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Abstract

In equality-constrained optimization, a standard redwlarssumption is often associated with
feasible point methods, namely the gradients of constaire linearly independent. In practice, the
regularity assumption may be violated. To avoid such a dargy, we propose a new projection
matrix, based on which a feasible point method for the cawotirs-time, equality-constrained opti-
mization problem is developed. First, the equality corstrs transformed into a continuous-time
dynamical system with solutions that always satisfy theadityuconstraint. Then, the singularity
is explained in detail and a new projection matrix is progos® avoid singularity. An update (or
say a controller) is subsequently designed to decreasebjketive function along the solutions of
the transformed system. The invariance principle is agplieanalyze the behavior of the solution.
We also propose a modified approach for addressing casesiah whlutions do not satisfy the
equality constraint. Finally, the proposed optimizatiggp@aches are applied to two examples to

demonstrate its effectiveness.

Index Terms

Optimization, equality constraints, continuous-time ayrical systems, singularity

. INTRODUCTION

According to the implementation of a differential equatiorost approaches to continuous-
time optimization can be classified as either a dynamicatesys/1],[2],[3] or a neural
network [4],[5],[€],[7]. The dynamical system approachiese on the numerical integration

of differential equations on a digital computer. Unlike aite optimazation methods, the
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step sizes of dynamical system approaches can be contealtedhatically in the integration

process and can sometimes be made larger than usual. Thastage suggests that the
dynamical system approach can in fact be comparable wittewtly available conventional

discrete optimal methods and facilitate faster converg¢ti;[3]. The application of a higher-

order numerical integration process also enables us taaha@ zigzagging phenomenon,
which is often encountered in typical linear extrapolatroethods [[1]. On the other hand,
the neural network approach emphasizes implementatiomélpa@ circuits, very large scale

integration, and optical technologiés [8]. The major bteedugh of this approach is attributed
to the seminal work of Hopfield, who introduced an artificigunal network to solve the

traveling salesman problem (TSP) [9]. By employing analagdivare, the neural network
approach offers low computational complexity and is sugdbr parallel implementation.

For continuous-time equality-constrained optimizatiexisting methods can be classified
into three categories [1]: feasible point method (or primathod), augmented function
method (or penalty function method), and the Lagrangiantiplidr method. Determining
whether one method outperforms the others is difficult bee@ach method possesses distinct
advantages and disadvantages. Readers can refer to,[Z],[AD] and the references therein
for details. The feasible point method directly solves thiginal problem by searching
through the feasible region for the optimal solution. Eadmnpin the process is feasible,
and the value of the objective function constantly decrea€®mpared with the two other
methods, the feasible point method offers three signifiGhtantages that highlight its
usefulness as a general procedure that is applicable tostlationonlinear programming
problems|[[10, p. 360]: i) the terminating point is feasilfi¢hie process is terminated before
the solution is reached; ii) the limit point of the convergeequence of solutions must
be at least a local constrained minimum; and iii) the apgromcapplicable to general
nonlinear programming problems because it does not rely patial problem structures
such as convexity.

In this paper, a continuous-time feasible point approaghnaposed for equality-constrained
optimization. First, the equality constraint is transfedaninto a continuous-time dynamical
system with solutions that always satisfy the equality t@nst. Then, the singularity is
explained in detail and a new projection matrix is proposedvoid singularity. An update
(or say a controller) is subsequently designed to decrdasehjective function along the
solutions of the transformed system. The invariance pulecis applied to analyze the

behavior of the solution. We also propose a modified appré@chddressing cases in which
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solutions do not satisfy the equality constraint. Finalhg proposed optimization approach
is applied to two examples to demonstrate its effectiveness

Local convergence results do not assume convexity in then@ation problem to be
solved. Compared with global optimization methods, localimization methods are still
necessary. First, they often server as a basic componesbfe global optimizations, such
as the branch and bound method|[11]. On the other hand, theeyecmiire less computation
for online optimization. Compared with the discrete optimeethods offered by MATLAB,
at least two illustrative examples show that the proposemtageh avoids convergence to a
singular point and facilitates faster convergence throngmmerical integration on a digital
computer. In view of these, the contributions of this paper @dear and listed as follows.

i) A new projection matrix is proposed to remove a standagulaity assumption that
is often associated with feasible point methods, namely tthegradients of constraints are
linearly independent, seel[1, p.158, Equ.(4)],[2, p.15¢4.R.3)],[7, p.1669, Assumption 1].
Compared with a commonly-used modified projection mathg, proposed projection matrix
has better precision. Moreover, its recursive form can bglemented more easily.

i) Based on the proposed matrix, a continuous-time, etyuabinstrained optimization
method is developed to avoid convergence to a singular .p@le invariance principle is
applied to analyze the behavior of the solution.

iii) The modified version of the proposed optimization isthar developed to address cases
in which solutions do not satisfy the equality constrairtisTensures its robustness against
uncertainties caused by numerical error or realizationtglag hardware.

