
For Peer Review

SpikeTemp: An enhanced rank-order based learning

approach for Spiking Neural Networks with Adaptive
Structure

Journal: IEEE Transactions on Neural Networks and Learning Systems

Manuscript ID TNNLS-2015-P-4619.R2

Manuscript Type: Paper

Date Submitted by the Author: n/a

Complete List of Authors: Wang, Jinling; University of Ulster, Magee Campus, Intelligent Systems

Research Centre, School of Computing and Intelligent Systems, Faculty of
Computing and Engineering,
Belatreche, Ammar; University of Ulster, Magee Campus, Intelligent
Systems Research Centre, School of Computing and Intelligent Systems,
Faculty of Computing and Engineering,
Maguire, Liam; University of Ulster, Magee Campus, Intelligent Systems
Research Centre, School of Computing and Intelligent Systems, Faculty of
Computing and Engineering,
McGinnity, Thomas; University of Ulster, Magee Campus, Intelligent
Systems Research Centre, School of Computing and Intelligent Systems,
Faculty of Computing and Engineering,; Nottingham Trent University, ,
School of Science and Technology

Keywords:
adaptive spiking neural networks, spiking neurons, classification, online
learning, clustering, supervised learning

For Peer Review

> TNNLS-2015-P-4619. R1

The authors would like to thank the reviewers for taking the time to review our manuscript and for helping us
improve our work. We appreciate the reviewer’s very positive comments and we are glad to learn that the
reviewers are now satisfied with our work.

We would also like to thank the Associate Editor for the comment regarding the referencing style. We have
thoroughly checked all references and made sure that all of the references now follow the IEEE referencing
style as per the referencing style note provided by the Associate Editor.

Page 1 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 1



Abstract— This paper presents an enhanced rank-order based

learning algorithm, called SpikeTemp, for Spiking Neural

Networks (SNNs) with a dynamically adaptive structure. The

trained feed-forward SNN consists of two layers of spiking

neurons: an encoding layer which temporally encodes real valued

features into spatio-temporal spike patterns, and an output layer

of dynamically grown neurons which perform spatio-temporal

classification. Both Gaussian receptive fields and square cosine

population encoding schemes are employed to encode real-valued

features into spatio-temporal spike patterns. Unlike the rank-

order based learning approach, SpikeTemp uses the precise times

of the incoming spikes for adjusting the synaptic weights such

that early spikes result in a large weight change and late spikes

lead to a smaller weight change. This removes the need to rank

all the incoming spikes and thus reduces the computational cost

of SpikeTemp. The proposed SpikeTemp algorithm is

demonstrated on several benchmark datasets and on an image

recognition task. The results show that SpikeTemp can achieve

better classification performance and is much faster than the

existing rank-order based learning approach. In addition, the

number of output neurons is much smaller when the square

cosine encoding scheme is employed. Furthermore, SpikeTemp is

benchmarked against a selection of existing machine learning

algorithms and the results demonstrate the ability of SpikeTemp

to classify different datasets after just one presentation of the

training samples with comparable classification performance.

Index Terms—adaptive spiking neural networks, clustering,

classification, online learning, spiking neurons, supervised

learning.

I. INTRODUCTION

N artificial neural network (ANN) is a biologically

inspired information processing paradigm which mimics

the way the brain acquires and processes sensory information

[1]. ANNs have been researched extensively and have

successfully been used in a wide range of applications. One of

the fundamental issues in neuroscience is the problem of

This manuscript was submitted on March, 12, 2015; revised on July 18,

2015.

The authors are with the Intelligent Systems Research Centre, School of

Computing and Intelligent Systems, University of Ulster, Londonderry,

Northern Ireland BT48 7JL, United Kingdom. (e-mail: wang-

j1@email.ulster.ac.uk; a.belatreche@ulster.ac.uk; lp.maguire@ulster.ac.uk;

tm.mcginnity@ulster.ac.uk).

T.M. McGinnity is also with the School of Science and Technology,

Nottingham Trent University, UK.

neuronal coding; despite significant progress having been

made in understanding the dynamics of biological neurons,

there is no definitive understanding of what code is used by

neurons to represent and transmit information in the brain. It

has been verified that thousands of spikes are emitted per

millisecond in a very small area of the cortex, and that

information is transmitted and processed efficiently in the

brain [2]. The main motivation behind the study of these

biologically plausible neuron models is to further our

understanding of how they communicate, how computation is

carried out in the brain [3-8], and also to understand brain

function and dysfunction (neurodegenerative diseases). The

ultimate goal from a computing perspective is to exploit such

knowledge in devising novel sophisticated intelligent

computational systems. To date, a number of supervised and

unsupervised learning methods [9-35] have been developed

for SNNs; a review of some of these learning rules can be

found in [36][37]. With a few exceptions [33-35] these efforts

have found limited success in applying spiking neural

networks to solving real-world problems due to the lack of

efficient and scalable learning algorithms. Most of the existing

learning algorithms require retraining if used in a changing

environment and fail to scale. Therefore, further development

is still needed to devise efficient and scalable online learning

mechanisms for spiking neural networks (SNNs) in order to

increase their applicability in solving real world problems.

