

C

Sequential Compact Code Learning for

Unsupervised Image Hashing
Li Liu and Ling Shao, Senior Member, IEEE

Abstract— Effective hashing for large-scale image databases is

a popular research area, attracting much attention in computer
vision and visual information retrieval. Several recent methods

attempt to learn either graph embedding or semantic coding for
fast and accurate applications. In this paper, a novel unsupervised
framework, termed evolutionary compact embedding (ECE), is

introduced to automatically learn the task-specific binary hash
codes. It can be regarded as an optimization algorithm that
combines the genetic programming (GP) and a boosting trick.

In our architecture, each bit of ECE is iteratively computed
using a weak binary classification function, which is generated
through GP evolving by jointly minimizing its empirical risk

with the AdaBoost strategy on a training set. We address this as
greedy optimization by embedding high-dimensional data points
into a similarity-preserved Hamming space with a low dimension.

We systematically evaluate ECE on two data sets, SIFT 1M and
GIST 1M, showing the effectiveness and the accuracy of our
method for a large-scale similarity search.

Index Terms— AdaBoost, binary hash codes, genetic program-
ming (GP), large-scale similarity search, unsupervised.

I. INTRODUCTION

OMPACT embedding has been a critical preprocessing

step in many fields of information processing and analy-

sis, such as data mining, information retrieval [1]–[8], and

pattern recognition [9], [10]. Recently, with the advances of

computer technologies and the development of the World Wide

Web, a huge amount of digital data, including text, images, and

videos, is generated, stored, analyzed, and accessed every day.

To overcome the shortcomings of text-based image retrieval,

content-based image classification and retrieval have attracted

substantial attention. The most basic but essential scheme for

image retrieval is the nearest neighbor search: given a query

image to find an image that is most similar to it within a large

database and assign the same label of the nearest neighbor

to this query image. However, greedily searching a data

set with N samples is infeasible, because linear complexity

O(N) is not scalable in practical applications. Due to this

kind of computational complexity problem, researchers have

already developed some approaches to efficiently index data,

Manuscript received August 15, 2014; revised October 11, 2015; accepted
October 22, 2015. Date of publication November 10, 2015; date of current
version November 15, 2016. This work was supported in part by Northumbria
University, in part by the National Natural Science Foundation of China under
Grant 61528106, and in part by the Newton International Exchanges Scheme.
(Corresponding author: Ling Shao.)

The authors are with the Department of Computer Science and Digital
Technologies, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.
(e-mail: li2.liu@northumbria.ac.uk; ling.shao@ieee.org).

e.g., K-D tree and R tree [11]. Nevertheless, most of these

methods can only handle the data within the dimensionality

of 100. In addition, most of the vision-based applications also

suffer from the curse of dimensionality problems,1 because

visual descriptors usually have hundreds or even thousands of

dimensions. Therefore, to make large-scale search or classifi-

cation practical, some hash-based methods have been proposed

to effectively reduce the dimension of data and increase the

retrieval speed and accuracy.

The most well-known hashing technique that preserves

similarity information is probably locality-sensitive

hashing (LSH) [1]. LSH simply employs random linear

projections (followed by random thresholding) to map the

data points close in a Euclidean space to similar codes in the

Hamming space. It is theoretically guaranteed that as the code

length increases, the Hamming distance between two codes

will asymptotically approach the Euclidean distance between

their corresponding data points. Furthermore, kernelized

LSH [2] has also been successfully proposed and utilized

for large-scale image retrieval and classification. However, in

realistic applications, LSH-related methods usually require

long codes to achieve good precision, which result in low

recall, since the collision probability that the two codes fall

into the same hash bucket decreases exponentially as the code

length increases.

To design effective compact hashing, a number of meth-

ods, such as projection learning for hashing, have been

introduced. Salakhutdinov and Hinton [7] proposed to use

stacked restricted Boltzmann machine (RBM), and showed

that it is indeed able to generate compact binary codes to

accelerate document retrieval. Recently, another attempt called

boosted similarity sensitive coding (BSSC) [12] has also been

proposed to learn a weighted Hamming embedding for a task-

specific similarity search. Furthermore, principled linear

projections, like PCA hashing (PCAH) [13] and its rotational

variant [4], have been suggested for better quantization rather

than random projection hashing. In addition, another popular

technique called spectral hashing (SpH) [14] was proposed,

which preserved the data locality relationship to keep the

neighbors in the input space as the neighbors in the Hamming

space. After that, researchers use anchor graphs to obtain

tractable low-rank adjacency matrices for efficient similarity

search, termed anchor graph hashing (AGH) [6]. Beyond that,

1The effectiveness and efficiency of these methods drop exponentially as
the dimensionality increases, which is commonly referred to as the curse of
dimensionality.

Fig. 1. Workflow of ECE. We learn ECE on these training data with GP bit
optimization and boosting-based global optimization, and finally obtain the
optimized embedding function, which can be directly used to embed the
feature from a high-dimensional space into a lower binary one.

self-taught hashing (STH) [15], latent structure preserving

hashing [16], spherical hashing (SpherH) [5], iterative

quantization (ITQ) [4], compressed hashing (CH) [17], and

so on have also been effectively applied for large-scale data

retrieval tasks.

Although the existing embedding methods achieve promis-

ing results in a variety of applications, they basically rely on

complex and advanced mathematical knowledge to optimize

the predefined objective functions. However, for some opti-

mization problems, direct solutions cannot always be found.

Besides, in large-scale settings, matrix factorization techniques

used in the above methods can also cause a heavy com-

putational burden. Therefore, how to automatically generate

better solutions to optimization problems becomes an inter-

esting topic for real-world vision applications. In this paper,

we propose a novel method, termed evolutionary compact

embedding (ECE), which applies genetic programming (GP)

in combination with AdaBoost to automatically solve accurate

and robust large-scale retrieval problems. A key advantage of

using GP is that the hash functions computed by these weak

classifiers are not fixed but evolved, unlike existing embedding

methods. Fig. 1 shows the workflow of ECE.

