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Pull-Based Distributed Event-triggered Consensus for Multi-agent
Systems with Directed Topologies

Xinlei Yi, Wenlian Lu and Tianping Chen

Abstract—This paper mainly investigates consensus problem
with pull-based event-triggered feedback control. For each
agent, the diffusion coupling feedbacks are based on the states
of its in-neighbors at its latest triggering time and the next
triggering time of this agent is determined by its in-neighbors’
information as well. The general directed topologies, including
irreducible and reducible cases, are investigated. The scenario
of distributed continuous communication is considered firstly.
It is proved that if the network topology has a spanning tree,
then the event-triggered coupling strategy can realize consensus
for the multi-agent system. Then the results are extended
to discontinuous communication, i.e., self-triggered control,
where each agent computes its next triggering time in advance
without having to observe the system’s states continuously.
The effectiveness of the theoretical results are illustrated by a
numerical example finally.

Keywords: Directed, irreducible, reducible, consensus, multi-
agent systems, event-triggered, self-triggered.

I. I NTRODUCTION

Consensus problem in multi-agent systems has been widely
and deeply investigated. The basic idea of consensus lies in
that each agent updates its state based on its own state and the
states of its neighbors in such a way that the final states of all
agents converge to a common value [1]. The model normally
is of the following form:

ẋ(t) = −Lx(t) (1)

where the column vectorx(t) consists of all nodes’ states and
L is the corresponding weighted Laplacian matrix. There are
many results reported in this field [1]-[4] and the references
therein. In these researches, the network topologies vary from
fixed topologies to stochastically switching topologies, and
the most basic condition to realize a consensus is that the
underlying graph of the network system has a spanning tree.

In recent years, with the development of sensing, commu-
nications, and computing equipment, event-triggered control
[5]-[9] and self-triggered control [10]-[14] have been proposed
and studied. Instead of using the continuous state to realize
a consensus, the control in event-triggered control strategy is
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piecewise constant between the triggering times which needto
be determined. Self-triggered control is a natural extension of
the event-triggered control since the derivative of the concern
multi-agent system’s state is piecewise constant, which isvery
easy to work out solutions (agents’ states) of the system. In
particular, each agent predicts its next triggering time atthe
previous one. Inspired by above idea of event-triggered control
and self-triggered control, [17]-[25] considered the consensus
problem for multi-agent systems with event-triggered control.
In particular, in [17], under the condition that the graph is
undirected and strongly connected, the authors provide event-
triggered and self-triggered approaches in both centralized
and distributed formulations. It should be emphasized thatthe
approaches cannot be applied to directed graph. In [18], the
authors investigate the average-consensus problem of multi-
agent systems with directed and weighted topologies, but they
need an additional assumption that the directed topology must
be balanced. In [20], the authors propose a new combinational
measurement approach to event design, which will be used in
this paper.

In this paper, continuing with previous works, we study
event-triggered and self-triggered consensus in multi-agent
system with directed, reducible (irreducible) and weighted
topology.

Consider the following continuous-time linear multi-agent
system with discontinuous diffusions as follows

{

ẋi(t) = ui(t)

ui(t) = −∑m
j=1 Lijxj(t

i
ki(t)

), i = 1, · · · ,m (2)

where ki(t) = argmaxk{tik ≤ t}, the increasing time
sequence{tjk}∞k=1, j = 1, · · · ,m, which is named astrigger
times, is agent-wise and normally assumingtj1 = 0, for all
j ∈ I, whereI = {1, 2, · · · ,m}. We say agentvi triggers
at time tik means agentvi renews its control value at time
tik and sendstik, xi(t

i
k) and ui(t

i
k) to all its out-neighbours

immediately. At eachtik, each agentvi “pulls” xj(t
i
k) from

agent vi if Lij 6= 0. (This does not mean that agentvi
has to send a request to its in-neighbours attik in order to
get its in-neighbours’ states attik. Instead, in event-triggered
control, agentvi’s in-neighbours has to send its state to agent
vi continuously. And we will also give an algorithm to avoid
such continuous communication later.) In order to distinguish
it from others, we name this sort of feedback aspull-based.

Let us recall the model

xi(t+ 1) = f(xi(t)) + ci

m
∑

j=1

aij(f(x
j(t)))
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where ṡ(t) = f(s(t)) is a chaotic oscillator. It was proposed
and investigated in [15] for synchronization of chaotic systems.
It can also be considered as nonlinear consensus model.

As a special case, letf(x(t)) = x(t) andci = (tik+1 − tik),
then

xi(tik+1) = xi(tik) + (tik+1 − tik)

m
∑

j=1

aijx
j(tjk)

which is just the event triggering (distributed) model for
consensus problem, though the term ”event triggering” was
not used. In centralized control, the bound for(tik+1 − tik) =
(tk+1 − tk) to reach synchronization was given in that paper
when the coupling graph is indirected (or in [16] for direct
graph), too.

