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Abstract— This paper investigates the problem of multiclass
and multiview 3-D object detection for service robots operating
in a cluttered indoor environment. A novel 3-D object detection
system using laser point clouds is proposed to deal with cluttered
indoor scenes with a fewer and imbalanced training data.
Raw 3-D point clouds are first transformed to 2-D bearing
angle images to reduce the computational cost, and then jointly
trained multiple object detectors are deployed to perform the
multiclass and multiview 3-D object detection. The reclassification
technique is utilized on each detected low confidence bounding
box in the system to reduce false alarms in the detection.
The RUS-SMOTEboost algorithm is used to train a group of
independent binary classifiers with imbalanced training data.
Dense histograms of oriented gradients and local binary pattern
features are combined as a feature set for the reclassification
task. Based on the dalian university of technology (DUT)-3-D
data set taken from various office and household environments,
experimental results show the validity and good performance of
the proposed method.

Index Terms— Imbalanced learning, laser scanning, multiclass
and multiview 3-D object detection, multitask learning, sharing
features.

I. INTRODUCTION

INDOOR scene understanding is extremely challenging due
to the presence of a large amount of object categories,

pose variations, background clutter, and partial occlusions.
Any service robot operated in such a complex indoor scene
should have the ability to detect and recognize objects accu-
rately. A variety of 3-D object recognition and detection
systems with RGB-D cameras and associated machine learning
algorithms have been developed for such a task. Lai et al. [1]
proposed a view-based approach for labeling objects in
3-D scenes reconstructed from RGB-D videos. Sliding window
detectors trained from multiple object views were utilized to
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assign class probabilities to pixels in every RGB-D frame.
As introduced in [2], a real-time visual odometry and mapping
system was proposed for RGB-D cameras. Anand et al. [3]
used a graphical model that captured various features and
contextual relations to guide semantic labeling and search for
RGB-D images.

Recently, 3-D laser scanners have been widely deployed,
as they are highly robust against illumination changes and
typically have a larger field of view. Wang et al. [4] utilized
the implicit shape model to describe object categories, and
extended the Hough forest framework for object detection in
3-D point clouds. Steder et al. [5] addressed the problem of
online object detection in 3-D laser range data. Their approach
relied on the analysis of range images obtained from raw
3-D laser data and was based on the extraction of point features
from the range images.

In order to detect multiview objects in an indoor scene, pose
estimation is an important issue to be solved. Some excellent
object pose estimation approaches have been developed in
recent years. Shotton et al. [6] proposed two approaches to
perform human pose estimation, which could quickly and
accurately predict the positions of body joints from a single
depth image without using any temporal information. De
Figueiredo et al. [7] addressed the problem of object detection
and pose estimation using 3-D dense data in a multiple object
library scenario.

Traditional 3-D object recognition and detection approaches
directly extract 3-D features from point clouds, such as
spin image [8], fast point feature histogram [9], and
3-D SURF [10], but the computational burden of these
3-D features is very heavy for time-critical applications.
To perform rapid 3-D object detection, 3-D point clouds
can be transformed to different 2-D image representations,
including depth image [5], [11], [12], bearing angle (BA)
image [13], [17], [30], and reflectance image [14], [15]. After
the transformation, many existing 2-D key point detectors and
descriptors can be used for 3-D object detection.

Bo et al. [16] developed a set of kernel features on
depth images and showed that for object recognition they
were superior to pose-invariant features such as spin images.
Xu et al. [15] proposed a segmentation method by integrating
graph theory and region growing. A reflectance image was
created directly from the terrestrial point clouds and segmented
by the graph theory-based method. In [17], BA images were
used to alleviate the computational burden in the process of
segmenting and classifying 3-D point clouds for outdoor scene
understanding.
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Another important problem in object detection is how to
make full use of a fewer and imbalanced training data to
learn good classifiers. Fei-Fei et al. [18] proposed a generative
probabilistic model to represent the shape and appearance
of a constellation of features and to learn visual object
categories from a few training examples. The parameters of
the model were learned incrementally in a Bayesian manner.
Wang et al. [19], [20] evaluated the state-of-the-art online
object tracking algorithms and proposed an algorithm that
transfers visual prior learned offline for online object track-
ing. Shao et al. [21] surveyed the state-of-the-art transfer
learning algorithms in visual categorization applications, such
as object recognition, image classification, and human action
recognition.

In [22]–[24], multitask learning was used in multiclass
object detection to share features between objects from dif-
ferent categories and decrease the amount of training data.
The domain adaptation technique was utilized in [25] to
transfer useful knowledge from another domain. They utilized
some objects from Google’s 3-D warehouse to train an object
detection system for 3-D point clouds collected by robots
navigating through both urban and indoor environments. Many
algorithms and models have also been proposed for imbal-
anced learning. In [26], two models of evolutionary fuzzy
ARTMAP neural networks were proposed to deal with the
imbalanced data set problems. A critical review of the state-of-
the-art technologies and the current assessment metrics used to
evaluate learning performance under the imbalanced learning
scenario is presented in [27] and [28].

