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Abstract— Effective hashing for large-scale image databases is 

a popular research area, attracting much attention in computer 
vision and visual information retrieval. Several recent methods 

attempt to learn either graph embedding or semantic coding for 
fast and accurate applications. In this paper, a novel unsupervised 
framework, termed evolutionary compact embedding (ECE), is 

introduced to automatically learn the task-specific binary hash 
codes. It can be regarded as an optimization algorithm that 
combines the genetic programming (GP) and a boosting trick.   

In our architecture, each bit of ECE is iteratively  computed 
using a weak binary classification function, which is generated 
through GP evolving by jointly minimizing its  empirical  risk 

with the AdaBoost strategy on a training set. We address this as 
greedy optimization by embedding high-dimensional data points 
into a similarity-preserved Hamming space with a low dimension. 

We systematically evaluate ECE on two data sets, SIFT 1M and 
GIST 1M, showing the effectiveness and the accuracy of our 
method for a large-scale similarity  search. 

Index Terms— AdaBoost, binary hash codes, genetic program- 
ming (GP), large-scale similarity search,  unsupervised. 

 

I. INTRODUCTION 

OMPACT embedding has been a critical preprocessing 

step in many fields of information processing and analy- 

sis, such as data mining, information retrieval [1]–[8], and 

pattern recognition [9], [10]. Recently, with the advances of 

computer technologies and the development of the World Wide 

Web, a huge amount of digital data, including text, images, and 

videos, is generated, stored, analyzed, and accessed every day. 

To overcome the shortcomings of text-based image retrieval, 

content-based image classification and retrieval have attracted 

substantial attention. The most basic but essential scheme for 

image retrieval is the nearest neighbor search: given a query 

image to find an image that is most similar to it within a large 

database and assign the same label of the nearest neighbor 

to this  query  image.  However,  greedily  searching  a  data 

set with N samples is infeasible, because linear complexity 

O(N) is not scalable in practical applications.  Due to this 

kind of computational complexity problem, researchers have 

already developed some approaches to efficiently index   data, 
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e.g., K-D tree and R tree [11]. Nevertheless, most of these 

methods can only handle the  data within  the dimensionality 

of 100. In addition, most of the vision-based applications also 

suffer from the curse of dimensionality problems,1 because 

visual descriptors usually have hundreds or even thousands of 

dimensions. Therefore, to make large-scale search or classifi- 

cation practical, some hash-based methods have been proposed 

to effectively reduce the dimension of data and increase the 

retrieval speed and accuracy. 

The most well-known hashing technique that preserves 

similarity  information  is  probably   locality-sensitive  

hashing (LSH) [1]. LSH simply employs random linear 

projections (followed by random thresholding) to map  the 

data points close in a Euclidean space to similar codes in the 

Hamming space. It is theoretically guaranteed that as the code 

length increases, the Hamming distance between two codes 

will asymptotically approach the Euclidean distance between 

their corresponding  data  points.  Furthermore,  kernelized 

LSH [2] has also been  successfully  proposed  and  utilized 

for large-scale image retrieval and classification. However, in 

realistic applications, LSH-related methods usually require 

long codes to achieve good precision, which result in low 

recall, since the collision probability that the two codes fall 

into the same hash bucket decreases exponentially as the code 

length increases. 

To design effective compact hashing, a number of meth- 

ods, such as projection learning for hashing, have been 

introduced. Salakhutdinov and Hinton [7] proposed to use 

stacked restricted Boltzmann machine (RBM), and showed 

that it is indeed able to generate compact binary codes to 

accelerate document retrieval. Recently, another attempt called 

boosted similarity sensitive coding (BSSC) [12] has also been 

proposed to learn a weighted Hamming embedding for a task-

specific similarity search. Furthermore, principled linear 

projections, like PCA hashing (PCAH) [13] and its rotational 

variant [4], have been suggested for better quantization rather 

than random projection hashing. In addition, another popular 

technique called spectral hashing (SpH) [14] was proposed, 

which preserved the data locality relationship to keep the 

neighbors in the input space as the neighbors in the Hamming 

space. After that, researchers use anchor graphs to obtain 

tractable low-rank adjacency matrices for efficient similarity 

search, termed anchor graph hashing (AGH) [6]. Beyond that, 

 

1The effectiveness and efficiency of these methods drop exponentially  as 
the dimensionality increases, which is commonly referred to as the curse of 
dimensionality. 

 



 

 
 

 
 

Fig. 1. Workflow of ECE. We learn ECE on these training data with GP bit 
optimization and boosting-based global optimization, and finally obtain the 
optimized embedding function, which can be directly used to embed the 
feature from a high-dimensional space into a lower binary   one. 

 

 

self-taught hashing (STH) [15], latent structure preserving 

hashing [16], spherical hashing (SpherH) [5], iterative 

quantization (ITQ) [4], compressed hashing  (CH)  [17], and  

so on have also been effectively applied for large-scale data 

retrieval tasks. 

Although the existing embedding methods achieve promis- 

ing results in a variety of applications, they basically rely on 

complex and advanced mathematical knowledge to optimize 

the predefined objective functions. However, for some opti- 

mization problems, direct solutions cannot always be found. 

