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A New Continuous-Time

Equality-Constrained Optimization Method to

Avoid Singularity

Quan Quan and Kai-Yuan Cai

Abstract

In equality-constrained optimization, a standard regularity assumption is often associated with

feasible point methods, namely the gradients of constraints are linearly independent. In practice, the

regularity assumption may be violated. To avoid such a singularity, we propose a new projection

matrix, based on which a feasible point method for the continuous-time, equality-constrained opti-

mization problem is developed. First, the equality constraint is transformed into a continuous-time

dynamical system with solutions that always satisfy the equality constraint. Then, the singularity

is explained in detail and a new projection matrix is proposed to avoid singularity. An update (or

say a controller) is subsequently designed to decrease the objective function along the solutions of

the transformed system. The invariance principle is applied to analyze the behavior of the solution.

We also propose a modified approach for addressing cases in which solutions do not satisfy the

equality constraint. Finally, the proposed optimization approaches are applied to two examples to

demonstrate its effectiveness.

Index Terms

Optimization, equality constraints, continuous-time dynamical systems, singularity

I. INTRODUCTION

According to the implementation of a differential equation, most approaches to continuous-

time optimization can be classified as either a dynamical system [1],[2],[3] or a neural

network [4],[5],[6],[7]. The dynamical system approach relies on the numerical integration

of differential equations on a digital computer. Unlike discrete optimazation methods, the
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step sizes of dynamical system approaches can be controlledautomatically in the integration

process and can sometimes be made larger than usual. This advantage suggests that the

dynamical system approach can in fact be comparable with currently available conventional

discrete optimal methods and facilitate faster convergence [1],[3]. The application of a higher-

order numerical integration process also enables us to avoid the zigzagging phenomenon,

which is often encountered in typical linear extrapolationmethods [1]. On the other hand,

the neural network approach emphasizes implementation by analog circuits, very large scale

integration, and optical technologies [8]. The major breakthrough of this approach is attributed

to the seminal work of Hopfield, who introduced an artificial neural network to solve the

traveling salesman problem (TSP) [9]. By employing analog hardware, the neural network

approach offers low computational complexity and is suitable for parallel implementation.

For continuous-time equality-constrained optimization,existing methods can be classified

into three categories [1]: feasible point method (or primalmethod), augmented function

method (or penalty function method), and the Lagrangian multiplier method. Determining

whether one method outperforms the others is difficult because each method possesses distinct

advantages and disadvantages. Readers can refer to [1],[4],[7],[10] and the references therein

for details. The feasible point method directly solves the original problem by searching

through the feasible region for the optimal solution. Each point in the process is feasible,

and the value of the objective function constantly decreases. Compared with the two other

methods, the feasible point method offers three significantadvantages that highlight its

usefulness as a general procedure that is applicable to almost all nonlinear programming

problems [10, p. 360]: i) the terminating point is feasible if the process is terminated before

the solution is reached; ii) the limit point of the convergent sequence of solutions must

be at least a local constrained minimum; and iii) the approach is applicable to general

nonlinear programming problems because it does not rely on special problem structures

such as convexity.

In this paper, a continuous-time feasible point approach isproposed for equality-constrained

optimization. First, the equality constraint is transformed into a continuous-time dynamical

system with solutions that always satisfy the equality constraint. Then, the singularity is

explained in detail and a new projection matrix is proposed to avoid singularity. An update

(or say a controller) is subsequently designed to decrease the objective function along the

solutions of the transformed system. The invariance principle is applied to analyze the

behavior of the solution. We also propose a modified approachfor addressing cases in which
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solutions do not satisfy the equality constraint. Finally,the proposed optimization approach

is applied to two examples to demonstrate its effectiveness.

Local convergence results do not assume convexity in the optimization problem to be

solved. Compared with global optimization methods, local optimization methods are still

necessary. First, they often server as a basic component forsome global optimizations, such

as the branch and bound method [11]. On the other hand, they can require less computation

for online optimization. Compared with the discrete optimal methods offered by MATLAB,

at least two illustrative examples show that the proposed approach avoids convergence to a

singular point and facilitates faster convergence throughnumerical integration on a digital

computer. In view of these, the contributions of this paper are clear and listed as follows.

i) A new projection matrix is proposed to remove a standard regularity assumption that

is often associated with feasible point methods, namely that the gradients of constraints are

linearly independent, see [1, p.158, Equ.(4)],[2, p.156, Equ.(2.3)],[7, p.1669, Assumption 1].

Compared with a commonly-used modified projection matrix, the proposed projection matrix

has better precision. Moreover, its recursive form can be implemented more easily.

ii) Based on the proposed matrix, a continuous-time, equality-constrained optimization

method is developed to avoid convergence to a singular point. The invariance principle is

applied to analyze the behavior of the solution.

iii) The modified version of the proposed optimization is further developed to address cases

in which solutions do not satisfy the equality constraint. This ensures its robustness against

uncertainties caused by numerical error or realization by analog hardware.

We use the following notation.Rn is Euclidean space of dimensionn. ‖·‖ denotes the

Euclidean vector norm or induced matrix norm.In is the identity matrix with dimensionn.

0n1×n2
denotes a zero vector or a zero matrix with dimensionn1 × n2. Direct product⊗

andvec (·) operation are defined inAppendix A. The function[·]× : R3 → R
3×3 with matrix

H ∈ R
9×3 is defined inAppendix B. Supposeg : Rn → R. The gradient of the function

g is given by∇g (x) = ∇xg (x) = [∂g (x) /∂x1 · · · ∂g (x) /∂xn ]
T ∈ R

n and the matrix

of second partial derivatives ofg (x) known as Hessian is given by∇xx : R → R
n×n and

∇xxg (x) = [∂2g (x) /∂xi∂xj ]ij .
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II. PROBLEM FORMULATION

A. Equality-Constrained Optimization

The class of equality-constrained optimization problems considered here is defined as

follows:

min
x∈Rn

v (x) , s.t. c (x) = 0 (1)

where v : Rn → R is the objective function andc = [c1 c2 · · · cm]
T ∈ R

m, ci : Rn →

R are the equality constraints. They are both twice continuously differentiable. Denote by

∇c (x) ,
[

∇c1 (x) ∇c2 (x) · · · ∇cm (x)
]

∈ R
n×m. To avoid a trivial case, suppose the

constraint (or feasible set)F = {x ∈ R
n| c (x) = 0} 6= ∅.