In this paper, the distributed continuous monitoring with
pull-based feedback as the event-triggered controller is con-
sidered firstly, namely agent can observe its in-neighbours’
continuous states by its in-neighbours sending their continuous
states to it. It is proved that if the directed network topology
is irreducible, then the pull-based event-triggered coupling
strategy can realize consensus for the multi-agent system.
Then we generalize it to the reducible case. By mathematical
induction, it is proved that if the network topology has a
spanning tree, then the pull-based event-triggered coupling
strategy can realise consensus for the multi-agent system,too.
Finally the results are extended to discontinuous monitoring,
where each agent computes its next triggering time in advance
without having to receive the system’s state continuously (self-
triggered).

In comparison to literature, we have three main contribu-
tions: (i) different from [17]-[22] and [25], we investigate
directed topologies, including irreducible and reduciblecases,
and we do not make assumption that they are balanced;
(ii) different from [19], [22] and [23], the event-triggered
principles in our paper are fully distributed in the sense that
each agent only needs its in-neighbours’ state information,
especially does not need any a priori knowledge of any global
parameter and the Zeno behaviour can be excluded; (iii)
different from [18]-[23], we propose self-triggered principle,
by which continuous communication between agents can be
avoided.

The paper is organized as follows: in Section II, some
necessary definitions and lemmas are given; in Section III, the
pull-based event-triggered consensus in multi-agent systems
with directed topologies is discussed; in Section IV, the self-
triggered formulation of the frameworks provided in Section
III is presented; in Section V, one numerical example is
provided to show the effectiveness of the theoretical results;
the paper is concluded in Section VI.

II. PRELIMINARIES

In this section we first review some relating notations,
definitions and results on algebraic graph theory [26], [27]
which will be used later in this paper.
Notions: ‖ ·‖ represents the Euclidean norm for vectors or the
induced 2-norm for matrices.1 denotes the column vector with
each component 1 with proper dimension.ρ(·) stands for the

spectral radius for matrices andρ2(·) indicates the minimum
positive eigenvalue for matrices having positive eigenvalues.
Given two symmetric matricesM,N , M > N (or M ≥ N )
meansM −N is a positive definite (or positive semi-definite)
matrix.

For a weighted directed graph (or digraph)G = (V , E ,A)
with m agents (vertices or nodes), the set of agentsV =
{v1, · · · , vm}, set of links (edges)E ⊆ V × V , and the
weighted adjacency matrixA = (aij) with nonnegative
adjacency elementsaij > 0. A link of G is denoted by
e(i, j) = (vi, vj) ∈ E if there is a directed link from
agent vj to agentvi with weight aij > 0, i.e. agentvj
can send information to agentvi while the opposite direction
transmission might not exist or with different weightaji. The
adjacency elements associated with the links of the graph are
positive, i.e.,e(i, j) ∈ E ⇐⇒ aij > 0, for all i, j ∈ I. It is
assumed thataii = 0 for all i ∈ I. Moreover, the in- and out-
neighbours set of agentvi are defined as

N in
i = {vj ∈ V | aij > 0}, Nout

i = {vj ∈ V | aji > 0}

The in- and out- degree of agentvi are defined as follows:

degin(vi) =
m
∑

j=1

aij , degout(vi) =
m
∑

j=1

aji

The degree matrix of digraphG is defined asD =
diag[degin(v1), · · · , degin(vm)]. The weighted Laplacian ma-
trix associated with the digraphG is defined asL = D −A.
A directed path from agentv0 to agentvk is a directed graph
with distinct agentsv0, ..., vk and linkse0, ..., ek−1 such that
ei is a link directed fromvi to vi+1, for all i < k.

Definition 1: We say a directed graphG is strongly con-
nected if for any two distinct agentsvi, vj , there exits a
directed path fromvi to vj .

By [27], we know that strongly connectivity ofG is equiv-
alent to the corresponding Laplacian matrixL is irreducible.

Definition 2: We say a directed graphG has a spanning tree
if there exists at least one agentvi0 such that for any other
agentvj , there exits a directed path fromvi0 to vj .

By Perron-Frobenius theorem [28] (for more detail and
proof, see [29]), we have

Lemma 1: If L is irreducible, thenrank(L) = m − 1,
zero is an algebraically simple eigenvalue ofL and there is
a positive vectorξ⊤ = [ξ1, · · · , ξm] such thatξ⊤L = 0 and
∑m

i=1 ξi = 1.
Let Ξ = diag[ξ1, · · · , ξm], by the results first given in [28],

we have
Lemma 2: If L is irreducible, thenΞL + L⊤Ξ is a sym-

metric matrix with all row sums equal to zeros and has zero
eigenvalue with algebraic dimension one.