GP simulates the Darwinian principle of natural selection

to solve optimization problems [18]. Different from other

handcrafted techniques based on deep domain knowledge,

GP is inspired by natural evolution and can be employed

to automatically solve problems without prior knowledge

of the solutions. Users can use GP to solve a wide range

of practical problems, producing human-competitive results

and even patentable inventions. Relying on natural and ran-

dom processes, GP can escape traps by which deterministic

methods may be captured. Because of this, usage of GP is

not limited to any research domain, and creates relatively

generalized solutions for any target tasks. A population in

GP is allowed to evolve (using crossover and mutation)

through sexual reproduction with single or pair parents chosen

stochastically while biased in their fitness on the task at hand.

In this way, the general fitness of population tends to improve

over time. Finally, the obtained individual that achieves the

best performance is taken as the final solution. More details

of GP can be found in [18]–[21].

Aiming for the task of data retrieval, we intentionally com-

bine GP (learning the weak functions) with a boosting trick to

obtain a novel embedding method. For an M-bit embedding,

GP is used to iteratively generate a best performing weighted

binary classifier for each bit by jointly minimizing its empirical

risk with the gentle AdaBoost strategy [22] on a training

set. This embedding scheme reduces the Hamming distance

between the data from the same class, while increasing

the Hamming distance for data from different classes. The

final optimized representation is defined as the code calcu-

lated from the nonlinear GP-evolved binary learner for each

embedding bit.

The remainder of this paper is organized as follows.

A brief review of related work is given in Section II.

In Sections III and IV, the architecture of ECE and the

implementation details are presented. Experiments and results

are described in Section V. In Section VI, we conclude this

paper and outline the possible future work.

II. RELATED WORK

Recently, some techniques have been successfully used for

feature embedding based on boosting schemes. One of the

most related works is called BSSC [12], which is designed

to learn an M-bit weighted Hamming embedding for a task-

specific similarity search as follows:

H : X → {α1h1(x),... , αmhm(x),... , αMh M(x)} (1)

so that the distance between any two samples xi and x j is

given by a weighted Hamming distance
M

D(xi, x j) =
.

αm |hm(xi) − hm(x j)| (2)

m=1

where the weight αm and the function hm(xi) are the binary

regression stumps that map the input vector xi into binary

features and are learned using boosting.

In their implementation, the training data are pairs of similar

or dissimilar samples, and the weak classifiers are thresholded

projections that assign a positive or a negative label to a pair.

The true label of a pair (xi, x j) corresponds to the underlying

similarity S(xi, x j).

By applying the architecture of BSSC, a related work

for fast vision applications has been carried out by

Shakhnarovich et al. [23], in which each image is represented

by a binary vector calculated via boosting coding. For the

learning stage, positive examples are pairs of images xi , x j ,

so that x j is one of the nearest neighbors of xi , j ∈ NN(xi).
Negative examples are pairs of images that are not neighbors.

In their work, Gentle AdaBoost is used with regression stumps

to minimize the exponential loss. The corresponding details

can also be seen in [24].

Trzcinski et al. [25] proposed a descriptor called low-

dimensional boosted gradient map (L-BGM), whose similarity

measure models the correlation between weak learners leading

to a compact description. They optimized over gradient-based

features resulting in a learned representation that closely

resembles the well-known SIFT. Although highly accurate, L-

BGM computes a floating point descriptor, and therefore, its

matching time is costly.

we

Fm

weak

weak

F

2

j =1

Then, an improved work related to [25] is presented in [26].

The boosting trick is employed to learn discriminative binary

descriptors for image classification under illumination and

viewpoint changes. Leveraging the boosting trick, they simul-

taneously optimize both the descriptor weighting and the

pooling strategies. The proposed sequential learning scheme

Now, we can involve binary classifiers into iterative AdaBoost

learning to jointly minimize its empirical loss

L(Xpair, Ypair, M)

N 2 . .
M

. .

=
.

binary
. .

Dm · Fm
ak(j)

.
÷= Ypair(j) (3)

finds a single boosted hash function per dimension as a linear
combination of nonlinear gradient-based weak learners. The

j =1
where Fm

m=1

binary hash function relies on weak learners that are applied

directly to the image patches, which frees the method from

any intermediate representation and allows it to automatically

learn the image gradient pooling configuration of the final

descriptor. Inspired by the success of the above works, in this

paper, we aim to combine the boosting trick with GP to learn

the compact binary codes for large-scale information retrieval

tasks. A similar work has been done with supervised ECE on

large-scale classification problems in [27].

III. EVOLUTIONARY COMPACT EMBEDDING

In this section, the overall design of our evolutionary

embedding algorithm is first introduced, and then, we describe

how to train our GP classifier with the boosting trick.

A. Problem Formulation

weak = bm(xn) bm(xp) calculates the result of data

pair (xn, xp) j using the mth weak classifier. In particular,

weak returns 0, when bm(xp) and bm(xq) are different, and
returns 1 otherwise. Dm is the mth coefficient correspond-

ing to Fm . Dm controls and adjusts the pair-data classifica-

tion result for each bit. The similar pairwise formulation can
also be seen in [10] and [28]–[31].

Equation (3) reflects the final error rate on the classi-
fication of Xpair using the ensemble of weak classifiers.