Definition 1 [12, pp. 316-317]. For the problem (1), a vectorx∗ ∈ F is a global minimum

if v (x∗) ≤ v (x) , ∀x ∈ F ; a vectorx∗ ∈ F is a local (strict local) minimum if there is a

neighborhoodN of x∗ such thatv (x∗) ≤ v (x) (v (x∗) < v (x)) for x ∈ N ∩ F .

Definition 2 [10, p. 325]. A vectorx∗ ∈ F is said to be a regular point if the gradient

vectors∇c1 (x
∗) ,∇c2 (x

∗) , · · · ,∇cm (x∗) are linearly independent. Otherwise, it is called a

singular point.

This paper aims to propose an approach to continuous-time, equality-constrained optimiza-

tion to identify the local minima based on a feedback controlperspective.

Remark 1. Inequality-constrained optimizations can be transformedinto equality-constrained

optimizations by introducing new variables. For example, the inequality constraintx ≤ 1, x ∈

R can be replaced with an equality constraintx+z2 = 1, z ∈ R. Also, the inequality constraint

−1 ≤ x ≤ 1, x ∈ R can be replaced with an equality constraintx = sin (z) , z ∈ R. Here,

we only focus on equality-constrained optimization.

B. Equality Constraint Transformation

Optimization problems are often solved by using numerical iterative methods. For an

equality-constrained optimization problem, the major difficulty lies in ensuring that each

iteration satisfies the constraint and can further move toward the minimum. To address this

difficulty, a transformation of the equality constraint is proposed, which is formulated as an

assumption.

Assumption 1. For a givenx0 ∈ F , there exists a functionf : Rn → R
n×l such that

ẋ (t) = f (x (t)) u (t) , x (0) = x0 (2)

October 29, 2018 DRAFT
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with solutions that satisfyx (t) ∈ Fu (x0) , whereFu (x0) = {x (t) ∈ F|ẋ (t) = f (x (t))u (t) ,

x (0) = x0 ∈ F , ∀u (t) ∈ R
l, t ≥ 0}.

From a feedback control perspective, the updateu can be considered as a control input.

The objective functionv (x) can be considered a Lyapunov-like function, althoughv(x) is

not required to be a Lyapunov function. Based onAssumption 1, the objective of this paper

can be restated as: to design a control inputu to decreasev(x) along the solutions of (2)

until x has achieved a local minimum. In the following, we will omit the variablet except

when necessary.

Remark 2. The proposition ofAssumption 1is motivated by the property of attitude

kinematics [13, p. 200]:̇x = 1

2
E (x)w, wherex = [q0 qT ]T ∈ R

4, q0 ∈ R, q, w ∈ R
3 and

E (x) = [−q q0I3 + [q]T×]
T ∈ R

4×3. The function[·]× : R3 → R
3×3 is defined inAppendix B.

All solutions of the attitude kinematics satisfy the constraint ‖x‖2 = 1 driven by anyw ∈ R
3.

The explanation is given as follows. It is easy to check thatxT ẋ = 1

2
xTE (x)w = 0 since

[q]×q = 0 for ∀q ∈ R
3. Therefore, the solution always satisfies the constraint‖x (t)‖2 = 1 if

‖x (0)‖ = 1, t ≥ 0. Another representation of attitude kinematics is

Ṙ = [w]× R (3)

whereR ∈ R
3×3 is a rotation matrix satisfying the constraintRTR = I3. For (3), we have

d

dt

(

RTR
)

= RT Ṙ + ṘTR

= RT
(

[w]× + [w]T×

)

R = 03×3.

That is why the evolution ofR always lies on the constraintRTR = I3.

Remark 3. The best choice off (x) is to satisfyFu (x0) = F . However, it is difficult

to achieve. For example, ifc (x) = (x1 + 1) (x1 − 1), x = [x1 x2]
T ∈ R

2, then F =

{x ∈ R
2| x1 = 1, x1 = −1}. Since the two sets{x ∈ R

2|x1 = 1} and{x ∈ R
2|x1 = −1} are

not connected, the solution of (2) starting from either set cannot access the other. Although

Fu (x0) 6= F , we still expect the global minimumx∗ ∈ Fu (x0) . That is why we often require

that the initial valuex0 be close to the global minimumx∗. Besides this, it is also expected

that the functionf (x) is chosen to make the setFu (x0) as large as possible so that the

probability of x∗ ∈ Fu (x0) is higher.

If c (x) = Ax, A ∈ R
m×n, then the functionf (x) can be chosen to satisfyF = Fu (x0) ,

∀x0 ∈ F .

October 29, 2018 DRAFT
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Theorem 1. Suppose thatc (x) = Ax andf (x) = A⊥, whereA⊥ is with full column rank,

and the space spanned by the columns ofA⊥ is the null space ofA. ThenF = Fu (x0) ,

∀x0 ∈ F .

Proof. SinceFu (x0) ⊆ F , the remaining task is to proveF ⊆ Fu (x0) , ∀x0 ∈ F , namely

for any x̄ ∈ F there exists a control inputu ∈ R
l that can transfer any initial statex0 ∈ F

to x̄. Sincex0, x̄ ∈ F , there existu0, ū ∈ R
l such thatx̄ = A⊥ū andx (0) = A⊥u0 by the

definition ofA⊥. Design a control input

u (t) =







1

t̄
(ū− u0) ,

0,

0 ≤ t ≤ t̄

t > t̄.
.