Here we define some matrices, which will be used later. Let
R = [Rij ]

m
i,j=1, where

R =
1

2
(ΞL+ L⊤Ξ)

Obviously,R is positive semi-definite. Denote the eigenvalue
of R by 0 = λ1 < λ2 ≤ · · · ≤ λm, counting the multiplicities.
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We also denote
U = Ξ− ξξ⊤

It can also be seen thatU has a simple zero eigenvalue and
its eigenvalues (counting the multiplicities) can be arranged as
0 = µ1 < µ2 ≤ · · · ≤ µm. We also denote the eigenvalues of
LTL by 0 = γ1 < γ2 ≤ · · · ≤ γm = ρ(L⊤L). Then, for all
x ∈ Rm satisfyingx⊥1, we have

λ2x
⊤x ≤ x⊤Rx

and
x⊤UUx ≤ µ2

mx⊤x

Therefore, we have

R ≥ λ2

µ2
m

UU (3)

LTL ≥ γ2
µ2
m

UU (4)

and

λm

γ2
L⊤L ≥ R ≥ λ2

ρ(L⊤L)
L⊤L (5)

Pick weight functionµ(t) > 0 satisfying µ̇(t)
µ(t) ≤ β.

III. PULL -BASED EVENT-TRIGGERED PRINCIPLES

In this section, we consider event-triggered control for
multi-agent systems with directed and weighted topology.

Firstly , we consider the case of irreducibleL.
Denote q(t) = [q1(t), · · · , qm(t)]⊤, where qi(t) =

−
∑m

j=1 Lijxj(t) and f(t) = [f1(t), · · · , fm(t)]⊤, where
fi(t) = qi(t

i
k)− qi(t), t ∈ [tik, t

i
k+1), k = 1, 2, ...

To depict the trigger event, consider the following candidate
Lyapunov function (see [28]):

V (t) =
1

2

m
∑

i=1

ξi(xi(t)− x̄(t))2 =
1

2
x⊤(t)Ux(t) (6)

wherex̄(t) =
∑m

i=1 ξixi(t).
By the definition, we have

m
∑

i=1

ξi(xi(t)− x̄(t)) = 0 (7)

and due toξ⊤L = 0, we have
m
∑

i=1

ξiLijxj(t) = 0 (8)

The derivative ofV (t) along (2) is

d

dt
V (t) =

m
∑

i=1

ξi(xi(t)− x̄(t))(ẋi(t)− ˙̄x(t))

=

m
∑

i=1

ξi(xi(t)− x̄(t))ẋi(t)

=−
m
∑

i=1

ξi(xi(t)− x̄(t))

m
∑

j=1

Lijxj(t
i
k)

=

m
∑

i=1

ξi(xi(t)− x̄(t))qi(t
i
k)

=

m
∑

i=1

ξi(xi(t)− x̄(t)) {fi(t) + qi(t)}

=
m
∑

i=1

ξi(xi(t)− x̄(t))[fi(t)−
m
∑

j=1

Lijxj(t)]

=−
m
∑

i=1

m
∑

j=1

xi(t)ξiLijxj(t) +

m
∑

i=1

ξi(xi(t)− x̄(t))fi(t)

=− x⊤(t)Rx(t) + x⊤(t)Uf(t)

≤− x⊤(t)Rx(t) +
a

2
x⊤(t)UUx(t) +

1

2a
f⊤(t)f(t)

≤− (1 − aµ2
m

2λ2
)x⊤(t)Rx(t) +

1

2a
f⊤(t)f(t) (9)

By (5), we have

d

dt
V (t)

≤− (1 − aµ2
m

2λ2
)

λ2

ρ(L⊤L)
x⊤(t)L⊤Lx(t) +

1

2a
f⊤(t)f(t)

=− (1 − aµ2
m

2λ2
)

λ2

ρ(L⊤L)
q⊤(t)q(t) +

1

2a
f⊤(t)f(t)

=

m
∑

i=1

[−(1− aµ2
m

2λ2
)

λ2

ρ(L⊤L)
q2i (t) +

1

2a
(qi(t

i
k)− qi(t))

2]

(10)

and

d[µ(t)V (t)]

dt
= µ(t)V̇ (t) + µ̇(t)V (t)

≤
m
∑

i=1

µ(t)

{[

− (1− aµ2
m

2λ2
)

λ2

ρ(L⊤L)
+

γ2µ̇(t)

µmµ(t)

]

q2i (t)

+
1

2a
(qi(t

i
k)− qi(t))

2

}

(11)

Therefore, we have
Theorem 1:Suppose thatG is strongly connected.µ̇(t)µ(t) ≤

β(t). For i = 1, · · · ,m,, set0 < a < 2λ2

µ2
m

, and

b(t) = (1− aµ2
m

2λ2
)