Minimizing (3) aims at reducing the Hamming distances

between high-dimensional data from positive pairs (Ypair = 1)
while increasing the Hamming distances between high-

dimensional data from negative pairs (Ypair = 0). The
optimization problem in Equation (3) seems to be related

to the standard AdaBoost formulation. However, the Fweak

functions are much more complex than the one used in

standard AdaBoost, since Fweak is a product of two classifiers,

Let us now consider the M-bit ECE Code = [b1(x), ... , i.e., Fm
 (3) is = bm(xp) bm(xq). The current optimization of inuous and highly nonconvex, and in practice,

bm(x),... , bM(x)], which maps the high-dimensional repre-

sentation into an M-dimensional string. Here, bm(x) ∈ {1, 0}

is defined by bm(x) = binary(fgp(x)), where fgp(x) indi-
cates the classifier generated by GP and the binary() func-

tion returns 1 if the argument is positive, and 0 other-

wise. For clearer illustration, here is an intuitive example: if

discont

the space of all possible weak learners bm is discrete and

prohibitively large. To better tackle (3), in this paper, we use a

greedy optimization algorithm, i.e., GP, to automatically create

binary classifiers for this optimization problem.

In particular, for each bit, we evolve the entire GP sys-

tem once to generate a relatively effective weak classifier
fgp(x) = 1.2, binary(fgp(x)) = 1, while if fgp(x) = −0.8,
binary(fgp(x)) = 0.

m
weak (i.e., Errorrate < 0.5) under weighted data distribution.

Since our fgp(x) is originally designed for binary classi-

fication problems, here we use the pairwise trick to transfer
the multiclass classification issue to a binary one. Given a set

of training samples X = {x1, x2, . . . , x n , . . . , x N } with labels
Y = {1, 2, . . . , C}, we redistribute them into a pairwise format

Xpair = { .. . (xn, xp) j , .. .}N with labels Ypair = {1, 0}. Xpair

is the set of N 2 labeled training pairs, such that Ypair = 1 if

pair data xn and xp belong to the same class, and Ypair = 0
otherwise.

However, for realistic scenarios, we cannot get the precise

label for each of the data points in large-scale retrieval tasks.

Thus, we use an approximate scheme to obtain the weak

label information. In particular, we first adopt a clustering

method (e.g., K-means) to partition the data into several

groups. Since this kind of clustering method is normally based

on distances (e.g., Euclidean distance) to divide data into

different groups, data points from the same cluster always

have high similarity. Therefore, we assign pair label Ypair = 1
if pair data xn and xp belong to the same cluster (group),

and Ypair = 0 if pair data xn and xp come from different
clusters (groups).

In our approach, any two samples in X should be assigned
together once to form a data pair, and we will need

N × N = N 2 pairs in total to obtain all the possible pairs.

By adopting the boosting scheme, ECE is iteratively optimized

over the same-labeled and differently labeled sample pairs.

Initially, each data pair is assigned the same weight value.2

At each iteration, incorrectly embedded samples, i.e., the pairs

of differently labeled samples mistakenly regarded as from the

same labels, are assigned larger weights, while the weights of

correctly embedded samples are reduced. Hence, the next bits

tend to correct the errors of the preceding ones.

ECE computes each bit for samples through the GP bit

optimization procedure. Based on the result (i.e., error rate)

calculated from each bit, the boosting scheme is then applied

as a global optimization to balance the weights of different GP

classifiers. Thus, the final loss function (3) will be decreased

effectively using this kind of weighted ensemble of GP clas-

sifiers. In Section III-B, we describe our GP bit optimization

and boosting-based global optimization algorithms.

B. Genetic Programming Bit Optimization

GP is an evolutionary computation (EC) technique that auto-

matically solves problems without requiring the user to know

or specify the form or structure of the solution in advance.

2The weight value is later defined as w in (4). To avoid confusion with D,
all the weight values mentioned in this paper indicates w, while D denotes
the coefficient corresponding to Fweak.

||

TABLE I

FUNCTION SET IN GP

In general, GP programs can be represented as a tree structure

during the evolution procedure. In this paper, each individual

in GP represents a candidate binary classifier and is evolved

continuously through generations. To establish the architecture

of our model, three important concepts, such as function set,

terminal set, and fitness function, should be defined.

1) Terminal Set and Function Set: Individuals in the popula-

tion are assembled from terminal and function nodes. Terminal

nodes are used as the input to the genetic program and are

taken from the terminal set. We used two kinds of terminals

in the terminal set:

1) feature terminals corresponding to the image

features;

2) constant terminals that are the randomly generated con-

stant numbers.

Similar to other example-based learning algorithms, these

terminals remain unchanged throughout the learning process.

In our classification model, we define pair data Xpair and

random constant numbers between 0 and 1 as the terminal

set for GP evolving. In each tree-based genetic structure, data

are located at the bottom leaf of the entire tree and connect

with the higher function nodes directly.

In addition, another key component of GP is the function

set that constitutes the internal nodes of the tree and is

typically driven by the nature of the problem. Usually, for GP

classification problems, “+,” “−,” “×,” and “÷” are adopted

in the function set. The “+,” “−,” and “×” operators are
used as their original meanings, i.e., addition, subtraction,

and multiplication. However, “÷” is different from general

division or protected division. In our model, “÷” is called
analytic division, which is proved leading to better results in

GP regression problems [32]. Each of these four operators

takes two arguments and returns one result. In addition, we get

another conditional function “if” with three arguments. If the

first is negative, the second argument is returned; otherwise,

it returns the third argument. The “if” function allows a

program to contain a different expression in different regions

of a feature space, and allows discontinuous programs rather

than insisting on smooth functions [33]. Table I lists all these

functions used in our GP classification model.

2) GP Classification Scheme: Each GP classifier is repre-

sented as a tree-based classifier and returns a real value as

output. In this way, there is a problem in this method of

classification. This is because the task of binary classification

requires a binary output rather than a continuous range of

Fig. 2. Classification strategy using a GP program. Attrb(i) indicates the
ith value of the input vectors.

values as returned by the numeric expression representation.

Therefore, a process of interpretation must be applied to

convert the numeric output into a binary one. For two-class

problems, the division point between the negative and nonneg-

ative numbers forms a natural boundary between the classes.