 SpikeProp represents an adaptation of the classical

backpropagation algorithm, and was the first supervised

learning algorithm developed for SNNs [9]. Its performance

on several benchmark datasets, including non-linearly

separable classification problems, demonstrated that SNNs

with temporal coding can achieve comparable results to

classical rate-coded networks [9] [10]. However, there were

several issues this algorithm needed to address, such as slow

convergence especially for large datasets and the problem of

non-firing (silent) neurons. Subsequently, several methods

have been developed to improve SpikeProp [11-15]. These

gradient based algorithms are computationally powerful but

are often regarded as non-biologically plausible because they

require a non-local spread of error signals from one synapse to

another. Besides, they are slow if used in an online setting,

and getting stuck in local minima is another well known

problem for gradient-based approaches. Belatreche et al. [16]

proposed a derivative-free supervised learning algorithm

SpikeTemp: an Enhanced Rank-Order Based

Learning Approach for Spiking Neural

Networks with Adaptive Structure

Jinling Wang, Ammar Belatreche, Member, IEEE, Liam Maguire and T.M. McGinnity

A

Page 2 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 2

where an evolutionary strategy (ES) was used to minimise the

error between the output firing times and the corresponding

desired firing times. This algorithm achieved a better

performance than SpikeProp. However, since the algorithm

was an ES-based iterative process, the training procedure was

extremely time-consuming and is not suitable for online

learning.

 Spike-Timing Dependent Plasticity (STDP) and Hebbian

learning are biologically plausible learning rules [17]. Like

Hebbian learning, STDP is unsupervised, which is applied

locally to a synapse linking pre-synaptic and post-synaptic

neurons. The synaptic plasticity depends on the relative

timings of pre-synaptic and post-synaptic spikes. STDP-based

learning has been investigated in supervised learning [18-23],

in unsupervised learning [24][25], in reinforcement learning

[26] and in associative memory [27] [28].

Legenstein et al. [18] presented a Supervised-Hebbian

learning method (SHL) which forces the post-synaptic neuron

to fire at specific desired times using an extra ‘teaching’ input

signal. The algorithm was able to implement different

transformations between input spike trains and output spike

trains quite well, however it was reported that convergence

cannot be guaranteed in a general case and that synaptic

parameters continue to change even if the neurons fires

exactly at the desired times.

ReSuMe, another supervised learning method, developed by

Ponulak [19][20][21], integrated the idea of learning-windows

with remote supervision. It was shown that the desired

temporal sequences of spikes can efficiently be learnt after

projection of the input data on a Liquid State Machine (LSM)

network. The authors claimed the method is suitable for

online processing. However, the network structure used in

this method is fixed and does not adapt to incoming stimuli. In

addition, the desired precise output spike timing is crucial to

ReSuMe learning.

Another supervised learning, called the Tempotron, was

proposed by Gutig and Sompolinsky [22]. It updates the

weights of a neuron using an error function which is based on

the difference between the maximum membrane potential and

the threshold of this neuron so that it fires or remains silent

depending on whether the presented spiking inputs belong to

one class or another, respectively. It was, however, reported

by Florian [23] that this learning rule is in fact equivalent to a

special case of ReSuMe under certain conditions.

Masquelier et al. [24] presented an unsupervised STDP-

based learning approach, in which a single neuron uses STDP

learning process to successfully detect and learn a repeating

arbitrary spatiotemporal spike pattern that is hidden in equally

dense distracter spike trains. This approach was later extended

to multiple repeating patterns and multiple STDP neurons [25]

where competition between neurons is achieved through the

use of lateral inhibitory connections.

Legenstein et al. [26] presented another unsupervised

learning rule based on reward modulated STDP where

complex firing patterns of presynaptic neurons can be

distinguished with no need for a supervisor to instruct the

neuron when it should fire. This method is sensitive to local

fluctuations of the membrane voltage rather than the peak

value of membrane voltage as in the Tempotron learning [22].

Scarpetta and Giacco [28] use an STDP-based learning

process to study the collective dynamics of a Leaky Integrate

and Fire network, so that the resulted network can work as

associative memory, in which precise relative phase

relationship of spikes among neurons are stored then recalled.

This model stores not only the order of activation in a

sequence, but the precise relative times between spikes in a

phase-coded pattern. After changing the excitability

parameters of the network, different regimes are observed and

discussed.

It is important to note though that these STDP-based

learning methods (both supervised and unsupervised) are

batch training methods with fixed network structures. That is,

their networks do not evolve during learning, hence they do

not adapt to incoming stimuli, which make them in current

form unsuitable for online learning.

 The work of Thorpe et al. [29] has shown that the visual

system is capable of processing complex natural scenes in a

timescale of 100-150ms. A consideration of the fact that such

a task is completed so quickly despite passing through many

areas of the brain which is composed of billions of neurons led

to the suggestion that the first spike should contain most of the

information; this is reflected in the time-to-first spike

encoding scheme. The authors [30-32] therefore proposed an

offline rank-order based learning approach for a feedforward

SNN of integrate-and-fire neurons, which uses only one spike

per neuron and can classify faces successfully. However, two

issues were highlighted in [33]; first, since the weight change

is determined by a modular factor and the number of training

samples, then the number of training samples needs be known

in advance; and second, the trained network is selective to the

average pattern, so it is not suitable for online learning.

All of the above-mentioned approaches use an SNN with a

fixed structure, where the sizes of the hidden and output layers

must be specified a priori, and are trained in an offline batch

mode. Therefore, these approaches can only be applied if the

number of classes or clusters is known up front. In addition,

these approaches cannot be applied to problems where data is

continuously changing as they will need to retrain both the old

and new data samples. However, biological neural networks

are known for their ability to learn continuously and

incrementally which account for their continuous adaptation to

changing non-stationary environments. Therefore, to allow a

spiking neural network to interact with a continuously

changing environment, it is necessary that both its structure

and weights dynamically adapt to new data. Also, catastrophic

interference/forgetting should be avoided when new

information is learned.

