, we can prove the other two equalities. Z |ak7|)‘ + lag; | )”21@,7'

These three equalities play very important role in dis-
cussing stability of the neural networks or other dynami-
cal systems. For example, ihax;[a;; + >, %|aij|] <

145! 1,

A

n

2 &

k=

T ol |y



S Gkl + Bl ey >§0 bl g
k=1

+ D ([0 g

k=1
+Z¢ (If | pdT + [k Yy < 0

whererl;, 72k, 735k, T4k, wljk, W2k, W3k, w4, are pos- k[0 | H H J

itive numbers. Then dynamical systenis (4) apd (5) have a

unique equilibriumZ” and Z' respectively. Moreover, for Whereﬂﬂcv7T2ka7T3ka7T4JkaW1JkaW2kaW3akaW4 ji aré pos-

any solutionZ(t) defined by[(B), equationE](9) ard110) holditive numbers. Then any solution of systenis (4) ahl (5)

where the norm ig¢, 2}-norm. respectlvely converges to a unique equilibrium exponéntia

Its proof can be found in Appendix C. Corollary 6: For dynamical systems [J(4) and[](5),

Corollary 5: For dynamical systems [J(4) and[](5)
suppose the activation functiorf;(z) belongs to class
Hy(AFE AL MR N and g;(2)  belongs  to

RR RI

suppose the activation functiorf;(z) belongs to class
Hy (AR N MR NT) and gj(z) belongs to class
Hy (;LfR,;Lf‘I,ufR,uj ), j = 1,---,n. If there exists a
positive vector§ (&1, &n, 01, -+, dn)T >0, such that,

T ,M§R,u§1), j = 1,---,n. If there exists a forj=1,-

posmve vectort = (&1, ,&ny b1, -+ ,0n)T > 0, such that,
forj=1,---,n,

T15(j) = 26;(—d; + {af; } A + {—af;} AT

n

+ Z & (lafi N+ Jaf ML
k=1,k#j

n

+ k(|al§j|/\fR =+ |a£j|/\gI'R)Trll;jl
k=1,k#j

n

+ > & (agh M+ lafi A7 2

k=1
) GUR + [bh ™) w35
) GUE " + [0 | e
k=1

n
+ ol ni® + lag; lnfwl )

n
+ > &b g™ + [bj w3y
k=1

+ > (b | + IbijlufR)W?’szl <0,

T16(j) = 2¢;(—d; + {als} i + {al;} T uft)
+)6(lak u™ + |a§k|/‘kRR)W1jk
k=1

n
+ Y ¢illalilut’ + lafyl i )w2;n
k=1,k#j
n
+ > oellaglud’ + lag; i w2y
k=1,k#j
n
+ ) b (5 + bl w3
k=1

+ Z¢j(|bﬁg T+ |b el wd i

n
+ > &llafy AT+ lafy M2
k=1

T17(j) = —2¢;d,

+ > & (afh N+ laje ML) +
k=1

)+

k=1
&AL oM + 30 & (0™ + ok ™)

k=1

&k (lagy AT + lag; IN5T)

k=1

+ ij(|bﬁ|ﬂk k|M |ak]|/'l’ |a£j|/i§m)
k=1

+ (b R + b Z B [bh ™)
k=1

<0,

T18(j) = —2¢;d;

n
+ > dlafilik” + lafelui™) + Y g (lagfeluk” + laflugh)
k=1

+ ) rllaf |l + lag; 1)+ 6 (b5 k™ + bl ™)
k=1

k=1

+ 3 b0l + L) + ) &llaf N+ lafsIAF)
k=1

k 1

+ 3 &elbg g + b +Z¢k (105 115"+ 1bg 5™
k=1

<0,

then any solution of systenld (4) aidl (5) respectively caaser
to a unique equilibrium exponentially.

Remark 9:As for how to use the normg - ||¢ 13 and|| -
|[{¢,2y to discuss the time-varying delayed networks, readers
can refer to the papers [15], [16].

IV. NUMERICAL EXAMPLE

In this section, some numerical simulations are preseited t
show the effectiveness of our obtained results.