λ2

ρ(L⊤L)
− γ2β(t)

µm
> 0

tik+1 = max
τ≥ti

k

{

τ :
∣

∣

∣
qi(t

i
k)− qi(t)

∣

∣

∣

≤
√

2ab(t)
∣

∣

∣
qi(t)

∣

∣

∣
, ∀t ∈ [tik, τ ]

}

(12)

Then, system (2) reaches a consensus

xi(t)−
m
∑

j=1

ξjxj(t) = O

(

µ−1/2(t)

)

(13)

In addition, for alli ∈ I, we have and

ẋi(t) = O

(

µ−1/2(t)

)

(14)



4

Proof: Combining inequalities (10), (15) and (5), we have

d[µ(t)V (t)]

dt
≤ 0

for all t ≥ 0. It means

V (t) ≤ µ(0)µ−1(t)

This implies that system (2) reaches consensus and for all
i = 1, · · · ,m,

xi(t)−
m
∑

j=1

ξjxj(t) = O

(

µ−1/2(t)

)

and

ẋi(t) = −
m
∑

j=1

Lij

(

xj(t
i
ki(t)

)− x̄(tiki(t)
)

)

= O

(

µ−1/2(t)

)

This completes the proof.
As special cases, we have
Corollary 1: Suppose thatG is strongly connected.µ(t) =

eβt. For i = 1, · · · ,m,, set0 < a < 2λ2

µ2
m

, and

b = (1− aµ2
m

2λ2
)

λ2

ρ(L⊤L)
− γ2β

µm
> 0

tik+1 = max
τ≥ti

k

{

τ :
∣

∣

∣
qi(t

i
k)− qi(t)

∣

∣

∣

≤
√
2ab

∣

∣

∣
qi(t)

∣

∣

∣
, ∀t ∈ [tik, τ ]

}

(15)

Then, system (2) reaches a consensus

xi(t)−
m
∑

j=1

ξjxj(t) = O

(

e−βt/2

)

(16)

In addition, for alli ∈ I, we have

ẋi(t) = O(e−βt/2) (17)

Corollary 2: Suppose thatG is strongly connected. Set

tik+1 = max
τ≥ti

k

{

τ :
∣

∣

∣
qi(t

j
k)− qi(t)

∣

∣

∣

≤ c
∣

∣

∣
qi(t)

∣

∣

∣
, ∀t ∈ [tik, τ ]

}

(18)

or

tik+1 = max
τ≥ti

k

{

τ :
|qi(tjk)|
1 + c

≤
∣

∣

∣
qi(t)

∣

∣

∣

≤ |qi(tjk)|
1− c

, ∀t ∈ [tik, τ ]

}

(19)

for some sufficient small constantc. Then, system (2) reaches
a consensus.

Theorem 1 shows such a constantc does exist.
Remark 1:To utilize event-triggering algorithm, two issues

should be addressed. Firstly, for any initial condition, atany
time t ≥ 0, under the condition and the event-triggered
principle in Theorem 1, there exists at least one agentvj1 ,
of which the next inter-event time is strictly positive before
consensus is reached.

In fact, suppose that there is no trigger event whent > T .
Then, we have

ẋi(t) =
m
∑

j=1

Lijxj(T
i
ki(T )), t > T, i = 1, · · · ,m (20)

which implies

xi(t)− xi(T ) = (t− T )

m
∑

j=1

Lijxj(T
i
ki(T )).

By Theorem 1, we havexi1(t) − xi2(t) → 0. Therefore, for
all i1, i2 = 1, · · · ,m, we have

m
∑

j=1

Li1jxj(T
i1
ki1

(T )) =
m
∑

j=1

Li2jxj(T
i2
ki2

(T ))

and

xi1 (T ) = xi2 (T )

which implies xi1 (t) = xi2(t) for all t ≥ T and i1, i2 =
1, · · · ,m. It means that in case there is no triggering time for
t > T , the consensus has reached at timeT .

Secondly, it should be addressed that in any finite interval
[t1, t2, there are only finite triggers. It would be discussed in
the following algorithms.

In the following, we propose another event-triggering set-
ting.