 Wysoski et al. [33] selected the offline learning procedure

in [30]-[32] with a fixed structure and adapted it to online

learning with an adaptive network structure. The model

presented in [33] consists of a four layer hierarchical neural

network of two-dimensional integrate-and-fire neuronal maps.

The proposed procedure can perform learning in an online

mode through synaptic plasticity and adaptive network

Page 3 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 3

structure. The training procedure was applied to a publicly

available face recognition dataset, and the performance

obtained was comparable to the optimised off-line method. In

[33], the facial images are firstly preprocessed, the boundaries

of the region of interest (ROI) are chosen manually between

the inter-ocular distance and the distance between the eyes,

and then the ROI is normalized to a size of 20 x 30 pixels;

after an image is pre-processed to the size 20*30 pixels in

greyscale, it is used as input to the SNN. In real time

applications, many data samples are 1D feature vectors, so in

[34], Gaussian population encoding is used to encode every

input feature into a set of spike times with a population of

neurons such that each neuron can spike only once and then a

rank order coding learning method is employed for the

learning. The learning method used to train the weights in

[33][34] is based on the rank order of the incoming spikes

arrival. However, in these networks [33][34], several issues

are highlighted: (a) The learning method used to train the

weights is based on the order of the incoming spiking arrival.

The precise timing information is thrown away despite the fact

that the precise times not only carry the rank order

information, but also how different they are [39]; (b) due to

the time spent on the calculation of the rank order, the

simulation time of the network is slow for large datasets and

networks; (c) In [33], it has been shown that SNN can be used

to extract face images features, the network presented is

suitable for 2D inputs; however, in real world application,

many inputs are represented by a 1D feature vector and the

pre-processing of a face image in [33] is time-consuming for

an online system.

 This paper presents an enhanced rank-order based

learning method, called SpikeTemp, for spiking neural

networks with an adaptive structure where, unlike the existing

rank-order based learning approach [33][34], the precise times

of incoming spikes are used to determine the required change

in synaptic weights. The proposed approach employs a two-

layer feed-forward spiking network with a layer of encoding

neurons and a layer of output neurons. It is suitable for inputs

represented by a 1D feature vector. It is more appropriate for

online systems. SpikeTemp calculates the weight changes

between the encoding layer and the output layer based on the

precise times of the incoming spikes such that the amount of

weight change decreases exponentially with later spike times,

i.e. early spikes result in a larger weight change and late spikes

lead to a smaller weight change. This removes the need to

explicitly rank order incoming spikes. As a result, SpikeTemp

is computationally efficient and is more applicable for a wide

range of datasets. Furthermore, in addition to the Gaussian

receptive field population encoding scheme, the square cosine

population encoding is also employed in SpikeTemp for

temporally encoding the input features into spatio-temporal

spike patterns.

 The remainder of this paper is structured as follows: Section

2 describes the employed neural model, the two temporal

encoding schemes and presents the SNN structure design.

Section 3 presents network structure adaptation and learning

procedure. Section 4 presents experimental results for training

SNNs, using both encoding schemes, on selected benchmark

datasets from the UCI Machine Learning Repository. The

results obtained are compared with those obtained from the

rank order approach as well as standard classical machine

learning methods. Section 5 describes the application of

SpikeTemp to a visual pattern recognition task and Section 6

provides an analysis and discussion of various parameters

effect on the learning performance. Finally section 7

concludes the paper and outlines future work.

II. NEURAL MODEL, INFORMATION ENCODING SCHEMES AND

NETWORK STRUCTURE

A. Spiking Neural Model

Neuronal models with varying degrees of computational

complexity have been developed and reported in the literature

[2][38]. For the proposed SpikeTemp algorithm, it was

considered important to choose a tractable yet biologically

relevant neuron model in order to reduce the computational

complexity of the spiking neural network which is critical for

online learning. Balancing biological plausibility and

tractability, SpikeTemp employs simple integrate-and-fire (IF)

neurons in output layer that are also employed in related work

[30-32]. The detailed dynamics of this model were analysed

and explained in [30]. After a spike is generated in the output

layer, the simulation for the current input sample is terminated

and the PSP of firing output neuron is reset and the neuron

remains silent. The postsynaptic potential (PSP) of an output

neuron i at time t relies on the spike times received from

neurons in the encoding layer and can be described as:

(1)

Where j [1, N] represents the j
th

 incoming connection, and N

is the total number of incoming connections between the

encoding layer and the output neuron i; tj represents the

precise spiking time of the j
th

 encoding neuron; τ is a time

constant and determines the range for which each synaptic

strengthening occurs; Wji is the synaptic weight associated

with the synaptic connection between output neuron i and

encoding neuron j. If PSP(i, t) is greater than the firing

threshold, , of neuron i , then an output spike

isproduced at neuron i in the output layer, and the simulation

for the current input sample is terminated.

B. Information encoding

The Gaussian Receptive Field population encoding scheme,

proposed by Bohte et al. [10], can be used to encode

continuous input variables into spike times. The input can be

distributed over several neurons with overlapping and graded

sensitivity profiles, e.g., Gaussian activation functions. In [10]

there is detailed description of how to set the centre and width

of a neuron. In this work the parameter β is taken as 1.5 as

used in [10]. Each encoding neuron fires only once during the

time coding interval [0,Tref]; Tref = 9ms was employed in this

work (this value is chosen arbitrarily). As a result, each input

Page 4 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 4

sample is translated into a spatio-temporal spike pattern. An

example is shown in Fig. 1 where a real-valued feature of 5.1

(illustrated by a vertical dashed red line) is converted into

spike times using eight Gaussian receptive fields. Response

values (y) can be obtained from points where the vertical

dashed line at 5.1 intersects the Gaussian curves and the

resulting eight response values are 0.0228, 0.4578, 0.9692,

0.2163, 0.0051, 0, 0 and 0 respectively (note that all values lie

between 0 and 1). These values are then mapped linearly to

spike times (see (2)) such as the highest response value of 1 is

associated with spiking time t=0ms (i.e. early firing time) and

the lowest response value of 0 is associated with spiking time

t=9ms ((i.e. late firing time).