We use the following notationR™ is Euclidean space of dimension ||-|| denotes the
Euclidean vector norm or induced matrix nori).is the identity matrix with dimension.
0n,xn, denotes a zero vector or a zero matrix with dimensignx n,. Direct product®
andvec (-) operation are defined iAppendix A The function[-], : R* — R3*3 with matrix
H € R is defined inAppendix B Supposey : R® — R. The gradient of the function
g is given by Vg (z) = V,g(z) = [0g (z) [0z, --- Ig(z)/0z,]T € R™ and the matrix
of second partial derivatives af(x) known as Hessian is given by,, : R — R"*" and
Vieg (z) = [0%g (2) /6‘”2‘8%']@']' :
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[I. PROBLEM FORMULATION
A. Equality-Constrained Optimization

The class of equality-constrained optimization problerosstdered here is defined as

follows:
miny (x), st.c(x)=0 (1)
wherev : R® — R is the objective function and = [¢; ¢3 --- ¢,]T € R™, ¢; : R® —

R are the equality constraints. They are both twice contislyodifferentiable. Denote by
Ve(z) 2 [ Ve (z) Vey(z) --- Ve, (x) | € R™™. To avoid a trivial case, suppose the
constraint (or feasible seff ={z € R"|c(x) = 0} # 0.

Definition 1 [12, pp. 316-317]. For the probleml (1), a vecidre F is a global minimum
if v(z*) <wv(z), Vo € F; avectorz* € F is a local (strict local) minimum if there is a
neighborhoodV of z* such that (z*) < v (x) (v(z*) <wv(z)) for z e NN F.

Definition 2 [10, p. 325]. A vectorz* € F is said to be a regular point if the gradient
vectorsVe, (%), Ve (2%), - -+, Ve, (%) are linearly independent. Otherwise, it is called a
singular point.

This paper aims to propose an approach to continuous-tigualigy-constrained optimiza-
tion to identify the local minima based on a feedback conpeispective.

Remark 1. Inequality-constrained optimizations can be transformé&alequality-constrained
optimizations by introducing new variables. For exampie, inequality constraint < 1, x €
R can be replaced with an equality constraintz? = 1, z € R. Also, the inequality constraint
—1 <z <1,z € R can be replaced with an equality constraint sin (z),z € R. Here,

we only focus on equality-constrained optimization.

B. Equality Constraint Transformation

Optimization problems are often solved by using numeritatative methods. For an
equality-constrained optimization problem, the majofficlifity lies in ensuring that each
iteration satisfies the constraint and can further move tdwlae minimum. To address this
difficulty, a transformation of the equality constraint iloposed, which is formulated as an
assumption.

Assumption 1 For a givenz, € F, there exists a functiorf : R* — R™*! such that

()= f(x@)u(t),z0) = (@)
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with solutions that satisfy (t) € F,, (x¢) , whereF, (zo) = {z (t) € Flz (t) = f (z (t)) u (¢),
r(0) =z € F,Vu(t) e Rl t >0},

From a feedback control perspective, the updatsan be considered as a control input.
The objective functiorv () can be considered a Lyapunov-like function, although) is
not required to be a Lyapunov function. BasedAssumption 1the objective of this paper
can be restated as: to design a control inpub decrease(x) along the solutions of{2)
until z has achieved a local minimum. In the following, we will ontiietvariablet except
when necessary.

Remark 2. The proposition ofAssumption lis motivated by the property of attitude
kinematics [[13, p. 200]i = 1E (z) w, wherez = [g ¢"]" € R*, ¢o € R, ¢,w € R? and
E (x) = [—q ql3+ [¢]L]" € R*3. The function[-], : R* — R**® is defined inAppendix B.
All solutions of the attitude kinematics satisfy the coaBit ||z||* = 1 driven by anyw € R?.
The explanation is given as follows. It is easy to check that = 127 E (z) w = 0 since
[q]xq = 0 for Vq € R?. Therefore, the solution always satisfies the constrir(t)||” = 1 if

|z (0)]| =1, t > 0. Another representation of attitude kinematics is

R=[w], R (3)

X

where R ¢ R?**3 is a rotation matrix satisfying the constraiRf R = I5. For (3), we have
d .
— (R"R) = R"R+ R"R

— RT ([w]X + [w]Z) R = Oses.

That is why the evolution of? always lies on the constraift’ R = Is.

Remark 3. The best choice of (x) is to satisfyF, (zo) = F. However, it is difficult
to achieve. For example, if (z) = (z; +1)(x; — 1), z = [r; x)]7 € R? thenF =
{z € R*|x; = 1,2, = —1}. Since the two setz € R?|z; = 1} and{z € R?*|x; = —1} are
not connected, the solution df] (2) starting from either setnot access the other. Although
Fu (zo) # F, we still expect the global minimum* € F,, (z) . That is why we often require
that the initial valuer, be close to the global minimumy*. Besides this, it is also expected
that the functionf (x) is chosen to make the séf, (z¢) as large as possible so that the
probability of z* € F, (z¢) is higher.