This paper proposes a novel multiclass and multiview
3-D object detection system framework that is based on the
3-D point clouds acquired by a mobile robot equipped with
a custom-built 3-D laser scanner. In this framework, a joint
boost algorithm is deployed to train multiclass object detec-
tors [23]. Then, the RUS-SMOTEboost algorithm is proposed
to train a group of binary classifiers with imbalanced training
data. These binary classifiers are used to reclassify the low
confidence bounding boxes generated from the multiclass
object detection phase. This paper is mainly focused on
how to improve the accuracy of multiclass and multiview
3-D object detection in cluttered indoor scenes with the
following features.

1) BA images, instead of the raw 3-D point clouds, are used
to perform multiclass and multiview 3-D object detec-
tion so that a service robot can accomplish scene under-
standing task at a low computational cost. Multitask
learning is deployed in our system to cope with a small
number of BA images and obtain the fast training time.
Related object detection tasks are learned simultaneously
by extracting and utilizing appropriate shared features
across tasks. Moreover, multiple object detectors learned
simultaneously using shared features tend to have better
generalization ability. Fragment features are extracted
from BA images, and a joint boost algorithm is utilized
to train four binary classifiers for each object category.
Since common fragment features are shared between
similar appearance objects in different categories, object
detectors can be quickly trained with a fewer BA images.

In order to find objects, each weak learner votes for
possible positions of the object center and consistent
hypothesis are searched as local maxima in the voting
space. A generalized Hough voting approach can easily
deal with partial occlusions, and a fewer training exam-
ples are required.

2) To effectively use the limited training data and make
up for the weakness of fragment features, histograms of
oriented gradients and local binary pattern (HOG-LBP)
features are used to reclassify the detected uncertain
bounding boxes. A novel imbalanced learning algorithm,
called RUS-SMOTEboost, is proposed to train a group
of independent binary classifiers for the reclassification
task. The detected low confidence bounding boxes are
passed to these binary classifiers, and some false positive
detection outputs can be eliminated in this phase. Since
there are exact correspondences between laser point and
pixel in a BA image, the foreground objects can be easily
segmented out from the final detected bounding boxes by
using depth information and agglomerative hierarchical
clustering algorithm.

The rest of this paper is organized as follows. Section II
introduces a new 3-D point cloud data set
dalian university of technology (DUT)-3-D.
In Section III, our multiclass and multiview 3-D object
detection system framework is described briefly. The
principle and the algorithm of multiclass and multiview 3-D
object detection with feature sharing are explained. Moreover,
the experimental results on the DUT-3-D data set are presented
in this section to prove the validity of multitask learning
using BA images. In Section IV, a novel algorithm called
RUS-SMOTEboost is proposed to perform the reclassification
task with imbalanced training data. The experimental results
are given to demonstrate the feasibility and effectiveness
of the proposed method. Finally, the conclusion is given in
Section V.

II. DUT-3-D POINT CLOUD DATA SET

A new 3-D point cloud data set, namely, DUT-3-D, is
collected by a 3-D laser scanner on a mobile SmartROB2
robot traveling in the Yuan building of Dalian University
of Technology in China. It is used for 3-D object detection
in cluttered indoor scenes. The deployed 3-D laser scanning
system is homemade and realized by rotating a 2-D SICK
range finder (LMS200, 180° scan and 0.5° resolution) on a
rotate platform. The point clouds obtained from this system
are shown in polar coordinates (ρ, θ , and ϕ) in which ρ is the
distance between the optical center of the laser range finder
and the detected object, θ is the angle of each laser beam in the
laser scanning plane, and ϕ is a rotating angle in coordinates.

A 3-D laser point P(x , y, z) in a Cartesian coordinate
system can be calculated by⎡

⎣
x
y
z

⎤
⎦ =

⎡
⎣

cos(θ) sin(ϕ − ε) sin ϕ
cos(θ) cos(ϕ − ε) cos ϕ

sin(θ) 0

⎤
⎦

[
ρ
c

]
(1)

where c ≈ 10 mm and ε ≈ 4° [30].
The DUT-3-D data set contains approximately 400 groups

of the 3-D laser data of real indoor scenes, including more than
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Fig. 1. Examples of filtered depth images, BA images, and reflectance images
in the DUT-3-D data set (examples from row 1 to 3 are filtered depth images,
BA images, and reflectance images).

600 household and office objects with different pose variations.
The objects in the data set can be categorized into four
groups: 1) Chair; 2) Monitor; 3) Desk; and 4) Sofa. In order
to reduce the computational cost in 3-D object detection,
the raw point clouds have been transformed into different
2-D image representations, such as depth images, BA images,
and reflectance images.

An adaptive median filter is used to fill holes in the raw
depth image, which takes the median values in a 5 × 5 mask
centered on the current pixel. This filter is recursively used
until all the holes in a depth image are filled. Fig. 1 shows three
types of 2-D image representations for three groups of point
clouds in cluttered indoor scenes. In addition to category-level
3-D point clouds, the DUT-3-D data set also includes 12-view
3-D point clouds for some typical object classes, which have
obvious intraclass variations.

A large part of BA images in the DUT-3-D data set has been
manually annotated using LabelMe [29], and these annotated
images have been carefully verified for consistency and
correctness. Therefore, these BA images can be used to train
classifiers and evaluate their performance. All the BA images
used in the experiments of this paper can be download from
http://scse.dlut.edu.cn/English/Research/Projects/Datasets.htm.