Besides, in large-scale settings, matrix factorization techniques 

used in the above methods can also cause a heavy com- 

putational burden. Therefore, how to automatically generate 

better solutions to optimization problems becomes an inter- 

esting topic for real-world vision applications. In this paper, 

we propose a novel method, termed evolutionary compact 

embedding (ECE), which applies genetic programming (GP) 

in combination with AdaBoost to automatically solve accurate 

and robust large-scale retrieval problems. A key advantage of 

using GP is that the hash functions computed by these weak 

classifiers are not fixed but evolved, unlike existing embedding 

methods. Fig. 1 shows the workflow of  ECE. 

GP simulates the  Darwinian principle of natural selection  

to solve optimization problems [18]. Different from other 

handcrafted techniques based on deep  domain  knowledge, 

GP is inspired  by  natural  evolution  and  can  be  employed 

to automatically  solve  problems  without  prior  knowledge  

of the solutions. Users  can  use  GP  to  solve  a  wide  range 

of practical problems, producing human-competitive results 

and even patentable inventions. Relying on natural and ran- 

dom processes, GP can escape traps by which deterministic 

methods may be captured. Because of this, usage of GP is    

not limited to any research domain, and creates relatively 

generalized solutions for any target  tasks.  A  population  in 

GP is allowed to evolve (using crossover and mutation) 

through sexual reproduction with single or pair parents chosen 

stochastically while biased in their fitness on the task at hand. 

In this way, the general fitness of population tends to improve 

over time. Finally, the obtained individual that achieves the 

best performance is taken  as the  final  solution. More details 

of GP can be found in  [18]–[21]. 

Aiming for the task of data retrieval, we intentionally com- 

bine GP (learning the weak functions) with a boosting trick to 

obtain a novel embedding method. For an M-bit embedding, 

GP is used to iteratively generate a best performing weighted 

binary classifier for each bit by jointly minimizing its empirical 

risk with the gentle AdaBoost  strategy  [22]  on  a  training 

set. This embedding scheme reduces the Hamming distance 

between the  data  from  the  same  class,  while  increasing  

the Hamming distance for data from different classes. The 

final optimized representation is defined as the code calcu- 

lated from the nonlinear GP-evolved binary learner for each 

embedding bit. 

The  remainder  of  this  paper  is  organized  as   follows.  

A  brief  review  of  related  work  is  given  in  Section  II.     

In Sections III and IV, the architecture of ECE and the 

implementation details are presented. Experiments and results 

are described in Section V. In Section VI, we conclude this 

paper and outline the possible future  work. 

II. RELATED WORK 

Recently, some techniques have been successfully used for 

feature embedding based on boosting schemes. One of  the 

most related works is  called BSSC  [12], which is  designed  

to learn an  M-bit weighted Hamming embedding for a    task- 

specific similarity search as follows: 

H : X → {α1h1(x),... , αmhm(x),...  , αMh M(x)} (1) 

so that the distance between any two samples xi  and  x j  is 

given by a weighted Hamming  distance 
M 

D(xi, x j ) = 
. 

αm |hm(xi) − hm(x j )| (2) 

m=1 

where the weight αm and the function hm(xi) are the binary 

regression stumps that map the input vector xi into binary 

features and are learned using  boosting. 

In their implementation, the training data are pairs of similar 

or dissimilar samples, and the weak classifiers are thresholded 

projections that assign a positive or a negative label to a pair. 

The true label of a pair (xi, x j ) corresponds to the underlying 

similarity S(xi, x j ). 

By  applying  the  architecture  of  BSSC,  a  related    work 

for fast vision applications has been carried out by 

Shakhnarovich et al. [23], in which each image is represented 

by a binary vector calculated via boosting coding. For the 

learning stage, positive examples are pairs of images xi , x j ,  

so that x j is one of the nearest neighbors of xi , j ∈ NN(xi  ). 
Negative examples are pairs of images that are not  neighbors. 

In their work, Gentle AdaBoost is used with regression stumps 

to minimize the exponential loss. The corresponding details 

can also be seen in  [24]. 

Trzcinski et al. [25] proposed a descriptor called low- 

dimensional boosted gradient map (L-BGM), whose similarity 

measure models the correlation between weak learners leading 

to a compact description. They optimized over gradient-based 

features resulting in a learned representation that closely 

resembles the well-known SIFT. Although highly accurate, L-

BGM computes a floating point descriptor, and therefore,  its 

matching time is costly. 
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Then, an improved work related to [25] is presented in [26]. 

The boosting trick is employed to learn discriminative binary 

descriptors for image classification under illumination and 

viewpoint changes. Leveraging the boosting trick, they simul- 

taneously optimize both the descriptor weighting and the 

pooling strategies. The proposed sequential learning    scheme 

Now, we can involve binary classifiers into iterative AdaBoost 

learning to jointly minimize its empirical  loss 

L(Xpair, Ypair, M) 

N 2 . . 
M 

. . 

= 
. 

binary 
. .

Dm · Fm 
ak( j )

.  
÷= Ypair( j ) (3) 

finds a single boosted hash function per dimension as a  linear 
combination of  nonlinear  gradient-based weak  learners. The 

j =1 
where Fm

 

m=1 

  

binary hash function relies on weak learners that are applied 

directly to the image patches, which frees the method from 

any intermediate representation and allows it to automatically 

learn the image gradient pooling configuration of the final 

descriptor. Inspired by the success of the above works, in this 

paper, we aim to combine the boosting trick with GP to learn 

the compact binary codes for large-scale information retrieval 

tasks. A similar work has been done with supervised ECE on 

large-scale classification problems in [27]. 
 

