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Abstract—In this paper, a neuron with nonlinear dendrites
(NNLD) and binary synapses that is able to learn temporal
features of spike input patterns is considered. Since binary
synapses are considered, learning happens through formation and
elimination of connections between the inputs and the dendritic
branches to modify the structure or “morphology” of the NNLD.
A morphological learning algorithm inspired by the ‘Tempotron’,
i.e., a recently proposed temporal learning algorithm-is presented
in this work. Unlike ‘Tempotron’, the proposed learning rule uses
a technique to automatically adapt the NNLD threshold during
training. Experimental results indicate that our NNLD with 1-bit
synapses can obtain similar accuracy as a traditional Tempotron
with 4-bit synapses in classifying single spike random latency
and pair-wise synchrony patterns. Hence, the proposed method is
better suited for robust hardware implementation in the presence
of statistical variations. We also present results of applying this
rule to real life spike classification problems from the field of
tactile sensing.

Index Terms—spiking neuron, tempotron, binary synapse,
dendrites, plasticity, learning

I. INTRODUCTION

Though the representation of stimulus by the neurons in
our brain is a topic of much ongoing research and debate,
it is widely believed that the timing of the action potentials
or spikes fired by these neurons carry important information
[1]. Spike latency codes i.e. delay in the spike time after
stimulus presentation have been suggested for tactile, olfac-
tory and retinal systems [2]]. They are also thought to offer
significant advantages in terms of reducing power needed for
communicating spikes as well as allowing rapid processing
of inputs. Hence, neuromorphic engineers, who aim to mimic
the brain’s processing capabilities in silicon, have also been
interested in spike timing based neural networks.

Several analog CMOS integrated circuits operating in the
sub-threshold regime have been designed in the past to imple-
ment somatic and synaptic functions [3]-[6]. However, with
the increase of statistical variations due to the constantly de-
creasing feature size of transistors, performance of silicon neu-
ral networks requiring accurate setting of a “weight” parameter
become strongly compromised. The typical solution for this
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problem is to increase transistor size. However, this alone
might not be sufficient to guarantee good matching across the
chip. For example, [[7] demonstrates that 5pm X 5pm transistor
based 5-bit DACs fabricated in 0.35um CMOS exhibit only
1.1 effective bits. Calibration techniques can be used to
improve the accuracy; however, this incurs significant area
penalty due to storage of calibration bits and is unacceptable
in large scale systems. The problem of mismatch is also
exacerbated for several nanometer scale non-CMOS devices
(e.g. memristor [8]-[10] or domain wall magnets (DWM)
[11]]) that have potential for use in large scale neuromorphic
applications. For example, DWM synapses are expected to
have typical programming accuracies of 4-bits which can
reduce to 2-3 bits effective resolution due to mismatch [[11]].
Hence, there is a strong need to develop algorithms and
architectures that retain the performance of earlier spiking
systems but require low-resolution weights.

In this paper, a hardware friendly morphological learning
rule for neurons with nonlinear dendrites (NNLD) and binary
synapses for classifying spatiotemporal spike patterns is pre-
sented. Previous studies have shown that NNLD can be suc-
cessfully applied to learn both mean rate encoded inputs [12],
[[13[] and spike-timing information [14]], [15]]. Although in [14],
[15]] we proposed a spike time based learning rule for training
a NNLD architecture, however the rule was not optimized for
memory capacity. Here we propose a novel memory capacity
optimized spike timing based learning rule for training NNLD.
Our work is inspired by the Tempotron learning rule for
spiking neurons [1]. However, unlike the Tempotron learning
rule that requires weights with high resolution, the proposed
network uses low-resolution non-negative integer weights and
learns through modifying connections of inputs to dendritic
branches. Thus the ‘morphology’ or structure of the neuron (in
terms of connectivity pattern) reflects the learning. This results
in easier hardware implementation since a low-resolution
non-negative integer weight of W can be implemented by
activating a shared binary synapse W times through time
multiplexing schemes like address event representation (AER)
[16[, [17]]. Furthermore, the spiking threshold of the neuron
employed in Tempotron is fixed throughout the learning. On
the other hand, the proposed method is equipped with a
threshold adaptation mechanism trying to optimize the number
of false positives and false negatives. Some initial results of
this concept were presented in [19]. In this paper, we present
a novel threshold adaptation technique, more detailed set of
results, comparisons with other work and application to a real
world problem.
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Fig. 1: The architecture of neuron with nonlinear dendrites (NNLD).