Consider a two-neuron complex-valued recurrent neural
network described as follows:

Z21(t) = —dzi(t) +anfi(z1(t)) + a1z f2(22(t))
+b1191(21(t — 1)) + b12g2(22(t — 2)) + wa

Z(t) = —dza(t) + a1 f1(21(t)) + a2z f2(22(1))
+b2191(21(t — 3)) + baoga(22(t — 4)) + uz

(22)



wherez, = 2 + izl k = 1,2, D = diag(d, d) = 1915, and

—2—-3t 3—1
A= (a_jk)2><2 = ( 4 — 9 —1+2'L )7 o8
—142¢ 2414
B:(bjk)2X2:< 3—47, —3+2'L )7
u=(up,up)’ = (=3+1i,2+4i)7,

1-— exp(—2z1§ - z,é) ) 1 &0 %@%
fe(zk) = R T t R 0 -02
14 exp(—2z{ — z) 1+ exp(—z;" —2z{)
1 1 —exp(—2zf — 2L o4
() = o iR — ), _
14 exp(—2;" — 2z4) 1+ exp(—2z" — z) 06
From simple calculations, we have, fpr= 1, 2, o8
-1 L L L L L L L L L
B ng RR 5] ij R 0 2 4 6 8 Tirlnoe . 12 14 16 18 20
J J
off IR off I . o R . - .
0< <0.25 = A £ 0 < L <0.5 =\, Fig. 1. Trajectories of (¢t) for different initial values, which show the
5)233 J 62}. J global exponential stability of equilibrium
therefore, f;(z) belongs to classd;(1,0.5,0.25,0.5),5 =
1,2. Similarly, we can prove thay;(z) belongs to class 1
H»(0.25,0.5,1,0.5), j = 1,2. B 0
From the notations defined ib_{18), we hale= 191, o
2 3 3 1 1 0 05 0 04
— 4 1 2 2 - 0 1 0 0.5
A=l 3123 oz o o5 o | o
2 2 4 1 0 025 0 05 w0
1 2 2 1 0.25 0 05 0 02
— 3 3 4 2 — 0 025 0 0.5 04
B=lo 1120 1 0 o5 0 | B
4 2 3 3 0 1 0 0.5
-0.8
Calculations show that eigenvalues &f — AF — BG S S S S
are: —0.7655, 18.6670,20.9701, 19.8784, so it is not an M- S

matrix, which means that Theorémh 3 is not satisfied. Howeve:,
according to Corollany{]1 and RemafR 6, we haie =

; — i — i Fig. 2. Trajectories of (¢) for different initial values, which show the
diag{2,1}, P, = diag{0, 2}, P5 = diag{3, 0}, and global exponential stabilitly of equilibrium

A = diag{P, + 0.25P,,0.5(P, + P3)},

then eigenvalues of D — AF — BG + A are !
0.8488,20.0717,22.7947,21.5348, therefore Corollary [J1 08
holds, so the above system can achieve its equilibriu 06
exponentially.
The following simulations present the correctness of ol o
claim. We choose five cases for initial values. Case 02
z1(t) = —4 + 3i,22(t) = =5 —i,t € [-4,0]; Case 2: & o
z1(t) = 2+ i,29(t) = =3 + 2.5i,t € [—4,0]; Case 3: "
z1(t) = 3 — bi,29(t) = 6 + 3i,t € [—4,0]; Case 4:
z1(t) = =2 — 4i,z9(t) = —7 + 4i,t € [—4,0]; Case 5: o
21(t) = 1444, 20(t) = =5 — 1.54,t € [—4,0]. FiguredJ[-# de- 06
pict the trajectories of{i(t), 2{ (t), 24 (t), 24 (t) respectively. 08
For different initial values, they converge to the same eqt ) L
librium (—0.0351,0.1423,0.0912,0.2239)7, i.e., the unique vz 4 s s W2 U B B

equilibrium has the global exponential stability property

Moreover, if we choose the initial values as Case 1, and
only the external contral are different, i.e., different externalFig. 3. Trajectories of:5*(¢) for different initial values, which show the
Contr0|S(u1,u2)T _ (_3 +4,2+4 4i)T and (U/1a u’Q)T _ (3 + global exponential stability of equilibrium
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08 - 0.8 4
0.6 T 0.6 T
04 g 0.4 4
0.2 R 0.2 1

20
o
i
£
i o
i

-0.2 T -0.2 T
-04 b -04 B
-0.6 1 -0.6 1
-0.8 T -0.8 T
-1 Il Il Il Il Il Il Il Il Il -1 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Time t Time t

Fig. 4. Trajectories ofd (¢) for different initial values, which show the Fig. 6. Trajectories of:f(¢) for different initial values, which show the
global exponential stability of equilibrium global exponential stability of equilibrium

05

L®
o
.