If c(z) = Az, A € R™*", then the functionf (z) can be chosen to satisf§¥ = F, (o),
Vxo € F.
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Theorem 1 Suppose that(z) = Az andf (z) = A+, where At is with full column rank,
and the space spanned by the columnsdéfis the null space ofdA. Then F = F, (),
Vxg € F.

Proof. Since F, (o) C F, the remaining task is to prov€& C F, (zo), Vzo € F, namely
for any z € F there exists a control input € R! that can transfer any initial state € F
to 7. Sincexy, 7 € F, there existuy, i € R’ such thatt = A+u andz (0) = Atug by the
definition of A+. Design a control input
Hu—wug), 0<t<t
0, t >

u(t) =

TN

With the control input above, we have
t
x(t) —x(0) = / At (s)ds
0
£
= / At (s)ds = Atu — Atu,
0

whent > t. Thenx (t) = z, t > t. HenceF C F, (zo), Vxo € F. ConsequentlyF =
Fu(zo), Voo € F. O

From the proof ofTheorem 1 the choice off (z) becomes a controllability problem.
However, it is difficult to obtain a controllability conditn of a general nonlinear system.
Correspondingly, it is difficult to choosg(x) for a general nonlinear functian(x) to satisfy
F = F.(zo). Motivated by the linear case above, we aim to design a functior) whose
range is the null space d¥c (x)T for any fixedz € R"™. This idea can be formulated as
Vi (z) = Vs (x), where

Vi (z) = {z e R"|Ve(z)" 2 =0},

Vo(z) ={z € R"|z = f(x)u,u € R'}.

[1l. SINGULARITY AND A NEW PROJECTIONMATRIX
A. Singularity

The functionf is the projection matrix, which orthogonally projects ateemnto the null

space ofVc!. One well-known projection matrix is given as follows [BL][7]:

f(x)=1,— (Vc (VCTVC)_l VCT> (x). 4)
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We can easily verify that/c (z)” f (z) = 0. This projection matrix requires thafc (z)
should have full column rank, i.e., eveny € F is a regular point. However, the assump-
tion does not hold in cases whe¥ec (z)” Ve () is singular. This condition is the major

motivation of this paper. For example, consider an equaliystraint as
c(z) = (z1 — 22+ 2) (21 +22) =0,

where z = [ T I ]T € R?. The feasible set is eithefz € R?|z; — x5 +2 =0} or
{x € R?*|zy + x5 = 0}. As shown in Fig.1, the point,, = [ -2 0 r has a unique feasible
direction and the point,, = [ 0 0 ]T also has a unique feasible direction. Whereas, the
point x,, = [ -1 1 ]T has two feasible directions. This causes the singular phene.
The singularity often occurs at the intersection of the ifdassets, where exist non-unique
feasible directions. Mathematically,c ()" Ve (z) is singular. Concretely, the gradient vector
of ¢(x) is

Ve (r) = 211 + 2

—2x9 + 2

At the pointsz,, andz,,, the gradient vector of (z) is

—2 2
Ve (zy,) = Ve (xp,) =
2 2
and by [(4), the projection matrices are further
0 1
fxp) = S (Tp,) =
10 -1 0
respectively. Whereas, at the poir)t,, the gradient vector of (z,,) is
0
0

Ve (xp3) =

1
For such a case(Vc (2p5)" Ve (xp3)> does not exist.

To avoid singularity, a commonly-used modified projectioatnx is given as follows
f(x)=1I,— (Vc (el + VCTVC)_l VCT> (z) (5)

wheree > 0 is a small positive scale. We haWéc (z)" f (z) # 0 no matter how smalt is.

On the other hand, to obtaifi(x) by (5), a very smalk will cause ill-conditioning problem
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X, A X —x,+2=0

X =1 1)
x, =[0 0"

x+x,=0

Fig. 1. Singularity Example

especially for a low-precision processor. For examplesitar the following gradient vectors:

V01:1111
V02:2111

Ves=13 2 2 2. (6)

Taking e, = ||Vc! f|| as the precision error, we empldyl (5) with different= 107%, k =
1,---,15 to obtain the projection matriX. As shown in Fig.2, the error varies with different
k. The best precision error can be achieved only at 10~® with a precision error around

10~8. Reducinge further will increase the numerical error.

10

10 F E

10°F E

10 E

10°F E

107 E

10” I I

Fig. 2. Precision error of a common-used modified projectiwtrix with differente = 10~*
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The best cure is to remove the linearly dependent vectocttlirom Ve (z). For example,
iNnVe(z) = | Ve (x) Ve (z) Ves (o) } € R™3,if Vs () can be represented by a linear
combination ofV¢, (z) and Ve, (z), then Ve (z)” Ve () is singular. The best cure is to

removeVe; (z) from Ve (x), resulting in
vcnew (l‘) = |: VCl (ZL‘) VCQ (l‘) ] c RnXQ.
With it, the projection matrix becomes

frew (@) = I = (Venew (Vb Vena) ™ Vel ) (2).