III. EVOLUTIONARY COMPACT EMBEDDING 

In this section, the overall design of our evolutionary 

embedding algorithm is first introduced, and then, we describe 

how to train our GP classifier with the boosting   trick. 

 
A. Problem Formulation 

weak = bm(xn) bm(xp) calculates the result of  data 

pair  (xn, xp) j  using  the  mth  weak  classifier.  In particular, 

weak  returns  0,  when  bm(xp) and  bm(xq) are different, and   
returns 1 otherwise. Dm is the mth coefficient correspond- 

ing to Fm . Dm  controls and adjusts the pair-data classifica- 

tion result for each bit. The similar pairwise formulation can 
also be seen in [10] and  [28]–[31]. 

Equation (3) reflects the final error rate on the classi- 
fication of Xpair using the ensemble of weak classifiers. 

Minimizing (3) aims at reducing the Hamming distances 

between high-dimensional data from positive pairs (Ypair = 1) 
while increasing the Hamming distances between high- 

dimensional data from negative pairs (Ypair = 0). The 
optimization  problem  in  Equation  (3)  seems  to  be  related 

to the standard AdaBoost formulation. However, the Fweak 

functions are much more complex than the one used in 

standard AdaBoost, since Fweak is a product of two classifiers, 

Let us now consider the  M-bit ECE  Code =   [b1(x), ... , i.e., Fm
 (3) is = bm(xp)     bm(xq). The  current  optimization of inuous  and  highly  nonconvex, and  in practice, 

bm(x),... , bM(x)], which maps the high-dimensional repre- 

sentation into an M-dimensional string. Here, bm(x) ∈ {1, 0}  

is defined by bm(x) = binary( fgp(x)), where fgp(x) indi-  
cates  the  classifier  generated by  GP  and  the  binary() func- 

tion returns 1 if the  argument  is  positive,  and  0  other-  

wise.  For clearer illustration, here is  an intuitive example:   if 

discont 

the space of all possible weak learners bm is discrete and 

prohibitively large. To better tackle (3), in this paper, we use a 

greedy optimization algorithm, i.e., GP, to automatically create 

binary classifiers for this optimization problem. 

In particular, for each bit, we evolve the entire  GP  sys-  

tem  once  to  generate  a  relatively  effective  weak  classifier 
fgp(x) = 1.2,  binary( fgp(x)) = 1,  while  if   fgp(x) = −0.8, 
binary( fgp(x)) = 0. 

m 
weak (i.e., Errorrate < 0.5)  under weighted data   distribution. 

Since our fgp(x) is originally designed for binary classi- 

fication problems, here we use the pairwise trick to transfer 
the multiclass classification issue to a binary one. Given a set 

of training samples X = {x1, x2, . . .  , x n , . . . ,  x N } with labels 
Y = {1, 2, . . .  , C}, we redistribute them into a pairwise format 

Xpair = { .. .  (xn, xp) j , ..  .}N     with labels Ypair = {1, 0}. Xpair 

is the set of N 2 labeled training pairs, such that Ypair = 1 if 

pair data xn and xp belong to the same class, and Ypair = 0 
otherwise. 

However, for realistic scenarios, we cannot get the precise 

label for each of the data points in large-scale retrieval tasks. 

Thus, we use an approximate scheme to obtain  the  weak 

label information. In particular, we first adopt a clustering 

method (e.g., K-means) to partition the data into several 

groups. Since this kind of clustering method is normally based 

on  distances  (e.g.,  Euclidean  distance)  to  divide  data  into 

different groups, data points from the same cluster always  

have high similarity. Therefore, we assign pair label Ypair = 1 
if pair data xn and  xp belong  to  the  same  cluster  (group), 

and Ypair = 0 if pair data xn and xp come  from  different 
clusters (groups). 

In our approach, any two samples in X should be assigned 
together  once  to  form   a   data   pair,   and   we   will   need 

N × N  = N 2  pairs  in total  to  obtain all  the  possible pairs. 

By adopting the boosting scheme, ECE is iteratively optimized 

over the same-labeled and differently labeled sample pairs. 

Initially, each data pair is assigned the same weight value.2    

At each iteration, incorrectly embedded samples, i.e., the pairs 

of differently labeled samples mistakenly regarded as from the 

same labels, are assigned larger weights, while the weights of 

correctly embedded samples are reduced. Hence, the next bits 

tend to correct the errors of the preceding   ones. 

ECE computes each bit for samples through the GP bit 

optimization procedure. Based on the result (i.e., error rate) 

calculated from each bit, the boosting scheme is then applied 

as a global optimization to balance the weights of different GP 

classifiers. Thus, the final loss function (3) will be decreased 

effectively using this kind of weighted ensemble of GP clas- 

sifiers. In Section III-B, we describe our GP bit optimization 

and boosting-based global optimization algorithms. 

 
B. Genetic Programming Bit Optimization 

GP is an evolutionary computation (EC) technique that auto- 

matically solves problems without requiring the user to know 

or specify the form or structure of the solution in advance. 
 