With the control input above, we have

x (t)− x (0) =

∫ t

0

A⊥u (s) ds

=

∫ t̄

0

A⊥u (s) ds = A⊥ū−A⊥u0,

when t ≥ t̄. Then x (t) = x̄, t ≥ t̄. HenceF ⊆ Fu (x0) , ∀x0 ∈ F . Consequently,F =

Fu (x0) , ∀x0 ∈ F . �

From the proof ofTheorem 1, the choice off (x) becomes a controllability problem.

However, it is difficult to obtain a controllability condition of a general nonlinear system.

Correspondingly, it is difficult to choosef (x) for a general nonlinear functionc (x) to satisfy

F = Fu (x0) . Motivated by the linear case above, we aim to design a function f (x) whose

range is the null space of∇c (x)T for any fixedx ∈ R
n. This idea can be formulated as

V1 (x) = V2 (x), where

V1 (x) = {z ∈ R
n|∇c (x)T z = 0},

V2 (x) = {z ∈ R
n|z = f (x) u, u ∈ R

l}.

III. SINGULARITY AND A NEW PROJECTIONMATRIX

A. Singularity

The functionf is the projection matrix, which orthogonally projects a vector onto the null

space of∇cT . One well-known projection matrix is given as follows [1],[2],[7]:

f (x) = In −
(

∇c
(

∇cT∇c
)−1

∇cT
)

(x) . (4)

October 29, 2018 DRAFT
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We can easily verify that∇c (x)T f (x) ≡ 0. This projection matrix requires that∇c (x)

should have full column rank, i.e., everyx ∈ F is a regular point. However, the assump-

tion does not hold in cases where∇c (x)T ∇c (x) is singular. This condition is the major

motivation of this paper. For example, consider an equalityconstraint as

c (x) = (x1 − x2 + 2) (x1 + x2) = 0,

where x =
[

x1 x2

]T

∈ R
2. The feasible set is either{x ∈ R

2|x1 − x2 + 2 = 0} or

{x ∈ R
2| x1 + x2 = 0} . As shown in Fig.1, the pointxp1 =

[

−2 0
]T

has a unique feasible

direction and the pointxp2 =
[

0 0
]T

also has a unique feasible direction. Whereas, the

point xp3 =
[

−1 1
]T

has two feasible directions. This causes the singular phenomena.

The singularity often occurs at the intersection of the feasible sets, where exist non-unique

feasible directions. Mathematically,∇c (x)T ∇c (x) is singular. Concretely, the gradient vector

of c (x) is

∇c (x) =





2x1 + 2

−2x2 + 2



 .

At the pointsxp1 andxp2 , the gradient vector ofc (x) is

∇c (xp1) =





−2

2



 ,∇c (xp2) =





2

2





and by (4), the projection matrices are further

f (xp1) =





0 1

1 0



 , f (xp2) =





0 −1

−1 0





respectively. Whereas, at the pointxp3 , the gradient vector ofc (xp3) is

∇c (xp3) =





0

0



 .

For such a case,
(

∇c (xp3)
T ∇c (xp3)

)−1

does not exist.

To avoid singularity, a commonly-used modified projection matrix is given as follows

f (x) = In −
(

∇c
(

εIm +∇cT∇c
)−1

∇cT
)

(x) (5)

whereε > 0 is a small positive scale. We have∇c (x)T f (x) 6= 0 no matter how smallε is.

On the other hand, to obtainf (x) by (5), a very smallε will cause ill-conditioning problem

October 29, 2018 DRAFT
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Fig. 1. Singularity Example

especially for a low-precision processor. For example, consider the following gradient vectors:

∇c1 =
[

1 1 1 1
]

∇c2 =
[

2 1 1 1
]

∇c3 =
[

3 2 2 2
]

. (6)

Taking ep =
∥

∥∇cTf
∥

∥ as the precision error, we employ (5) with differentε = 10−k, k =

1, · · · , 15 to obtain the projection matrixf . As shown in Fig.2, the error varies with different

k. The best precision error can be achieved only atε = 10−8 with a precision error around

10−8. Reducingε further will increase the numerical error.

0 5 10 15
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

e p

Fig. 2. Precision error of a common-used modified projectionmatrix with differentε = 10
−k
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The best cure is to remove the linearly dependent vector directly from ∇c (x). For example,

in ∇c (x) =
[

∇c1 (x) ∇c2 (x) ∇c3 (x)
]

∈ R
n×3, if ∇c3 (x) can be represented by a linear

combination of∇c1 (x) and ∇c2 (x) , then∇c (x)T ∇c (x) is singular. The best cure is to

remove∇c3 (x) from ∇c (x), resulting in

∇cnew (x) =
[

∇c1 (x) ∇c2 (x)
]

∈ R
n×2.

With it, the projection matrix becomes

fnew (x) = In −
(

∇cnew
(

∇cTnew∇cnew
)−1

∇cTnew

)

(x) .

It is easy to see that∇c (x)T fnew (x) ≡ 0. For a linear time-invariant matrix∇c (x) , namely

independent ofx, we can avoid singularity by removing dependent terms out of∇c (x)

before computing a projection matrix. However, this idea does not work for a general∇c (x)

depending onx. Therefore, “the best cure” cannot be implemented continuously, which

further cannot be realized by analog hardware. For such a purpose, we will propose a new

projection matrix.

B. A New Projection Matrix

For a special casec : Rn → R, such af (x) is designed inTheorem 2. Consequently, a

method is proposed to construct a projection matrix for a general casec : Rn → R
m. Before

the design, we have the following preliminary results.