Thus, in our model, we set zero as a boundary to separate two

classes. If the GP output is positive, the example is predicted as

belonging to one class, and the other class otherwise. Fig. 2

illustrates how we use the output of a genetic program for

binary classification. Numeric expressions have a hierarchical

tree structure, which naturally suits the GP architecture. For

numeric expressions to be evolved by the GP evolutionary

search algorithm, a fitness measure must be derived.

The reason why GP classifiers are used in our method

is mainly driven by the loss function in (3). In particular,

most of machine learning classification algorithms always

need predefined formulations to optimize, which are fixed

and based on deep domain knowledge. For instance, the

objective formulation of SVM is always fixed, i.e., min||w 2

s.t. yi(wTxi + b) ≥ 1, and its solution needs specific and
complicated mathematical derivation. In our task, such clas-

sifiers fail to directly find the analytical solutions to optimize

the objective functions in (3), since their fixed architecture

of formulations is not suitable due to the intrinsic structure

in (3). However, GP is flexible and is not based on any

fixed formula or structure. Moreover, it can allow the com-

puter to automatically solve tasks without requiring users to

know or specify the form or structure of the solution in

advance according to [18]. Thus, it is intuitive for solving

the problems and easy to implement our task through GP.

Furthermore, the optimization of (3) is discontinuous and

highly nonconvex, and in practice, the space of all possible

weak learners bm is discrete and prohibitively large. GP is

regarded as a nondeterministic algorithm that can achieve a

flexible search space and effectively solve highly nonlinear

optimization problems compared with other fixed structured

classifiers. Besides, a GP classifier is a tree-based classifier,

which is indeed relatively simple but can still lead to good

results. We have also stated that our GP classifier is better

than other classifiers (including the normal decision tree via

weak

j weak j

weak

wm

weak

Fm

j

j

weak

m (j)F

j

the C4.5 algorithm) [34], [35]. Thus, motivated by the above

reasons, we develop a greedy optimization algorithm, i.e., GP,

for solving this difficult problem.

3) Fitness Function: The fitness function in GP determines

how well a program is able to solve the problem. For separat-

ing the pairwise samples (e.g., xn and xp) into positive (pairs

of samples from the same class) or negative (pairs of samples

TABLE II

PARAMETERS FOR OUR GP ALGORITHM

from different classes), we use Fm = bm(xn) bm(xp) to
distinguish each pair of data. bm(x) is the GP classifier for

the mth bit. Assuming an N 2 pairwise sample data set Xpair

and their labels Ypair ∈ {1, 0}, we run the GP system for
each bit, and the corresponding fitness function for the mth

bit is designed as follows:

⎡
N 2

⎤
fitnessm = ⎣

.
δmwm ⎦ × 100% (4)

j j

1

where δm
 is equal to 1 if Fm

 (j) ÷= Ypair(j) and δm = 0

otherwise, Fm
 (j) indicates the output of the j th pair sam-

ples, Ypair(j) denotes the label of the j th pair samples, and

j is the weight of the j th pair samples for the mth bit. This

fitness function calculates the error rate by summing the

weights of those wrongly classified data pairs. This is very

similar to the AdaBoost by measuring the goodness of a weak

hypothesis. In this way, GP can effectively get a relatively

precise binary classification by continuously minimizing the

value of fitness during the whole evolution procedure.

For large-scale data sets, the fitness function must be

evaluated many times in each GP generation. For getting good

results, a large number of generations are usually required,

which lead to heavy computation. In our experiments, we

implement parallel processing to speed up the GP learning

algorithm. In our implementation, the large number of fitness

evaluation can be performed by multiple processors at the

same time, giving a tremendous reduction in the training time.

4) Evolutionary Parameters: For GP evolution, a lexico-
graphic parsimony pressure has been applied as the selection

C. Boosting-Based Global Optimization

In Sub-Section III-B, we presented the theoretical algorithm

for calculating each bit for the ECE code. However, we still

have not mentioned how to get the coefficient Dm for mini-

mizing the loss function [see (3)]. To make our optimization

convenient, we directly follow the gentle AdaBoost scheme

to update Dm for each bit of ECE. Gentle AdaBoost is a

more robust and stable version of the real AdaBoost (see [22]

for a full description). So far, it has been the most practi-

cally efficient boosting algorithm used, for example, in the

Viola–Jones face detector [37]. Previous experiments show

that gentle AdaBoost performs slightly better than real

AdaBoost on regular data, but is considerably better on noisy

data and much more resistant to outliers.

method in our running. Like the original selection method, In our model, Fm
 with the lowest error rate Er = a random number of individuals are chosen from the pop-

[
.N

ulation, and then, the best of them is selected. The only weak (j)÷=Ypair(

j)

wm] by 4 is selected as the best solution

difference from the original selection is that, if multiple

individuals are equally fit, the shortest one (the tree with the

least number of nodes) is chosen as the best. Lexicographic
parsimony pressure has shown its effectiveness for controlling

for the current mth bit after GP evolving. The corresponding
coefficient Dm for this Fm can be then represented as

Dm = 1 − 2Er . For the next-bit GP optimization, wm+1
for

the j th training sample pair can be updated as

the bloat [18] in different types of problems. In addition, we

have adopted the totalelitism scheme as the survival module,
wm+1 wj exp

.
− Dm Ypair

m
weak (j)

.

. (5)

j = .N 2 m m

in which all the individuals from both parents and children

populations are ordered by fitness alone, regardless of being

parents or children. This scheme has been demonstrated to lead

to promising results in many applications. The ramped half-

and-half method [36] was used for generating programs in the

initial population. Table II shows these relevant parameters for

GP evolving. In our implementation, since each GP classifier

is evolved as a weak learner for the AdaBoost architecture,

we empirically set the maximum number of generations as 50,

which is proved to be enough for obtaining an acceptable weak

learner (i.e., yielding a classification error lower than 50%) in

this case.

j =1 wj exp
.
− Dm Ypair(j)Fweak(j)

.