2The weight value is later defined as w in (4). To avoid confusion with D, 
all the weight values mentioned in this paper indicates w, while D denotes  
the coefficient corresponding to  Fweak. 
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FUNCTION SET IN GP 

 
 

 
 

 
 

 
 

 
 

   
 

 

    

 
 

 

   
 

 

 
 

 
 

 

 

 

   
 

 

 
   

 

 
 

    
 

 

 

 

    

 

    
 

  

  

 

 
 

In general, GP programs can be represented as a tree structure 

during the evolution procedure. In this paper, each individual 

in GP represents a candidate binary classifier and is evolved 

continuously through generations. To establish the architecture 

of our model, three important concepts, such as function set, 

terminal set, and fitness function, should be  defined. 

1) Terminal Set and Function Set: Individuals in the popula- 

tion are assembled from terminal and function nodes. Terminal 

nodes are used as the input to the genetic program and are 

taken from the terminal set.  We  used two kinds of terminals  

in the terminal set: 

1) feature terminals corresponding to the image 

features; 

2) constant terminals that are the randomly generated con- 

stant numbers. 

Similar to other example-based learning algorithms, these 

terminals remain unchanged throughout the learning process. 

In our classification model, we define pair data Xpair and 

random constant numbers between 0 and  1  as  the  terminal 

set for GP evolving. In each tree-based genetic structure, data 

are located at the bottom leaf of the entire tree and connect 

with the higher function nodes  directly. 

In addition, another key component of GP is  the  function 

set  that  constitutes  the  internal  nodes  of  the  tree  and     is 

typically driven by the nature of the problem. Usually, for GP 

classification problems, “+,” “−,” “×,” and “÷” are adopted  

in the function set. The “+,” “−,”  and  “×”  operators  are 
used as their original meanings,  i.e.,  addition,  subtraction, 

and multiplication. However, “÷” is different from general 

division or protected division. In our model, “÷” is called 
analytic division, which is proved leading to better results    in 

GP regression problems [32]. Each of these four operators 

takes two arguments and returns one result. In addition, we get 

another conditional function “if” with three arguments. If the 

first is negative, the second argument is returned; otherwise,   

it returns the third argument. The “if” function allows a 

program to contain a different expression in different regions 

of a feature space, and allows discontinuous programs rather 

than insisting on smooth functions [33]. Table I lists all these 

functions used in our GP classification  model. 

2) GP Classification Scheme: Each GP classifier is repre- 

sented as a tree-based classifier and returns a real value as 

output. In this way, there is a problem in this method of 

classification. This is because the task of binary classification 

requires  a  binary  output  rather  than  a  continuous  range of 

 
 

 

Fig. 2.    Classification  strategy  using a GP program.  Attrb(i) indicates   the 
ith value of the input  vectors. 

 

 

values as returned by the numeric expression representation. 

Therefore, a process of interpretation must be applied to 

convert the numeric output into a binary one. For two-class 

problems, the division point between the negative and nonneg- 

ative numbers forms a natural boundary between the classes. 

Thus, in our model, we set zero as a boundary to separate two 

classes. If the GP output is positive, the example is predicted as 

belonging to one class, and the other class otherwise. Fig. 2 

illustrates how we use the output of a genetic program for 

binary classification. Numeric expressions have a hierarchical 

tree structure, which naturally suits the GP architecture. For 

numeric expressions to be evolved by the GP evolutionary 

search algorithm, a fitness measure must be  derived. 

The reason why  GP  classifiers  are  used  in  our  method 

is mainly driven by the loss function in (3). In  particular,  

most of machine learning classification algorithms always 

need predefined formulations to optimize,  which  are  fixed 

and  based  on  deep  domain  knowledge.  For  instance,    the 

objective formulation of SVM is always fixed, i.e., min||w   2 

s.t.  yi(wTxi + b)  ≥ 1,  and  its  solution  needs  specific  and 
complicated mathematical  derivation. In  our  task,  such clas- 

sifiers fail to directly find the analytical solutions to optimize 

the objective functions in  (3), since their fixed architecture    

of formulations is not  suitable  due to  the  intrinsic structure 

in (3). However, GP is flexible and is  not  based  on  any  

fixed formula or structure. Moreover, it can allow the com- 

puter to automatically solve tasks without requiring users to 

know or specify the form or structure of the solution in 

advance according to [18]. Thus, it is  intuitive  for  solving 

the problems and easy to implement our task through GP. 

Furthermore, the optimization of (3) is discontinuous and 

highly nonconvex, and in practice, the space of all possible 

weak learners bm is discrete and prohibitively large. GP is 

regarded as a nondeterministic algorithm that can achieve a 

flexible search space and effectively solve highly nonlinear 

optimization problems compared with other fixed structured 

classifiers. Besides, a GP classifier is a tree-based classifier, 

which is indeed relatively simple but can still lead to good 

results. We have also stated that our GP classifier  is  better 

than other classifiers (including the  normal decision tree   via 
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the C4.5 algorithm) [34], [35]. Thus, motivated by the above 

reasons, we develop a greedy optimization algorithm, i.e., GP, 

for solving this difficult  problem. 