Lemma 1. Let

W1 = {z ∈ R
n|LT z = 0}

W2 = {z ∈ R
n|z =

(

In −
LLT

δ
(

‖L‖2
)

+ ‖L‖2

)

u, u ∈ R
n},

whereL ∈ R
n andδ (x) =







1

0

x = 0, x ∈ R

x 6= 0, x ∈ R

. ThenW1 = W2.

Proof. SeeAppendix C. �

Theorem 2. Suppose thatc : Rn → R and the functionf (x) is designed to be

f (x) = In −
∇c (x)∇c (x)T

δ
(

‖∇c (x)‖2
)

+ ‖∇c (x)‖2
. (7)

ThenAssumption 1is satisfied withu ∈ R
n andV1 (x) = V2 (x) .

Proof. Since ċ (x) = ∇c (x)T ẋ and ẋ = f (x) u, the functionf (x) is defined as in (7) so

that ċ (x) ≡ 0 by Lemma 1.Therefore,Assumption 1is satisfied withu ∈ R
n. Further by

Lemma 1, V1 (x) = V2 (x) . �

October 29, 2018 DRAFT
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Theorem 3. Suppose thatc : Rn → R
m and the functionf (x) is in a recursive form as

follows:

f0 = In

fk = fk−1



In −
fT
k−1∇ck∇cTk fk−1

δ
(

∥

∥fT
k−1

∇ck
∥

∥

2
)

+
∥

∥fT
k−1

∇ck
∥

∥

2



 , (8)

k = 1, · · · , m. ThenAssumption 1is satisfied withf = fm andu ∈ R
n andV1 (x) = V2 (x) .

Proof. SeeAppendix D. �

Remark 4. In (8), if
∥

∥fT
k−1

∇ck
∥

∥ 6= 0, thenδ
(

∥

∥fT
k−1

∇ck
∥

∥

2
)

= 0, namely

fk = fk−1

(

In −
fT
k−1

∇ck∇cTk fk−1
∥

∥fT
k−1

∇ck
∥

∥

2

)

.

This is the normal way to construct a projection matrix. On the other hand, if∇ck can

be represented by a linear combination of∇ci, then fT
k−1

∇ck = 0 as fT
k−1

∇ci = 0, i =

1, · · · , k − 1. In this case,δ
(

∥

∥fT
k−1

∇ck
∥

∥

2
)

6= 0. Consequently, the projection matrix will

reduce to the previous onefk = fk−1, that is equivalent to removing the term∇ck. This is

consistent with “the best way”.

Remark 5. In practice, the impulse functionδ (x) is approximated by some continuous

functions such asδ (x) ≈ e−γ|x|, whereγ is a large positive scale. Let us revisit the example

for the gradient vectors (6). Takingep =
∥

∥∇cTf
∥

∥ as the error again, we employ (8) with

γ = 30 to obtain the projection matrixf with ep = 2.7629 ∗ 10−10. This demonstrates the

advantage of our proposed projection matrix over (5). Furthermore, compared with (4) or (5),

the explicit recursive form of the proposed projection matrix is also easier for the designer

to implement.

IV. UPDATE DESIGN AND CONVERGENCEANALYSIS

In this section, by using Lyapunov’s method, the update (or say controller)u is designed

to result in v̇ (x) ≤ 0. However, the objective functionv (x) is not required to be positive

definite. We base our analysis upon the LaSalle invariance theorem [14, pp. 126-129].

A. Controller Design

Taking the time derivative ofv (x) along the solutions of (2) results in

v̇ (x) = ∇v (x)T f (x) u (9)

October 29, 2018 DRAFT
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where∇v (x) ∈ R
n. In order to getv̇ (x) ≤ 0, a direct way of designingu is proposed as

follows

u = −Q (x) f (x)T ∇v (x) (10)

whereQ : Rn → R
l×l andQ (x) ≥ ǫIl > 0, ǫ > 0, ∀x ∈ R

n. Then (9) becomes

v̇ (x) = −∇v (x)T f (x)Q (x) f (x)T ∇v (x) ≤ 0. (11)

Substituting (10) into the continuous-time dynamical system (2) results in

ẋ = −f (x)Q (x) f (x)T ∇v (x) (12)

with solutions which always satisfy the constraintc (x) = 0. The closed-loop system corre-

sponding to the continuous-time dynamical system (2) and the controller (10) is depicted in

Fig.3.

T
u Q x f x v x x f x u

x

SystemController

Fig. 3. Closed-loop control system

B. Convergence Analysis

Unlike a Lyapunov function, the objective functionv (x) is not required to be positive

definite. As a consequence, the conclusions for Lyapunov functions are not applicable. Instead,

the invariance principle is applied to analyze the behaviorof the solution of (12).

Theorem 4. Under Assumption 1, given x0 ∈ F , if the set K = {x ∈ R
n|v (x) ≤

v (x0) , c (x) = 0} is bounded, then the solution of (12) starting atx0 approachesx∗
l ∈ S,

whereS = {x ∈ K|∇v (x)T f (x) = 0}. If in additionV1 (x
∗
l ) = V2 (x

∗
l ) , then there must exist

a λ∗ = [λ∗
1 λ

∗
2 · · · λ

∗
m ]T ∈ R

m such that∇v (x∗
l ) =

∑m

i=1
λ∗
i∇ci (x

∗
l ) andc (x∗

l ) = 0, namely

x∗
l is a Karush–Kuhn–Tucker (KKT) point. Furthermore, ifzT∇xxL (x∗

l , λ
∗) z > 0, for all

z ∈ V1 (x
∗
l ) , z 6= 0, thenx∗

l is a strict local minimum, whereL (x, λ) = v (x)−
∑m

i=1
λici (x) .