Note that, for the first bit (m = 1) of GP optimization, each
data pair in the N 2 samples training set is initialized as the

equal weight: wm=1 = (1/N 2).
According to the above boosting-based global optimization,

we can summarize the mechanism of our ECE algorithm

as follows: given the existing training pairs Xpair and their

corresponding labels Ypair, ECE can learn a boosted hash

function bm(x) for each binary bit. In particular, each bm(x)
is iteratively optimized over similar and dissimilar sample

pairs of data in an individual GP optimization procedure

with an updated sample weight w in the fitness function

2

j =1

Fig. 3. Each bit of ECE is iteratively optimized by GP over the same-labeled (i.e., pair label:1) and differently labeled (i.e., pair label:0) sample pairs.
Initially, each data pair is assigned the same weight. At each iteration, incorrectly embedded samples, such as the pairs of same-labeled samples mistakenly

assigned to the different embedding values (e.g., bm(x1)bm(x2) = 0), are assigned a larger weight, while the weight of correctly embedded samples is reduced.
Hence, the next bit tends to correct the errors of the preceding ones.

(the reason why using GP in our method is explained

in Sub-Section III-B). At each iteration, incorrectly hashed

samples, e.g., a pair of data from the same cluster (clusters are

generated by K-means) mistakenly assigned different values

by bm(x), are given a larger weight, while the weight of the

correctly hashed pair of samples is reduced. Hence, the next

bit tends to correct for the errors of the preceding ones to

jointly minimize its empirical risk with the AdaBoost strategy.

This embedding scheme effectively reduces the Hamming

distance between the data from the same cluster (i.e., similar

data), while increasing the Hamming distance for data from

different clusters (i.e., dissimilar data). This scheme using the

GP algorithm is always time-consuming for training on large-

scale data sets, especially when the dimensionality of the

original data is high.

To reduce the GP optimization complexity, we improve
our ECE algorithm using the random batch parallel learn-

ing (RBPL) technique. Given a training set X = {x1, x2,...,
xn, . . . , x N } with labels Y = {1, 2, . . . , C}, we randomly

assemble them into N pairs X̂ pair = {. . . (xn, x p) j , . . .}N

with labels Ŷpair = {1, 0} using the half–half scheme,3

instead of generating a full-possibility N 2-sized data pair

set Xpair. We repeat this kind of random assignment
K times, so that K groups of pair data sets are obtained:

AdaBoost strategy is more powerful for hashing than those

used in most of the previous work on binary embedding,

since the AdaBoost strategy will make our hashing code

more compact and discriminative. In this way, to compute an

M-bit ECE code, we need to repetitively run GP M times.

After ECE learning on the training set, for a new high-

dimensional data x , the final ECE code is represented as

Code = [b1(x), ... , bm(x),... , bM(x)]. Fig. 3 visualizes the
procedure of the ECE optimization scheme.

2 K
{X̂ 1 , X̂

pair, . . . , X̂
pair} with their corresponding pair labels

pair

{Ŷ 1 ˆ 2 ˆ K
pair, Ypair, ... , Ypair}.
In this way, we can use parallel computation to separately

learn an M-bit ECE for each X̂ pair at same time. We further

concatenate these ECE codes into a long code. Although using

the original full-possibility training set, Xpair can theoretically

learn a better ECE code than just applying any single N -pair
set X̂ pair; in fact, the ECE codes calculated in parallel

It is noteworthy that our approach can be regarded as from different randomly assigned sets X̂ pair can effectively

an embedding learning method. Once our ECE embedding

functions are obtained by GP, they are fixed and then can be

directly used on any new coming data similar as a handcrafted

embedding scheme without relearning. The corresponding

algorithm is depicted in Algorithm 1.

IV. IMPROVED ECE IMPLEMENTATION FOR

LARGE-SCALE APPLICATIONS

Our ECE method can theoretically reduce data of any

dimension to a lower dimension compact code. However, the

compensate each other’s training errors (better resisting over-

fitting). Therefore, the concatenated code can still keep the

smallest Hamming distance for data from the same class

and enlarge the Hamming distance for data from different

classes. In terms of complexity, if each bit GP optimization

needs a population of S individuals evolved by T generations,

3The half–half scheme aims to balance the training data by generating half

of the pairwise data belonging to label 1 and the rest of pairs belonging to
label 0. This scheme makes the training samples evenly fill the data space
and effectively reduce the overfitting in the training phase.

weak

weak

weak

2

Algorithm 1 Evolutionary Compact Embedding Following the previous reports, two large-scale realistic data
4

Input: A training set containing N 2 pairs of dataX pair = sets are used in our experiments, i.e., SIFT 1M and GIST 1M,

{... (xn, xp) j , .. .}N ; which both contain one million image features with 128 −dim
j =1

Aim: Learn an M-bits embedding code
First step

(1) Assign labels Ypair ∈ {1, 0} with K-means, where

Ypair = 1 if pair data xn and xp belong to the same cluster,

and Ypair = 0 otherwise;

and 960 − dim vectors, respectively.
For each data set, we randomly select 10k data points as

queries and use the remaining to form the gallery database for

training. We generate the ground truth using the same criterion

as in [38]. In the test phase, similarly, a returned point is
regarded as a true neighbor if it lies in the top two percentile

(2) Initialize data weights: wm=1 = 1 for the first bit

optimization;

Second step

For m = 1, ..., M:

j N 2 points closest to a query. Hamming distances ranking is then

used as the measurement for in our retrieval tasks, since it is

fast enough with short hash codes in practice. We evaluate the

retrieval results by the mean average precision (MAP) and the 1. Complete the GP bit optimization procedure to

obtain best-performing Fm with the fitness function Equa-

tion 4, where Fm (j) = bm(xn) bm(xp);
2. For each pair of data, the evolved weak classifier

Fm

weak calculates: X pair → {1, 0}. The error rate is evaluated
N 2

with respect to Er = [
.

