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Abstract

Human preferences are usually measured using ordinal variables. A system whose goal is to 

estimate the preferences of humans and their underlying decision mechanisms requires to learn the 

ordering of any given sample set. We consider the solution of this ordinal regression problem 

using a Support Vector Machine algorithm. Specifically, the goal is to learn a set of classifiers with 

common direction vectors and different biases correctly separating the ordered classes. Current 

algorithms are either required to solve a quadratic optimization problem, which is computationally 

expensive, or are based on maximizing the minimum margin (i.e., a fixed margin strategy) 

between a set of hyperplanes, which biases the solution to the closest margin. Another drawback 

of these strategies is that they are limited to order the classes using a single ranking variable (e.g., 

perceived length). In this paper, we define a multiple ordinal regression algorithm based on 

maximizing the sum of the margins between every consecutive class with respect to one or more 

rankings (e.g., perceived length and weight). We provide derivations of an efficient, easy-to-

implement iterative solution using a Sequential Minimal Optimization procedure. We demonstrate 

the accuracy of our solutions in several datasets. In addition, we provide a key application of our 

algorithms in estimating human subjects’ ordinal classification of attribute associations to object 

categories. We show that these ordinal associations perform better than the binary one typically 

employed in the literature.

Index Terms

Ordinal Regression; SVM; Sequential Minimal Optimization; Computer Vision; Object 
Classification; Direct Attribute Prediction

I. Introduction

Ordinal measurements play a key role in many applications, from plant biology [41] to 

users’ reviews [43] and visual perception [45]. For instance, objects can be ordered 

according to their features, functionality, etc. A clear example is in the perception of facial 

expressions of emotion by humans. These facial expressions are generally ordered according 

to the degree of the perceived emotion category, regardless of the actual category being 
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expressed by the sender [27], [9], [8]. Unlike a classification problem, here, errors generated 

by misclassifications reflect the difference between the orderings, and unlike a regression 

problem, the labels define the discrete class ranks [16], [6]. In our facial expression example, 

the perceived difference (i.e., distance) of an emotion category shown in images a and b is 

given by the difference between two ordinal variables [27], [23]. Ordinal measurements only 

provide the order of the classes relative to each other.

In the present paper, we derive a multiple ordinal regression algorithm, where two or more 

ranking (unknown) functions are used to order the data. Our goal is to simultaneously 

estimate these multiple underlying ranking functions to minimize the global ordinal 

classification error. Existing ordinal classification algorithms described in the literature are 

either computationally complex or based on maximizing the number of correct pairwise 

rankings which is sensitive to outliers [13]. To resolve these problems, in the present paper, 

we derive a Support Vector Machine (SVM)-based formulation defined by a simple iterative 

approach which minimizes the global risk. We first present the single ranking solution and 

then derive the algorithm for multiple ranking functions. This allows us to weight the 

importance of the ranking problems with respect to each other. Finally, we derive an 

efficient, easy-to-solve iterative solution using a Sequential Minimal Optimization (SMO) 

based iterative procedure.

Extensive experimental results show the accuracy of the algorithm through several tests in 

the UCI datasets. Importantly, we illustrate an application of our algorithm in learning the 

visual feature rankings of human subjects, where we learn to rank objects based on user-

specified, high-level descriptions (attributes). This allows developing detection and 

recognition algorithms that are based on high-level attribute ranking estimations provided by 

our algorithm. We illustrate this scheme in Fig. 1. In the experimental results section, we 

also provide an application of this multiple ranking algorithm to data visualization.

A. Background and significance

Several algorithms have been proposed to resolve the ordinal regression problem [26], [47], 

[12], [22], [1], [6], [38], [18], [13], [20], [17]. For example in [20] the authors learn a 

regression tree to estimate the ordinal values. The limitations of this approach are that the 

metric between the ordinal variables is not defined and that the regression algorithm assumes 

a uniform error.

To resolve the above stated problems, Shashua et al. [38] derive SVM-based ranking 

algorithms to address the single ranking problem. The goal of their algorithms is to learn a 

set of hyperplanes with common weight vector and different biases to order a set of ordinal 

classes. Shashua et al. present two possible solutions to this problem – a fixed margin 
strategy and a sum of margins strategy. Fig. 2 shows a typical solution of these two 

strategies. The fixed margin strategy maximizes the distance of the closest class pair. This 

solution is prone to errors, since the closest class pair may not define a correct direction of 

separation for all classes. In contrast, the second strategy maximizes the sum of the margins 

between every consecutive class while minimizing the global risk. Unfortunately, the 

formulation of [38] leads to several inequalities that are very difficult to solve and are 
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inefficient. Both of these algorithms are in fact formulated as quadratic optimization 

problems and, hence, the number of samples that can be utilized is limited.

Chu et.al. [6] address the above limitations by reformulating the fixed margin approach as a 

SMO1 (Sequential Minimal Optimization). In addition, [6] extended the fixed margin 

solution to handle the implicit errors that would be generated when a sample is misranked 

further than two classes away from its correct class rank. Unfortunately, these solutions were 

based on the fixed margin strategy and are hence biased towards the classification direction 

given by the closest class pairs.