Proof. The proof is composed of three propositions:Proposition 1 is to show thatK is

compact and positively invariant with respect to (12);Proposition 2 is to show that the

October 29, 2018 DRAFT
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solution of (12) starting atx0 approachesx∗
l ∈ S; Proposition 3is to show thatx∗

l ∈ S is

a KKT point, further a strict local minimum. The three propositions are proven inAppendix

E. �

Corollary 1 . Suppose thatf (x) is chosen as (7) forc : Rn → R
m and the setK =

{x ∈ R
n|v (x) ≤ v (x0) , c (x) = 0} is bounded for givenx0 ∈ F . Then the solution of (12)

starting atx0 approachesx∗
l ∈ S, whereS = {x ∈ K|∇v (x)T f (x) = 0}, wherex∗

l is a

KKT point. In addition, if zT∇xxL (x∗
l , λ

∗) z > 0, for all z ∈ V1 (x
∗
l ) , z 6= 0, then x∗

l is a

strict local minimum, whereL (x, λ) = v (x)−
∑m

i=1
λici (x) .

Proof. SinceV1 (x
∗
l ) = V2 (x

∗
l ) by Theorem 3, the remainder of the proof is the same as

that of Theorem 4. �

Corollary 2 . Consider the following equality-constrained optimization problem

min
x∈Rn

v (x) , s.t.Ax = b. (13)

If (i) v (x) is convex and twice continuously differentiable, (ii)A ∈ R
p×n with rankA < n,

(iii) K ={x ∈ R
n|v (x) ≤ v (x0) , Ax = b} is bounded, then the solution of (12) with

f (x) = A⊥ starting at anyx0 ∈ F approachesx∗.

Proof. The solution of (12) starting atx0 approachesx∗
l ∈ S. Since rankA < n, we have

V1 (x
∗
l ) = V2 (x

∗
l ) 6= ∅. Since the equality constrained optimization problem (13) is convex,

a KKT point x∗
l is a global minimumx∗ of the problem (13). The remainder of proof is the

same as that ofTheorem 4. �

Remark 6. If K is not a bounded set, thenS defined in Theorem 4may be empty.

Therefore, the boundedness of the setK is necessary. For example,v (x) = x1 + x2, s.t.

c (x) = x1 − x2 = 0. The setK = {x ∈ R
2|x1 + x2 ≤ v (x0) , x1 − x2 = 0} is unbounded.

According toTheorem 1, we havef (x) = [1 1]T . In this case,∇v (x)T f (x) = 2 6= 0 and

then the setS is empty.

C. A Modified Closed-Loop Dynamical System

Although the proposed approach ensures that the solutions satisfy the constraint, this

approach may fail ifx0 /∈ F or if numerical algorithms are used to compute the solutions.

Moreover, if the impulse functionδ is approximated, then the constraints will also be violated.

With these results, the following modified closed-loop dynamical system is proposed to amend

this situation.
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Similar to [2], we introduce the term−ρ∇c (x) c (x) into (12), resulting in

ẋ = −ρ∇c (x) c (x)− f (x)Q (x) f (x)T ∇v (x) , x (0) = x0 (14)

whereρ > 0. Definevc (x) = c (x)T c (x) . Then

v̇c (x) = −ρc (x)T ∇c (x)T ∇c (x) c (x) ≤ 0,

where∇c (x)T f (x) ≡ 0 is utilized. If the impulse functionδ is approximated, then∇c (x)T f (x) ≈

0 and can be ignored in practice. Therefore, the solutions of (14) will tend to the feasible

set F if ∇c (x) is of full column rank. Oncec (x) = 0, the modified dynamical system

(14) degenerates to (12). The self-correcting feature enables the step size to be automatically

controlled in the numerical integration process or to tolerate uncertainties when the differential

equation is realized by using analog hardware.

Remark 7. The matrixQ (x) plays a role in coordinating the convergence rate of all

states by minimizing the condition number of the matrix functions like f (x)Q (x) f (x)T .

Moreover, it also plays a role in avoiding instability in thenumerical solution of differential

equations by normalizing the Lipschitz condition of functions likef (x)Q (x) f (x)T ∇v (x) .

Concrete examples are given in the following section.

V. ILLUSTRATIVE EXAMPLES

A. Estimate of Attraction Domain

For a given Lyapunov function, the crucial step in any procedure for estimating the

attraction domain is determining the optimal estimate. Consider the system of differential

equations:

ẋ = Ax+ g (x) (15)

wherex ∈ R
n is the state vector,A ∈ R

n×n is a Hurwitz matrix, andg : Rn → R
n is a

vector function. Letv (x) = xTPx be a given quadratic Lyapunov function for the origin of

(15), i.e.,P ∈ R
n×n is a positive-definite matrix such thatATP + PA < 0. Then the largest

ellipsoidal estimate of the attraction domain of the origincan be computed via the following

equality-constrained optimization problem [15]:

min
x∈Rn\{0}

xTPx s.t. xTP [Ax+ g (x)] = 0.

Since{x ∈ R
n|xTPx ≤ xT

0 Px0} is bounded, the subset

K = {x ∈ R
n|xTPx ≤ xT

0 Px0, x
TP [Ax+ g (x)] = 0}
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is bounded no matter whatg is.

For simplicity, consider (15) withx = [x1 x2]
T ∈ R

2, A = −I2, P = I2 and g (x) =

(σ (x) + 1) [x1 x2]
T , whereσ (x) = (x1 + x2 + 2)

(

(x2 + 1)− 0.1 (x1 + 1)2
)

. Then the op-

timization problem is formulated as

min
x∈R2\{0}

x2

1 + x2

2 s.t.
(

x2

1 + x2

2

)

σ (x) = 0.

Sincex 6= 0, the problem is further formulated as

min
x∈R2

v (x) = x2

1 + x2

2 s.t. σ (x) = 0.

Then

∇v (x) = [2x12x2]
T

∇c (x) =





d2 − 0.1d21 − 0.2d1d3

d2 − 0.1d21 + d3





d1 = x1 + 1, d2 = x2 + 1, d3 = x1 + x2 + 2.