3) Fitness Function: The fitness function in GP determines 

how well a program is able to solve the problem. For separat- 

ing the pairwise samples (e.g., xn and xp) into positive (pairs 

of samples from the same class) or negative (pairs of  samples 

TABLE II 

PARAMETERS FOR OUR GP ALGORITHM 

from different classes), we use  Fm    = bm(xn)     bm(xp)   to 
distinguish each pair of data. bm(x) is the GP classifier for 

the mth bit. Assuming an  N 2  pairwise sample data   set Xpair  

and  their  labels  Ypair   ∈  {1, 0},  we  run  the  GP  system for 
each bit, and the corresponding fitness function for the mth                            

bit is designed as follows: 

⎡ 
N 2 

⎤ 
fitnessm = ⎣

. 
δmwm ⎦ × 100% (4) 

j j 

1 

where δm
 is  equal  to  1  if Fm

 ( j ) ÷= Ypair( j )  and δm = 0 

otherwise, Fm
 ( j ) indicates the output of the  j th pair sam- 

ples,  Ypair( j )  denotes the  label  of the  j th pair samples, and 

j is the weight of the j th  pair  samples  for  the mth bit. This 

fitness function calculates the error rate by summing the 

weights of those wrongly classified data pairs. This is very 

similar to the AdaBoost by measuring the goodness of a weak 

hypothesis. In this way, GP can effectively get a relatively 

precise  binary classification  by  continuously minimizing the 

value of fitness during the whole evolution  procedure. 

For large-scale data sets, the fitness function must be 

evaluated many times in each GP generation. For getting good 

results, a large number of generations are usually required, 

which lead to heavy computation. In our experiments, we 

implement parallel processing to speed up the GP learning 

algorithm. In our implementation, the large number of fitness 

evaluation can be performed by multiple processors at the 

same time, giving a tremendous reduction in the training time. 

4) Evolutionary  Parameters:  For  GP  evolution,  a lexico- 
graphic parsimony pressure has been applied as the   selection 

 

 

 
 

C. Boosting-Based Global Optimization 

In Sub-Section III-B, we presented the theoretical algorithm 

for calculating each bit for the ECE code. However, we still 

have not mentioned how to get the coefficient Dm for mini- 

mizing the loss function [see (3)]. To make our optimization 

convenient, we directly follow the gentle  AdaBoost scheme  

to update Dm for each bit of ECE.  Gentle  AdaBoost  is  a 

more robust and stable version of the real AdaBoost (see [22] 

for a full description). So far,  it has been the most practi-  

cally efficient boosting algorithm used, for example, in the 

Viola–Jones face detector [37]. Previous experiments show 

that gentle AdaBoost performs slightly better than real 

AdaBoost on regular data, but is considerably better on noisy 

data and much more resistant to  outliers. 

method  in  our  running. Like  the  original selection  method, In  our  model,   Fm
 with  the  lowest  error  rate   Er   = a  random  number  of  individuals  are  chosen  from  the pop- 

[
.N 

 
ulation,  and  then,  the  best  of  them  is  selected.  The   only weak ( j )÷=Ypair( 

j ) 

wm ] by  4  is  selected  as  the  best solution 

difference from the original selection is that, if multiple 

individuals are equally fit, the shortest one (the tree with the 

least number of nodes) is chosen as the best. Lexicographic 
parsimony pressure has shown its effectiveness for controlling 

for the current mth bit after GP evolving. The corresponding 
coefficient  Dm   for  this  Fm   can  be  then  represented  as  

Dm  = 1 − 2Er .  For the next-bit GP optimization, wm+1  
for 

the  j th training sample pair can be updated  as 

the bloat [18] in different types of problems. In addition, we 

have adopted the totalelitism scheme as the survival   module, 
wm+1 wj exp 

.
− Dm Ypair 

m 
weak ( j )

.
  

. (5) 

j = .N 2 m m 

in which all the individuals from both parents and children 

populations are ordered by fitness alone, regardless of being 

parents or children. This scheme has been demonstrated to lead 

to promising results in many applications. The ramped half- 

and-half method [36] was used for generating programs in the 

initial population. Table II shows these relevant parameters for 

GP evolving. In our implementation, since each GP classifier 

is evolved as a weak learner for the AdaBoost architecture,  

we empirically set the maximum number of generations as 50, 

which is proved to be enough for obtaining an acceptable weak 

learner (i.e., yielding a classification error lower than 50%) in 

this case. 

j =1 wj exp 
.
− Dm Ypair( j )Fweak( j )

.
 

Note that, for the first bit (m = 1) of GP optimization, each 
data pair in the N 2 samples training set is initialized as the 

equal weight: wm=1 = (1/N 2). 
According to the above boosting-based global optimization, 

we can summarize  the  mechanism  of  our  ECE  algorithm  

as follows: given the existing training pairs Xpair and their 

corresponding labels Ypair, ECE can learn a boosted hash 

function bm(x) for each binary bit. In particular, each bm(x)   
is iteratively optimized over similar and dissimilar  sample 

pairs of data in an individual GP  optimization  procedure  

with  an  updated  sample  weight  w  in  the  fitness   function 

2 
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Fig. 3. Each bit of ECE is iteratively optimized by GP over the same-labeled (i.e., pair label:1) and differently  labeled  (i.e., pair label:0)  sample pairs.  
Initially, each data pair is assigned the same weight. At each iteration, incorrectly embedded samples, such as the pairs of same-labeled samples mistakenly 

assigned to the different embedding values (e.g., bm(x1)bm(x2) = 0), are assigned a larger weight, while the weight of correctly embedded samples is reduced. 
Hence, the next bit tends to correct the errors of the preceding ones. 