Denoteδxi(t) = xi(t)− x̄(t), and rewrite

d

dt
V (t) =

m
∑

i=1

ξi(xi(t)− x̄(t))[fi(t)−
m
∑

j=1

Lijxj(t)]

=−
m
∑

i=1

m
∑

j=1

δxi(t)ξiLijδxj(t) +

m
∑

i=1

ξiδxi(t)fi(t)

≤(− λ2

max{ξi}
+

a

2
)

m
∑

i=1

ξi(δxi(t))
2 +

1

2a

m
∑

i=1

ξi(fi(t))
2

(21)

and

d[µ(t)V (t)]

dt

≤
(

− λ2

max{ξi}
+

a

2
+

µ̇(t)

µ(t)

)

µ(t)V (t) +
µ(t)

2a

m
∑

i=1

ξi(fi(t))
2

(22)

Firstly, we give a simple lemma.
Lemma 3:Suppose a functionV1(t) with V1(0) > 0 and

satisfies

V̇1(t) ≤ −c1V1(t) + c2

for some constantsc1 > 0 andc2 > 0. Then,V1(t) is bounded.
In fact, if V1(t) > c2/c1, then V̇1(t) < 0.

Theorem 2:Suppose thatG is strongly connected, function
µ(t) > 0 satisfiesµ̇(t) ≤ βµ(t) for someβ > 0 and

− λ2

max{ξi}
+

a

2
+ β < 0
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for some small numbersa and β. For agentvi, if trigger
timesti1 = 0, · · · , tik are known, then use the following trigger
strategy to findtik+1:

tik+1 = max
{

τ ≥ tik : |qi(tik)− qi(t)|2 ≤ µ−1(t), ∀t ∈ [tik, τ ]
}

(23)

Then, system (2) reaches consensus

|xi(t)−
m
∑

j=1

ξjxj(t)| ≤
µ−1/2(t)

√

2aξi(
λ2

max{ξi}
− a

2 − β)
(24)

In addition, for alli ∈ I, we have

ẋi(t) = O(µ−1/2(t)) (25)

and the Zeno behaviour could be excluded.
Proof: By previous derivations, it is clear that there are

two constantsc1 > 0 andc2 > 0 such that

d{µ(t)V (t)}
dt

≤ −
{

λ2

max{ξi}
− a

2
− β

}

µ(t)V (t) +
1

2a

By Lemma 3,µ(t)V (t) are bounded. Therefore, for sufficient
large t, we have

µ(t)V (t) ≤ 1

2a( λ2

max{ξi}
− a

2 − β)

and

V (t) ≤ µ−1(t)

2a( λ2

max{ξi}
− a

2 − β)

|xi(t)− x̄(t)| ≤ µ−1/2(t)
√

2aξi(
λ2

max{ξi}
− a

2 − β)
(26)

In addition, for alli ∈ I and t ∈ [tki
, tki+1], we have

|ẋi(t)| =|
m
∑

j=1

Lij

(

xj(t
i
ki
)− x̄(tiki

)

)

|

≤2Lii
µ−1/2(tki

)
√

2aξi(
λ2

max{ξi}
− a

2 − β)

Furthermore, in any finite length interval[0, T ], ||q̇i(t)||2 ≤
M , andµ(t) is bounded. Thus,M(tik+1 − tik)

2 ≥ |qi(tik+1)−
qi(t

i
k)|2 = µ−1(tik+1) is lower bounded. Then,

(tik+1 − tik)
2 ≥

µ−1(tik+1)

M
≥ µ−1(T )

M

Therefore, in any finite length interval[0, T ], there are only
finite triggers. It means that Zeno behavior is avoided.

Theorem 3:Suppose thatG is strongly connected, and

− λ2

max{ξi}
+

a

2
+ β < 0

for some small numbersa and β. For agentvi, if trigger
timesti1 = 0, · · · , tik are known, then use the following trigger
strategy to findtik+1:

tik+1 = max
{

τ ≥ tik : |qi(tik)− qi(t)|2 ≤ e−βt, ∀t ∈ [tik, τ ]
}

(27)

Then, system (2) reaches consensus

|xi(t)− x̄(t)| ≤ e−βt/2

√

2aξi(
λ2

max{ξi}
− a

2 − β)
(28)

and the Zeno behaviour could be excluded; In addition,

ẋj(t) = O(e−βt/2)

Remark 2: (i) In Theorem 2, in order to determine the
trigger times, each agent only needs its in-neighbours’ state
information, especially do not need any a priori knowledge of
any global parameter. (ii) By a little more detail analysis,we
can show that there exists a constantc such that for each agent
vi, tik+1 − tik ≥ c > 0. We omit detail proof here.

Remark 3:By picking different functionµ(t), we can ob-
tain different convergence rate. It can be seen that ifµ(t)
increases fast, then the intervaltik+1− tik can be larger, which
means less triggers are needed. Instead, ifµ(t) increases
slowly, then the intervaltik+1 − tik should be smaller, which
means more triggers are needed.

Remark 4:The event-triggered principle used in Theorem
2 may be costly since each agent has to continuously send its
state information to its out-neighbours. In the next section, we
will give an algorithm to avoid this.

IV. D ISTRIBUTED SELF-TRIGGERED PRINCIPLES

In this section, we extend the pull-based event-triggered
principle discussed inSection III to self-triggered case in
order to avoid continuous communication between agents.