Other types of ranking formulations have been commonly used in the information retrieval 

community for ranking document retrieval results [17], [18], [1], [22]. In these cases, the 

ranking SVM problem is formulated as to find a solution that maximizes the number of 

correctly ordered pairwise samples. Note that, this problem is different than our ordinal 

classification learning or ordinal regression problem. While we are learning a function to 

estimate an ordinal variable, these approaches target to maximize correctly ordered pairwise 

samples. Considering all pairwise samples, this results in a large quadratic optimization with 

complexity squared with the number of samples. To address this issue, several efficient 

implementations of ranking SVM with a fixed margin strategy have been proposed [19], [4], 

[3], [49]. Boosting approaches defined in the ”Yahoo! Learning to Rank Challenge” [3], 

such as GBRANK [49], use a similar formulation to ranking SVM. Efficient ranking 

learning with primal optimization techniques have been defined in [36]. A recent approach 

by [7] derives ranking forests to address learning to rank problem with binary feedbacks. 

Again, all these approaches are defined for the information retrieval applications and target 

to learn a ranking SVM that maximize the correct pairwise orderings and are hence based on 

a fixed margin strategy, with the subsequent limitations already stated above.

In a recent study, [44] provides a detailed theoretical comparison between various ranking 

algorithms. It is shown that most of these approaches are related to the proportional log odds 

model in statistics [25]. Specifically, the fixed-margin strategy based solution of [6] with the 

implicit constraints on individual samples have the same asymptotic ranking function as the 

proportional log odds model. However, [44] points out that the dependency of this solution 

to the implicit constraints of individual sample rankings may result in poor performance in 

some applications. This provides a theoretical support for our observations on the inferior 

performance of the fixed margin strategy. [44] also emphasizes that the objective functions 

for ordinal regression and multiclass classification are significantly different, and multiclass 

classification would result in large errors if used in an ordinal regression problem. This is 

also reflected in our experimental results in Section IV. These methods are also to be 

compared to recent algorithms that search for a balance between the bias and variance of the 

regressors [47]. The major problem of this approach is its limitations when working with 

multiple ordinal variables.

There has also been a great interest on the theoretical properties of the learning to rank 

approaches from partial pairwise rankings. [10] provides a detailed review of the learning to 

1SMO is an iterative solution to a computationally complex quadratic optimization problem in SVM [31].
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rank algorithms and summarizes that the practical solutions to collect ranking information 

don’t have a relevant theory and the approaches that have theoretical support don’t have 

practical solutions. To address these limitations, [10] proposes a theory to identify partial 

preferences when the dataset is only partially labeled. [33] also provides a solution for the 

rank aggregation from pairwise data and derives theoretical results for the underlying 

statistical model. Note that, we provide the review of these recent approaches to clarify that 

the ordinal regression problem we are addressing in this paper is a different problem from 

the approaches that are designed for learning to rank problem.

Other recent ordinal regression approaches provide extensions for ensemble learning [29], 

[11], sampling problems [30], and semi-supervised learning [37]. [29] proposes an ensemble 

learning for ordinal regression by extracting multiple projection-based two class classifiers 

and three class ordinal regressors. The ensemble of the probability scores obtained from 

these functions are used to rank the test samples. [11] addresses the feature selection for 

ensemble learning of ordinal regressors. Negative correlation is used to find new features 

that provide additional information to the ensemble. Both of these ensemble solutions are 

shown to improve the accuracy of fixed margin strategy based solutions [6], Gaussian 

Processes Ordinal Regression [6] and SVM. [30] addresses the sampling problems in ordinal 

regression using a graph-based approach. Ranking classes that have large number of samples 

usually dominate the regression and results in misranking of classes when the number of 

samples is small. This is addressed by a graph-based approach to properly adjust the 

regressor weights and is shown to improve the accuracy of fixed margin solutions. [37] 

proposes a semi-supervised approach of Transductive Ordinal Regression. Unlabeled 

samples are utilized while learning the regressor. A training algorithm is proposed to 

estimate the labels of the unlabeled samples and minimize the loss function for the samples 

with ranking labels. This approach could be utilized when the data labels are missing and it 

is difficult to collect the rankings for all classes. These extensions are all proposed for 

ordinal regression problems and can utilize our sum-of-margin based multiple and single 

ordinal regression solutions proposed in the present paper. This increases the applicability of 

our solutions to a larger set of problems.

II. Single Ranking Learning with SVM

Assume we are given a set of samples , where i = {1, 2, …, nj} specifies the sample, 

nj is the total number of samples in class j, and the superscript j = {1, 2, …, R} is the class 

label which specifies the order of the sample.

Our goal is to learn a ranking function that estimates the ordering of a future (test) 

observation. Let this function be represented by a set of parallel hyperplanes, with w as the 

common direction vector. Let each class lie between two of the resulting R − 1 hyperplanes 

with biases b1, b2, …, bR−1. We classify a test sample x to (class) rank r using the rule,

(1)
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Note that, without loss of generality, the rank R hyperplane is set at infinity with bR = ∞.

Fig. 2(b) illustrates the geometric interpretation of the ranking problem. In this example, our 

goal is to estimate the ranking function that maximizes the separation of the samples in 3 

classes (shown as circles, plus signs and squares in the figure) with 4 parallel hyperplanes. 