 

 

(the  reason  why  using  GP  in   our  method  is   explained   

in Sub-Section III-B). At each iteration, incorrectly hashed 

samples, e.g., a pair of data from the same cluster (clusters are 

generated by K-means) mistakenly assigned different values 

by bm(x), are given a larger weight, while the weight of the 

correctly hashed pair of samples is reduced. Hence, the next 

bit tends to correct for the errors of the preceding ones to 

jointly minimize its empirical risk with the AdaBoost strategy. 

This embedding scheme effectively reduces the Hamming 

distance between the data from the same cluster (i.e., similar 

data), while increasing the Hamming distance for data from 

different clusters (i.e., dissimilar data). This scheme using  the 

 

GP algorithm is always time-consuming for training on large- 

scale data sets, especially when the dimensionality of the 

original data is high. 

To reduce the GP optimization  complexity,  we  improve 
our ECE algorithm using the  random  batch  parallel  learn- 

ing (RBPL) technique. Given a training set  X  = {x1,  x2,...,  
xn, . . .  , x N } with labels Y = {1, 2, . . .  , C}, we randomly 

assemble  them  into  N  pairs  X̂ pair  =  {. . . (xn, x p) j , . . .}N 

with   labels   Ŷpair    =   {1, 0}  using   the   half–half  scheme,3 

instead  of  generating  a  full-possibility   N 2-sized  data  pair 

set   Xpair.   We    repeat   this   kind   of   random   assignment 
K  times,  so  that  K  groups  of  pair  data  sets  are  obtained: 

AdaBoost strategy is  more powerful for hashing than     those 

used in most of the previous work on  binary  embedding, 

since the AdaBoost strategy will make our hashing  code  

more compact and discriminative. In this way, to compute an 

M-bit ECE code, we need to repetitively run GP M times. 

After ECE learning on the training set, for a new high- 

dimensional  data  x ,  the  final  ECE  code  is  represented  as 

Code = [b1(x), ... , bm(x),... , bM(x)]. Fig. 3 visualizes the 
procedure of the ECE optimization  scheme. 

2 K 
{X̂ 1   , X̂ 

pair, . . . , X̂ 
pair} with  their  corresponding  pair  labels 

pair 

{Ŷ 1 ˆ 2 ˆ K 
pair, Ypair, ... , Ypair}. 
In this way, we can use parallel computation to separately 

learn an  M-bit ECE  for each  X̂ pair  at  same time. We  further 

concatenate these ECE codes into a long code. Although using 

the original full-possibility training set, Xpair can  theoretically 

learn a better ECE code than just applying any single N -pair 
set   X̂ pair;   in   fact,   the   ECE   codes   calculated   in   parallel 

It  is  noteworthy  that  our  approach  can  be  regarded   as from  different  randomly  assigned sets X̂ pair  can  effectively 

an embedding learning method. Once our ECE embedding 

functions are obtained by GP, they are fixed and then can be 

directly used on any new coming data similar as a handcrafted 

embedding scheme without relearning. The corresponding 

algorithm is depicted in Algorithm  1. 

IV. IMPROVED ECE IMPLEMENTATION FOR 

LARGE-SCALE APPLICATIONS 

Our ECE method can theoretically reduce data of any 

dimension to a lower dimension compact code. However,   the 

compensate each other’s training errors (better resisting  over- 

fitting). Therefore, the concatenated code can still keep the 

smallest Hamming distance for data  from  the  same  class 

and enlarge the Hamming distance for data from different 

classes. In terms of complexity, if each bit GP optimization 

needs a population of S individuals evolved by T  generations, 

 
3The half–half scheme aims to balance the training data by generating half 

of the pairwise data belonging to label 1 and the rest of pairs belonging to 
label 0. This scheme makes the training samples evenly  fill the data space  
and effectively  reduce the overfitting in the training  phase. 
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Algorithm 1 Evolutionary Compact Embedding Following the previous reports, two large-scale realistic   data 
4 

Input:  A training set containing  N 2  pairs of  dataX pair = sets  are used in our experiments, i.e., SIFT 1M and GIST 1M, 

{... (xn, xp) j , .. .}N  ; which both contain one million image features with 128 −dim 
j =1 

Aim: Learn an  M-bits embedding code 
First step 

(1) Assign labels Ypair ∈ {1, 0} with K-means, where 

Ypair = 1 if pair data xn and xp belong to the same cluster, 

and Ypair = 0 otherwise; 

and 960 − dim vectors, respectively. 
For each data set, we randomly select 10k data points as 

queries and use the remaining to form the gallery database for 

training. We generate the ground truth using the same criterion 

as in [38]. In the test phase, similarly, a returned point is 
regarded as a true neighbor if it lies in the top two    percentile 

(2) Initialize data weights: wm=1 =  1   for the first bit 

optimization; 

Second step 

For  m = 1, ..., M: 

j N 2 points closest to a query. Hamming distances ranking is   then 

used as the measurement for in our retrieval tasks, since it is 

fast enough with short hash codes in practice. We evaluate the 

retrieval results by the mean average precision (MAP) and the 1. Complete  the  GP  bit  optimization  procedure   to 

obtain best-performing Fm with the fitness function Equa- 

tion 4, where  Fm    ( j ) = bm(xn)    bm(xp); 
2. For each pair of data, the evolved weak classifier 

Fm 

weak calculates: X pair  → {1, 0}. The error rate is evaluated 
N 2 

with respect to  Er  = [
. 