Self-triggered approach means that one can predict next trig-
gering timetik based on the information at previous triggering
time tik.

Recall again the model

xi(tik+1) = xi(tik) + (tik+1 − tik)

m
∑

j=1

aijx
j(tjk)

In centralized control, the bound for(tik+1− tik) = (tk+1− tk)
to reach consensus was given in that paper [15] when the
coupling graph is indirected (or in [16] for direct graph), too.
It means that the idea of self-triggering has been considered
in these two papers.

For agentvi, giventi1 = 0, · · · , tik, its state att ∈ [tik, t
i
k+1]

(tik+1 to be determined) can be written as:

xi(t) = xi(t
i
k) + (t− tik)qi(t

i
k), t ∈ [tik, t

i
k+1] (29)

Since each agentvp ∈ N in
i sends trigger information to agent

vi whenever agentvp triggers, then at any given time pointr,
agentvi can predict agentvp’s state at timet ≥ r as

xp(t) = xp(t
p
kp(r)

) + (t− tpkp(r)
)qp(t

p
kp(r)

) (30)

until agentvp’ next triggering afters.
Then, from Theorem 3, we have the following result
Theorem 4:Suppose thatG has spanning trees andL is

written in the form of (32). For agentvi, pick φi > 0, αi >
0. If trigger times ti1 = 0, · · · , tik are known, then use the
following trigger strategy to findtik+1:
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1) At time s = tik, substituting (29) and (30) into (40),
and solve the following maximizing problem to find out
τ ik+1:

τ ik+1 = max
{

τ ≥ s : |qi(tik)− qi(t)| ≤ e−βt, ∀t ∈ [s, τ ]
}

(31)

2) In case that some in-neighbours of agentvi triggers
at time t0 ∈ (s, τ ik+1), i.e., agentvi received the
renewed information form some of its in-neighbours,
then updatings = t0 and go to step (1);

3) In case that any ofvi’s in-neighbours does not trigger
during (s, τ ik+1), thenvi triggers at timetik+1 = τ ik+1.
The agentvi renews its state att = tik+1 and sends
the renewed information, includingtik+1, xi(t

i
k+1) and

qi(t
i
k+1), to all its out-neighbours immediately.

then, system (2) reaches consensus exponentially and the Zeno
behaviour could be excluded.

Remark 5:Obviously, Theorem 4 can be regarded as an
algorithm of Theorem 3, by which the continuous communi-
cations between different states can be avoided.

Secondly, we consider the caseL is reducible. The fol-
lowing mathematical methods are inspired by [31]. By proper
permutation, we rewriteL as the following Perron-Frobenius
form:

L =











L1,1 L1,2 · · · L1,K

0 L2,2 · · · L2,K

...
...

. . .
...

0 0 · · · LK,K











(32)

whereLk,k is with dimensionnk and associated with thek-th
strongly connected component (SCC) ofG, denoted bySCCk,
k = 1, · · · ,K. Accordingly, definex = [x1T , · · · , xKT

]T ,
wherexk = [xk

1 , · · · , xk
nk
]⊤.

For agentvi ∈ SCCk, i.e., i = Mk−1 + 1, · · · ,Mk,
whereM0 = 0, Mk =

∑k
i=1 ni, denote the combinational

state measurementqki (t) = −∑m
j=Mk−1+1 Li+Mk−1,jxj(t) =

−
∑m

j=1 Li+Mk−1,jxj(t) = qi+Mk−1
(t). And denote the com-

binational measurement error byfk
i (t) = qki (t

i+Mk−1

l )−qki (t)

anduk
i (t) = qki (t

i+Mk−1

l ), t ∈ [t
i+Mk−1

l , t
i+Mk−1

l+1 ).
If G has spanning trees, then eachLk,k is irreducible or has

one dimension and for eachk < K, Lk,q 6= 0 for at least one
q > k. Define an auxiliary matrix̃Lk,k = [L̃k,k

ij ]nk

i,j=1 as

L̃k,k
ij =

{

Lk,k
ij i 6= j

−∑nk

p=1,p6=i L
k,k
ip i = j

Then, letDk = Lk,k − L̃k,k = diag[Dk
1 , · · · , Dk

nk
], which is

a diagonal semi-positive definite matrix and has at least one
diagonal positive (nonzero).