(2)

If the resulting spike time is equal to 9ms, this neuron is

treated as ‘silent’, and is represented by a value of ‘-1’. Also,

the resulting spiking times are rounded to two decimal values

(the nearest time step) in ms. For example, the resulting

spiking times which encode the single real-valued feature of

5.1 using 8 receptive fields input neurons are therefore

represented by the following series of spiking times: 8.79ms,

4.88ms, 0.28ms, 7.05ms, 8.95, -1(silent), -1(silent) and -

1(silent).

Fig. 1. Encoding of a real valued feature of 5.1 using 8 Gaussian receptive

fields neurons.

Wu et al. [14] proposed a square cosine encoding method

that was used to code continuous input variables into spike

times to improve the precision of the encoded data. An

example is shown in Fig. 2 where a feature value of 5.1 is

converted into spike times using eight Square Cosine

encoders. Spike times can again be obtained from points

where the vertical dashed line intersects the square cosine

curves; the resulting encoding values are 0.9096, 0.9924,

0.7868, 0.4132, 0.0904, 0.0076, 0.2132 and 0.5868,

respectively for value 5.1 (note all values lie between 0 and 1).

These values are again converted linearly into spike times by

associating the highest response value 1 with spiking time

t=0ms and the lowest response value 0 with spiking time

t=9ms (see (2)). The resulting spiking times are rounded to

two decimal values, so the converted spiking times for the

single input value 5.1 using 8 input neurons are 0.81, 0.07,

1.92, 5.28, 8.19, 8.93, 7.08 and 3.72.

Fig. 2. Encoding of a real valued feature of 5.1 using 8 Square Cosine

neurons.

It can be seen that there are 8 spiking times resulted from

both Gaussian and square cosine population encoding schemes

for the value of 5.1; however, the Square Cosine population

encoding scheme results in earlier spike times. Each spiking

time is represented by a neuron in the encoding layer. In the

following experiments, the effect of these two population

encoding methods on SpikeTemp performance and efficiency

will be evaluated.

Time-to-first spike decoding is employed at the output layer

where an input sample is considered to be correctly classified

if the first spike is produced at an output neuron whose class

label matches the class label of the current input sample;

otherwise an input sample is considered to be incorrectly

classified.

C. Network Topology

Fig. 3 presents the network topology that consists of a layer of

encoding neurons and a layer of output neurons. The neurons

in the encoding layer convert the input features to a set of

spiking times using Gaussian Receptive Field / Square Cosine

population encoding. The parameter q represents the number

of Gaussian receptive fields / Square Cosines and its value is

chosen by trial and error. Each neuron in this layer provides a

spike time which is fed to the next layer, and is fully

connected to the neurons in the output layer. The number of

neurons in this layer is determined by the dimensionality of

the dataset and the value of the parameter q. For instance, if

the dimensionality of the dataset is denoted by m then the size

of the encoding layer is given by m*q. The set of spiking

times represented by these neurons in the encoding layer is in

the range of the time coding interval [0,Tref] and Tref = 9 ms.

 The output layer has no output neurons at the beginning of

the training process. A new output neuron is added

dynamically when an incoming sample is received and is fully

connected to the neurons in the encoding layer. Every added

Page 5 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 5

output neuron is assigned a class label corresponding to the

label of the incoming sample during training. Only one

synaptic connection exists between every encoding neuron and

every output neuron. Multiple sub-connections are not used in

this work.

Fig. 3. A feedforward SNN with adaptive output layer.

III. LEARNING AND NETWORK STRUCTURE ADAPTATION

Delorme and Thorpe [30] proposed a learning method to

update weights based on the rank order of the incoming spikes

that was trained in an offline mode as shown in (3):

(3)

Where is the change of weight between neuron j in the

encoding layer and neuron i in the output layer.

mod is a constant, representing the modulation factor that is in

the range of [0 1].

order() is the relative order based on the spiking times for

afferent neuron j. For example, the first spike arrives

(order() = 0), the second spike arrives (order ()= 1), the

third spike arrives (order ()= 2) and so on.

Tr is the number of samples for the training dataset.

Wysoski et al. [33] adapted the offline learning procedure in

[30] to online learning with an adaptive network structure.

The learning method used to train the weights in [33] is based

on the rank order of the incoming spiking arrival and hence

the precise timing information is thrown away. Weight change

 w is only determined by the mod term as shown in (4):

(4)

In SpikeTemp, the precise spike time is exploited to update

the weights. Equation 5 describes the change in the weight

 of the synapse connecting an encoding neuron j to an

output neuron i, where tj denotes the precise spiking time of

the encoding neuron j instead of the order of spiking times as

in [33], such that earlier firing times invoke a larger weight

change, τ represents a time constant. This weight change is

added to the initial baseline weight.

(5)

A. Comparison between SpikeTemp and the rank-order based

learning approaches

To illustrate the difference between SpikeTemp and the

rank-order based approaches consider a simple SNN that

consists of a layer of three encoding neurons and a layer of

one output neuron which receives two input vectors (2.0, 5.0,

8.0) and (1.1, 2.0, 8.2) respectively. The three encoding

neurons are fully connected to the output neuron.