It is easy to see thalc ()" fe. () = 0. For a linear time-invariant matri¥’c (x) , namely
independent ofz, we can avoid singularity by removing dependent terms ouWeofz)
before computing a projection matrix. However, this ideasinot work for a generdVc (z)
depending onz. Therefore, “the best cure” cannot be implemented contislypwvhich
further cannot be realized by analog hardware. For such popar we will propose a new

projection matrix.

B. A New Projection Matrix

For a special case: R" — R, such af (x) is designed inTheorem 2 Consequently, a
method is proposed to construct a projection matrix for eeg@ncase: : R — R™. Before
the design, we have the following preliminary results.

Lemma 1 Let

Wi = {z e R*|LTz = 0}

Wy={2€eR"z=|1,— 5 5 | u,ueR"},
o (IZI7) + IIL|]
1 z=0,z€R
whereL € R" andf (z) = . ThenW; = W;.

0 z#0,z€R
Proof. SeeAppendix C[]

Theorem 2 Suppose that : R” — R and the functionf (z) is designed to be
Ve (z) Ve (z)"
o) = — @ve@!

0 (IVe @)[FF) + Ve ()]
ThenAssumption Is satisfied withu € R” andV, (z) = V5 ().

Proof. Sincec (z) = Ve (z)" & and i = f () u, the functionf () is defined as in[{7) so

(7)

that ¢ () = 0 by Lemma 1.Therefore,Assumption lis satisfied withu € R". Further by
Lemma 1V, (z) = Vs (x). O
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10

Theorem 3 Suppose that : R* — R™ and the functionf (z) is in a recursive form as

follows:

_ fkT_1VCkVC;;ka—1
o (I veelP) + 17 Vel
k=1,---,m. ThenAssumption is satisfied withf = f,, andu € R™ andV; (z) = V, ().

S = fe (8)

Proof. SeeAppendix D [
Remark 4. In @), if ||/, V]| # 0, thend (][f,f_1Vck]]2> =0, namely

Je = Jr1 ([ — fkT_1VCch;€fkl> .

|72 Vel

This is the normal way to construct a projection matrix. Oe tither hand, ifV¢, can
be represented by a linear combination6¢;, then f V¢, = 0 as ff Ve, = 0,0 =
1,---,k—1. In this cases (Hf,;f_1VckH2> #£ 0. Consequently, the projection matrix will
reduce to the previous ong = f,_1, that is equivalent to removing the terfic,. This is
consistent with “the best way”.

Remark 5. In practice, the impulse functiof(z) is approximated by some continuous
functions such as (z) ~ eI, wherey is a large positive scale. Let us revisit the example
for the gradient vectorg (6). Taking, = HVchH as the error again, we employl (8) with
v = 30 to obtain the projection matri¥ with e, = 2.7629 x 10~'°. This demonstrates the
advantage of our proposed projection matrix olzér (5). Furttore, compared witlil(4) drl(5),
the explicit recursive form of the proposed projection nxais also easier for the designer

to implement.

IV. UPDATE DESIGN AND CONVERGENCEANALYSIS

In this section, by using Lyapunov’s method, the update &yr ®ntroller)u is designed
to result ino (x) < 0. However, the objective function (x) is not required to be positive

definite. We base our analysis upon the LaSalle invarianeerdém [14, pp. 126-129].

A. Controller Design

Taking the time derivative of (x) along the solutions of{2) results in
0(2) = Vo (x)' f(2)u (9)
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11

whereVuv (z) € R™. In order to geto (z) < 0, a direct way of designing is proposed as

follows
u=—-Q () f(x)" Vv () (10)
where@ : R* — R andQ (z) > €I, > 0, € > 0, Vo € R™. Then [9) becomes
0 (x) = =Vo(x)" f(2)Q(z) f(z)" Vo (z) <0. (11)
Substituting [(ZD) into the continuous-time dynamical egst{2) results in
i=—f(@)Q ) f(z)" Vv (z) (12)

with solutions which always satisfy the constrairitz) = 0. The closed-loop system corre-
sponding to the continuous-time dynamical systein (2) aedctntroller [(10) is depicted in
Fig.3.

Controller

AXP[ u= —Q(x)f(x)T Vv(x)

Fig. 3. Closed-loop control system

B. Convergence Analysis

Unlike a Lyapunov function, the objective functian(x) is not required to be positive
definite. As a consequence, the conclusions for Lyapunastifums are not applicable. Instead,
the invariance principle is applied to analyze the behawfahe solution of [(1R).

Theorem 4. Under Assumption lgiven zy € F, if the set = {z € R"v(z) <
v (zg),c(x) = 0} is bounded, then the solution df (12) startingzgtapproaches; € S,
whereS = {z € K|V (z)" f (z) = 0}. Ifin addition )V (z}) = Vs (z}) , then there must exist
aN = [\ Ay AT e R™ such thatVo (o) = Y7 AiVe; (27) ande (x}) = 0, namely
z; is a Karush—Kuhn—Tucker (KKT) point. Furthermore,zifV L (x}, \*) 2 > 0, for all
z €V (x7),z # 0, thenz; is a strict local minimum, wheré (z,\) = v (z) =>_7", Aic; () .