The vector w illustrates the common weight vector for the hyperplanes with biases a1, b1, a2 

and b2. The margins between consecutive classes are defined as bi − ai. The averages of the 

ai and bi are used to define the classification rule, i.e., . The classifier wTx ≤ c1 

specifies the ordering obtained by the first function, c1 < wTx ≤ c2 given by the second rank, 

and wTx > c2 of the third. For this problem, our ranking function is f(x) = minr=1,…,R wTx < 

cr, with cR = ∞ and R = 3. Note that, the hyperplanes wTx = a1 and wTx = a2 penalize the 

misranking errors of samples from classes 1 and 2 to classes with higher ranks, e.g., for 

samples from class 1 these are classes 2 and 3. Similarly, wTx = b1 and wTx = b2 penalize 

misorderings of samples from classes 2 and 3 to classes with lower rank. We now derive this 

geometric problem with a SVM type ranking function learning.

Formally, we have

(2)

where  and  are the slack variables that correspond to errors in the orderings if the 

samples  and  with respect to the hyperplanes with biases aj and bj, and where nj is the 

number of samples in class j.

The first term in the optimization problem above corresponds to the complexity of the 

classifier and the common scale of the margins. The second term is the sum of errors 

generated by the hyperplanes, and the third term is the sum of margins between consecutive 

hyperplanes. The parameter C controls the importance of the error term with respect to the 

margin. The inequality conditions define the classification rule and the positivity of the slack 

variables ε.

The Lagrangian for the primal problem in (2) is given by,
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(3)

where  are the nonnegative Lagrange multipliers.

The KKT (Karush-Kuhn-Tucker) optimality conditions for the above problem are,

(4)

(5)

(6)

(7)

(8)

We rewrite the primal problem such that the terms that cancel each other are closer to each 

other,

Hamsici and Martinez Page 6

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(9)

(10)

(11)

(12)

Eq. 4 is applied to 9 and results to , Eqs. in 10 and 11 cancel each other when KKT 

conditions in Eqs. 6 and 7 are used, and the equality conditions in 5 are used to cancel the 

terms in 12. Conditions in Eqs. 6,7 and 8 results to,  and . And Eqs. 

in 5 are used to obtain the sum to one conditions of .

To simplify notation, we rewrite w as w = Qμ, where Q = [−X1… − XR−1X2…XR], 

 are the samples of class j, and  are all of the 

Lagrange multipliers, with , and  are the Lagrange 

multipliers for samples from classes j and j + 1 penalized by hyperplanes with biases aj and 

bj, respectively.

Importantly using these equalities in (3) and the KKT conditions results in the dual problem,

(13)

where NL = 2N − n1 − nr is the total number of Lagrange multipliers. Eq. (13) is a simple 

quadratic optimization problem. Unlike the algorithm proposed by [38]. This sum of 

margins maximizing algorithm only includes (additional) equality conditions.

The parameters—The parameter C in the above formulations control the importance of 

minimizing the training error versus maximizing the margin. Specifically, the amount of 
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training error is controlled by the two conditions on the Lagrange multipliers in the dual 

problem, Eq. (13), i.e., the upper-bound C and the sum-to-one conditions. For instance, if 

, where  are the number of samples in a group of Lagrange multipliers from one 

of i = 1, 2, and j = 1, …, R − 1, then all the samples in this group will have a Lagrange 

multiplier equal to C to satisfy the sum-to-one condition . This means that, all the 

corresponding training samples in this group will be incorrectly ordered with respect to the 

corresponding ranking function. On the other hand, if C is scaled to a larger value, 

 with a scalar κ in 0 < κ < 1, then at most κ fractions of the Lagrange multipliers 

will be nonzero. Hence, we use a parameter 0 < κ ≤ 1 to control the parameters  with 

respect to the number of samples in the corresponding group of multipliers, i.e., , for 

each group of Lagrange multipliers. Herein, we keep a global parameter C for simplicity.

Comparison with the literature—The fixed margin strategy is defined as,

(14)

where bj are the biases of the hyperplanes separating the classes [38].

The main advantage of the fixed margin strategy is the simplicity of its dual problem. 

However, note that, in this case, the margin 1/||w|| is biased towards those two classes that 

are closest to each other. This is a typical problem in many machine learning algorithms 

[48], [15], [24], yielding suboptimal, biased solutions. Similarly, [6] derives an implicitly 

constrained fixed margin problem to improve on the accuracy of the fixed-margin strategy. 

Here, the errors from all samples are considered in the computation of every hyperplane, as 

opposed to just using the samples from neighboring classes as in the above. The limitation of 

the formulation is that it minimizes the error between neighboring classes, rather than the 

global error measure, which also results in biased solutions [15].

As an alternative to the fixed margin, the sum of margins strategy maximizes the margins 

between every neighboring class. More formally, [38] defined one possible objective as,

(15)

Hamsici and Martinez Page 8

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When compared to the objective function of the fixed margin strategy in Eq. 14, the above 

formulation can control the margin weights separately with the  term. 