The organization of this paper is as follows: in Section
and the architecture of the neuron with nonlinear dendrites
and its morphological learning algorithm are introduced. Two
spike time based binary classification tasks are discussed in
Section and performance of our method in comparison
to Tempotron is shown in Section [[VB, and [V] Finally,
our work is compared with other classifiers in Section [VI|and
then a conclusion is drawn in Section

II. NEURON WITH NONLINEAR DENDRITES

It has been shown that a neuron with lumped dendritic
nonlinearities possesses higher storage capacity than its coun-
terparts with linear dendritic summation [[12]. As presented
in Fig. [I] the structure of NNLD is characterized by m
identical dendritic branches and k excitatory synaptic contacts
per branch. For each branch, the synaptic contact is formed by
one of d dimensions of input afferents where d >> k. At the
relevant times governed by incoming spikes, the synapses are
activated and the membrane voltage is calculated by weighted
sum of postsynaptic potentials (PSPs) as follows:
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where w;; is the weight of the it" synapse formed on the

4 branch, v;(t) is the input to the j*" dendritic nonlinearity,
b (-) is the nonlinear activation function of the d2endritic branch
which is characterized by b (v;(t)) = v;(t) /Ith,r 113], K
denotes the post-synaptic potential kernel and t% are times
of incoming spikes on the ‘" afferent. Since we consider
binary synapses, w;;e{0,1}. To suppress unrealistically large
values, we include a saturation level x4 at the output of
each dendrite such that for b(v;(t)) > @sat,b(v;(t)) = Zsar.
Similar to our earlier work [13]], we allow each input afferent
to make multiple synaptic connections on the same dendritic
branch but limit the total number of connections per branch by
enforcing Zle w;; = k for each j. In this work, we consider
normalized PSP of the form:

K (t —ty) = Volexp[=(t — t5) /7] —exp[=(t = t7)/7s]) (2)

where the parameters 7 and 7, =7/4 denote the decay time
constants of membrane integration and synaptic current re-
spectively [/1]].

For binary classification, the final output voltage V,,: is
interpreted to take a value of either “1” or “0” depending on
whether the summed membrane voltage V' (t) is crossing a

threshold voltage (Vip,). Similar to [1]], this indicates that a
neuron fires at least one spike if V'(¢) crosses (Vin,); otherwise
it remains quiescent. After the neuron fires a spike, it is
returned to the refractory state and the rest of the spikes in
the incoming pattern do not affect the computation.

III. MORPHOLOGICAL LEARNING ALGORITHM

On one hand the proposed learning rule tries to optimize the
connections between the input lines and the synapses while on
the other hand it tries to find a optimal value of the neuron
firing threshold(V;y,-). Below we describe both the processes.

a) Learning the connections: Since we have binary
synapses, a morphological learning rule that can modify the
connections between afferent lines and synapses is needed.
The inspiration of this work comes from the Tempotron
learning rule [1]] that learnt the temporal feature of random
spike patterns in two classes by updating its weights so
that the neuron fires a spike for patterns in class PT and
stays silent for the other class. It was shown in [1] that the
Tempotron rule endows a neuron with larger classification
capacity than a perceptron with same number of synapses.
Hence, we also start with a cost function that measures the
deviation between the maximum membrane voltage (V,,42)
generated by misclassified patterns and V;j, defined as:
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where V., is the maximal value of postsynaptic potential
V(t) at the time t,qz, 1.€., Vinax = V (tmax). According to
the gradient-descent method, the change in synaptic efficacy
for the first case is calculated by:
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where b'(.) denotes the derivative of b(.). The gradient for
second case can be calculated similarly and we do not show
it here for brevity. As mentioned earlier, since we consider
binary weights, i.e., w;; = 1 if a connection exists and 0
otherwise, we cannot directly modify the weights by adding
the Aw;; term derived here. Instead, the term Aw;; in Equa-
tion |4 is reinterpreted as a correlation term ¢;;(= w;;) and is
used to guide the process of swapping connections. At every
iteration of the learning process, the synapse with the lowest
ci; averaged over an entire batch of patterns from a randomly
chosen target set will be replaced (weight changed from 1 to
0) with the highest ¢;; synapse in a candidate replacement
set similar to [13|]. To keep the paper self-contained, the
mechanism of the learning process is outlined briefly below:
1) The learning process starts with random initialization
of the connection matrix between input afferents and

dendritic branches.