δmwm];

precision–recall curve. In addition, we also report the training

time and the testing time (the average time used for each

query) for all the methods. Our experiments are completed

using MATLAB 2013a on a server configured with a 12-core

processor and 128G of RAM running the Linux OS.

1
j j

A. Compared Methods and Settings
3. If Er >= 0.5, STOP loop; Otherwise, CONTINUE;

4. Calculate the coefficient Dm of this Fm : Dm =
1 − 2Er ;

We compare our method against 13 popular hashing algo-

rithms, i.e., locality-sensitive hashing (LSH) [1], kernelized

locality-sensitive hashing (KLSH) [2], RBM [39], BSSC [12], 5. Update the weights of the N 2 pairs of training data:
wm+1 wj exp(−Dm Ypair (j)Fweak(j))

;
 PCAH [13], SpH [14], AGH [6], STH [15], KSH [40],

m m

j =
N 2 SpherH [5], ITQ [4], LLH [41], and CH [17]. In particular, for .

wm m

End

Output:

j =1
j exp(−Dm Ypair (j)Fweak(j)) KLSH and KSH, we both use the RBF kernel and randomly

sample 500 training samples to construct the empirical kernel

map and set the scalar parameter σ always to an appropriate

The M-bits ECE code expression: Code =

[b1(x), . . . , bm(x),... , bM(x)], where x is a new high-
dimensional feature.

Fig. 4. Comparison between basic ECE and RBPL-ECE.

for embedding M bits using the basic ECE algorithm, the

training complexity is O(MSTN2). Our RBPL technique can

effectively reduce the basic ECE training complexity from

O(MSTN2) to O(MSTN). Thus, the RBPL-ECE implemen-

tation is about N times faster than the basic ECE algorithm.

Fig. 4 illustrates our RBPL-ECE implementation.

V. EXPERIMENTS AND RESULTS

In this section, ECE algorithm has been evaluated

on the high-dimensional nearest neighbor search problem.

value on each data set. To run RBM, we train it with a set of

100 − 100 hidden layers without fine-tuning. BSSC uses the
labeled pair scheme mentioned above in a boosting framework

to learn the thresholds and weights for each hash function.
AGH with two layers is used in our comparison, which shows
superior performance over AGH with one layer [6]. We further

set k = 200 as the number of the anchor points and the

number of nearest anchors in sparse coding as s = 50. Both
our CH method and the AGH need an anchor-based sparse

coding step, and thus, the same settings are also applied in CH.

The settings for other methods have also strictly followed the

original reports. For our method RBPL-ECE, since we mainly

evaluate the short hash codes, we just fix the batch number

as K = 4 in all experiments. The number of clusters of K-
means in the proposed method for each data set is selected

from one of {600, 700, 800,..., 1000,... , 1500} with the step

of 100, which yields the best performance by tenfold cross-

validation. Due to that basic ECE and RBPL-ECE are both

inspired by GP, which is always initialized randomly, all the

experiments with our methods have been repetitively car- ried

out ten times and the final results shown are the averages of

the ten runs with a degree of uncertainty. All of the above

methods in our experiments are evaluated on six different

lengths of codes (16, 32, 48, 64, 80, and 96).

B. Results Comparison

Fig. 5 illustrates the MAP curves of all comparable

algorithms on SIFT 1M and GIST 1M data sets. In its entirety,

4Download here: http://corpus-texmex.irisa.fr/

http://corpus-texmex.irisa.fr/

Fig. 5. MAP of all the algorithms on SIFT 1M and GIST 1M data sets.

TABLE III

MAP OF 32 AND 48 b WITH TRAINING AND TESTING TIME OF ALL ALGORITHMS ON SIFT 1M AND GIST 1M DATA SETS

the searching accuracies on the SIFT 1M data set are obviously

higher than that on the more complicated GIST 1M data set.

In particular, for the PCAH, it has a high MAP when the

code length is short. However, it fails to make significant

improvements, and the performance decreases as the code

length increases. On the contrary, the rest of the methods keep

an overall increasing or fluctuating tendency on MAP when

the code length increases. In particular, LSH and KLSH have

a low MAP when the code length is short. STH and BSSC

always produce competitive search accuracies on both the data

sets. The performance of the RBM and SpH achieves rise-

then-fall curves on the SIFT 1M data set. Beyond those, it

is obviously observed that KSH and CH always reach high

search accuracies on both the data sets. For our methods, both

ECE and RBPL-ECE can significantly outperform the other

comparable methods (also shown in Table III) in terms of

the MAP. Fig. 6 also presents the precision–recall curves of

all the algorithms on two data sets with the code of 48 b.

From both the figures in Fig. 6, we can further discover that,

for both the data sets, the (basic) ECE achieves slightly better

Fig. 6. Precision–recall curves of all algorithms on SIFT 1M and GIST 1M
data sets for the codes of 48 b.

performance than RBPL-ECE by comparing the MAP and area

under the curve. The learned GP-tree-based hashing functions

for embedding 16-b binary codes on the SIFT 1M data set are

illustrated in Fig. 7. In addition, we also give a numerical

example of the fifth bit hash function in Fig. 7 to show

how to compute a bit using the learned GP-tree-based hash

Fig. 7. GP-evolved tree hash functions for embedding 8-b binary codes on the SIFT 1M data set. From top-left to bottom-right, each tree illustrates a hashing

function for a bit. The nodes “plus,” “minus,” “times,” and “AQ” in the tree correspond with “+,” “−,” “×,” and “÷,” respectively.

function on a 128-D SIFT feature. We first assume that the

6th value (X6) in the 128-SIFT feature is 0.231, the 40th value

(X40) is 0.642, the 31st value (X31) is 0.973, and the

21st value (X21) is 0.156. As shown in Fig. 7, we compute

the output value of the fifth bit hash function as (X 6 − X 40) +
(X 31 × X 21) = (0.231 − 0.642) + (0.937 × 0.156) = −0.265.