III. MULTICLASS AND MULTIVIEW 3-D OBJECT

DETECTION WITH FEATURE SHARING

A. Novel 3-D Object Detection System Framework

Fig. 2 shows the proposed 3-D object detection system
framework, which includes two Cascade phases: 1) multi-
class object detection using fragment features and 2) low
confidence bounding boxes reclassification using HOG-LBP
features. In order to train a stronger multiclass object detector

with a fewer BA images, the multitask learning technique
was deployed to share the fragment features of objects from
different categories. Jointly trained object detectors vote for the
possible positions of object centers in a test BA image. Using
fragment features and generalized Hough voting contribute to
accommodate partial occlusion and a fewer training images
problems, but there still exist some false detection outputs
due to some local appearance similar regions in the cluttered
indoor scene.

In [30], we extracted the indoor scene framework from
3-D point clouds and utilized the semantic information to
rule out some incorrect outputs. However, semantic elimina-
tion may be helpless when incorrect detection outputs are
around the semantically correct position. Therefore, the
RUS-SMOTEboost algorithm is proposed in this paper to train
a group of binary classifiers with HOG-LBP features for the
reclassification task, which can perform well on imbalanced
training data.

B. Searching Best Shared Features Using Joint Boost

Up to now, several multitask learning algorithms
have been proposed to solve the joint feature selection
problem [23], [31], [32]. In this paper, the joint boost
algorithm, first proposed in [23], was used to train multiclass
and multiview object detectors.

The joint boost algorithm is a variant version of multiclass
gentle boost algorithm. At each round of boosting, it solves
the weighted least squares problem

J (n) =
C∑

c=1

N∑
i=1

wc
i

(
yc

i − f n
m
(xi , c)

)2 (2)

where yc
i ∈ {−1,+1} is the membership label of training

example xi for class c and f n
m(x, c) is the mth weak classifier

for class c and subset S(n). Each example xi has |C| weights
for C classes, and wc

i are the weights for class c. N is the
total number of training examples.

At the mth round of boosting, it will search all the possible
(2C − 1) candidate subsets and fit a shared regression stump
for each subset. The shared regression stumps have the form

f n
m(x, c) =

{
asδ

(
x f

i > θ
) + bsδ

(
x f

i ≤ θ
)
, if c ∈ S(n)

kc, if c /∈ S(n)
(3)

where x f
i denotes the f th feature of training example xi , θ is a

threshold value, δ(·) is an indicator function, as and bs are the
regression parameters, and kc is a class-specific constant. The
joint boost algorithm first evaluates the corresponding error of
each fitted regression stump using (2). Then, it picks the best
subset S(n∗) such that n∗ = arg min J (n). Finally, it updates
the class estimates F(x, c) and the weights wc

i of each training
example by

F(x, c) = F(x, c) + f n∗
m (x, c) (4)

wc
i = wc

i e−yc
i f n∗

m (xi ,c). (5)

The joint boost algorithm is implemented by two steps.
1) To repeatedly fit a shared regression stump involving

scanning over all features and candidate thresholds.
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Fig. 2. Proposed 3-D object detection system framework.

2) To exhaustively search all the possible |(2C − 1)| candi-
date subsets to fit a shared regression stump and evaluate
the corresponding error.

For any given dimension of a feature vector, the feature
values in the training data constitute the candidate thresholds.

In order to fit a regression stump, it must scan over all
the candidate thresholds and pick the best one. To reduce
the computational cost of scanning over all the candidate
thresholds, we uniformly sampled the thresholds between
minimum and maximum candidate thresholds. Furthermore,
we propagated most of the computation from leaf nodes to its
parent nodes bottom–up as the work in [23].

Generating the candidate subset S(n) is a typical
combination problem, which can be viewed as picking k

Fig. 3. All possible ways to share features of joint boost algorithm.

(k = 1, . . . , C) labels from a label set L = {1, 2, . . . , C} and
the order does not matter. The labels in the nth picking form
the candidate subset S(n). Fig. 3 shows all the possible ways
for the joint boost algorithm to share features on 15 possible
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Fig. 4. (a) Top left: visualization of the artificial 2-D data points. Top middle: feature sharing manner. Top right: no feature sharing manner. (b) Boosting
rounds to achieve the same performance (area under receiver operating characteristic (ROC) equal to 0.95) when using exhaustive search, best first search,
naive best first search, pair best first search, and no feature sharing at each round.

candidate subsets. In this paper, three types of heuristic greedy
search methods are considered.

1) Best First Search: It has theoretic complexity O(C2),
which first deals with isolated class nodes S(1), S(2),
S(3), and S(4), and then selects one with the best
error reduction. Suppose it has selected S(2). It will
then select the second class, which has the best error
reduction jointly with class 2 from the parent nodes
of S(2). The best first search continues to add the next
best class until it has added all the classes.

2) Naive Best First Search: It is supplemented by us, and
has theoretic complexity O(C). This method first deals
with isolated class nodes S(1), S(2), S(3), and S(4),
and then sorts the isolated class nodes by their cost
in an ascending order. Suppose that the costs of these
nodes are in an order of J (4) < J (2) < J (1) < J (3).
The method will greedily choose nodes S(9), S(12), and
S(15) following the cost ascending order and compute
the corresponding cost of each new node.