2) In each iteration of the training process, the activation
of synapses on each dendritic branch are determined
and the cell membrane output voltage (V'(t)) in is
calculated for all the input patterns.

3) From the calculated V(¢), the maximum membrane
voltage (V,,4) is observed and classification result is
determined, i.e., the patterns are correctly classified if
Vinax > Vine for PT and Viyax < Vip, for P,

4) A random set T' of np synapses having weight 1 was
targeted for possible replacement. For all misclassified
patterns, the correlation term, c;; is calculated for each
synapse in 7" and averaged over the entire pattern set,

5) The poorest-performing synapse (minimum c;;) in T,
Tnin is chosen for replacement.

6) To aid the replacement process, a randomly chosen set R
containing np of the d afferent lines is forced to make
silent synapses with weight 1 on the dendritic branch
of T},;n. These synapses are “silent” since they do not
contribute PSP to the computation of V' (¢)-so they do
not alter the classification when the same pattern set is
re-applied. But now ¢;; is calculated for synapses in R
and T),;, is replaced with the best-performing synapse
(maximum c¢;;) in R.

7) The learning from step (2) to (6) continues until all the
patterns are correctly learnt (or) the maximum number
of iteration is reached.

b) Learning the threshold: Since we do not have an
arbitrary multiplicative weight in our neural model, the range
of maximum voltages obtainable from our model in response
to a fixed temporal spike pattern is limited. This is similar
to the problem faced in [[18]]. Hence, improper selection of
threshold may largely degrade the classification performance
since a very large Vi, (= m X k X K4, for example) may
never be crossed by V(¢). In [19], we determined the value
of Vip, by noting the maximum value of V (¢), i.e., Vypas at
time t,,4, for a large number of random input spike patterns
and connection matrices. The resultant probability distribution
of Ve was used to determine the optimal threshold V..
In [19], Vi1, was set to be the voltage corresponding to the
peak of probability distribution function. Here, we propose
an automatic mechanism for adapting Vj, during training.
This technique involves updating the value of V;;,, after each
iteration which is guided by the following formula:

A‘/thr = n(wprP - wanN) (5)

where F'P, FN, w¢p, wg, and > 0 are the number of false
positives, number of false negatives, weightage associated with
false positive error, weightage associated with false negative
error and threshold learning rate respectively. In this article, we
keep wy, = wyy, = 1. Equation E] is responsible for balancing
the number of false positives and false negatives. When F'P >
F'N, the number of negative patterns incorrectly classified as
positive patterns is more than the number of positive patterns
incorrectly classified as negative patterns so to balance F'P
and F'N Equation E] increases the value of V;j,.. On the other
hand, when F'P < FN Equation [5 diminishes the value of
Vinr. The rate of threshold adaptation is controlled by the
threshold learning rate 7.

1V. EXPERIMENTS AND RESULTS
A. Problem Description

In this sub-section, we describe the two tasks used to
demonstrate the performance of our algorithm. The reason for
this choice is that both of these are standard problems shown
in [[1] and facilitates comparison.

1) Task I: Classifying Random Latency Patterns: The first
task is binary classification of single spike random latency pat-
terns [|1]. To perform the task, P spike patterns were generated
and randomly assigned to one of the two classes P+ (Class
1) or P~ (Class 2). Each spike pattern X = (21, 22,...,2q)
consists of d afferents, where each of them spiked only once
at a time drawn independently from a uniform distribution
between 1 and 7" ms.