In this example, we adopt the modified dynamics (14), wheref is chosen as (7) withδ (x) =

e−γ|x|, and the parameters are chosen asγ = 10, ρ = Q = 20
/∥

∥∇cc− ffT∇v
∥

∥ . We solve

the differential equation (14) by using the MATLAB function“ode45” with “variable-step1”.

Compared with the MATLAB optimal constrained nonlinear multivariate function “fmincon”,

we derive the comparisons in Table 1.

The point xs = [−1 −1]T is a singular point, at which∇c (xs) = [0 0]T . As shown

in Table 1, under initial points[−3 1]T ∈ F and [2 −4]T ∈ F , the MATLAB function

fails to find the minimum and stops at the singular point, whereas the proposed approach

still finds the minimum. Under initial point[1 −4]T /∈ F , the proposed approach can still

find the minimum, similar to the MATLAB function. Under a different initial value, the

evolutions of (14) are shown in Fig.4. As shown, once close tothe singular point[−1 −1]T , the

solutions of (14) change direction and then move to the minimum x∗
l = [0.2061 − 0.8545]T .

Compared with the discrete optimal methods offered by MATLAB, these results show that the

proposed approach avoids convergence to a singular point. Moreover, the proposed approach

is comparable with currently available conventional discrete optimal methods and facilitates

even faster convergence. The latter conclusion is consistent with that proposed in [1],[3].

1In this section, all computation is performed by MATLAB 6.5 on a personal computer (Asus x8ai) with Intel core Duo

2 Processor at 2.2GHz.
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TABLE 1. COMPUTED RESULT FOR EXAMPLE 1

Method Initial Point Solution Optimal Value cpu time (sec.)

Matlab fmincon [-3 1]T [-1 -1]T 2.0000 Not Available

New method [-3 1]T [0.2062 -0.8546]T 0.7729 0.125

Matlab fmincon [2 -4]T [-1 -1]T 2.0000 Not Available

New method [2 -4]T [0.2062 -0.8545]T 0.7726 0.0940

Matlab fmincon [1 -4]T [0.2143 -0.8533]T 0.7740 0.2030

New method [1 -4]T [0.2056 -0.8550]T 0.7733 0.1100

.

−3 −2 −1 0 1 2 3
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x
1

x 2

(0,0)

Evolution trajectory of
 initial point (1,−4)  

Evolution trajectory of 
initial point (2,−4)    

Evolution trajectory of 
initial point (−3,1)    

Singular point (−1,−1)
(0.2061 −0.8545)

Fig. 4. Optimization for estimate of attraction domain. Solution Evolution (solid line), Constraint (dot line), Objective

(dash-dot line).

October 29, 2018 DRAFT



16

B. Estimate of Essential Matrix

For simplicity, assume that images are taken by two identical pin-hole cameras with focal

length equal to one. The two cameras are specified by the camera centersC1, C2 ∈ R
3 and

attached orthogonal camera frames{e1, e2, e3} and {e′1, e
′
2, e

′
3}, respectively. DenoteT =

C2 − C1 ∈ R
3 to be the translation from the first camera to the second andR ∈ R

3×3 to be

the rotation matrix from the basis vectors{e1, e2, e3} to {e′1, e
′
2, e

′
3}, expressed with respect

to the basis{e1, e2, e3} . Then, it is well known in the computer vision literature [16]that

two corresponding image points are represented as follows:

m1,k =
1

Mk (3)
Mk,

m2,k =
1

M ′
k (3)

M ′
k, k = 1, 2, · · · , N (16)

whereMk,M
′
k represent the positions of thekth point expressed in the two camera frames

{e1, e2, e3} to {e′1, e
′
2, e

′
3} , respectively;Mk (3) ,M

′
k (3) represent the third element of vectors

Mk,M
′
k, respectively. They have the relationshipMk = RM ′

k + T, k = 1, 2, · · · , N. These

corresponding image points satisfy the socalled epipolar constraint [16, p. 257]:

mT
1,kEm2,k = 0, k = 1, 2, · · · , N (17)

whereE = [T ]× R is known as theessential matrix.

1e

2e

3e

1e
2e

3e

,R T

1,km 2,km

k
M

1C
2C

Fig. 5. Epipolar geometry

By using the direct product⊗ and thevec (·) operation, the equations in (17) are equivalent

to

Aϕ = 0N×1 (18)
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where

A =











mT
2,1 ⊗mT

1,1

...

mT
2,N ⊗mT

1,N











∈ R
N×9,

ϕ = vec
(

[T ]× R
)

. (19)

In practice, these image pointsm1,k andm2,k are subject to noise,k = 1, 2, · · · , N . Therefore,

T andR are often solved by the following optimization problem

min
x∈R12

v (x) =
1

2
ϕ (x)T ATAϕ (x)

s.t.
1

2

(

‖T‖2 − 1
)

= 0

1

2

(

RTR− I3
)

= 03×3 (20)

wherex = [T T vecT (R)]T ∈ R
12. This is an equality-constrained optimization considered

here. In the following, the proposed approach is applied to the optimization problem (20).

By Theorem 2, the projection matrix for the constraint1
2

(

‖T‖2 − 1
)

= 0 is

f = I3 −
TT T

δ
(

‖T‖2
)

+ ‖T‖2
.

Since‖T‖2 = 1 has to be satisfied exactly or approximately, thenδ
(

‖T‖2
)

= 0. So, the

projection matrix for the constraint is

f = I3 − T T
/

‖T‖2 .

Then the constraint is transformed into

Ṫ =
(

I3 − TT T
/

‖T‖2
)

u1,

whereu1 ∈ R
3. By (3), the constraint1

2

(

RTR− I3
)

= 03×3 is transformed into

Ṙ = [u2]× R,

whereu2 ∈ R
3. Furthermore, the equation above is rewritten as

vec
(

Ṙ
)

=
(

RT ⊗ I3
)

Hu2.