3) Pair Best First Search: It is a simplified version of
the best first search method, and forces the joint boost
algorithm to search the pairs of classes. This method
works similar to the best first search, but does not
take nodes S(11), S(12), S(13), S(14), and S(15) into
account, since there are more than two classes in these
nodes.

The term feature sharing manner is defined as the joint
boost algorithm using a specified search method to traverse
some candidate subsets at each round of boosting and pick
the best candidate subset to fit a regression stump, and all the
classes in the current best candidate subset share the regression

stump (feature). In contrast, no feature sharing manner means
that the joint boost algorithm only traverses the one element
candidate subset at each round of boosting to fit a regression
stump. Considering Fig. 3, feature sharing manner needs to
traverse the rightmost four leaf nodes and some internal nodes
in the graph at each round of boosting, while no feature sharing
manner only needs to traverse the rightmost four leaf nodes.

Fig. 4(a) shows that the classifiers trained with feature
sharing manner are superior to no feature sharing manner
on artificial data. We separately boosted 15 rounds to select
15 features (features are lines from 60 angles) using the
joint boost algorithm with feature sharing and no feature
sharing manners. As shown in Fig. 4(a), the data points of
classes 4 and 5 are classified better when we use feature
sharing manner.

Fig. 4(b) compares different methods of searching for the
best shared stump, which can be used in a joint boost algo-
rithm. Considering two dimensions and seven classes cases
(six classes of points plus background class), 4000 data points
and 6 center points are randomly generated. The class label c
is assigned to a point when its distance to the cth center point
is less than 0.05. We compared the number of boosting rounds
to achieve a fixed level of performance (area under ROC
is 0.95) for different search methods.

As shown in Fig. 4(b), using feature sharing manner always
requires a fewer average boosting rounds to achieve a given
area under the ROC curve (AUC) than no feature sharing
manner. The results of this experiment show that, at least
on artificial data, the best first search is the most stable
approximate searching method. The pair best first search
method requires the least average boosting rounds, and the
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Fig. 5. ROC curves for four object categories. Red curves: classifiers trained with feature sharing manner. Black curves: classifiers trained with no feature
sharing manner. ROC curves are calculated with 50 rounds boosting and uniformly sampling 200 candidate thresholds to fit a regression stump. The plot
range of the x-axis is adjusted to [−0.02, 0.5] to facilitate observation.

naive best first search method works better than the other two
approximate searching methods when the number of classes
is less than 7.

The next test was focused on whether the classifiers trained
with feature sharing manner outperform the ones without
feature sharing manner on the DUT-3-D data set. We selected
four object categories (chair, monitor, desk, and sofa) from
the DUT-3-D data set and jointly trained four classifiers using
the joint boost algorithm with the feature sharing manner
and no feature sharing manner separately. For each object
category, we picked 70 BA images and extracted 2400-D
fragment features to generate the training and validation data
set. We extracted one positive example from each object center
and 30 hard negative examples in the background. Therefore,
there are 70 positive examples and 2100 negative examples for
each object category. A stratified holdout method (repeated ten
times, 30% for training and 70% for testing) was utilized to
sample the training examples.

At each round of boosting, the false positive rate and the true
positive rate were computed using the test data. ROC curves
were obtained by computing the mean values of the truth-
positive rate and the false-positive rate, which were computed
at each round of boosting. The AUC is used to evaluate the
performance of a classifier. We adopted the exhaustive search
method to find the best shared stump in this experiment.

As shown in Fig. 5, the AUC of the feature sharing manner
is larger than the ones without the feature sharing manner for
all the four object categories. This experiment indicates that
the feature sharing manner can be used to jointly train stronger
classifiers when using BA image fragment features. The AUC
of the desk category is the smallest one among the four
object categories, i.e., the most difficult one to be classified
in DUT 3-D. This is because of the heavy occlusion and
scale variance of desks in DUT 3-D. Note that the details
of extracting fragment features from a BA image will be
discussed in Section III-C.

In real world applications, we may have the limited numbers
of BA images to train classifiers. In order to uncover the
influence of the amount of training data on the classifier’s
performance, we used the stratified holdout sampling (repeated
ten times) at different percentages (5%, 10%, and 15%) and
iterated 50 rounds to train classifiers. We used the same
data set in the previous experiment. As shown in Table I,

TABLE I

AUC VALUES OF CLASSIFIERS WHICH ARE JOINTLY TRAINED FOR FOUR
OBJECT CATEGORIES (BOOST 50 ROUNDS)

TABLE II

AUC VALUES OF CLASSIFIERS WHICH ARE JOINTLY TRAINED FOR FOUR

OBJECT CATEGORIES (BOOST 100 ROUNDS)

the classifier’s performance seriously degraded for all the
four object categories when the percentage of training exam-
ples is 5%. Moreover, the AUC of no feature sharing
manner (0.7427) is even larger than feature sharing manner
(0.6916) for monitor category. The reason may be that the
monitor category has too many similar negative and positive
examples, which cannot be distinguished well by the com-
monly shared generic features. We increased the boosting
rounds to 100 and found that the AUC values of all the four
object categories were all increased, as shown in Table II.
In particular, the AUC of 15% case (boosting 100 rounds) was
close to the AUC of 30% case (Fig. 5, boosting 50 rounds).