2) Task II: Classifying pairwise Synchrony Patterns: To
examine the ability of our algorithm to learn correlations
in multiple spikes, another data set that consists of pairwise
synchrony events in each pattern is generated. In this data set,
all the d afferents are grouped into (d/2) pairs and afferents
in a given pair fire single spike patterns synchronously. Since
synchronous events occur at random, uniformly distributed
times in both pattern categories, so that class information
is embedded solely in the patterns of synchrony; neither
spike counts nor spike timing of individual neurons carry
any information relevant for the classification task. This task
mimicked spike synchrony-based sensory processing.

For both Task I and II, we have kept d as 500.

B. Results: Performance of NNLD trained by morphological
learning algorithm

Throughout the experiment, the design parameters m, k,
Tihrs Tsat, T and T, were chosen as 100, 5, 1, 100, 15 ms
and 400 ms respectively. The detailed criteria for selection of
parameters x:p, and s, is described in [[13]]. As discussed
in Section the firing threshold V}y,,. is adapted and so it is
randomly initialized before training.

To start with Task I, the NNLD in Fig. E] was trained
on a small number (= 100) random latency patterns as
generated in Section The results in Fig. P] (a) and (b)
show that the proposed method can efficiently perform the
classification task. A clear separation between Class 1 and
Class 2 shows that the proposed method is able to respond
to the random single spike latency patterns by shifting V4.
closer and farther to the V;j,. for each pattern in classes 1 and
2 respectively.

The NNLD was also trained for larger number of input
patterns (500 and 1000 patterns) as presented in Fig. [3] (b)
and (c). It shows that the proposed method can perform
the classification task quite well by achieving accuracies of
95.58%(SD = 0.54%) and 86.57%(SD = 0.72%) respec-
tively for these cases. Next, we performed the experiment of
Task II with our network. It was observed that the classification
performances (100%, 100% and 99.71 %(SD = 0.1%) accu-
racy for 100, 500 and 1000 patterns) are much better than that
of performance in random latency patterns of Task I.Hence,
our method can identify the extra information embedded in
synchrony of neural firings. It also reveals that the learning
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Fig. 2: Distribution of Vj,qz for 100 patterns (a)before and (b) after
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Fig. 3: The distribution of V.., for a set of (a) 100, (b) 500 and (c)
1000 patterns in task I showing 100%, 94.8% and 84.9% accuracy
respectively.

rule does not depend only on a single synchronous pair but
on a huge number of synchronous pairs.

C. Results: Comparison with Tempotron learning

Next, the performance of proposed method is compared with
the Tempotron learning [1]] that learns spike time patterns by
using weight updates. The number of synapses used by Tem-
potron is equal to the number of input afferents d. Since we
are interested in the performance of these algorithms in their
hardware implementations plagued by mismatch, we consider
the performance of the Tempotron when its weight is quantized
at different resolutions. Further, we do the quantization in two
ways: either after training (AT) or as a step during training
(DT). The first method corresponds to the case where weights
trained in software version of the algorithm is downloaded
to the hardware while the second method is analogous to
performing training on-chip. Furthermore, for comparison with
our previous threshold selection technique [[19], we have also
calculated the value of Vi, by equating it to the voltage
corresponding to the peak location of V., distribution over
10000 random input spike patterns. We term this as Vi, static-
Fig. [] depicts that the performance obtained by morphological
learning with adaptive threshold is superior to that of learning
with fixed Vipr static. Moreover, the comparison results in
Fig. @] (a) also show that the Tempotron using floating-
point numbers achieves better performance compared to the
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Fig. 4: Comparison studies on classification performance, for Tem-
potron learning [[1] and the proposed morphological learning rule
for (a) Task I of Random Latency Patterns and (b) Task II of Pair-
Wise Synchrony Patterns. The results have been averaged over 10
independent trials.

proposed method. However, when the high resolution weights
are quantized at 2-bit level, its performance is worse than the
proposed method. Also, it can be seen that the performance is
better when the quantization is performed within the learning
loop. This is to be expected since the learning algorithms can
now try to correct this quantization error as well.