However, it is missing the ||w||2 term that corresponds to the global scale of the margins.

Furthermore, the dual formulation of Eq. 15 results in a quadratic optimization problem with 

several inequalities. As a consequence, the solution of the problem with an iterative 

procedure becomes computationally expensive because of the need to keep track of a large 

number of inequalities at every iteration.

On the other hand, the dual problem in our formulation is simple and can be readily solved 

using an unsophisticated iterative approach. Furthermore, our solution considers maximizing 

the margin between every consecutive class and the global scale defined by 1/||w||. In 

summary, we have eliminated the drawbacks of the two previous approaches while keeping 

their advantages.

III. Multiple Ranking SVM (MRSVM)

We now present the extension of the above approach to multiple ranking learning and derive 

a computationally efficient algorithm.

A. General formulation

Learning multiple ranking functions is done by solving for each of the ranking problems 

simultaneously. Formally, this requires us to extend (2) as follows,

Note that, an important advantage of this extension is to be able to set the relative 

importance of the ranking problems by adjusting the weight factors C1 and C2 in a single 

problem. This allows us to determine a solution that balances the error between the two 

rankings. Furthermore, it may find a more sparse solution than solving two ranking 

problems separately, since the support vectors can be shared between the two. In the 

experimental results section, we show that the simultaneous solution performs better than 

separate solutions would.

B. SMO solution

The Sequential Minimal Optimization (SMO) algorithm is proposed as a fast, efficient, yet 

simple solution to the dual problem in SVM [31]. As the kernel matrix size is too large for 

problems with large number of samples, it becomes impractical to solve the SVM quadratic 

optimization. SMO handles this by iteratively updating the solution based on two samples 

(selected by heuristics) and a closed-form solution at each step. After a certain number of 

iterations, the optimal solution can be obtained. Our SMO-based formulation results in 

linear and quadratic times. Additionally, the memory used by SMO scales linearly with the 

number of training samples.
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For the ranking solution derived in the previous section, the size of the quadratic problem in 

(13), scales twice as fast as the number of samples. Fortunately, we show that a SMO 

iterative procedure does not suffer from this limitation. Our solution is detailed in the 

following.

We rewrite (13) by isolating two of the Lagrange multipliers for the same class j concerning 

the same hyperplane i. Let these multipliers be  and . Then,

(16)

where K = QTQ, , and . From the 

constraints in (13),

where . Now we insert μ1 = D − μ2 to Eq. (16), and set the derivative of W 
with respect to μ2 to zero, we have 

. From this we can obtain the 

updated Lagrange multiplier as,

For clarity, the above equation can be rewritten as

(17)

where uk = K1kμ1 + K2kμ2 + zk is the projection of the sample to the weighted direction w, 

i.e.,  for i = 1, and  for i = 2, where i = {1, 2} indicates the 

Lagrange multipliers for samples that are penalized by the corresponding hyperplane. These 

indices are previously reflected in Eq. 13 and its derivations as the superscripts of .

Next, we show that the updated multiplier satisfies the boundary conditions defined in (13). 

These conditions are given by the minimum and maximum possible solutions defined by the 

equality condition , i.e. μ1 + μ2 = D, within the feasible region 0 ≤ μ1, μ2 ≤ C. 

These are the lower- and upper-bounds, L = max(0, D − C) and H = min(C, D), respectively.
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Following these derivations, we update  to the closest point in the solution space. That 

is,

(18)

 is given by the equality condition, . After each iteration, the bias of the 

hyperplanes are updated if the multipliers satisfy , i.e., , for = 1, and 

, for i = 2.

The main difference of the above derived SMO algorithm and the original SMO specifically 

designed for the two-class SVM classifier [31] or the novelty detection [35] or for estimating 

the support of a high-dimensional distribution [34] is the selection of the two Lagrange 

multipliers. Because of the sum-to-one condition for the Lagrange multipliers, the two 

multipliers should be selected from the group of samples from the same class rank and is 

penalized by the same hyperplane, i.e., the groups defined by . This group-based 

multiplier selection property allows us to readily extend the SMO for single ranking SVM to 

that of multiple ordering SVM by simply considering a group from one of the ordering 

problems at each iteration. The group and the Lagrange multipliers to be optimized at each 

iteration are selected using the same heuristics as in SMO for SVM.

The derived approach is summarized in Algorithm 1.

Algorithm 1

SMO solution for MRSVM

do

Find a variable μ2 that violates the KKT optimality conditions.

Search for the second variable μ1 within the same ranking problem (d = {1, 2}) and within the same group  of μ2.

Select the second variable that maximize the step size (u1− u2 in (17)) and calculate the local minima for  using 
(17).

Update  to the closest point in the solution space using (18).

Calculate 

If , update the corresponding hyperplane biases  for i = 1 and  for i = 2.

until all variables satisfy KKT optimality conditions
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IV. Experiments

In this section, we provide experiments illustrating the efficiency and accuracy of the 

proposed algorithm. We compare the accuracy of the orderings given by the derived 

Multiple Ranking SVM (MRSVM) and Multiple Single Ranking SVM (MSRSVM) and 

compared them to those given by Support Vector Regression (SVR) [39], [42] and ranking 

SVM (SVMrank) [19] algorithms using standard UCI datasets. SVMrank provides state-of-

the-art optimized implementation of fixed margin strategy based solutions.