From this experiment, it became clear that the limited
numbers of shared generic features were not better than
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the limited numbers of class-specific features for classifying
hard negative examples. The number of BA images used for
training should not be lower than some specified amount and
boosting by sufficient rounds may be helpful. When there are
insufficient training data, boosting too many rounds will result
in overfitting the training data and decrease the classifier’s
generalization ability. As we know, the HOG-LBP features
are better than the fragment features to represent the global
visual appearance of an object. This is the intuition of using
HOG-LBP features to compensate for the weakness of BA
image fragment features and reclassify the detected uncertainty
bounding boxes.

C. Multiclass Object Detection in BA Images

Motivated by the work in [23] and [36], we built BA
image fragment features by extracting a random set of
2400 fragments from a subset of training BA images that
includes four object categories (each object is normalized in
scale to fit in a bounding box of 28 × 56 pixels). Note that
28 is the maximum size of object height and 56 is the
maximum size of object width.

Suppose that the actual width and the height of an object
in a BA image are w and h, a BA image will be scaled at
min (28/w, 56/h). The fragments have size ranging from 7×7
to 21 × 21 pixels. When a fragment f j was extracted, we
also recorded the location w j with respect to the object center
where it was taken (within the 28 × 56 windows).

Once the fragment dictionary was built, the normalized
cross correlation was made between each fragment f j and the
training images. Both the BA image I and the fragment f j

were filtered using a spatial filter s j before applying the
normalized cross correlation with f j to produce more robust
features. We used the exponent e = 3 to perform element-
wise exponentiation of the normalized cross correlation result.
It approximated a local maximum operation and was good for
template matching. As a result, the fragment feature v j (I, x, y)
can be computed by

v j (I, x, y) = [|I ∗ s j | ⊗ f j
]e ∗ w j . (6)

Each BA image could produce a large number of training
examples by using (6) to compute features. We obtained one
positive example at the object center and a large number of
hard negative examples in the background. The dimension of a
fragment feature was equal to the number of fragments used to
compute features. Since each object was normalized within a
28×56 pixels window for training, they were only detected at
a normalized scale of 28 × 56 pixels. In this paper, only single
scale and view-invariant multiclass 3-D object detection was
considered. Each testing BA image was cropped and scaled
before running object detectors. Multiscale object detection
can be realized by running the single scale object detector on
a scale space. The detailed description of using the generalized
Hough voting approach to detect objects in a BA image can
be seen in [30].

In the training phase, 2400 fragments were randomly chosen
from the fragment dictionary to compute fragment features.
The BA images in the DUT-3-D data set were divided into

TABLE III

NUMBER OF TRAINING IMAGES, TESTING IMAGES, AND TOTAL IMAGES
FOR MULTICLASS OBJECT DETECTION EXPERIMENT

training images and testing images. Table III presents the
exact numbers of training images, testing images, and total
images. We jointly trained four object detectors for four
object categories using feature sharing manner and no fea-
ture sharing manner separately. We boosted 150 rounds and
scanned 400 candidate thresholds to fit a regression stump.
Although 2400 fragments can produce a 2400-D feature vector,
150 rounds of boosting will only select 150 features from
them. A detected bounding box was considered correct if it
overlapped more than 50% with a groundtruth bounding box.
Otherwise, the bounding box was considered as a false positive
detection.

Moreover, if we detect an object that we thought was too
small (less than 10 × 10 pixels), we do not penalize its
performance for this. Nonmaximum suppression was used to
greedily select high-scoring detections and skip detections that
were significantly covered by a previously selected detection.
Precision–recall curves were used to evaluate the detector’s
performances, as shown in Fig. 6. It is clear that the feature
sharing manner outperformed the no feature sharing manner
for all the four category-level object detections in BA images.
The desk detector worked very poorly in our experiment,
since a large number of desks in the DUT-3-D data set had
significant scale changes and were severely occluded by the
other objects.

Fig. 7 shows some correct detection results for chairs,
monitors, desk, and sofa. The detected bounding boxes of each
object detector can be mapped to the original BA image and
produce the complete multiclass object detection results. Fig. 8
presents some false detection outputs for chairs, monitors,
desk, and sofa. There are two types of common mistakes when
running multiclass object detectors: 1) false negatives due to
intraclass variance of objects and 2) false positives in cluttered
background regions.

D. Multiview Object Detection in BA Images

If each object pose is viewed as an object category, the
multiview object detection becomes a typical multiclass object
detection problem. The joint boost algorithm can be used in
multiview object detection to improve the detection accuracy
and reduce the computing cost. Since sharing 3-D features
is computationally expensive, we shared BA image fragment
features between objects with different poses.

For |V |-view object detection, |V | binary classifiers
F(x, vi |c) are jointly trained for a given object category c
and view vi (i = 1, 2, . . . , |V |), where |V | depends on the
pose variation. In the detection phase, a view-invariant object
detector is realized by running |V | binary classifiers at each
image location. If multiple single-view detectors detected an
object at the same position (bounding boxes were overlapped
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Fig. 6. Precision–recall curves for chair, monitor, desk, and sofa detection. Red curves: no feature sharing manner. Green curves: feature sharing manner.
We boost 150 rounds to jointly train all the four classifiers with feature sharing manner and no feature sharing manner separately.