October 29, 2018 DRAFT



18

Then the continuous-time dynamical system, whose solutions always satisfy the equality

constraints1
2

(

‖T‖2 − 1
)

= 0 and 1

2

(

RTR− I3
)

= 03×3, is expressed as (2) with

f (x) =





I3 − TT T
/

‖T‖2 03×3

09×3

(

RT ⊗ I3
)

H



 ∈ R
12×6,

u =





u1

u2



 ∈ R
6. (21)

If the initial value‖T (0)‖2 = 1 andR (0)T R (0) = I3, then all solutions of (2) satisfy the

equality constraints. Since∇v (x) = [
(

RT ⊗ I3
)

H I3 ⊗ [T ]× ]TATAϕ, the time derivative

of v (x) along the solutions of (2) is

v̇ (x) = −ϕTATAΘ (x)T Q (x) Θ (x)ATAϕ ≤ 0,

where

Θ (x) =





(

I3 − TT T
/

‖T‖2
)T

HT
(

RT ⊗ I3
)T

HT
(

RT ⊗ I3
)T (

I3 ⊗ [T ]×
)T



 ∈ R
6×9.

The simplest way of choosingQ (x) is Q (x) ≡ I6. In this case, the eigenvalues of the

matrix AΘT (x) Θ (x)AT are often ill-conditioned, namely

λmin

(

AΘT (x) Θ (x)AT
)

≪ λmax

(

AΘT (x) Θ (x)AT
)

.

Convergence rates of the components ofAϕ (x) depend on the eigenvalues ofAΘT (x)Q (x) Θ (x)AT .

As a consequence, some components ofAϕ converge fast, while the other may converge

slowly. This leads to poor asymptotic performance of the closed-loop system. It is expected

that each component ofAϕ can converge at the same speed as far as possible. Suppose that

there exists āQ (x) such that

AΘT (x) Q̄ (x) Θ (x)AT = I9.

Then

v̇ (x) ≤ −ϕTATAϕ ≤ 0.

By Theorem 4, x will approach the set{x ∈ R
n|Aϕ (x) = 0} , each element of which is a

global minimum sincev (x) = 0 in the set. Moreover, each component ofAϕ converges at

a similar speed. However, it is difficult to obtain such aQ̄ (x), since the number of degrees

of freedom ofQ̄ (x) ∈ R
6×6 is less than the number of elements ofI9. A modified way is

to makeAΘT (x)Q (x) Θ (x)AT ≈ I9. A natural choice is proposed as follows

Q (x) = µ

(

(

Θ (x)ATAΘ (x)T
)†

+ ǫI6

)

(22)
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whereµ > 0,
(

Θ (x)ATAΘT (x)
)†

denotes the Moore Penrose inverse ofΘ (x)ATAΘT (x).

The matrixǫI6 is to makeQ (x) positive definite, whereǫ is a small positive real. From the

procedure above,
(

Θ (x)ATAΘT (x)
)†

needs to be computed every time. This however will

cost much time. A time-saving way is to updateQ (x) at a reasonable interval. Then (12)

becomes

ẋ = −µf (x)

(

(

Θ (x)ATAΘ (x)T
)†

+ ǫI6

)

Θ (x)ATAϕ (x) (23)

where f (x) is defined in (21). The differential equation can be solved byRunge-Kutta

methods, etc. The solutions of (23) satisfy the constraints, where x = [T T vec(R)T ]T .

Moreover, the dynamic system will reach some final resting state eventually.

Suppose that there exist 6 points in the field of view, whose positions are expressed in the

first camera frame as follows:M1 = [−1 1 1]T , M2 = [2 0 1]T , M3 = [1 −1 1]T , M4 = [−1

−1 1]T , M5 = [1 1 1]T , M6 = [−1 3 1]T . Compared with the first camera frame, the second

camera frame has translated and rotated with

T̄ =











1

1

−1











, R̄ =











0.9900 −0.0894 0.1088

0.0993 0.9910 −0.0894

−0.0998 0.0993 0.9900











.

The image points are generated by (16). Using the generated image points, we obtainA by

(19). Setting the initial value as followsT (0) = [0 0 1]T , R (0) = I3, µ = 20, ǫ = 0.01. We

solve the differential equation (14) by using MATLAB function “ode45” with “variable-step”.

Compared with MATLAB optimal constrained nonlinear multivariate function “fmincon”, we

have the following comparisons:

TABLE 2. COMPUTED RESULT FOR EXAMPLE 2

Method
∥

∥R∗T R̄− I3
∥

∥ cpu time (sec.)

MATLAB fmincon 1.2469e-004 0.2500

New Approach 1.8784e-005 0.1400

.

As shown in Table 2, the proposed approach requires less timeto achieve a higher accuracy.

Given thatv (x∗) = 0, the solution is a global minimum. The evolution of each element

of x is shown in Fig.5. The state eventually reaches a rest state at a similar speed. With

different initial values, several other simulations are also implemented. Based on the results,

the proposed algorithm has met the expectations.
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Fig. 6. Evolvement of the state

VI. CONCLUSIONS

An approach to continuous-time, equality-constrained optimization based on a new projec-

tion matrix is proposed for the determination of local minima. With the transformation of the

equality constraint into a continuous-time dynamical system, the class of equality-constrained

optimization is formulated as a control problem. The resultant approach is more general than

the existing control theoretic approaches. Thus, the proposed approach serves as a potential

bridge between the optimization and control theories. Compared with other standard discrete-

time methods, the proposed approach avoids convergence to asingular point and facilitates

faster convergence through numerical integration on a digital computer.

APPENDIX

A. Kronecker Product and Vec

The symbol vec(X) is the column vector obtained by stacking the second column of X

under the first, and then the third, and so on. WithX = [xij ] ∈ R
n×m, theKronecker product

X ⊗ Y is the matrix

X ⊗ Y =











x11Y · · · x1mY
...