Only at 4-bit quantization level, the classification per-
formance of Tempotron (93.05%(SD = 0.55%) and
89.14%(SD = 0.7%) accuracy for 500 and 1000 patterns)
in Task I is comparable to our proposed method using 1-
bit or binary weights. This underlines the importance of
our proposed method in robustly implementing spike timing
based classifiers using low-resolution analog synapses avail-
able in nano-scale CMOS or non-CMOS devices. Similarly,
the classification performance of NNLD for Task II with 1-
bit binary weights in Fig. ] (b) is comparable to performance
of Tempotron at 4-bit quantization which shows about 100 %
and 98.12%(SD = 0.12%) accuracy respectively for 500 and
1000 patterns.

V. APPLICATION EXAMPLE

Till now the proposed algorithm has been applied to classify
synthetic synchrony patterns. But, to check whether the algo-
rithm can work in real world problems, it is used to classify
Tactile information. The patterns which have been till now
presented for classification had one spike per afferent but real
world scenarios may have multiple spikes per afferent.



TABLE [: Performance comparison of morphological learning rule
on NNLD and Tempotron

Cases Accuracy
Mean SD

Morph. lear. on NNLD (adaptive Vip,,.) 96.54 | 0.6573
Morph. lear. on NNLD (for Vi, static) 95.64 | 0.6473
Tempotron (no quantization) [1|] 97.06 | 0.5123
Tempotron (6-Bit quantization after training) 95.64 | 0.7614
Tempotron (6-Bit quantization during training) | 96.26 | 0.6822
Tempotron (4-Bit quantization after training) 78.87 | 1.8371
Tempotron (4-Bit quantization during training) | 85.92 | 1.3846
Tempotron (2-Bit quantization after training) 51.56 3.765
Tempotron (2-Bit quantization during training) | 55.88 | 2.8731

a) Task Description: A detailed description of the task
can be found in [20]-here, we give a brief description for
completeness. The task requires a flexible, stretchable and
conformable tactile sensor array made up of conductive fabric
which is used for data collection. Two glass spheres (indenters)
of diameter 65 mm and 105 mm were indented onto this
sensor array by a suitably programmed 6-axis robotic arm.
The indentation force used was 4N, as measured using a
load cell placed below the sensor having an accuracy of
0.01N. The signal recording was started just before placing the
indenter onto the sensor array and stopped before removing the
indenter. Between consecutive indentations, a 5 second pause
was provided so that the sensors were able to recover. A total
of 100 recordings were taken per indenter. The collected data
were converted to spikes as described in the next sub-section.
For each indenter, 60 randomly chosen recorded data was used
for training both the proposed algorithm and Tempotron. The
remaining 40 recordings were used for testing.

b) Spike Train Generation: The conversion of the analog
data recorded by the sensor array to spike trains involves
the following steps. First, the analog data is converted to
digital output by applying a fixed threshold of 0.5. This digital
output is inverted to generate another set of digital data. Each
channel of the digital data and its inverted version are passed
through Leaky Integrate and Fire Neuron to generate two sets
of spike trains. These spike trains are combined to form the
spike response to be given as an input to the algorithms. The
usage of both the digital data and its inverted version for spike
generation ensures both low to high and high to low transitions
are captured by a change in firing activity. The combined spike
train patterns given as input to the algorithms consist of 130
afferents. Thus, we allot 130 synapses for both Tempotron and
NNLD.

c) Results: The performance of the proposed method
on this application is compared with Tempotron algorithm at
different quantization levels in Table [l The results, averaged
over 10 independent trials, show that the proposed algorithm
is able to achieve an accuracy of 96.54%(SD = 0.6543%).
Although Tempotron without quantization performs better
(97.06%(SD = 0.5123%)) than the proposed learning rule
on NNLD, but after quantization, at least 6 bits of weight
resolution is needed by Tempotron to match our performance
with 1 bit weights.

VI. DISCUSSION

Here, we compare our method with other reported algo-
rithms and other possible variants of morphological learning.