Fig. 7. Examples of correct detection outputs for chair, monitor, desk, and sofa on the DUT-3-D data set. We show object detection outputs in red bounding
boxes by running four object detectors separately. These four object detectors are jointly trained using the feature sharing manner.

Fig. 8. Examples of false detection outputs for chair, monitor, desk, and sofa on the DUT-3-D data set. Four object detectors are jointly trained using the
feature sharing manner. We run a different object detector for each different object categories. The bounding boxes with different colors (red, green, blue, and
yellow) stand for different object categories (chair, monitor, desk, and sofa).

more than 50%) in a test image, the view label became
v∗ = arg maxvi{F(x, vi |c)}.

In order to explore how to learn good multiview chair detec-
tors with limited BA images using the joint boost algorithm,
we collected 120 groups of raw 3-D laser point clouds for chair
category with 12 original pose variations (≈30°), as shown in
Fig. 9.

Four different view-invariant chair detectors were trained
using different pose variations: 1) 12 pose variations (≈30°);
2) 6 pose variations (≈60°); 3) 4 pose variations (≈90°);
and 4) 2 pose variations (≈180°). Since we only have ten
BA images for original pose variation (≈30°), we randomly
picked up two BA images to build a dictionary of fragments,

five images to compute features, and the remaining three
images to evaluate the performance of classifiers. In other
words, we have 84 BA images to train and 36 BA images
to test. Due to the fixed number of BA images to train, the
finer the pose variation, the fewer positive examples belong to
each view category.

Suppose that we have 12 positive examples for
12-view chair objects and the original class label set
is (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). We can generate
three new class label sets (1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6),
(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4), and (1, 1, 1, 1, 1, 1, 2, 2, 2,
2, 2, 2) for six-view, four-view, and two-view cases.
In order to use different pose variations to train classifiers,
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Fig. 9. Examples of original 12 view chairs in BA image with
approximately 30° pose variations.

Fig. 10. Precision–recall curves for multiview chair detection. View-invariant
chair detectors are jointly trained on the DUT-3-D data set using four types
of pose variations (≈30°, 60°, 90°, and 180°, respectively).

we combined the original class labels from 12 pose variations
and generated the other three class label sets. We utilized
all the four class label sets and the same feature vectors to
train 12-view, 6-view, 4-view, and 2-view chair detectors.
As shown in Fig. 10, the view-invariant chair detector
trained with four pose variations (four pose categories and
background category) has the best performance and the
view-invariant chair detector trained with 12 pose variations
(12 pose categories and background category) has the worst
performance.

This indicates that using feature sharing manner does not
guarantee to train a stable view-invariant classifier when we
have too few examples in each view class. We can infer from
this experiment that, if we sampled too fine on a fixed number
of training data, sharing fragment features between objects
with similar poses may not increase the diversity of the weak
learner and not be able to improve the generalization ability of
the final strong classifiers. Note that the size of each BA image
was cropped and scaled to 128 × 128 pixels before training
and testing in this experiment.

Fig. 11 shows some typical detection results from
BA images in the DUT-3-D data set. The classifiers were

Fig. 11. Typical chair detection results of running view-invariant chair
detector trained with four pose variations (≈90°).

trained with four pose variations (≈90°) of chair objects and
200 rounds boosting. The best first search method was used
to fit the best shared regression stump.

E. Comparison With Depth Image-Based
3-D Object Detection

As far as we know, many 3-D object detection methods are
based on depth image [5], [11] and RGB-D image [1], [16].
But RGB-D sensor (e.g., Microsoft’s Kinect) is susceptible to
different lighting conditions. When the target objects are under
weak light or dark environment, color information is often too
noisy or unavailable. Therefore, only the depth information is
unchanged under all lighting conditions.

In this experiment, the joint boost algorithm was used to
train four object detectors using BA images and depth images
separately, which were generated from the same 3-D laser
data. We boosted 150 rounds and scanned 400 candidate
thresholds to fit a regression stump at each boosting round.
Generalized Hough voting was used to detect objects on a test
image. Since desk detection had a very poor performance and
sofa detection had achieved very high accuracy when using
BA images (see Fig. 6), only chair and monitor detection were
considered in this experiment. The model evaluations were
performed on the DUT-3-D data set. Some raw 3-D laser data
in the DUT-3-D data set were transformed to depth images and
BA images separately. The generated BA images and the
depth images of each object category were split into training
and testing image sets, as shown in Table IV. The detection
performance was reported as a precision–recall curve on the
test images.

Fig. 12 shows some typical detection outputs when using
depth images and BA images. The detection outputs sug-
gest that using depth images for object detection tends to
produce more false positive outputs. As shown in Fig. 13,
detection results using depth images have lower precision than
the BA images under the precision–recall curves. The main
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TABLE IV

NUMBER OF TRAINING IMAGES, TESTING IMAGES, AND TOTAL IMAGES
FOR COMPARATIVE EXPERIMENT

Fig. 12. Some typical detection outputs for chair and monitor. The
first row is four groups of detection outputs when using depth images, and
the second row is four groups of detection outputs when using BA images.
Red bounding boxes: chair detection outputs. Green bounding boxes: monitor
detection outputs.

Fig. 13. Precision–recall curves for chair and monitor detection when using
BA images and depth images.

reason may be that the BA image contains more detailed
information than the depth image, such as texture and edge
information.