Two applications of interest of the derived algorithm are in attribute-based object recognition 

and data visualization. These are given at the end of this section.

A. Computational Comparison

We illustrate the computational efficiency of Algorithm 1 using the example ranking 

problem shown in Fig. 2. The 3-class ranking problem is formulated as the quadratic 

optimization problem in (13) and the solutions are obtained by our MATLAB 

implementation of Algorithm 1 and the standard MATLAB implementation of the Quadratic 

Programming (QP) solver, both in a PC with 2.2GHz CPU. The QP solver is based on the 

active-set strategy [14]. Samples from 3 classes are obtained from 3 Gaussian distributions 

with means at (−10, 0) (5, 0) and (30, 0) with covariance matrices equal to 2I. We run 10-

fold cross-validation experiments with {10, 20, …, 100} samples per class, which results in 

{27, 54, …, 270} training samples for each validation. The same solutions are obtained with 

both algorithms in all of the cross-validation tests, while showing different computational 

times as illustrated in Fig. 3. While the time complexity of the standard QP solver scales 

polynomially with the number of samples, Algorithm 1 does not show a significant change. 

This is because, Algorithm 1 is an iterative SMO-type approach where its convergence 

significantly depends on the complexity of the learning problem. If the ranking classes are 

well separated from each other the convergence may take only a few iterations. A problem 

that requires a highly nonlinear solution may have a computational complexity as much as a 

quadratic problem. The time complexity of our solution scales between linear and quadratic 

with respect to the dataset size. Complexity of the ranking problem defines the average time 

complexity. Since the difficulty of the ranking problem does not increase by adding samples 

to the training set, the convergence rate and computational expense of our solution stays the 

same.

B. Fixed Margin Strategy vs. MSRSVM

The fixed margin strategy objective formulated in Eq. 14 mainly focuses on maximizing the 

margin between the closest class pairs. This results in solutions that are driven by the closest 

classes, which means other classes do not contribute much in computing the solution. 

MSRSVM algorithm solves Eq. 2 and maximizes the sum of margins. It properly assigns the 

same importance to maximizing the margin between each class pairs.

We illustrate these two solutions to ordinal regression in a 3-class ranking experiment. For 

simplicity, we designed the experiment for linearly separable ranking problems. 50 instances 

are sampled from each of 3 Gaussian distributions with means at (−15, 0), (0, 0) and 
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r(COS(θ), sin(θ)) where r = {15, 20, 25, 30} is the radius and θ = {0, π/8, π/4} is the 

angular degrees. Fig. 4 illustrates the configuration of these three-class ranking problem.

We solve these ranking problems using Eq. 14 and the derived MSRSVM algorithm, and 

calculate the total margin obtained by the solutions. This is done for ten random sample sets 

for each configuration of r and θ and average margins are calculated. With a fixed margin, 

the margin size is given by 4/||w||, while the sum of margins is calculated with Σi(bi − ai)/||

w||. Note that, the size of the margin controls the upper bound of the VC dimension [46]. 

The larger the margin the smaller the upper bound, which means the solution has smaller 

generalization error, i.e. the solution with larger margin is expected to yield a smaller 

classification error when testing previously unseen feature vectors.

Table I compares the averaged margins that are obtained with the fixed margin approach and 

that derived in the present paper. As seen in this figure, for all the tested cases, the margin 

size obtained by fixed-margin strategy is around 10, which is approximately the margin 

between the closest class pairs. When class 3 moves away from class 2 the margins obtained 

by our solution is larger than the fixed margin strategy. This is pretty important when class 3 

is rotated to a vertical location, where the 1-dimensional ranking function that has the largest 

margin is not aligned with the horizontal line. This was illustrated in Fig. 2, where the fixed 

margin is still tuned to the closest class pairs and obtains a solution that is biased by this 

class pair and neglects the separability between classes 2 and 3. On the other hand, 

MSRSVM considers the margin between each consecutive rank pair and obtains a solution 

that has significantly larger margins than the previously discussed solutions.

C. UCI datasets

We provide a comparison with three datasets typically employed in regression problems. 

These are from the UCI repository2. For each dataset, multiple rankings are provided for two 

output variables. These ordinal variables are obtained by binning the continuous variables to 

equal frequencies, i.e., the number of samples for each class are the same. Specifically, in 

California housing medianIncome and medianHouseValue features, in Boston rm features 

that stands for the average number of rooms per dwelling and housing values of class 
features, and for auto-mpg cylinders and the mpg values in class features are converted to 

ordinal variables. In our experiments, we have used the radial basis kernel function. The 

parameters of the optimization problem C1 and C2 are selected from the set of {0.1, 1, 10, 

100} using 5-fold cross-validation within the training set, both for the ordinal learning and 

regression problems.

Table II summarizes the dimensionality of the datasets, number of samples in training/

testing, and average absolute error for each of the algorithms. The average error rates are 

obtained from 10 random partitions of the dataset into training and testing.