Proof. The proof is composed of three propositioRsoposition 1is to show that/C is

compact and positively invariant with respect fol(1Pypposition 2is to show that the
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12

solution of [12) starting at, approaches; € S; Proposition 3is to show that:; € S is
a KKT point, further a strict local minimum. The three projiimms are proven irAppendix
E. O

Corollary 1. Suppose thaff (z) is chosen as[{7) for : R* — R™ and the setl =
{r € R"|v(z) <wv(xg),c(x) =0} is bounded for given, € F. Then the solution of_ (12)
starting atz, approaches:} € S, whereS = {z € K|Vv (z)" f(z) = 0}, wherez} is a
KKT point. In addition, if 27V, L (zj,A\*)z > 0, for all 2 € V, (z}),2 # 0, thenz} is a
strict local minimum, wherd. (z, \) = v (z) — >, Aic; () .

Proof. SinceV; (z) = V, («}) by Theorem 3the remainder of the proof is the same as
that of Theorem 4]

Corollary 2. Consider the following equality-constrained optiminatiproblem

mino (z), S.t. Ax = b. (13)

zeR™
If (i) v(x) is convex and twice continuously differentiable, (1) € RP*™ with rankA < n,
(i) €K ={z € R"v(z) < v(xg),Ax = b} is bounded, then the solution df_{12) with
f (z) = At starting at anyr, € F approaches*.

Proof. The solution of [(IR) starting at, approaches; € S. Since rankl < n, we have
Vi (zf) = Ve (2) # @. Since the equality constrained optimization problém (:3anvex,
a KKT point z; is a global minimumz* of the problem[(1B). The remainder of proof is the
same as that ofheorem 4]

Remark 6. If K is not a bounded set, thefi defined inTheorem 4may be empty.
Therefore, the boundedness of the &eis necessary. For example(z) = z; + x2, S.t.
c(x) = a1 — 29 = 0. The setk = {x € R?|z; + x5 < v (x9),71 — 2 = 0} is unbounded.
According toTheorem 1we havef (z) = [1 1]Z. In this case Vv (z)” f (z) = 2 # 0 and
then the setS is empty.

C. A Modified Closed-Loop Dynamical System

Although the proposed approach ensures that the solutiatisfysthe constraint, this
approach may fail ity ¢ F or if numerical algorithms are used to compute the solutions
Moreover, if the impulse functiofiis approximated, then the constraints will also be violated
With these results, the following modified closed-loop dyizal system is proposed to amend

this situation.
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13
Similar to [2], we introduce the termpVe (z) ¢ (z) into (I2), resulting in
&= —pVe(z)c(x) = f(2)Q () f(2)" Vo (), 2(0) =z (14)
wherep > 0. Definew, (z) = ¢(z)" ¢(x). Then
e (z) = —pe ()" Ve (z) Ve(z)e(x) <0,

whereVe (z)" f (z) = 0is utilized. If the impulse functiod is approximated, theW¢ ()" f () ~
0 and can be ignored in practice. Therefore, the solution§ldf (ill tend to the feasible
set F if Ve(z) is of full column rank. Oncec (z) = 0, the modified dynamical system
(@14) degenerates tb (112). The self-correcting featureleaahe step size to be automatically
controlled in the numerical integration process or to teuncertainties when the differential
equation is realized by using analog hardware.

Remark 7. The matrix@ (z) plays a role in coordinating the convergence rate of all
states by minimizing the condition number of the matrix fimws like f () Q () f (z)".
Moreover, it also plays a role in avoiding instability in thamerical solution of differential
equations by normalizing the Lipschitz condition of fuoets like f (2) Q (2) f (z)” Vo ().

Concrete examples are given in the following section.

V. |[LLUSTRATIVE EXAMPLES
A. Estimate of Attraction Domain

For a given Lyapunov function, the crucial step in any prarcedfor estimating the
attraction domain is determining the optimal estimate. <taer the system of differential
equations:

t=Ax+g(x) (15)

wherez € R” is the state vectord € R™"*" is a Hurwitz matrix, andy : R* — R" is a
vector function. Let (x) = 27 Pz be a given quadratic Lyapunov function for the origin of
(5), i.e.,P € R™" is a positive-definite matrix such that’ P + PA < 0. Then the largest
ellipsoidal estimate of the attraction domain of the origam be computed via the following
equality-constrained optimization problem [15]:
xe{é}}\%o}xTPx st.a'P[Az + g (z)] = 0.
Since{z € R"|z" Pz < z{ Px,} is bounded, the subset

K ={z € R"|z" Pz < x§ Pxo, 2" P[Az + g (x)] = 0}
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14

is bounded no matter whatis.
For simplicity, consider[{15) withv = [z, 25]T € R?, A = —I,, P = L, andg(z) =
(0 (z) + 1) [z1 22]", whereo (z) = (21 + 22 +2) (22 +1) — 0.1 (21 + 1)2) . Then the op-

timization problem is formulated as

. 2 2 2 2
min x7 +x5 S.t. (x7 +x z) = 0.
CE5 {0} 1 2 ( 1 2)0( )

Sincex # 0, the problem is further formulated as

minv (z) = 2% + 25 S.t.o (x) = 0.
z€R2

Then
Vo (x) = [22121,]"

dy — 0.1d% — 0.2d,ds

Ve (x) =
dy — 0.1d2 + ds

dl:$1+1,d2:l‘2+1,d3:l‘1+l‘2+2.