z

R
zl(t) under (u l,uz) 02

I
: zl(t) under (“1‘”2)

R
——1, (t) under (ul,uz) 05 |

I
—— 22(0 under (ur”z) ]

-0.5 -0.8 R
R o
o Zl(t) under (ul'uZ) 1 | | | | | | | | |
v 0 2 4 6 8 10 12 14 16 18 20
- - z‘lit) under (u,.u,) Time t
R o
‘ —_— zz(t) under (ul,uz)
i Z (t) under (u’ iu') . . . I . L .
! 2 v Fig. 7. Trajectories ofz; (¢) for different initial values, which show the
_11 L L L L L L | | | . o AR -
0 ) s 6 8 10 12 m m m 2 global exponential stability of equilibrium

are the same as defined in the above simulations.
Fig. 5.  Trajectories of allzf*(¢) and z/(t),i = 1,2 under different Similarly, according to Corollary[11, Remark] 5 and
_exiernal controllerguy, uz) and (u}, uj), which means that the equilibrium Remark [6, this system can achieve its equilibrium
is impacted by external control exponentially. Figures[JBI9 depict the trajectories of
2R(t), 21 (1), 28(t), 24 (t)  respectively.  Moreover, the
h%quilibrium is also (—0.0351,0.1423,0.0912,0.2239)T,
I.e., the equilibriums are the same for systéni (22) and syste
(23) even though they have different time delays.

2i,4 —i)T are added on the CVNNs, figuré 5 shows that t
equilibriums are different, therefore, the equilibriunhisavily
impacted by the external control.

In the final simulation, we will consider the time-varying

delays, thus we choose the equation as V. CONCLUSION AND DISCUSSIONS

In this paper, we first propose a complex-valued recurrent
at) = —da(t) + anfi(a(t) + anfo(2(t) neural nert)wgrk model wliath F:;synchronoSs time delays. This
+bi1g1 (a1t — 1 —sin(?))) feature is the first difference of this paper with previouskso
, Hh12g2(22( = 2 = cos(t))) + ua (23) Then under the assumptions of activation functions, we grov
2(t) = —da(t) + anfi(z1(h) + anfo(=(1)) the exponential convergence directly by using tkenorm,
+ba191(21(f = 3 + sin(?))) 1-norm and2-norm respectively, the existence and uniqueness
+hazga(22(f — 4 + cos(t))) + u of the equilibrium point is a direct consequence of the ex-
All the parameters, including the external controlponential convergence; while previous works in the literat
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2. How to find an efficient way to analyze complex-
valued system using the complex nature of system and
consider its properties on complex planes will be our
06 1 future direction.

s | 2) In this paper, we consider the asynchronous time delays,
which can be regarded as discrete delays. However, a
distribution of propagation delays can exist for neural
networks due to the multitude of parallel pathways
-02 1 with a variety of axon sizes and lengths. Therefore,
continuously distributed delays can be a good choice,
so investigation of stability under distributed delayslwil
also be our future direction.

0.8

0.2

LA
o

-08 1 3) As for the dynamical behaviors of complex-valued
4 ‘ ‘ . . ‘ L \ \ \ neural networks, the global existence and exponential

0 2 4 6 8 10 12 14 16 18 20 . . .
Time stability is just an aspect, there are also many other

interesting dynamical behaviors for future research, for
example, the multistability, the robustness of uncertain
neural networks, the existence and stability of periodic
(or almost periodic) solutions, chaotic behaviors for
(delayed) complex-valued neural networks, etc.

Fig. 8. Trajectories of:5*(¢) for different initial values, which show the
global exponential stability of equilibrium

08 ] APPENDIXA: THE PROOF OFTHEOREM[
06 ] Proof: Define

xj(t) = e“éf(t), y;(t) = eEt,é;(t),j =1,2,---,n. (24)

Then we have

x0)
o

z.