Let ξk
⊤

be the positive left eigenvector of the irreducible
L̃k,k corresponding to the eigenvalue zero and has the sum
of components equaling to1. DenoteΞk = diag[ξk]. By the
structure, it can be seen thatRk = 1

2 [Ξ
kL̃k,k + (ΞkL̃k,k)⊤]

has zero row sums and has zero eigenvalue with algebraic
dimension one. Then, we have

Property 1: Under the setup above,Qk = 1
2 [Ξ

kLk,k +
(ΞkLk,k)⊤] = Rk + ΞkDk is positive definite andΞk ≤
ρ(Ξk)
ρ2(Qk)

Qk for all k < K.
And letUK = ΞK −ξK(ξK)⊤ and in order to facilitate the

presentation, also denoteUk = Ξk, k = 1, · · · ,K − 1.
Now we are going to determine the triggering times for the

system (2) to reach consensus. Firstly, applying Theorem 1 to
theK-th SCC, we can conclude that theK-th SCC can reach
a consensus with the agreement valueν(t) =

∑nK

p=1 ξ
K
p xK

p (t)
and limt→∞ ν̇(t) = 0 exponentially.

Then, inductively, consider theK−1-th SCC. We will prove
that limt→∞ |xK−1

p (t)− ν(t)| = 0, for all p = 1, · · · , nK−1.
Construct a candidate Lyapunov function as follows

VK−1(t) =
1

2
(xK−1(t)− ν(t)1)⊤ΞK−1(xK−1(t)− ν(t)1)

(33)

DifferentiateVK−1(t) along (2), we have

d

dt
VK−1(t)

=(xK−1(t)− ν(t)1)⊤ΞK−1
{

fK−1(t) + qK−1(t)− ν̇(t)1
}

=(xK−1(t)− ν(t)1)⊤ΞK−1
{

fK−1(t)− ν̇(t)1

− LK−1,K−1(xK−1(t)− ν(t)1)− LK−1,K(xK(t)− ν(t)1)
}

=(xK−1(t)− ν(t)1)⊤ΞK−1fK−1(t)

− [xK−1(t)− ν(t)1]⊤ΞK−1LK−1,K−1[xK−1(t)− ν(t)1]

− (xK−1(t)− ν(t)1)⊤ΞK−1
{

LK−1,K(xK(t)− ν(t)1)
}

− (xK−1(t)− ν(t)1)⊤ΞK−1 {ν̇(t)1}
=WK−1

0 (t)−WK−1
1 (t)−WK−1

2 (t)−WK−1
3 (t) (34)

where

WK−1
0 (t) = (xK−1(t)− ν(t)1)⊤ΞK−1fK−1(t)

≤ aK−1VK−1(t) +
1

2aK−1

nK−1
∑

i=1

ξK−1
i [fK−1

i ]2 (35)

with any aK−1 > 0,

WK−1
1 (t)

= [xK−1(t)− ν(t)1]⊤ΞK−1LK−1,K−1[xK−1(t)− ν(t)1]

= [xK−1(t)− ν(t)1]⊤QK−1,K−1[xK−1(t)− ν(t)1] (36)

WK−1
2 (t) = (xK−1(t)− ν(t)1)⊤ΞK−1LK−1,K(xK(t)− ν(t)1)

WK−1
3 (t) = (xK−1(t)− ν(t)1)⊤ΞK−1(ν̇(t)1)

By Cauchy inequality, for anyυK−1
2 > 0, υK−1

3 > 0, we
have

−WK−1
2 (t) ≤ υK−1

2 VK−1(t) + FK−1
2 (t)

−WK−1
3 (t) ≤ υK−1

3 VK−1(t) + FK−1
3 (t) (37)

where

FK−1
2 (t) =

1

4υK−1
2

nK−1
∑

i=1

ξK−1
i

{

nK
∑

p=1

LK−1,K
i,p [xK

p (t)− ν(t)]

}2

FK−1
3 (t) =

1

4υK−1
2

nK−1
∑

i=1

ξK−1
i [ν̇(t)]2 =

1

2υK−1
3

[ν̇(t)]2
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According to the discussion ofSCCK and Theorem??,
for all p = 1, · · · , nK , we havelimt→∞ xK

p (t) − ν(t) =
0, limt→∞ ν̇(t) = 0 exponentially. Thus

lim
t→∞

FK−1
2 (t) = 0, lim

t→∞
FK−1
3 (t) = 0 (38)

exponentially.
Thus, (34) can be rewritten as follows

d

dt
VK−1(t) ≤ aK−1VK−1(t) +

1

2aK−1

nK−1
∑

i=1

ξK−1
i [fK−1

i ]2

−WK−1
1 (t)−WK−1

2 (t)−WK−1
3 (t)

≤−
[

1− aK−1ρ(Ξ
K−1)

2ρ2(QK−1)

]

WK−1
1 (t)−WK−1

2 (t)

+
1

2aK−1

nK−1
∑

i=1

ξK−1
i [fK−1

i ]2 −WK−1
3 (t) (39)

Thus, we have
Theorem 5:Suppose thatG has spanning trees andL is

written in the form of (32). For agentvi, if trigger timesti1 =
0, · · · , tik are known, then use the following trigger strategy
to find tik+1:

tik+1 = max
{

τ ≥ tik : |qi(tik)− qi(t)| ≤ e−βt, ∀t ∈ [tik, τ ]
}

(40)

system (2) reaches consensus exponentially and the Zeno
behaviour could be excluded.