In this example, we adopt the modified dynamicd (14), whfei® chosen ag(7) with (x) =
e~l"land the parameters are chosemyas 10,p = Q = 20 /||Vcc — f fTVv|| . We solve
the differential equatiori_(14) by using the MATLAB functi6ade45” with “variable-st%’.
Compared with the MATLAB optimal constrained nonlinear tivdriate function “fmincon”,
we derive the comparisons in Table 1.

The pointz, = [-1 —1]7 is a singular point, at whictWc(z,) = [0 0]7. As shown
in Table 1, under initial point$—3 1]7 € F and [2 —4]7 € F, the MATLAB function
fails to find the minimum and stops at the singular point, whsrthe proposed approach
still finds the minimum. Under initial pointl —4]7 ¢ F, the proposed approach can still
find the minimum, similar to the MATLAB function. Under a diffent initial value, the
evolutions of [T4) are shown in Fig.4. As shown, once clogbéssingular poini—1 —1]7, the
solutions of [I#) change direction and then move to the mimin; = [0.2061 — 0.8545].
Compared with the discrete optimal methods offered by MABL,.#ese results show that the
proposed approach avoids convergence to a singular pooredwer, the proposed approach
is comparable with currently available conventional deseroptimal methods and facilitates

even faster convergence. The latter conclusion is comsigtgh that proposed in [1],[3].

1In this section, all computation is performed by MATLAB 6.5 a personal computer (Asus x8ai) with Intel core Duo
2 Processor at 2.2GHz.
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Method Initial Point Solution Optimal Value cpu time (sec.)
Matlab fmincon  [-3 1] [-1-1]" 2.0000 Not Available
New method [[31]  [0.2062 -0.8546] 0.7729 0.125
Matlab fmincon  [2 -4] [-1-1]" 2.0000 Not Available -
New method [2-4]  [0.2062 -0.8545] 0.7726 0.0940
Matlab fmincon [1 -4T [0.2143 —0.85331j 0.7740 0.2030
New method [1-4]  [0.2056 -0.8550] 0.7733 0.1100
1 T T T T T
Evolution trajectory of PR
initial point (=3,1) - e
05} , !
/. \-
! \'
of i + | .
-\' (0,0) -[r
_05 - \,\ /»/ \ -
,,,,,,,,,, - el
| S TTe T (0.2061 -0.8545) .
Singular point (-1,-1)
& -151 -
_2 - -
25+ Evolution trajectory of N
initial point (2,-4)
_3 - -
35} Evolution trajectory of -
initial point (1,-4)
_4 1 | |
-3 -2 -1 0 1 2 3

Fig. 4.
(dash-dot line).
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B. Estimate of Essential Matrix

For simplicity, assume that images are taken by two idehgicehole cameras with focal
length equal to one. The two cameras are specified by the aareaters”;, C; € R* and
attached orthogonal camera fram@s, es, e3} and {¢/, e, €4}, respectively. Denotd” =
Cy, — Oy € R3 to be the translation from the first camera to the secondmdR3*? to be
the rotation matrix from the basis vectofs,, es, e3} to {€], €5, €5}, expressed with respect
to the basis{e;, ez, e3}. Then, it is well known in the computer vision literature [1iBiat
two corresponding image points are represented as follows:

1

1
= —— M k=1,2--- N 16
ma g ]\4—]/g (3) k> ) 4y ) ( )

where M, M, represent the positions of thigh point expressed in the two camera frames
{e1,eq,e3} to {€], €5, €4}, respectively;My. (3), M]. (3) represent the third element of vectors
My, M, respectively. They have the relationship, = RM, + T, k = 1,2,--- ,N. These

corresponding image points satisfy the socalled epipaasitaint [16, p. 257]:
mi  Emay =0,k=1,2,--- N (17)

where £ = [T'], R is known as theessential matrix

Fig. 5. Epipolar geometry

By using the direct product and thevec (-) operation, the equations in (17) are equivalent

to
AQO = Onx1 (18)

October 29, 2018 DRAFT



17

where
T T
my; ®@my
A — E HQ]VXQ7
T T
my y @My N

¢ =vec([T], R). (19)

In practice, these image points, , andm, ; are subject to noisé, = 1,2, --- , N. Therefore,

T and R are often solved by the following optimization problem

o ()" AT Ap (2)

min v (x
z€R12

) =
1
—(I|T||" =1
t <u 1) =0
1
2 (RTR I5) = 033 (20)
wherez = [TT vec" (R)]" € R'2. This is an equality-constrained optimization considered
here. In the following, the proposed approach is appliecht dptimization problem_(20).
By Theorem 2the projection matrix for the constraigt(|| 7| — 1) = 0 is