-02 1 Z; (t) = (—dj + 6)$j (t)
—04} i n (c)fR afR n af[ af[
4 all | 2k g 4+ 2k — al, | =Lk 4 o+ 21k
o6} ] ; gk [(“)z,f r 0z} Yk ; Ik |lozf g 0z} Yk
-0.8 E n R R
g 99
L L L L L L L L 1 + bR eETjk {7161716 Tk + 7k}yk Tk
. 2 4 6 8 10 12 14 16 18 2 ]; ik az[?(fjk) (L) azlﬁ(Tjk) (L)
Time t - - -
n
gl gl
I i k k
_ijkeETjk {aizR(Tk)Ik(m)‘i‘ 621(7‘;@)%(@) 3
Fig. 9. Trajectories okZ(¢) for different initial values, which show the k=1 kALZ RAIZ
global exponential stability of equilibrium (25)

and

always use two proving steps: step 1, prove the existencey-gtt) = (—d; + €)y;(t)
equilibrium; step 2, prove the stability. This is also a Hove n af! af! n ofR OfR
of this paper for investigating the equilibrium of CVNNs. Zaﬁc |:—§=Tk + —];yk:| + Za§k [_’fok + —@yk]
Moreover, considering the signs of coupling matrix, some ;—; Oz, Iz, =1 0z, Oz,
sufficient conditions for the uniqueness and global exptiaken G dg! dg!
stability of the equilibrium point are presented, which arere  + Y _ bjie™" [7 (7ix) + 2L, (M)}
general and less restrictive than previous works, i.e.,Mhe k=1 LaL
matrix property of D — AF — BG is just a special case of <—,; .. gl
criteria for exponential stability. These are our main teical D e { (Tjk) (Tje) + 0z} (tj) vk (M)} '
results. Finally, three numerical examples are given tovsho =1 — (26)
the correctness of our obtained results.
In the end, we give some discussions about future directionbere 0f{/92? denotes df2(2F(t), 2L(t))/028,a,b =
of the complex-valued neural networks: R, I; xp(tje) = ap(t — mk), and yp(me) =
1) This paper deals with complex-valued neural network(t —  Tjx); while of)0zp (tin) denotes
by decomposing it to real and imaginary parts andfy (22 (t — k), 2L(t — k) /028 (t — Tjk),a,b = R, I.
constructing an equivalent real-valued system. To ensurel_et
this decomposition, we assume the partial derivatives of T’ onx1
activation functions exist and bounded, see Definition X (1) = (€1(), -, @n (1), 41 (1), -, yn (1)) € R,

),
92 (Tjk)
dgft
— X
32’{3 b
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so X(t) = eZ(t), and [ X)) = { b IR
.00 R b Ty b
mae{mae (1€} 2, ()]}, mas (5 s (1)) 2 ol 35:¢%'ﬂ°k jzzgk'ﬂ°k“”
Case 1 For X(t), if jo = jo(t), which depends on, is o
such an index thalt;; "), ()| = |X ()| ¢} then +Z¢klbm } R X (= Tjor)l g0
Furthermore, define
X )l gg,00r _ dljo ()]
- >0F 0 M(t)= su X(s ools 27
b0y = 0=, sw_IX6)lex @)
—sign{xjo(t)}{fjo(—djo —l—e){j_olzzrjo(t) where 7 = max; 7. Then || X (t)[(¢,001 < M(t), and if
. . | X (t)]l{¢,00y = M(t), we have
+Z§ka3kﬁ§_lwk + Z(bkaRk%lek dl| X ()]l ¢,00)

e = G L < T1Ge) - M@ 0. (289)
—i&ca[ kt?_f,ﬁg,lxk _ zn:mal ka—ﬁwlyk Case 2:For X (t), if jo = j)(t), which depends on, is
R — ST such an index tha|tz>j*(,)1yj6(t)| = [|X()ll1¢,00}, then

993 ok e—1 | X dly;. (t
+ bl ce<Tor &V (14, I X ()l 1e,00y _ lysp (B)]
Z&C PRz (i) & ok (Tik) 34 dt T
095 yerap g1 =sign{ys, (1)} by (—dyy + )y, i (1)
+ bl - eTiok Tjo 8 Yjg Jo jo T € 76 Yig
Z¢k Jokazk ]Ok) by, yk(]_k) j

+Z§ka ka Rfk Tk +Z¢ka kaf1¢k

ce TR (Ton)

afft
'eETjOkaklyk(M)} +Z§ka ka ng Tk +Z¢ka ka I¢k

Tjok)

Z gkbjok azk

Z¢k ”’“6 m
ngo( d]o +€+ {a]070}+)\ +{ a]070}+/\ )|§J0 x]o(t” +Z€kb k(? R k) ETj(/)ké-k_lxk(%)