Proof: If vi ∈ K-th SCC, the event-triggered rule (40) is
the same as (27) in Theorem 3, sinceL is written in the form of
(32). By Theorem 3, we can conclude that under the updating
rule of {tj+MK−1

l }for all j = 1, · · · , nK and limt→∞ ν̇(t) =
0, the subsystem restricted inSCCK reaches a consensus.
Additionally, limt→∞ |xK

i (t)−ν(t)| = 0 for all i = 1, · · · , nK

and limt→∞ ν̇(t) = 0 as well.
In the following, we are to prove that the state of the agent

vp+MK−2
∈ SCCK−1 converges toν(t). The remaining can

be proved similarly by induction.
From (39) and the inequality (40), we have

d

dt
VK−1(t) ≤− [1− aK−1ρ(Ξ

K−1)

2ρ2(QK−1)

]

ρ2(Q
K−1)

ρ(UK−1)
VK−1(t)

+ (υK−1
2 + υK−1

3 )VK−1(t) +WK−1
4 (t)

where

WK−1
4 (t) = FK−1

2 (t) + FK−1
3 (t) +

1

2aK−1

nK−1
∑

j=1

ξK−1
j δ2j (t)

Picking aK−1 = ρ2(Q
K−1)

ρ(ΞK−1)
and sufficiently smallυK−1

2 and

υK−1
3 , there exists someεK−1 > 0 such that

d

dt
VK−1(t) ≤ −εK−1VK−1(t) +WK−1

4 (t)

Thus

VK−1(t) ≤ e−εK−1t

{

VK−1(0) +

∫ t

0

eεK−1sWK−1
4 (s)ds

}

From (38), we havelimt→∞ WK−1
4 (t) = 0 exponen-

tially. Thus, we have limt→∞ VK−1(t) = 0 exponen-
tially.This implies that system (2) reaches a consensus and
limt→∞ |xK−1

p (t) − ν(t)| = 0 exponentially for all p =
1, · · · , nK−1.

Similar to the proof in Theorem 3, we can prove that the
Zeno behaviour can be excluded for agentvi ∈ K−1-th SCC.

Then, we can complete the proof by induction toSCCk for
k < K − 1.

V. EXAMPLES

In this section, one numerical example is given to demon-
strate the effectiveness of the presented results.

Consider a network of seven agents with a directed reducible
Laplacian matrix

L =





















−12 0 5 2 5 0 0
3 −8 3 0 0 0 2
0 4 −12 3 0 5 0
0 0 6 −11 1 4 0
0 0 0 0 −7 2 5
0 0 0 0 5 −6 1
0 0 0 0 0 8 −8





















with a spanning tree described by Figure 1. The seven agents
can be divided into two strongly connected components,
i.e. the first four agents form a strongly connected com-
ponent and the rest form anther. The initial value of each
agent is also randomly selected within the interval[−5, 5]
in our simulation. Figure 2 (a) shows the evolution of the
Lyapunov functionV (t) = V1(t) + V2(t) (see (33)), and
Figure 2 (b) illustrates the trigger times of each agents under
the self-triggered principles provided in Theorem 4 with
φi = 20 and αi = 1.5, i = 1, · · · , 7, and initial value
[2.192,−3.699,−2.982, 4.726, 3.575, 4.074,−3.424]⊤. It can
be seen that under the self-triggering principle in Theorem4,
V (t) approaches 0 exponentially and the inter-event times of
each agent are strictly bigger than some positive constants.

21

75

4

6

3

5

4

3

3

5

25

8
15

2

41 5

3

6

2

Fig. 1. The communication graph.

VI. CONCLUSIONS

In this paper, we present distributed event-triggered and
self-triggered principles in for multi-agent systems withgen-
eral directed topologies. We derive pull-based event-triggered
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(a) The evolution of the Lyapunov function
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 t

(b) Triggers in Theorem 3

 V(t) in Theorem 3

Fig. 2. The evolution of the Lyapunov function and the trigger times of each
agents..

principles: in case the graph is reducible with a spanning
tree, the triggering time of each agent given by the inequality
(40) only depends on the states of each agent’s in-neighbors.
It is shown that with those principles, consensus can be
reached exponentially, and Zeno behavior can be excluded.
The results then are extended to discontinuous monitoring,
where each agent computes its next triggering time in advance
without having to observe the systems state continuously. The
effectiveness of the theoretical results are verified by one
numerical example.
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