In addition, we compared our results to SVMrank [19], which has been commonly used in 

information retrieval. As we summarized in the introduction, this ranking algorithm 

considers the pairwise ordered samples. Hence, to run this algorithm, we convert our 

2These datasets are available at http://www.liaad.up.pt/l~torgo/Regression/DataSets.html

Hamsici and Martinez Page 13

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.liaad.up.pt/l~torgo/Regression/DataSets.html


samples and the associated ordinal variables to a proper representation. A training sample 

with a ranking of ri is represented with respect to its ranking relations to its 10 nearest 

neighbors, i.e., xij with rankings of rij for j = {1,…, 10}. This results in 10 pairwise 

preference constraints with relevance scores between the pairwise samples defined by the 

absolute values of the difference between the ranking labels |ri − rij|. The smaller this score 

is, the more similar the rankings of the pairwise samples are. A ranking function is learned 

to accurately sort these samples and their relation to each other. The parameters of the 

algorithm are selected with a 5-fold cross-validation test. The ranking of a testing sample is 

obtained from the rank of the training sample that has the closest ranking score to the testing 

sample. The mean absolute errors obtained with this approach are shown in Table II. 

SVMrank performs worse than the proposed algorithms, since it is mostly concerned with 

correctly ranking individual samples, while our ranking algorithms attempt to maximize the 

correct ordering of classes.

D. Detecting Unseen Object Classes

A key feature that significantly differentiates the human visual system from machine vision 

is the generalization capability to unseen object classes. Towards this goal, Lampert et.al. 

[21] recently proposed attribute-based object classification. Objects are described with 

semantic attributes (i.e. high-level object descriptions) that are common across classes, such 

as physical properties of animals. Lampert et. al. propose to use binary SVM classifiers to 

estimate the existence of an attribute in a query object. However, the binary representation of 

class-attribute associations is usually insufficient, since one needs to describe an attribute 

with more than two levels, e.g., to consider anchovy, tuna and whale, we need three levels 

(small, medium, and large) to discriminate them. In addition, these high level descriptions 

are defined by human preferences, which require ordinal classification algorithms. This is 

because, the metric underlying human preferences is not known, while ranking of the 

attribute class associations can be accurately measured. [28] applied a formulation of the 

ranking SVM [18] to estimate the relative orders of the attributes. However, as summarized 

before, ranking SVM is not derived to estimate the ordinal variables. This was illustrated by 

the SVMrank algorithm in the previous section.

Direct Attribute Prediction—As a baseline, we compare our algorithm with the Direct 

Attribute Prediction (DAP) algorithm proposed in [21]. DAP assumes that a set of binary 

high-level attributes are provided for a set of training and testing classes, i.e., binary class-

attribute associations are known. The relation between the high-level attributes and low-level 

image features are learned using the training classes and samples. A test sample is classified 

to one of the unseen test classes based on the attribute predictions and known binary class-

attribute associations. Specifically, the posterior probability of observing an attribute  of 

the unseen test class c given a sample x is obtained by , 

where gm(x) is a binary SVM classifier and the Platt scaling [32] coefficients Am and Bm are 

estimated with a validation set to convert the binary classifier outputs to posterior 

probabilities with a sigmoid function. The class label of the unseen sample is estimated 

using these posterior probabilities of the attribute class associations, i.e., the sample x is 

classified to the class with maximum product of MAP predictions. Formally, 
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 is the decision rule that maps the input samples to one of the 

C unseen test classes. Note that, in this formulation,  are the binary variables that are 

obtained by thresholding the attribute-class association matrix.

Direct Attribute Prediction with Multiple Ordinal Regression—We illustrated this 

application of the herein derived algorithm at the beginning of this paper, Fig. 1. We use the 

human orderings and the proposed MRSVM algorithm to learn a ranking function fm(.) for 

each of m attributes. These ranking functions thus determine the ordinal classification. The 

estimated multiple rankings of a test sample x are used to assign the query to one of C 
classes using a probabilistic decision rule. To do this, we first estimate a Normal distribution 

(μrm, σrm) from the ranking estimations fm(xv|rm) of the same validation set samples xv as 

used for DAP (i.e., the validation set samples that are used to estimate the Platt scaling 

above) and given by the ranking labels of rm. The likelihood of a new sample x of rank rm 

for attribute m is simply given by,

(19)

The MAP prediction of  is obtained by the Bayes’ rule,

where  is the ordinal attribute value rm of class c, the attribute rank priors p(rm) are 

assumed to be equal, and the likelihood probability p(x|rm) of observing sample x given 

attribute m and ranking rm is obtained from (19).

A test sample x is classified to the class that has the maximum sum-of-posterior-

probabilities,

We call this approach Direct Attribute Prediction (DAP) with MSRSVM. Note that, the main 

advantage of our approach (compared to the baseline algorithm derived above) is its ability 

to learn multiple ranking functions fm(.) instead of the binary classifiers gm(.) employed by 

other approaches.

Dataset and Experimental Setup—We used the “Animals with Attributes” dataset [21] 

to test the performance of the algorithms detailed above. The dataset includes 50 animal 
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classes with a partition of 40 training and 10 testing classes. In our experiments, we used 92 

samples/class for a total of 3, 680 training and 920 testing samples. Each class is associated 

with each of 85 attributes with a continuous scalar variable collected from human subjects. 