Using a rank order approach the rank ordering stays the

same and the learning algorithm maintains a constant weight

update for both input patterns. Therefore, the maximum

postsynaptic potential for this output neuron, which is

computed using (1) when all three input spikes have been

used, is the same for both input patterns. However, with the

SpikeTemp approach the different spike times inherently

cause different weight changes, and different maximum

postsynaptic potential for this output neuron for the two input

patterns. As a result, the weight changes and the maximum

postsynaptic potential now correlate better with the input

pattern, which contributes to an improved learning

performance. Furthermore as SpikeTemp approach removes

the need to rank all the spikes in a window, it reduces the

computational effort with respect to the rank order approach.

B. Learning Procedure

The overall aim of the proposed supervised procedure is to

map a set of input samples to a set of classes. The weights are

updated after each sample is propagated into the network. The

following sequential steps describe the learning procedure of

SpikeTemp:

1) Each real-valued feature of a data sample is encoded

using q Gaussian receptive fields/Square Cosine encoders. An

output neuron is then created and all weights between every

neuron in the encoding layer and this added output neuron are

initialised to a constant 0.1 (this value was chosen by

systematic experiments based on classification performance,

please see section VI.A). The weights are updated when an

incoming sample is propagated into the network using (5).

2) The maximum postsynaptic potential for this added

output neuron, , is calculated using (1) when all

input spikes have occurred. The firing threshold of this added

output neuron is a fraction of the maximum

postsynaptic potential represented by (6), so similar samples

can trigger an output spike.

 (6)

Encoding Layer Output Layer

Feature 1

Feature m





 
 
 

1

2

q





Input features

 
 
 

1

2

q

Page 6 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 6

con is a constant (0< con < 1) that represents how similar a

sample can trigger an output spike. During training, the class

label of this new added output neuron is set as the label of the

current sample, this is a supervised process.

3) The similarity between this new added output neuron i

and other output neurons that have the same class label is

calculated. It is defined as the inverse of the Euclidean

distance between the weights of this newly added output

neuron and other output neurons (k) that belong to the same

class. If the similarity with one of the existing output neurons

is greater than a predefined threshold, then the newly added

output neuron is merged with the output neuron whose

synaptic weights are most similar to it. The SNN structure is

then updated. Currently this threshold is set based on

performance, in terms of accuracies by trial and error in the

range of [0.5 1.0], please see detailed discussion in section

VI.C. For example if the i
th

 output neuron was merged with

the k
th

 output neuron, the resultant weights wjk and firing

threshold of this merged neuron k in the output layer are

determined by (7) and (8) respectively. The total trained

number of samples for output neuron k,

, is then

incremented by one. The above mentioned rules for pruning

output neurons were inspired by [33].

 (7)

(8)

4) In order to evaluate the performance of the system, after

the one pass training, the weights were fixed and the training

dataset and testing dataset were fed into the network so that

the classification accuracy on both training and testing

datasets can be calculated. There are no weight updates and

neuron merging during testing as weight updates and neuron

merging happen during training only. The spikes from all

neurons in the encoding layer are integrated by each neuron in

the output layer and when the threshold of an output neuron

has been reached, a spike is emitted. When an output neuron

fires first, if the class label represented by this output neuron

matches the class label of this sample, we treat it as correctly

classified. Otherwise, we treat it as incorrectly classified.

During the testing stage, once a spike is emitted in the output

layer, the simulation for this sample is finished, and another

sample can be presented to the network. The supervision

mechanism is used to set the class label of every new added

output neuron as the label of the incoming sample, and

similarity is calculated between the output neurons which have

the same class label during training so that pruning can only

occur on the output neurons that have the same class label.

IV. BENCHMARKING: EXPERIMENTS AND RESULTS

In this section selected benchmark datasets, from the UCI

Machine Learning Repository, were used to test and evaluate

the performance of SpikeTemp, employing either Gaussian or

Square Cosine population encoding. The results obtained from

SpikeTemp have also been compared with the results obtained

using the rank order based learning rule used in [33][34] and

standard classical machine learning methods. Lateral

inhibition in the simulations of rank-order and SpikeTemp

learning is not used in the following experiments.

A. Data description and simulation results for SpikeTemp

and rank order method

The following benchmark datasets from the UCI Machine

Learning Repository are used: Pima diabetes, Bupa Liver

disorders, Ionosphere, Wisconsin Breast Cancer (WBC),

Image segmentation, Abalone, Yeast, EEG eye state and IRIS.

Each dataset is divided into training (Tr) and test (Ts) sets as

outlined in Table I.
TABLE I

DESCRIPTION OF DIFFERENT DATASETS

Table I summarises the properties of each dataset: size of

dataset (T), number of training (Tr) and testing (Ts) samples,

number of features or the dataset dimension (m), the number

of classes presented in each dataset (c), the number of

Gaussian receptive fields /Square Cosine curves for each

dataset (q) and the size of the encoding layer (N). For

example, the Wisconsin breast cancer dataset consists of 699

instances with 9 feature values: 16 samples of the 699

instances that have missing data are removed in this

experiment for simplicity. So there are 683 samples

remaining that are divided into two sets (the first 455 samples

for training and the remaining 228 samples for testing). Each

feature value is encoded with 15 Gaussian receptive fields

/Square Cosine curves resulting in a total of 135 neurons in the

encoding layer (encoding layer, 15*9 neurons). In the Image

Segmentation dataset, there are 19 continuous feature values,

but since the fourth feature values are similar for all the

samples, this feature is removed for simplicity. Each feature

value of the remaining 18 feature values is encoded with 10

Gaussian receptive fields /Square Cosine curves resulting in a

total of 180 neurons in the encoded layer (encoded layer,

10*18 neurons). In the Ionosphere dataset, there are 34

numeric feature values, since the second feature values are

also similar for all the samples, this feature is also removed for

simplicity. Each feature value of the remaining 33 feature

values is encoded with 7 Gaussian receptive fields /Square

Cosine curves resulting in a total of 231 neurons in the

encoded layer (encoded layer, 7*33 neurons). Please see

section VI.D for detail of how to decide the number of the

Gaussian receptive fields for each dataset.