Thus, the fifth bit is binary (−0.265) = 0. Without loss of
generality, the remaining bits generated by the GP-tree-based

hash functions can also be computed similar to the above

procedure.

We also list the training time and the test time for different

algorithms on two data sets in Table III. Considering the

training time, the random projection-based algorithms are

relatively more efficient, especially the LSH. Our basic ECE

is time-consuming but gives significantly better accuracies.

In this paper, our target is to obtain better results by slightly

sacrificing the efficiency. Thus, our proposed basic ECE

focuses more on the improvement of accuracies rather than

time complexity. To make our method more scalable for large-

scale tasks, we have also upgraded our ECE into a more

efficient version named RBPL-ECE, which can significantly

improve the efficiency. From Table III, our RBPL-ECE also

produces better results than all other compared methods in

terms of the retrieval accuracies. In particular, RBPL-ECE can

perform more efficiently in the training phase but still yields

better results than popular hashing methods such as STH,

KSH, LLH, SpherH, BSSC, and RBM. It is noteworthy that

once the optimal hashing functions of our method are obtained

from the training phase, the optimized hashing functions will

be fixed and directly used for new data. In addition, with the

rapid development of silicon technologies, future computers

will be much faster and even the training will become less a

problem. In terms of the test phase, LSH and PCAH are the

most efficient methods. Both of them simply need a matrix

multiplication and a thresholding to obtain the binary codes.

Due to the extra concatenation step in our parallel coding,

TABLE IV

COMPARISON OF PERFORMANCE AND TIME COMPLEXITY RATIO ON SIFT 1M WITH 48 b

TABLE V

COMPARISON OF PERFORMANCE AND TIME COMPLEXITY RATIO ON GIST 1M WITH 32 b

RBPL-ECE is slightly slower than the (basic) ECE for testing.

AGH and SpH are the most expensive methods for testing, due

to the relatively high cost when calculating the sparse repre-

sentation and computing the analytical eigenfunctions, respec-

tively. To further illustrate the effectiveness of our methods,

we also illustrate the performance and time complexity ratio

on both the data sets in Tables IV and V compared with the

five best performed hashing techniques. The results indicate

that RBPL-ECE can lead to better performance compared with

SpherH and KSH in terms of precision, training time, and test

time. Compared with CH and ITQ, RBPL-ECE still achieves

superior performance and test time, but more time is needed

in the training phase. STH is the most efficient one in the

querying phase among all the six methods. From the overall

tendency in Tables IV and V, our RBPL-ECE produces a better

tradeoff between precision and time complexity.

VI. CONCLUSION

In this paper, we have presented a novel unsupervised

hashing framework, ECE, to learn highly discriminative binary

codes for large-scale similarity search. It is addressed as an

optimization problem that combines GP with the boosting-

based weight updating trick. For each bit of ECE, the proposed

learning scheme evolves a weak binary classification function

through GP and reweights the training samples for the next

bit to jointly minimize its empirical risk with the AdaBoost

strategy. To further reduce the computational complexity, we

improved the basic ECE using the RBPL technique. It is

demonstrated that RBPL is more efficient for large-scale

training but can still achieve competitive results. Two standard

data sets SIFT 1M and GIST 1M have been systematically

evaluated, and show promising results compared with the state-

of-the-art hashing methods. In the future work, we will focus

on optimizing our ECE algorithm to make it more compact

and discovering more efficient seeding solutions to initialize

GP instead of using the random scheme.

REFERENCES

[1] A. Gionis et al., “Similarity search in high dimensions via hashing,” in
Proc. Int. Conf. Very Large Data Bases, Sep. 1999, pp. 518–529.

[2] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 6, pp. 1092–1104,
Jun. 2012.

[3] L. Liu, M. Yu, and L. Shao, “Projection bank: From high-dimensional
data to medium-length binary codes,” in Proc. Int. Conf. Comput. Vis.,
Santiago, Chile, Dec. 2015, pp. 1–8.

[4] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean
approach to learning binary codes,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Colorado Springs, CO, USA, Jun. 2011, pp. 817–824.

[5] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical hash-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Providence,
RI, USA, Jun. 2012, pp. 2957–2964.

[6] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,”
in Proc. Int. Conf. Mach. Learn., Washington, DC, USA, Jun. 2011,
pp. 1–8.

[7] R. Salakhutdinov and G. Hinton, “Semantic hashing,” Int. J. Approx.
Reasoning, vol. 50, no. 7, pp. 969–978, Jul. 2009.

[8] L. Liu, M. Yu, and L. Shao, “Multiview alignment hashing for efficient
image search,” IEEE Trans. Image Process., vol. 24, no. 3, pp. 956–966,
Mar. 2015.

[9] F. Zhu and L. Shao, “Weakly-supervised cross-domain dictionary learn-
ing for visual recognition,” Int. J. Comput. Vis., vol. 109, no. 1,
pp. 42–59, Aug. 2014.

[10] L. Liu, M. Yu, and L. Shao, “Unsupervised local feature
hashing for image similarity search,” IEEE Trans. Cybern.,
doi: 10.1109/TCYB.2015.2480966.

[11] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Comput. Surv., vol. 30, no. 2, pp. 170–231, Jun. 1998.

[12] G. Shakhnarovich, “Learning task-specific similarity,” Ph.D. dissertation,

Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol.,
Cambridge, MA, USA, 2005.

[13] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for large-
scale search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12,
pp. 2393–2406, Dec. 2012.

[14] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Neural
Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2008, pp. 1753–1760.

[15] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast
similarity search,” in Proc. SIGIR, Geneva, Switzerland, Jul. 2010,
pp. 18–25.