The preprocess module used for generating BA images and
depth images has been implemented in C++. The average
time used for generating a BA image is ∼70 ms on a 2.33-GHz
2-core Intel CPU, which is slightly longer than the average
time 50 ms used for generating a depth image. Overall,
the experimental results indicate that using the BA image is
helpful to improve the accuracy of 3-D object detection and
the additional time cost of generating BA image is acceptable
in practice.

IV. LOW CONFIDENCE BOUNDING

BOX RECLASSIFICATION

A. RUS-SMOTEboost Algorithm

As shown in Fig. 8, there are some false positive and
false negative output bounding boxes after sharing features
in the multiclass object detection. The detection threshold

is set to a lower value in the multiclass object detection
phase to decrease the false negative detection outputs. For the
reclassification phase, we only focus on eliminating the false
positive bounding boxes.

Standing on the reclassification views, the multiclass object
detection phase can be viewed as a generalized Hough voting
process. After the voting, some uncertainty bounding boxes
are passed to a group of cascaded classifiers to make the final
decision. The generalized Hough voting-then-reclassification
process follows the voting-then-reclassification strategy, which
does not like a sliding window method. The cascaded clas-
sifiers used for the reclassification task only need to classify
relatively fewer numbers of uncertainty bounding boxes. Since
each test BA image is cropped and scaled in the multiclass
object detection phase, the coordinates of each detected uncer-
tainty bounding box should be transformed to its original
coordinates before performing reclassification.

The most difficult problem for the reclassification phase was
to train a strong binary classifier for each object category with
a fewer BA images. For each BA image, we extracted M pos-
itive examples from M objects and N (N � M) negative
examples randomly from background. In other words, training
examples were predominately composed of a large number of
negative examples. Therefore, a default strategy of guessing
the majority class always gave a very high prediction accuracy
N /(N + M)%. Two effective ways to address the class
imbalance problem were to assign distinct costs to training
examples, and to resample the original data set. In considering
the limited positive training examples in this paper, the
synthetic minority oversampling technique (SMOTE) [33]
was used to enlarge the number of positive examples. Synthetic
positive examples were generated in the following manner.

1) To compute the difference of each positive example and
its k nearest neighbor.

2) To multiply the difference by a random number between
0 and 1, and add it to the positive training data set.

Based on the SMOTE and the undersampling technique,
we proposed a novel algorithm called RUS-SMOTEboost,
which including both SMOTE the minority class and random
undersampling (RUS) the majority class by a user-specified
percentage. At each round of boosting, a weak classifier is
learned on the data set perturbed by RUS the majority class
and SMOTE the minority class. As shown in Algorithm 1,
at each round of boosting, the negative training examples are
randomly undersampled at M% (the percentages of negative
and positive examples are M% and 1 − M% after sampling),
and the positive training examples are SMOTEed at N%. The
RUS percentage M% is specified by the user, and the SMOTE
percentage N% is determined by the number of positive and
negative examples after RUS in the training data.

Three experiments were designed to evaluate whether
RUS-SMOTEboost algorithm could outperform
RUSboost [34] and SMOTEboost [35] algorithms. For
each training BA image, we extracted one positive example
from each object window (normalized in 32 × 32 pixels)
and 20 negative examples from the background window
(normalized in 32 × 32 pixels). We concatenated the dense
HOG feature (the cell size is 8 × 8 pixels) and the LBP
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Algorithm 1 RUS-SMOTEboost

Inputs: D ={(x (i), y(i))}, i =1, 2, · · · N , x ∈ R, y ∈{−1,+1}
Base Learning Algorithm = BLearner(D)
Booting rounds = T
Majority class Random Under-Sampling percentage = M%
Output: F(x) = sign(

∑T
m=1 αm fm(x))

Initialize w1 = 1/N
for m = 1 to T do

Generate temporary negative examples set R by RUS
negative examples in D using wm and M%;
N = (number of examples in R - number of positive
examples in D);
Generate N synthetic positive examples by SMOTE;
NEWD′ = R∪{All the positive examples after SMOTE};
Train Base classifier fm(x) = BLearner(NEWD′);
Compute error of fm on D :εm =∑N

i=1 wm .∗( fm(x (i)) �=
y(i));
Set βm = εm/(1 − εm) and αm = 0.5 ∗ ln(1/βm);

wm+1 =(wm . ∗ β
I (y= fm(x))
m )/Zm , where Zm is a normal-

ization factor.
end for

TABLE V

NUMBER OF POSITIVE EXAMPLES AND NEGATIVE EXAMPLES

feature to represent a 32 × 32 pixels subwindow. Table V
presents the number of positive and negative examples in the
training data, which were used in our experiments.

In Experiment 1, we repeatedly used the stratified holdout
method (30% for training and 70% for testing, repeat
ten times) to evaluate the classifier’s performance. We cal-
culated the mean value of the false positive rate and the
true positive rate, which was computed from each fold of
testing and utilized the mean values to draw ROC curves.
RUSboost, SMOTEboost, and RUS-SMOTEboost algorithms
were separately used to train three binary classifiers for
the same object category on the same training data. In the
training phase, we boosted 30 rounds and then evaluated
the performance of three classifiers on the test data. We set
the RUS percentage to be 0.75, 0.8, and 0.9 for RUSboost and
RUS-SMOTEboost algorithms, which means that the propor-
tion of negative examples and positive examples after RUS is
3:1, 4:1, and 9:1.