Database T Tr Ts m c q N

IRIS 150 90 60 4 3 30 120

WBC 683 455 228 9 2 15 135

Image 2310 210 2100 18 7 10 180

Abalone 4177 2000 2177 7 3 7 49

Pima Diabetes 768 512 256 8 2 10 80

Liver Disorder 345 230 115 6 2 25 150

Ionosphere 351 234 117 33 2 7 231

Yeast 1484 990 494 8 10 10 80

EEG eyeState 14980 9990 4990 14 2 10 140

Page 7 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 7

TABLE II

CLASSIFICATION PERFORMANCE IN TERMS OF SIMULATION TIMES AND SIZE OF OUTPUT LAYER FOR SPIKETEMP AND RANK ORDER METHOD

USING GAUSSIAN/SQUARE COSINE POPULATION ENCODING

 SpikeTemp Rank order method

Database Gaussian Square Cosine Gaussian Square Cosine

 Tsim(min) Num_o Tsim(min) Num_o Tsim(min) Num_o Tsim(min) Num_o

IRIS 0.85 87 0.15 63 11.7 84 1.58 58

WBC 3.59 306 1.13 284 209.8 280 58.2 265

Image 6.82 174 1.69 130 367.1 191 41.4 114

Abalone 6.56 39 2.03 46 66.0 16 14.6 13

Pima Diabetes 5.21 431 0.76 365 191.6 265 37.0 187

Liver Disorder 1.65 226 0.31 170 149.4 215 9.67 157

Ionosphere 3.11 223 0.26 210 36.2 213 12.2 215

Yeast 14.3 549 0.80 300 307.9 184 74.3 258

EEG eyeState 6.56 7 5.42 5 60.7 5 21.0 5

TABLE III

COMPARISON OF THE CLASSIFICATION ACCURACY OF SPIKETEMP WITH A SELECTION OF MACHINE LEARNING APPROACHES

 SpikeTemp Rank order approach KNN MLP SVM

Database (Gaussian) (Square Cosine) (Gaussian) (Square Cosine) (k=3)

 Acc_TR(%)/ Acc_TS(%)

IRIS 100/96.7 100/95.0 100/95.0 98.9/93.3 96.0/92.0 100/94.8 100/96.7

WBC 99.1/98.3 99.6/92.1 99.6/98.7 92.5/89.9 96.9/98.7 97.4/90.9 96.7/98.2

Image 89.1/82.0 91.9/84.4 71.9/70.9 86.7/80.0 96.7/86.3 71.6/52.1 91.4/87.6

Abalone 45.7/47.8 52.2/52.0 44.5/44.8 53.4/51.7 82.2/59.3 67.4/60.5 50.4/51.7

Pima diabetes 77.5/67.6 91.2/70.3 81.0/61.7 79.9/67.6 84.4/69.9 84.5/76.2 79.3/80.5

Liver disorder 93.0/58.3 80.4/52.2 86.5/59.1 78.7/56.5 81.7/67.8 89.8/59.0 100/65.2

Ionosphere 86.8/91.5 92.7/95.7 81.6/74.4 85.9/70.9 90.2/95.7 99.5/83.6 100/85.5

Yeast 56.7/31.6 53.5/37.2 50.5/31.4 53.3/31.2 84.0/51.6 53.2/35.9 40.8/33.0

EEG eyeState 55.4/54.6 55.5/54.4 55.4/54.6 55.5/54.4 99.9/53.9 86.0/53.5 88.8/53.0

In the following tables, Acc_Tr/Acc_Ts represents the

training/testing classification accuracy; Num_o represents the

total number of neurons in the output layer after training; Tsim

is the running time in minutes which represents the complete

simulation time including calculation of training and test

accuracies. The simulations are run on a laptop with the

following specifications: Intel Core 2 Duo, 2.17GHz, 2 GB

RAM.

 Table II shows the classification performance of

SpikeTemp and rank order method for different datasets in

terms of running time and the number of the output neurons

after training using Gaussian receptive fields /Square Cosine

population encoding. Classical methods such as the k-nearest

neighbour algorithm (KNN), Support Vector Machine (SVM)

and Multi-layer Perceptron Neural Network (MLP), are

popular machine learning techniques and are used to

benchmark the performance of SpikeTemp. Table III

compares the classification performance of these selected

datasets using SpikeTemp with rank order method, KNN (K is

set to 3), SVM (Quadratic kernel function) and MLP. The

results listed in Table III using the MLP network are based on

15 neurons in the hidden layer and 1 neuron in the output

layer, and the network is trained using Levenberg-Marquardt

backpropagation. The number of hidden neurons is chosen by

trial and error in terms of accuracy performance. A

comparable level of performance has been reached for these

datasets across all methods. The reported results using

Gaussian receptive fields population encoding are obtained by

employing con=0.45, Th_sim=0.8, τ=40 for SpikeTemp and

by employing con=0.45, Th_sim=0.8, mod=0.98 for rank

order method. These values were selected following analysis

of trial experiments, please see section VI. The reported

results using Square Cosine population encoding are obtained

by employing con=0.45, Th_sim=0.8, τ=3 for SpikeTemp,

and by employing con=0.45, Th_sim=0.8, mod=0.98 for rank

order method.