[16] Z. Cai, L. Liu, M. Yu, and L. Shao, “Latent structure preserving
hashing,” in Proc. Brit. Mach. Vis. Conf., Swansea, U.K., Sep. 2015,
pp. 546–556.

[17] Y. Lin, R. Jin, D. Cai, S. Yan, and X. Li, “Compressed hashing,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Portland, OR, USA,
Jun. 2013, pp. 446–451.

[18] R. Poli, W. W. B. Langdon, N. F. McPhee, and J. R. Koza, A Field
Guide to Genetic Programming. Raleigh, NC, USA: Lulu Publishing
Company, 2008.

[19] L. Liu, L. Shao, and P. Rockett, “Genetic programming-evolved spatio-
temporal descriptor for human action recognition,” in Proc. Brit. Mach.
Vis. Conf., Surrey, U.K., Sep. 2012, pp. 1–12.

[20] L. Shao, L. Liu, and X. Li, “Feature learning for image classification via
multiobjective genetic programming,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 7, pp. 1359–1371, Jul. 2014.

[21] L. Liu and L. Shao, “Learning discriminative representations from RGB-
D video data,” in Proc. 23rd Int. Joint Conf. Artif. Intell., Beijing,
China, Aug. 2013, pp. 1493–1500.

[22] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,” Ann. Statist., vol. 28, no. 2, pp. 337–407,
2000.

[23] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with
parameter-sensitive hashing,” in Proc. Int. Conf. Comput. Vis., Nice,
France, Dec. 2003, pp. 750–757.

[24] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Anchorage, AK, USA, Jun. 2008, pp. 1–8.

[25] T. Trzcinski, M. Christoudias, V. Lepetit, and P. Fua, “Learning image
descriptors with the boosting-trick,” in Proc. Neural Inf. Process. Syst.,
Harrahs and Harveys, NV, USA, Dec. 2012, pp. 269–277.

[26] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit, “Boosting
binary keypoint descriptors,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Portland, OH, USA, Jun. 2013, pp. 2874–2881.

[27] L. Liu, L. Shao, and X. Li, “Evolutionary compact embedding for large-
scale image classification,” Inf. Sci., vol. 316, pp. 567–581, Sep. 2015.

[28] C. Leng, J. Cheng, J. Wu, X. Zhang, and H. Lu, “Supervised hashing
with soft constraints,” in Proc. ACM Int. Conf. Inf. Knowl. Manage.,
Shanghai, China, Nov. 2014, pp. 1851–1854.

[29] L. Liu, M. Yu, and L. Shao, “Local feature binary coding for approxi-
mate nearest neighbor search,” in Proc. Brit. Mach. Vis. Conf., Swansea,
U.K., Sep. 2015, pp. 132–143.

[30] J. Qin, L. Liu, M. Yu, Y. Wang, and L. Shao, “Fast action retrieval
from videos via feature disaggregation,” in Proc. Brit. Mach. Vis. Conf.,
Swansea, U.K., Sep. 2015, pp. 341–351.

[31] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,”
in Proc. Neural Inf. Process. Syst., Montreal, QC, Canada, Dec. 2014,
pp. 3419–3427.

[32] J. Ni, R. H. Drieberg, and P. I. Rockett, “The use of an analytic quotient
operator in genetic programming,” IEEE Trans. Evol. Comput., vol. 17,
no. 1, pp. 146–152, Feb. 2013.

[33] U. Bhowan, M. Zhang, and M. Johnston, “Genetic programming for
image classification with unbalanced data,” in Proc. Int. Conf. Image
Vis. Comput. New Zealand, Queenstown, New Zealand, Nov. 2009,
pp. 316–321.

[34] D. P. Muni, N. R. Pal, and J. Das, “A novel approach to design classifiers
using genetic programming,” IEEE Trans. Evol. Comput., vol. 8, no. 2,
pp. 183–196, Apr. 2004.

[35] J. Eggermont, J. N. Kok, and W. A. Kosters, “Genetic programming for
data classification: Partitioning the search space,” in Proc. ACM Symp.
Appl. Comput., Nicosia, Cyprus, Mar. 2004, pp. 1001–1005.

[36] J. R. Koza, Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection, vol. 1. Cambridge, MA, USA:
MIT Press, 1992.

[37] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Kauai, HI, USA, Jun. 2001, pp. I-511–I-518.

[38] J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for
hashing with compact codes,” in Proc. Int. Conf. Mach. Learn., Haifa,
Israel, Jun. 2010, pp. 1127–1134.

[39] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[40] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hash-
ing with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Providence, RI, USA, Jun. 2012, pp. 2074–2081.

[41] G. Irie, Z. Li, X.-M. Wu, and S.-F. Chang, “Locally linear hashing
for extracting non-linear manifolds,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Columbus, OH, USA, Jun. 2014, pp. 2123–2130.

Li Liu received the B.Eng. degree in electronic
information engineering from Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2011, and the Ph.D. degree
from the Department of Electronic and Electrical
Engineering, University of Sheffield, Sheffield, U.K.,
in 2014.

He is currently a Research Fellow with the Depart-
ment of Computer Science and Digital Technolo-
gies, Northumbria University, Newcastle upon Tyne,

U.K. His current research interests include computer
vision, machine learning, and data mining.

Ling Shao (M’09–SM’10) is a Professor with
the Department of Computer Science and Digital
Technologies at Northumbria University, Newcas-
tle upon Tyne, U.K. Previously, he was a Senior
Lecturer (2009-2014) with the Department of Elec-
tronic and Electrical Engineering at the University
of Sheffield and a Senior Scientist (2005-2009)
with Philips Research, Eindhoven, The Netherlands.
His research interests include Computer Vision,
Image/Video Processing and Machine Learning. He
is an associate editor of IEEE TRANSACTIONS ON

IMAGE PROCESSING, IEEE TRANSACTIONS ON CYBERNETICS, and several
other journals. He is a Fellow of the British Computer Society and the
Institution of Engineering and Technology.