TT™
o (ITI1%) + 71

Since ||T||> = 1 has to be satisfied exactly or approximately, thﬁe(m|T||2) = 0. So, the

f=1i-

projection matrix for the constraint is
f=1L-1T"/|T|
Then the constraint is transformed into
T= (I —TT" /|IT|1?) w1,
wherew; € R%. By (3), the constraint (R R — I3) = 0343 is transformed into
R = [us], R,
whereu, € R3. Furthermore, the equation above is rewritten as

vec(R) = (R" @ Is) Hus.
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Then the continuous-time dynamical system, whose solsitelways satisfy the equality
constraintst (|7 — 1) = 0 and i (RTR — I3) = 033, is expressed agl(2) with

[ 1,717 )T 0
f (.T) _ 3 /H || 3x3 c R12X6,
Ogxs (R"® I3) H
u
u=| | eRr" (21)
Uz

If the initial value |7 (0)||> = 1 and R (0)" R (0) = I, then all solutions of[{2) satisfy the
equality constraints. Sinc€v (v) = [ (RT @ ;) H I [T], |"A" Ay, the time derivative

of v (z) along the solutions of{2) is
b (x) = —pT ATAB (2)" Q (2) © (z) ATAp <0,

where
(Is — TTT /|T|1*)" HT (RT @ I;)"
HT (RT @ Iy)" (o [1],)"

The simplest way of choosin@ (x) is Q (z) = Is. In this case, the eigenvalues of the

O (z) = € R%.

matrix A©7 () © (z) AT are often ill-conditioned, namely
Amin (A7 () © (2) AT) < Amax (A0 () © (2) AT).

Convergence rates of the componentsiof(x) depend on the eigenvalues4®? (z) Q () © (z) AT.
As a consequence, some componentsidgf converge fast, while the other may converge
slowly. This leads to poor asymptotic performance of thesetbloop system. It is expected
that each component ofp can converge at the same speed as far as possible. Suppbse tha

there exists &) (x) such that
AOT (2)Q (7) O (x) AT = Iy.
Then
0 (x) < —oTAT Ap < 0.

By Theorem 4z will approach the sefz € R"| Ap (z) = 0}, each element of which is a
global minimum sincey (x) = 0 in the set. Moreover, each componentAp converges at
a similar speed. However, it is difficult to obtain sucki)dz), since the number of degrees
of freedom ofQ (z) € R®*6 is less than the number of elementslgf A modified way is

to make AOT (x) Q (z) © (x) AT =~ Iy. A natural choice is proposed as follows

Q(z) = p ((@ () AT AO (gc)T)T + 616) (22)
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wherep > 0, (6 (z) ATA67 (z))" denotes the Moore Penrose inverseSafr) ATAOT (z).
The matrixels is to makeQ (z) positive definite, where is a small positive real. From the
procedure above(© (z) AT AT (:c))T needs to be computed every time. This however will
cost much time. A time-saving way is to updafgx) at a reasonable interval. Then (12)
becomes

&= —uf (z) ((@ (x) AT AO (:C)T)T + 616) O (x) AT Ap (z) (23)

where f (z) is defined in [(2l1). The differential equation can be solvedRuynge-Kutta
methods, etc. The solutions df {23) satisfy the constramsere z = [T7 veqR)"]”.
Moreover, the dynamic system will reach some final restiageseventually.

Suppose that there exist 6 points in the field of view, whosstioms are expressed in the
first camera frame as followsi/; = [-1 1 1]7, My =20 1]7, M3 =[1 -1 1]T, My =[-1
-1 17, M5 =1[111]", Mg = [—1 3 1]*. Compared with the first camera frame, the second

camera frame has translated and rotated with

1 0.9900 —0.0894 0.1088
T = 1 |,R= 0.0993  0.9910 —0.0894
—1 —0.0998 0.0993  0.9900

The image points are generated byl (16). Using the genenai@gll points, we obtaid by
(19). Setting the initial value as followE (0) = [0 0 1)7, R(0) = I3, u = 20, ¢ = 0.01. We
solve the differential equatioh (114) by using MATLAB funati “ode45” with “variable-step”.
Compared with MATLAB optimal constrained nonlinear mudtinate function “fmincon”, we

have the following comparisons:

TABLE 2. COMPUTED RESULT FOR EXAMPLE 2

Method HR*TR — ]3” cpu time (sec.)
MATLAB fmincon 1.2469e-004 0.2500
New Approach 1.8784e-005 0.1400

As shown in Table 2, the proposed approach requires lessttiraehieve a higher accuracy.
Given thatv (z*) = 0, the solution is a global minimum. The evolution of each eam
of x is shown in Fig.5. The state eventually reaches a rest statesanilar speed. With
different initial values, several other simulations areoaimplemented. Based on the results,

the proposed algorithm has met the expectations.
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0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05
time (sec)

Fig. 6. Evolvement of the state

VI. CONCLUSIONS

An approach to continuous-time, equality-constrainedagation based on a new projec-
tion matrix is proposed for the determination of local miaimVith the transformation of the
equality constraint into a continuous-time dynamical egstthe class of equality-constrained
optimization is formulated as a control problem. The resulapproach is more general than
the existing control theoretic approaches. Thus, the mep@pproach serves as a potential
bridge between the optimization and control theories. Canaxb with other standard discrete-
time methods, the proposed approach avoids convergencsitgalar point and facilitates

faster convergence through numerical integration on aaligopmputer.