B. Analysis of results

 From Table II and Table III we can see that both the rank-

order and SpikeTemp methods have the ability to classify a

wide range of datasets with various dimensions and number of

classes after just one presentation of the training samples.

However, the results in Table III show that the SpikeTemp

classification accuracy is better on datasets such as Image,

Abalone, Pima Diabetes and Ionosphere as compared to the

rank order method using Gaussian receptive fields population

encoding and a comparable performance is achieved on the

remaining datasets. The results in Table III show that a

comparable performance is achieved on the datasets when

square cosine population encoding is employed. Furthermore,

the results in Table II show that the simulation time of the

SpikeTemp network is much faster than that of the rank order

based approach on the selected datasets as the computational

overhead is much lower.

 From Table II and Table III, we can see that for SpikeTemp,

better accuracy is achieved for the Image, Abalone, Pima

Diabetes and Ionosphere datasets when Square Cosine

population encoding is employed, and less output neurons are

added after training using square cosine encoders as compared

to Gaussian encoders except the Abalone dataset. The

simulation time of the network is much faster when Square

Cosine encoders are employed for these selected datasets. A

detailed comparison of the resulting eight spiking times

Page 8 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 8

produced by both approaches (please see section II.B)

illustrates that the Square Cosine encoder results in earlier

spike times. Note an early spike time results in a faster

simulation because the simulation is terminated when a spike

is produced in the output layer.

Although both the time coding and rank order coding are

dependent on timing of spikes the former has a much greater

information capacity [39]. The use of the absolute time of a

spike over a set of N neurons can provide bits of

maximum amount of information capacity [39]. If one neuron

can have only one spike, possible timing of spikes are used

to encode patterns. In contrast a rank order method only uses

the relative time of spikes over a set of N neurons, and thus

can provide bits of maximum amount of information

capacity if one neuron can have only one spike, N! possible

order of spiking are used to encode patterns. Thus time

coding can represent a greater amount of information capacity

than the rank order coding.

In sub-sections IV.C and IV.D, we use the popular IRIS and

WBC datasets, to depict weight distribution after training and

dynamic changes of the sizes of the output layer during

training for SpikeTemp and the rank order methods using

Gaussian receptive fields population encoding.

C. Weight distribution after training

For the IRIS dataset, the distribution of the final updated

weights for every added output neuron after training for

SpikeTemp and the rank order approach are depicted in Fig. 4

(a) and (b), respectively. For the WBC dataset, the distribution

of the final updated weights for every added output neuron

after training for SpikeTemp and the rank order approach are

depicted in Fig. 5 (a) and (b), respectively. From these

figures, we can see that the proposed learning rule and the

rank order learning method have quite different effect on the

updated weights distribution after training. This is due to the

difference between weights adjustments in both methods. In

rank order method, it is the order of spike timings that is

 Fig. 4. Weight distribution after training with the proposed learning

method (a) and the rank order method (b) for the IRIS dataset.

Fig. 5. Weight distribution after training with the proposed learning rule (a)

and rank order method (b) for the WBC dataset.

important for the weights update while in SpikeTemp it is

rather the precise timing of spikes that contributes to the

weights update.

D. Evolution of the size of the output layer

The dynamic evolution of the number of output neurons

during training on the IRIS and WBC datasets is illustrated in

Fig. 6 (a) and (b), respectively. It can be seen how output

neurons are dynamically changed as more training samples are

presented to the network. As described in section II.C and

III.B, a new output neuron is added dynamically when an

incoming sample is received, then if the similarity between

this new added output neuron with one of the existing output

neurons is greater than a predefined threshold, the newly

added output neuron is merged, so if the number of output

neurons does not increase linearly as a new sample is

propagated into the network, then it implies that an output

neuron has been pruned. This pruning effect is more

pronounced in Fig. 6 (b) as compared to Fig. 6 (a).

Fig. 6. Changes of number of output neurons against the number of training

samples during training for IRIS (a) and WBC (b) datasets (con=0.45,

Th_sim=0.8, τ=40, mod=0.98). The black, dotted, diagonal line represents a

linear addition of output neurons, which makes it easier to see the pruning

effect.

Page 9 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 9

V. APPLICATION OF SPIKETEMP TO FACE RECOGNITION

This section describes the application of SpikeTemp to

visual pattern recognition using the AT&T dataset. This

dataset was used to test and evaluate the performance of the

rank-order method in [33] using PCA to extract the features

and is available from [40]. The results are again compared

with both the rank-order approach and classical machine

methods.

A. Data preparation and simulation results

The AT&T dataset consists of 400 greyscale face images

 (92 x 112 pixels) corresponding to 40 persons such that each

person has 10 face views. Images for some individuals were

taken at different sessions, so light conditions and facial

expressions are not systematically controlled. Figure 7 depicts

three face image samples, one frontal view, one view taken

from the left side (30°) and one view taken from the right side

(-30°). The topology of SpikeTemp is only suitable for a 1D

inputs so the features of these face images have to be

presented in this format. The approach employs a linear

transformation of the input image to extract its principal

components using PCA (principal component analysis)

function in Matlab which are then presented to the network.

An increase in the number of principal components results in a

better classification performance until it reaches a fixed value.