Images of the objects are sampled from the Internet and are represented as a set of 6 features 

of RGB color histograms, SIFT, rgSIFT, PHOG, SURF and local self-similarity histograms.

DAP and DAP with MSRSVM are used to learn binary and multiple ranking functions 

between the 40 training classes and their corresponding attribute associations. The 

continuous attribute-class association scores are converted to binary variables via 

thresholding with the average value [21]. The multiple rankings are obtained by sorting the 

class association scores for each attribute and dividing into R = 4 ranking levels such that the 

R regions have the same area under the curve of sorted association scores. This conversion 

allows similar association scores to share the same ranking value. We use exponential-χ2 

kernels [40] and calculate the average of them to combine the kernel values calculated using 

6 features of histograms. Formally, we use the kernel 

that averages exponential-χ2 kernels of exp(−χ2(xi, yi)/γi) with the kernel scale parameter 

of γi that are based on the χ2 distances between the ith feature vectors xi and yi, where 

 and d is the dimensionality of the ith feature 

vectors.

The parameters of the algorithms are selected by a 10-fold cross-validation experiment in 

the training set. This resulted in the selection of the exponential-χ2 kernel widths γi to be 

the median of all pairwise χ2 distances out of the set of parameters of scaled medians {5−1, 

5−1/2,…, 51} * median. The parameter C as defined in the SVM formulation of LIBSVM [2] 

is selected to be 1 from the set of {0.1, 1, 10, 100}, and the parameter κ in MSRSVM is set 

to .001.

Results—Table III shows the recognition rates of unseen testing samples obtained with 

DAP and DAP with MSRSVM. We provided the experimental results for 10 independent 

validation sets, and their mean. We also show the average confusion tables over 10 runs on 

independent validation sets in Fig. 5. As seen in the figure, our proposed ranking solution 

provides less confusions than the binary classification approach. We also computed the 

average ratio of confused samples to correctly classified samples by , where cii 

is the ith diagonal element of the confusion table. This ratio is 25.81 for DAP and 2.83 for 

DAP with MSRSVM.

Ordinal Attribute Regression—We have also experimented with several alternative 

ways of estimating the ordinal attribute values, i.e., learning various ranking functions fm(.) 

from the low-level image features. We use ordinal attribute variables to represent the class-

attribute associations. These ordinal variables are obtained by binning the continuous 

variables to equal frequencies. We have tested the accuracy of estimating these variables 

using three algorithms. Although Multiclass SVM (M-SVM) minimizes the 

misclassification rate rather than misranking, we provide comparisons to this algorithm to 

clarify the differences between the classification and ranking algorithms. Gaussian Processes 
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for Ordinal Regression (GPOR) [6] is formulated using a Bayesian framework, which allows 

to use a gradient descent based optimization algorithm to estimate the model parameters 

such as ranking hyperplane biases, kernel parameter, and noise level. This parameter 

estimation may be useful in several problems. However, as pointed out by [6], the scalability 

of this algorithm is limited due to gradient descent algorithm that becomes the 

computational bottleneck in large scale problems. We compared the performance of these 

two algorithms to the proposed MSRSVM solution in estimating the ordinal attribute values. 

The parameters for M-SVM and MSRSVM are obtained with 10-fold cross validation on the 

training set, while GPOR utilizes a gradient descent based optimization to estimate its 

parameters. As seen in Table IV, MSRSVM obtained lower mean absolute errors than M-

SVM and GPOR with smaller standard deviation over all attribute label estimations. M-

SVM performed worst as its objective is not defined for ranking problems. The limitation of 

the GPOR performance is most likely due to approximations in model based solution. 

GPOR training time is much larger than SMO based solutions of M-SVM and MSRSVM. 

This is because the gradient descent technique with variable convergence rates depends on 

the complexity of the ranking problem.

E. Visualizing Multiple Rankings of Attributes

Another application of MRSVM algorithm is to order objects based on multiple visual 

properties. This can be used, for example, to give visual feedback to a user’s search.

To illustrate this application, we have performed the following experiment using the 

“Animals with Attributes” data-set [21]. We selected the whiteness and brownness attribute 

class associations and converted these measurements to ordinal variables defined by 4 

underlying ranking functions. Our goal is to learn the multiple ranking function in the 

training set classes such that it accurately orders the unseen testing class objects based on 

estimation of the selected class attribute. We used the training and testing sets that were 

described in the previous section, and use the 2, 688-dimensional multi-resolution RGB 

histograms to represent the images.

The mean absolute errors are shown in Table V, where we see a significant error rate for the 

derived approach. The MRSVM is then applied to unseen test samples to estimate the 

attribute rankings and visualize them with respect to the ranking scores. The samples from 

the classes with maximum relevance scores are also shown in Table VI. Brownness and 

whiteness of the animals increase from top to bottom and left to right, respectively. The 

number of animal images associated with a certain rank are shown in parentheses. The 

selected images of the 3 sample animals are in Fig. 6. This provides a visual interpretation of 

the order of the objects with respect to the attributes. We see that the animals that have 

darker skins (e.g. leopard, hippopotamus and chimpanzee) ranked 1 in whiteness (i.e., least 

white), as expected.