δmwm ]; 

precision–recall curve. In addition, we also report the  training 

time and the testing time (the average time used for each 

query) for all the methods. Our experiments are completed 

using MATLAB 2013a on a server configured with a 12-core 

processor and 128G of RAM running the Linux   OS. 

1 
j j 

A. Compared Methods and  Settings 
3. If Er >= 0.5, STOP loop; Otherwise, CONTINUE; 

4. Calculate  the coefficient  Dm  of this  Fm    :  Dm = 
1 − 2Er ; 

We  compare our method against 13 popular hashing   algo- 

rithms, i.e., locality-sensitive hashing (LSH) [1], kernelized 

locality-sensitive hashing (KLSH) [2], RBM [39], BSSC [12], 5. Update the weights of the N 2 pairs of training data: 
wm+1 wj exp(−Dm Ypair ( j )Fweak( j ))  

;
 PCAH  [13],  SpH  [14],  AGH   [6],  STH  [15],  KSH     [40], 

m m 

j = 
N 2 SpherH [5], ITQ [4], LLH [41], and CH [17]. In particular, for . 

wm m 

 
End 

Output: 

j =1 
j exp(−Dm Ypair ( j )Fweak( j )) KLSH and KSH, we both use the RBF kernel and randomly 

sample 500 training samples to construct the empirical kernel 

map and set the scalar parameter σ  always to an    appropriate 

The   M-bits   ECE    code    expression:    Code    =  

[b1(x), . . .  , bm(x),... , bM(x)], where x is a new high- 
dimensional feature. 

 

 

 

 
Fig. 4.    Comparison between basic ECE and  RBPL-ECE. 

 

for embedding M bits using the basic ECE algorithm, the 

training complexity is O(MSTN2). Our RBPL technique can 

effectively reduce the basic ECE training complexity from 

O(MSTN2) to O(MSTN). Thus, the RBPL-ECE implemen- 

tation is about N times faster than the basic ECE algorithm. 

Fig. 4 illustrates our RBPL-ECE  implementation. 

 
V. EXPERIMENTS AND RESULTS 

In  this  section,  ECE   algorithm   has   been   evaluated   

on  the  high-dimensional  nearest  neighbor  search  problem. 

value on each data set. To run RBM, we train it with a set of 

100 − 100 hidden layers without fine-tuning. BSSC uses the 
labeled pair scheme mentioned above in a boosting framework 

to learn the thresholds and weights for each hash function. 
AGH with two layers is used in our comparison, which shows 
superior performance over AGH with one layer [6]. We further 

set  k   =  200  as  the  number  of  the  anchor  points  and the 

number of nearest anchors in sparse coding as s  = 50.    Both 
our CH  method and the  AGH  need  an anchor-based   sparse 

coding step, and thus, the same settings are also applied in CH. 

The settings for other methods have also strictly followed the 

original reports. For our method RBPL-ECE, since we mainly 

evaluate the short hash codes, we just fix  the batch number   

as K = 4 in all experiments. The number of clusters of K-
means in the proposed method for each data set is   selected 

from one of {600, 700, 800,..., 1000,... , 1500} with the step 

of 100, which yields the best performance by tenfold cross-

validation. Due to that basic ECE and RBPL-ECE are both 

inspired by GP, which is always initialized randomly, all the 

experiments with our methods have been repetitively car- ried 

out ten times and the final results shown are the averages of 

the ten runs with a degree of uncertainty. All of the above 

methods in our experiments are evaluated on six different 

lengths of codes (16, 32, 48, 64, 80, and    96). 

 

B. Results Comparison 

Fig. 5 illustrates the MAP curves of all comparable 

algorithms on SIFT 1M and GIST 1M data sets. In its entirety, 

4Download here: http://corpus-texmex.irisa.fr/ 

http://corpus-texmex.irisa.fr/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.        MAP of all the algorithms on SIFT 1M and GIST 1M data sets. 

 

TABLE III 

MAP OF 32 AND 48 b WITH TRAINING AND TESTING TIME OF ALL ALGORITHMS ON SIFT 1M AND GIST 1M DATA SETS 

 

 

 

the searching accuracies on the SIFT 1M data set are obviously 

higher than that on the more complicated GIST 1M data set.  

In particular, for the PCAH, it  has a high MAP when the   

code length is short. However, it fails to make significant 

improvements, and the performance decreases as the code 

length increases. On the contrary, the rest of the methods keep 

an overall increasing or fluctuating tendency on MAP when 

the code length increases. In particular, LSH and KLSH have 

a low MAP when the code length is short. STH and BSSC 

always produce competitive search accuracies on both the data 

sets. The performance of the RBM and SpH achieves rise- 

then-fall curves on the SIFT  1M  data set.  Beyond those,  it  

is obviously observed that KSH and CH always reach high 

search accuracies on both the data sets. For our methods, both 

ECE and RBPL-ECE can significantly outperform the other 

comparable methods (also shown in Table  III)  in  terms  of 

the MAP.  Fig. 6 also presents the precision–recall curves of  

all the algorithms on two data sets with the code of 48 b.  

From both the figures in Fig. 6, we can further discover that, 

for both the data sets, the (basic) ECE achieves slightly  better 

 

 
 

Fig. 6. Precision–recall curves of all algorithms on SIFT 1M and GIST 1M 
data sets for the codes of 48   b. 