On one hand, RUS-SMOTEboost required less training time
than SMOTEboost, because it used a fewer training examples.
On the other hand, RUS-SMOTEboost was more accurate
than RUSboost, because more positive examples were used
for training classifier. As shown in Table VI, the average
performance of the RUS-SMOTEboost algorithm is better than
the RUSboost and SMOTEboost algorithms.

In Experiment 2, RUS-SMOTEboost algorithm boosted dif-
ferent rounds to train different classifiers for the chair category.

Fig. 14. ROC curves of five classifiers which are separately trained with 10,
20, 30, 40, and 50 rounds of boosting for chair category. The plot range of
the x-axis is adjusted to [0, 0.2] to facilitate observation. The AUC values of
the learned five classifiers are 0.9936, 0.9972, 0.9983, 0.9990, and 0.9992.

The classifiers were trained using the data set given in Table V.
We fixed the RUS percentage to 80% and changed the boosting
rounds to 10, 20, 30, 40, and 50. The ROC curves are
given in Fig. 14. The experimental results indicate that more
boosting rounds can produce a stronger classifier for the
RUS-SMOTEboost algorithm.

In Experiment 3, we used logistic regression, support
vector machine (SVM) (Sequential minimal optimization
algorithm), and decision tree as the base learner in the
RUS-SMOTEboost algorithm and trained three classifiers
for each object category. The RUS percentage was fixed
to 75% and boosted 30 rounds. The repeated stratified
holdout method was adopted to sample the training data
(30% for training and 70% for testing, repeat five times).
ROC curves were calculated to evaluate the classifier’s perfor-
mance, as shown in Fig. 15. The experimental results indicate
that using logistic regression as the base learner in the
RUS-SMOTEboost algorithm has the best performance when
using HOG-LBP features.

B. Sharing Features Versus Sharing
Features + Reclassification

This section aims to verify if the reclassification technique
is helpful to reduce the false positives outputs produced in the
multiclass object detection phase. We used the same classifiers
trained with the joint boost algorithm in feature sharing man-
ner in Section III-C, and discriminatively trained four binary
classifiers for each object category with the RUS-SMOTEboost
algorithm for low confidence bounding box reclassification
task. HOG-LBP features were extracted from BA images to
build positive and negative examples. Note that the training
BA images used in the reclassification phase were the same
as the training BA images used in the multiclass object
detection phase. Each HOG-LBP feature was extracted from
a normalized window. Since objects in different categories
may have different aspect ratios, the size of a normalized
window should be chosen at the average aspect ratio of
each object category. For example, we used a 32 × 32 pixels
window to extract HOG-LBP features for chair category and a
28 × 56 pixels window to extract HOG-LBP features for sofa.

The RUS-SMOTEboost algorithm was run at 300 rounds of
boosting and 80% RUS percentage, and logistic regression was
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TABLE VI

AUC VALUES OF THREE CLASSIFIERS TRAINED WITH THE RUSboost, SMOTEboost, AND RUS-SMOTEboost
ALGORITHMS FOR FOUR OBJECT CATEGORIES, RESPECTIVELY

Fig. 15. ROC curves of three classifiers which are trained with the RUS-SMOTEboost algorithm using three different base learners (logistic regression,
SVM, and decision tree) for each object category. The plot ranges of the x-axis and the y-axis are adjusted to [0, 0.2] and [0.7, 1] to facilitate observation.

Fig. 16. Precision–recall curves for chair and monitor detection using sharing features and reclassification. The plot range of the y-axis is adjusted to
[60, 100] to facilitate observation.

chosen as the base learner in it. Since the desk detector had
very poor detection results (see Fig. 6) in the sharing features
multiclass object detection phase, we did not consider the desk
reclassification problem. For the sofa category detection, it has
achieved a very high detection accuracy in the sharing features
multiclass object detection phase. Therefore, precision–recall
curves were calculated for chair and monitor detection in this
experiment, as shown in Fig. 16. It is clear that low confidence
bounding box reclassification could effectively improve the
object detection accuracy.

V. CONCLUSION

This paper was focused on how to accomplish 3-D laser-
based multiclass and multiview object detection in cluttered
indoor scenes with a fewer groups of laser scanning data.

We propose a novel framework that utilizes a voting-then-
reclassification approach to improve the overall detection accu-
racy. Multiclass and multiview object detectors were jointly
trained using a feature sharing manner to effectively reduce
the influence of limited training data. The experimental results
indicate that using feature sharing technique is capable of pro-
viding superior performance in the multiclass and multiview
object detection. In order to train classifiers with imbalanced
training data for the task of low confidence bounding boxes
reclassification, a novel algorithm, RUS-SMOTEboost, was
proposed to train a group of classifiers with HOG-LBP fea-
tures. Experimental results are given to show the validity of
the proposed approach. It should be noticed that the proposed
framework is a general one and can be directly applied to many
other 2-D object detection tasks with a fewer training data.
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In the future work, we plan to perform rapid multiscale and
multiclass 3-D object detection using BA images. Furthermore,
some other 3-D features, which can be extracted from raw
laser point clouds, will be deployed to improve the classifier’s
accuracy for object detection in much more complicated
indoor scenarios.
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