Recent studies in action recognition [5] are very similar to the set up defined above and are 

thus also poised to benefit from the algorithms derived in the present paper.
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V. Conclusion

The goal of the algorithms derived in the present paper is to estimate a function that orders 

the objects with respect to a set of specified preferences. To the authors knowledge, this 

paper presents the first algorithm that can learn multiple ranking functions minimizing the 

misclassification risk between all neighboring classes, yielding superior results to state of 

the art algorithms. In particular, we have derived a SMO-based iterative solution that allows 

learning of the functions from very large databases. Applications in several data-sets shows 

that the proposed ranking algorithm performs better than Support Vector Regression and 

SVMrank. An important application of the derived algorithm is to estimate the attribute 

associations of an object based on multiple features. This provides a rapid and efficient 

solution to one of the most classical (yet challenging) problems in machine learning and 

computer vision – object categorization.
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Fig. 1. 
Here we illustrate the use of multiple ranking functions in the classification of an unseen 

sample x. Attribute-class associations are predefined according to human subjects’ attribute 

preferences (whiteness and brownness on a scale from 1 to 4) for a set of animal classes. Our 

multiple ranking SVM is used to learn the function f(.) from a training set to estimate the 

multiple attribute rankings from samples. The attribute associations of the test sample x are 

estimated with the multiple ranking functions, i.e. f1(x) and f2(x). These rankings are used to 

assign the sample to one of the unseen testing classes.
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Fig. 2. 
Different learning strategies result in distinct rankings. (a) Shows the fixed margin strategy, 

where the margin is defined by the closest classes. In this case the goal is to find the two 

hyperplanes with the common direction vector w and biases b1 and b2 that maximize the 

minimum margin. Our sum of margins strategy shown in (b) extracts the direction w that 

maximizes the sums of margins  with the four hyperplane biases of a1, b1, a2, 

and b2. Different colors correspond to classification regions defined by the ranking rule. The 

solution of fixed margin strategy is biased by the closest class pairs of 1 and 2, and the sum 

of margin strategy obtains a larger margin by maximizing the sum of margins.
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Fig. 3. 
Computational times required to solve the quadratic optimization problem in (13) for the 3-

class ranking problem illustrated in Fig. 2. Algorithm 1 is compared to a standard MATLAB 

Quadratic Programming (QP) solver with {27, 54,…, 270} training samples in each of the 

10-fold cross validation experiments. Average and standard deviations of the computational 

times are plotted.
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Fig. 4. 
Here we illustrate the set of ranking problems that are used to compare the fixed margin 

strategy with MSRSVM. Classes are sampled from 3 Gaussian distributions of N(μI, 4I), 

where μ1 = (−15, 0)T, μ2 = (0, 0)T, and the covariance matrices with scaled identity matrices 

of 4I. Class 3 is simulated to be at multiple locations of μ3 = r(cos(θ), sin(θ))T, for r = {15, 

20, 25, 30} and θ = {0, π/8, π/4}. The circles correspond to Gaussian distributions, with 4I 
as covariance matrices. Classes 1 and 2 are fixed and represented with circles of solid lines. 

Class 3 is set to each of the locations (r, θ), which are represented with dashed circles.
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Fig. 5. 
Shown here are the average confusion tables for the (a) DAP and (b) DAP with MSRSVM 

approaches. These results are obtained by averaging 10 runs over independent validation 

sets. The indices of the rows and columns correspond to the indices of the testing classes.
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Fig. 6. 
Three sample images of the animals in each nonempty row and column of the multiple 

ranking table. Rows from left to right corresponds to column wise scan of the nonempty 

cells of Table VI, i.e. leopard, hippopotamus, chimpanzee, humpback whale, rat, pig, persian 

cat, raccoon, giant panda.
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TABLE I

A comparison between the margins obtained using different approaches. The values in the parenthesis (a,b) 

mean: fixed margin strategy in Eq. 14 for (a) and MSRSVM algorithm for (b). A set of ranking problems are 

tested by varying the location of class 3 according to r and θ as shown in Fig. 4.

θ/r 15 20 25 30

0 (10.06, 11.39) (12.88, 17.91) (12.52, 18.28) (11.29, 26.96)

π/8 (10.24, 12.45) (14.44, 18.92) (11.29, 21.39) (12.86, 25.79)

π/4 (9.17, 9.72) (11.36, 12.03) (12.24, 26.5) (11.72, 25.21)
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TABLE IV

Accuracy and time comparisons between Multiclass SVM (M-SVM), Gaussian Processes for Ordinal 

Regression (GPOR), and MSRSVM are provided in the task of estimating 85 ordinal attribute variables. 

Average mean absolute errors and its standard deviation σe are obtained over all attributes. The average 

training and testing times per attribute are reported along with the standard deviations σt.

Method Average Mean Absolute Errors (σe) Training and Testing Time in secs (σt)

M-SVM 0.6764(0.4985) 40.2286(21.96)

GPOR 0.4816(0.4382) 246.41(215.22)

MSRSVM 0.4706(0.3972) 61.2927(9.6012)
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