 

 

performance than RBPL-ECE by comparing the MAP and area 

under the curve. The learned GP-tree-based hashing functions 

for embedding 16-b binary codes on the SIFT 1M data set are 

illustrated in Fig. 7. In addition, we also give a numerical 

example of the fifth bit hash function  in  Fig.  7  to  show  

how  to  compute a  bit using  the  learned GP-tree-based hash 



 

 
 

    
 

 

 

 

 

 

 

 

Fig. 7. GP-evolved tree hash functions for embedding 8-b binary codes on the SIFT 1M data set. From top-left to bottom-right, each tree illustrates a hashing 

function for a bit. The nodes “plus,” “minus,” “times,” and “AQ” in the tree correspond with “+,” “−,” “×,” and “÷,” respectively. 

 

function on a 128-D SIFT feature. We first assume  that the  

6th value (X6) in the 128-SIFT feature is 0.231, the 40th value 

(X40) is 0.642, the  31st  value  (X31)  is  0.973,  and  the  

21st value (X21) is 0.156. As shown in Fig. 7, we compute 

the output value of the fifth bit hash function as (X 6 − X 40) + 
(X 31 × X 21) = (0.231 − 0.642) + (0.937 × 0.156) = −0.265. 

Thus, the fifth bit is binary (−0.265) = 0. Without loss of 
generality, the remaining bits generated by the  GP-tree-based 

hash functions can also be computed similar to the above 

procedure. 

We also list the training time and the test time for different 

algorithms on two data sets in Table III. Considering the 

training time, the random projection-based algorithms are 

relatively more efficient, especially the LSH. Our basic ECE  

is time-consuming but gives  significantly  better  accuracies. 

In this paper, our target is to obtain better results by slightly 

sacrificing the efficiency. Thus, our proposed basic ECE 

focuses more on the improvement of accuracies rather than 

time complexity. To make our method more scalable for large- 

scale tasks, we have also upgraded our ECE into a more 

efficient version named RBPL-ECE, which can significantly 

improve the efficiency. From Table III, our RBPL-ECE also 

produces better results than all other compared methods in 

terms of the retrieval accuracies. In particular, RBPL-ECE can 

perform more efficiently in the training phase but still yields 

better results than popular hashing methods such as STH, 

KSH, LLH, SpherH, BSSC, and RBM. It is noteworthy that 

once the optimal hashing functions of our method are obtained 

from the training phase, the optimized hashing functions will 

be fixed and directly used for new data. In addition, with the 

rapid development of silicon technologies, future computers 

will be much faster and even the training will become less a 

problem. In terms of the test phase, LSH and PCAH are the 

most efficient methods. Both of them simply need a matrix 

multiplication and a thresholding to obtain the binary codes. 

Due  to  the  extra  concatenation step  in  our  parallel coding, 



 

 
TABLE IV 

COMPARISON OF PERFORMANCE AND TIME COMPLEXITY RATIO ON SIFT 1M WITH 48 b 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

  
 

  
 

 
 

  
 

  
 

 
 

 
 

  
 

  
 

  
 

 
 

  
 

 
 

 
 

 
 

  
 

  
 

 

 

 
TABLE V 

COMPARISON OF PERFORMANCE AND TIME COMPLEXITY RATIO ON GIST 1M WITH 32 b 

 
 

 
 

 
 

 
 

 

 

 
 

  
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

  
 

  
 

 
 

 
 

 
 

  
 

 
 

 
 

  
 

  
 

 

 

 
 

RBPL-ECE is slightly slower than the (basic) ECE for testing. 

AGH and SpH are the most expensive methods for testing, due 

to the relatively high cost when calculating the sparse repre- 

sentation and computing the analytical eigenfunctions, respec- 

tively. To further illustrate the effectiveness of our methods, 

we also illustrate the performance and time complexity ratio 

on both the data sets in Tables IV and V compared with the 

five best performed hashing techniques. The results indicate 

that RBPL-ECE can lead to better performance compared with 

SpherH and KSH in terms of precision, training time, and test 

time. Compared with CH and ITQ, RBPL-ECE still achieves 

superior performance and test time, but more time is needed  

in the training phase. STH is the most efficient one in the 

querying phase among all the six methods. From the overall 

tendency in Tables IV and V, our RBPL-ECE produces a better 

tradeoff between precision and time  complexity. 
 

VI. CONCLUSION 

In this paper, we have presented a novel unsupervised 

hashing framework, ECE, to learn highly discriminative binary 

codes for large-scale similarity search. It is addressed as an 

optimization problem that combines GP with the boosting- 

based weight updating trick. For each bit of ECE, the proposed 

learning scheme evolves a weak binary classification function 

through GP and reweights the training samples for the  next  

bit to jointly minimize its empirical risk with the AdaBoost 

strategy. To further reduce the computational complexity, we 

improved the basic ECE using the RBPL technique. It is 

demonstrated that RBPL is more efficient for large-scale 

training but can still achieve competitive results. Two standard 

data  sets  SIFT  1M  and  GIST  1M have been systematically 

 

evaluated, and show promising results compared with the state- 

of-the-art hashing methods. In the future work, we will focus 

on optimizing our ECE algorithm to make it more compact 

and discovering more efficient seeding solutions to initialize 

GP instead of using the random  scheme. 
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