APPENDIX

A. Kronecker Product and Vec
The symbol vetX) is the column vector obtained by stacking the second columX o
under the first, and then the third, and so on. With= [z;;] € R™*"™, the Kronecker product

X ®Y is the matrix
ZCHY s .I‘le

X®Y =

In fact, we have the following relationships &Y Z) = (Z” ® X )veqY') [17, p. 318].
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B. Skew-Symmetric Matrix
The cross product of two vectorse R? andy € R? is denoted by x y = [z], y, where

the symbol[-], : R® — R3*3 is defined as[13, p. 194]:

0 —XI3 )
[, 2| 2 0 —x; | ERYC
—XT9 X1 0

By the definition of{z], , we havexr x x = [z], = 0341, Vz € R® and

vec([z],) = Hz,

00 0 0 010 -120
H={00 -1 0 001 0 0
01 0 -1 000 0 O

C. Proof of Lemma 1
Sinced (|IL)|*) + ||L||> = 1 if L =0 andé (||L]|°) + |L||* = ||L|* if L # 0, we have
J (||L||2) + || L||* # 0, VL € R". According to this, we have the following relationship
L™ (L, — LL" /(8 (IILI%) + 1L]%))
= LT = LT||L|* /(3 (IZI1°) + IZ1%)
=0, VL € R".
This implies thatZL”z = 0, Vz € W,, namelyW, C W,. On the other hand, any € W, is
rewritten as

2= (L= LL™ /(8 (ILIP) + I1L]1%) ) =

where LTz = 0 is utilized. HencelV, C W,. ConsequentlyW, = W.
D. Proof of Theorem 3
Denote
VIi={zeR"\Vclz2=0,i=1,---,5,j <m}
V= {2 €R"z = fjuj,u; €R",j <m}.

First, by Theorem 2it is easy to see that the conclusions are satisfied yvithl. Assume

Vil — Y=L and then prove thab® = V¥ holds. If so, then we can conclude this proof.
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By Vi~!(z) = V5! (2), we have
VE =1 eR"Vclz=0,zc Vi1
= {2 €R"Vclz=0,2= fr_1up_1,ur_1 € R"}
= {2 e R"|V¢] focittp_r = 0,2 = fr_1up_1, up—s € R™}.
By Lemma 1 we have
Ve frortip—y = 0 &

I fgflvckvcgfk—l
no 2 T 2 | U
5 (1vall) + | vl

Ug—1 =

k>

namely,
Vf = V§ = {Z eR" |Z = fkuk,uk € Rn}

fr VepVel fooq
wheref. = f._, | I, — k=1 k .
Jo=Ji ( 5<||f;flwk||2>+||fslm||2)

E. Proof of Propositions in Theorem 3

(i) Proof of Proposition 1.In the spac&”, the setk is compact iff it is bounded and closed
by Theorem 8.2 in[[18, p.41]. Hence, the remainder of workoigpitove that is closed.
Suppose, to the contrarj is not closed. Then there exists a sequentg,) € K — p ¢ K
with ¢, — oo. Whereasw (p) = tii_r)noov (x (tn)) < v(zg) andc(p) = tii_r)nooc (x(tn)) =0
which imply p € K. The contradiction implies thdt is closed. Hence, the skt is compact.
By (1), v (z) < v (zo) with respect to[(12){ > 0. By Assumption lall solutions of [IP)
satisfyc (x) = 0. Therefore K is positively invariant with respect tg_(1L2).

(i) Proof of Proposition 2.Since K is compact and positively invariant with respect to
[@2), by Theorem 4.4invariance principle) in[[14, p. 128], the solution &f [1&arting at
o approaches (z) = 0, namelyVu (z)" f (z) = 0. In addition, since[(12) becomes= 0
in S, the solution approaches a constant veefoe S.

(iii) Proof of Proposition 3.SinceV, (z}) = V, (z) andz; € S satisfy the following two
equalities

Vo (27)" f (a7) = 0,¢(2]) = 0,

there exists a: such thatz = f (z])u for any z € V; (z7). As a consequence, for any
zeVi(z), Vo(z)" 2 = Vo (a)" f(27)u = 0. There must exish* e R, i = 1,--- ,m
such thatVv (z7) = 7, AV, (7). Otherwisedz € V; (zF), Vo (z7)" z # 0. Therefore,

i=1"%

October 29, 2018 DRAFT



23

xz; € §is a KKT point [12, p.328]. Furthermore, by Theorem 12.6[i,[p.345],z; is a

strict local minimum if27'V,, L (z;,\*) 2 > 0, for all z € V; (z}),2 # 0.
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