A. Comparison to other supervised spiking neural classifiers

In recent years, several supervised learning algorithms have
been proposed such as Tempotron [1]], ReSuMe [21]], Spike-
Prop [22]] and Chronotron [23]] for training spiking neurons.
From a pattern recognition viewpoint, these algorithms can be
classified into two types. The general theme of the first type of
algorithms is that a desired output spike train is specified prior
to learning for each class of patterns. SpikeProp, ReSuMe and
Chronotron are examples of this type, among which SpikeProp
can only produce a single output spike whereas the others are
capable of producing multi-spike train. In the second type,
no such desired output spike train is specified beforehand
and the algorithms choose the best time to spike for each
pattern during training. Tempotron and the proposed algorithm
are examples of this type which chooses t,,,, (defined in
Sec. as the time to spike. We have already compared the
performance of our algorithm with Tempotron. We now choose
ReSuMe as a representative of the first type of algorithms and
compare its performance with the proposed learning rule for
the two tasks described in Sec. For ReSuMe, the neuron
had to fire one spike at ¢, = 350ms for P patterns and at
t_ = 450ms for P~ patterns. The classification performance
of ReSuMe (89.58%(SD=1.24%)) and 82.65%(SD=2.22%)
accuracy for 500 and 1000 patterns) in Task I is worse
compared to the proposed method. Similarly, for Task II, the
proposed method performs much better than ReSuMe learning
rule (96.74%(SD = 0.8467%) and 92.12%(SD = 1.1654%)
accuracy for 500 and 1000 patterns).

B. Comparison to other classifiers using dendritic processing

We have already compared the proposed algorithm with
previous works employing NNLD in Section Here we
first compare our method with another dendritic algorithm
proposed by Wu et al. in [24]]. Unlike [24] which considered
only mean rate encoded inputs, our learning rule can be
applied to arbitrary spike trains.

Second, we compare the proposed algorithm with another
recently reported structural plasticity based algorithm named
Dendritically Enhanced Readout (DER) [14], [15]. In [14],
[15]], this structure has been used as the readout stage of
Liquid State Machine. The primary difference of the proposed
algorithm with DER is in the number of data points per pattern
to be memorized for a particular task. If we consider there
are PT and P~ patterns of Class 1 and Class 2 respectively,
then the number of data points to be memorized by the
proposed algorithm are P, nnyrp = T x P~ 4 1 while
the number of data points to be memorized by DER are
P ppr =T x (P* + P~) where T is the number of time
points per pattern. So, DER has to memorize almost two times
more data points than the proposed algorithm for the same
number of patterns thereby reducing its memory capacity.

Third, we have also compared our performance with another
recently proposed dendritic algorithm termed as Synaptic
Kernel Inverse Method(SKIM) [25]]. The difference mentioned
above in the context of DER also applies to SKIM. Apart from
that, SKIM also uses much more resources than the proposed
NNLD which we will show next. We compare the two methods



on Task I for 100 patterns in which case our proposed method
has 100% accuracy. The neural network architecture used
in [25] consists of N presynaptic neurons which connect to
an output spiking neuron, via synaptic connections to its M
dendritic branches. The weights of these synapses are random
and fixed. These synapses along with a subsequent nonlinearity
projects the input to a higher dimension thereby increasing
separability. The dendritic branches sum the synaptic input
currents, and the output from the dendritic branches are
summed at the soma of the output neuron. The weights of the
connection between dendritic branches and the soma are learnt
by Moore pseudo inversion method [25]. Thus, for this net-
work N x M synaptic resources are required for connecting the
N presynaptic neurons to M postsynaptic dendritic branches
and M synapses are required for connecting the M dendritic
branches to the single output spiking neuron. The number of
input spiking neurons are equal to the number of afferents in
the input data which in our case is 500. Since we have used
500 synapses for NNLD, so initially we keep the number of
postsynaptic dendrites in SKIM as 1 (M = 1) to match the
number of resources used by us. But for M = 1, SKIM fails
miserably and provides only 50% accuracy. When the number
of dendritic branches are increased, SKIM provides better
results and finally is able to provide 100% accuracy when
M = 360. So to provide equivalent result as the proposed
algorithm SKIM requires 361 times more resources than our
proposed NNLD.

VII. CONCLUSION

A morphological learning rule that can be used to find
the optimal morphology of neurons with nonlinear dendrites
(NNLD) and binary synapses is presented. The learning rule
includes a novel threshold adaptation technique. To see the
effectiveness of the proposed method, the NNLD trained with
morphological rule is used to solve two classification tasks
and one real world problem. The results depict that our
proposed method with 1 bit weights can achieve comparable
performance to tempotron learning rule with 4-bit to 6-bit
quantized weights.
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