+ Z Erlall AT 11X (0] 6,00y

k=1,k#jo +Z¢kbaak3 k) e 6% g My (Tign)
n _U
+ ) orlafl AT 1X ()l ge00 T

+ Eklady o AT - 11X () e .00y eryr
k—LZk¢j0 " +Z¢kbaok6 )e ey yk(TJo )
I II
2 orlaior A IX 0 e ) g{% ( = i, + e+ {agy YA+ agyy, }*Aﬁf)
k=1
+Z€k|bm FeTIOM| X (t = Tjok)|l {€,00} +Z€k|ag’k|/\1R+ Z ¢k|%/k|)\H+Z€k|ag/k|)\k
k=1,k#j,
+Z¢k|b70k e TIOR || X (t = Tjon)ll {¢,00} + Z ¢k|a§6k|/\kRI}|X(t)|{£,OO}
k=1 k;éj’
+ Zéklb] kg - €T X(E = Tiok) 16,00} RR
2 5Py Zmb +Z¢k|b +Zsk|b Kl
b efTiok | X (t — T o €T/
2 onlbl 1 = Tiow) e +Z¢k|b§6k|u§f}e 0K (= 70l e
k=1
{ ( djy + €+ {aji;, PN+ {—a§0j0}+/\§f> From the definition of[(27), we haveX (t)| (¢,00y < M (1),
and if | X (¢)[| {¢,00p = M (1),
Z RR Z RI oot
+ Eulajt o AT+ ) dulag e[ Mg d|X )|
S by —— = <T2(j) - M@ <0 (29)

+ Z Eklagy i AT+ Z¢k|a§ok|)‘£l} X @) g¢,00}

k=1,k#jo

k=1

Therefore, for the above two cases, accordingd (28) and
(29), one can get thab/(¢) decreases monotonely, which



implies || X () (¢, = O(1) and

1Z(#)ll(g,00y = Ole™),

12

APPENDIX C: PROOF OFTHEOREM[4]
Proof: Recall the definition of:;(¢) andy;(¢) defined in

(24), we can define a Lyapunov function as

i R _ —et o1 _ —et\ ;5 __ . n n
i.e., ;' (t) = O(e™") and £ (t) = O(e™),j = 1,2, 1 ) ZZ@UC?@) n Z(b]yjz(t)

Consequently, for any,t; € R,t; > to, there exists a = =
constantC' > 0, such that n ‘

. 0" + kzl Oz;-ke%fjk /tTVk xz(s)ds
. . 1 k= J
12(0) = 2l ey = 1| | 20011 < [ 1200) 1 " t
2 2
, £ e [ yisas
§/ Ce “'dt = g((f“2 —e ) < geféb. j,;gZ:1 ’ t=Tjk
€ €
’ where

By Cauchy convergence principITe, v;e conclude that ) n | 1
Jim Z(t) = Z, for someZ = (Z" ,Z" )T. It is easy ik :I;@('bﬂf o bl i) w3
—+00 =
to get thatZ is an equilibrium point of the systemgl (4) and n 5 )
@®). + Z ¢j(|bjk Ry |b s )W3j_k ;

Next, we prove that the equilibrium point is unique. L&t k=1
be any equilibrium point of the systenid (4) afd (5). By the R (bR | 1
same arguments, we can prove that Bi —];ﬁgﬂbjk e TR L

(t)dt]| < ge <,

12(t) — Zlgeey = H/

which means that any solutigfi(t) converges toZ exponen-
tially and the equilibrium point is unique.

S (AT A S

+Z¢j(|bj
k=1

Differentiating L, () along equationd(25) an@_(26), using
some calculations (the details are left to interested msyde

one can get that

APPENDIX B: PROOF OFTHEOREM[Z]

Proof: Recall the definition of:;(¢) andy;(t) defined in
(24), we can define a Lyapunov function as

1) => &l O+ bsly;(t)
i=1 i=1

n t

+ 2 ajkeﬂjk/

k=1 t=

[
|2k (s)|ds

Tik

(2]

n t
+ > ﬁjkeﬂj’“/ lyr(s)]ds,
j k=1 t=Tjk (3]
where 4
[5]
ajie = &0 g™ + |bheln™) + &5 (15 ™ + (bl ) (6]
Bk = & (07 i + 105 i) + &5 (1055 " + 105kl i)

(7]

Differentiating L, (¢) along equationd (25) anfd(26), using
some calculations (the details are left to interested msyde
we have (8]

) e+ TS0 ) <0.

k=1

kg [10]

By similar arguments used in the proof of Theordgim 1, it g1
easy to see that the equilibrium point is unique. [ |

t) <> T13(j)a3(t) + > T14()y3(t) <0
j=1 j=1

By similar arguments used in the proof of Theorgim 1, it is
easy to see that the equilibrium point is unique.
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