. . .
...

xn1Y · · · xnmY











.

In fact, we have the following relationships vec(XY Z) =
(

ZT ⊗X
)

vec(Y ) [17, p. 318].
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B. Skew-Symmetric Matrix

The cross product of two vectorsx ∈ R
3 andy ∈ R

3 is denoted byx× y = [x]× y, where

the symbol[·]× : R3 → R
3×3 is defined as [13, p. 194]:

[x]× ,











0 −x3 x2

x3 0 −x1

−x2 x1 0











∈ R
3×3.

By the definition of[x]× , we havex× x = [x]× x = 03×1, ∀x ∈ R
3 and

vec
(

[x]×
)

= Hx,

H =











0 0 0 0 0 1 0 −1 0

0 0 −1 0 0 0 1 0 0

0 1 0 −1 0 0 0 0 0











T

.

C. Proof of Lemma 1

Sinceδ
(

‖L‖2
)

+ ‖L‖2 = 1 if L = 0 and δ
(

‖L‖2
)

+ ‖L‖2 = ‖L‖2 if L 6= 0, we have

δ
(

‖L‖2
)

+ ‖L‖2 6= 0, ∀L ∈ R
n. According to this, we have the following relationship

LT
(

In − LLT
/(

δ
(

‖L‖2
)

+ ‖L‖2
))

= LT − LT ‖L‖2
/(

δ
(

‖L‖2
)

+ ‖L‖2
)

≡ 0, ∀L ∈ R
n.

This implies thatLT z = 0, ∀z ∈ W2, namelyW2 ⊆ W1. On the other hand, anyz ∈ W1 is

rewritten as

z =
(

In − LLT
/(

δ
(

‖L‖2
)

+ ‖L‖2
))

z

whereLT z = 0 is utilized. HenceW1 ⊆ W2. Consequently,W1 = W2.

D. Proof of Theorem 3

Denote

Vj
1 = {z ∈ R

n|∇cTi z = 0, i = 1, · · · , j, j ≤ m}

Vj
2 = {z ∈ R

n|z = fjuj, uj ∈ R
n, j ≤ m}.

First, by Theorem 2, it is easy to see that the conclusions are satisfied withj = 1. Assume

Vk−1

1 = Vk−1

2 and then prove thatVk
1 = Vk

2 holds. If so, then we can conclude this proof.
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By Vk−1

1 (x) = Vk−1

2 (x) , we have

Vk
1 = {z ∈ R

n|∇cTk z = 0, z ∈ Vk−1

1 }

= {z ∈ R
n|∇cTk z = 0, z = fk−1uk−1, uk−1 ∈ R

n}

= {z ∈ R
n|∇cTk fk−1uk−1 = 0, z = fk−1uk−1, uk−1 ∈ R

n}.

By Lemma 1, we have

∇cTk fk−1uk−1 = 0 ⇔

uk−1 =



In −
fT
k−1

∇ck∇cTk fk−1

δ
(

∥

∥fT
k−1

∇ck
∥

∥

2
)

+
∥

∥fT
k−1

∇ck
∥

∥

2



uk,

namely,

Vk
1 = Vk

2 = {z ∈ R
n |z = fkuk, uk ∈ R

n}

wherefk = fk−1

(

In −
fT

k−1
∇ck∇cT

k
fk−1

δ
(

‖fT

k−1
∇ck‖

2
)

+‖fT

k−1
∇ck‖

2

)

.

E. Proof of Propositions in Theorem 3

(i) Proof ofProposition 1.In the spaceRn, the setK is compact iff it is bounded and closed

by Theorem 8.2 in [18, p.41]. Hence, the remainder of work is to prove thatK is closed.

Suppose, to the contrary,K is not closed. Then there exists a sequencex (tn) ∈ K → p /∈ K

with tn → ∞. Whereas,v (p) = lim
tn→∞

v (x (tn)) ≤ v (x0) and c (p) = lim
tn→∞

c (x (tn)) = 0

which imply p ∈ K. The contradiction implies thatK is closed. Hence, the setK is compact.

By (11), v (x) ≤ v (x0) with respect to (12),t ≥ 0. By Assumption 1, all solutions of (12)

satisfyc (x) = 0. Therefore,K is positively invariant with respect to (12).

(ii) Proof of Proposition 2.SinceK is compact and positively invariant with respect to

(12), by Theorem 4.4(invariance principle) in [14, p. 128], the solution of (12)starting at

x0 approacheṡv (x) = 0, namely∇v (x)T f (x) = 0. In addition, since (12) becomeṡx = 0

in S, the solution approaches a constant vectorx∗
l ∈ S.

(iii) Proof of Proposition 3.SinceV1 (x
∗
l ) = V2 (x

∗
l ) andx∗

l ∈ S satisfy the following two

equalities

∇v (x∗
l )

T f (x∗
l ) = 0, c (x∗

l ) = 0,

there exists au such thatz = f (x∗
l ) u for any z ∈ V1 (x

∗
l ) . As a consequence, for any

z ∈ V1 (x
∗
l ) , ∇v (x∗

l )
T z = ∇v (x∗

l )
T f (x∗

l )u = 0. There must existλ∗
i ∈ R, i = 1, · · · , m

such that∇v (x∗
l ) =

∑m
i=1

λ∗
i∇ci (x

∗
l ). Otherwise∃z̄ ∈ V1 (x

∗
l ), ∇v (x∗

l )
T z̄ 6= 0. Therefore,
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x∗
l ∈ S is a KKT point [12, p.328]. Furthermore, by Theorem 12.6 in [12, p.345],x∗

l is a

strict local minimum ifzT∇xxL (x∗
l , λ

∗) z > 0, for all z ∈ V1 (x
∗
l ) , z 6= 0.
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