In the following experiments, the number of principal

components selected was 20 and seven samples from each

individual were used for training; the remaining three samples

of each person were used for testing, so a set of 280 image

samples is used for training and a set of 120 image samples is

used for testing. Each feature value is encoded with 10

Gaussian receptive fields /Square Cosine curves resulting in a

total of 200 neurons in the encoded layer (encoded layer,

20*10 neurons).

Fig. 7. Example of three face image samples (frontal, 30° and -30°) [40].

 Tables IV and V list the number of output neurons after

training, the classification performance for the AT&T dataset

using SpikeTemp and Rank order method and the running

times that include calculation of training and testing

accuracies when the similarity threshold value is taken as 0.2,

0.25, 0.3, 0.5 and 0.8 respectively, while the values of the

parameters con and τ are kept the same. The results in Table

IV are derived from a network that used the Gaussian

receptive fields based encoding scheme whereas the results in

Table V the square cosine encoding scheme is used instead.

Increasing the similarity threshold (Th_sim) increases the

total number of output neurons required which has an impact

on the classification performance. This is because the

TABLE IV

RESULTS WITH DIFFERENT SIMILARITY THRESHOLD (TH_SIM) FOR SPIKETEMP

AND RANK ORDER APPROACH (CON=0.45; 10 GAUSSIAN RECEPTIVE FIELDS)

 Th_sim 0.2 0.25 0.3 0.5 0.8

 Num_o 53 100 152 266 280

PCA+SpikeTemp Acc_Tr 94.6 99.6 100 100 100

(τ=25, Gaussian) Acc_Ts 86.7 89.2 92.5 93.3 93.3
 Tsim(min) 0.920 1.37 1.75 3.05 3.56

 Num_o 40 45 77 185 257

PCA+Rank order Acc_Tr 95.4 97.9 98.6 100 100

method Acc_Ts 80.8 85.0 82.5 88.3 88.3

(mod=0.98,Gaussian) Tsim(min) 13.8 14.9 22.0 30.5 45.8

TABLE V

RESULTS WITH DIFFERENT SIMILARITY THRESHOLD (TH_SIM) FOR SPIKETEMP

AND RANK ORDER APPROACH (CON=0.45; 10 SQUARE COSINE CURVES)

 Th_sim 0.2 0.25 0.3 0.5 0.8

 Num_o 50 93 132 230 266

PCA+SpikeTemp Acc_Tr 96.8 99.3 99.6 100 100

(τ=3, Square Acc_Ts 84.2 86.7 89.2 90.8 90.8
Cosine) Tsim(min) 0.465 0.596 0.602 0.707 1.59

 Num_o 40 55 99 222 269

PCA+Rank order Acc_Tr 95.7 97.1 99.6 100 100

Method(mod=0.98, Acc_Ts 78.3 83.3 89.2 87.5 87.5

Square Cosine) Tsim(min) 2.49 2.75 3.05 5.01 5.69

similarity threshold (Th_sim) determines if an added output

neuron should be merged or not, so a smaller similarity

threshold increases the likelihood of an added output neuron

being merged. After comparing the results in Table IV and

Table V, we can see for the AT&T dataset that not only the

performance of SpikeTemp is better than that of rank order

method [33], but also the simulation time of the network using

SpikeTemp is much faster than using the rank order method.

B. Comparison between SpikeTemp and other machine

learning methods

To further assess the performance of SpikeTemp, it is

compared with other existing classifiers used in face

recognition, namely SVM, MLP and SNN. Table VI

summarises the obtained comparison results.

TABLE VI

COMPARES AMONG DIFFERENT METHODS OF FACE RECOGNITION

 (CON=0.45, Τ=25, MOD=0.98, 10 GAUSSIAN RECEPTIVE FIELDS)

Methods Acc_Ts

(%)

Num_o/Th_sim Property

PCA+SpikeTemp 93.3

92.5

89.2

266/0.5

152/0.3

100/0.25

One-pass online

One-pass online

One-pass online

PCA+Rank order method 88.3 185/0.5 One-pass online

PCA+SVM [33] 90.7 Batch mode

PCA+MLP [33] 89.6 Batch mode

PCA+KNN (k=3) 92.5 Batch mode

C. Analysis of results

 The results in Table VI clearly show that after just one

presentation of the training samples, SNNs trained with the

proposed learning approach SpikeTemp outperforms the rank

order method for this face recognition dataset, with

comparable performance to other machine learning offline

methods.

Page 10 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 10

Fig. 8. The PSP threshold (for each added output neuron for (a) the

rank order approach (b) SpikeTemp.

As described in the previous section, the parameter

similarity threshold (Th_sim) determines how many output

neurons are added after training. In the following

experiments, Th_sim is set to 0.8 or more for SpikeTemp, and

is set to 1.0 or more for rank order method so that it is enough

to add an output neuron for every sample for both SpikeTemp

and the rank order method. The dynamic characteristics of the

PSP thresholds (used for each added neuron during

training are shown in Fig. 8 (a) and (b) for the rank order

approach and the proposed SpikeTemp, respectively.

The average of these PSP thresholds for the proposed

SpikeTemp is 39.18±0.70, and the average of these PSP

thresholds for the rank order method is 13.38±0.02 (see blue

straight lines in Fig. 8). The difference of standard deviations

between SpikeTemp and the rank order method clearly shows

that the thresholds of PSP for each added output neuron for

SpikeTemp oscillate a lot more around the average value than

the rank order method; this might be the reason that

SpikeTemp outperforms the rank order method for face

recognition dataset.

VI. EVALUATION OF VARIOUS PARAMETERS EFFECT ON THE

LEARNING PERFORMANCE

 In this section we use two popular datasets, namely the IRIS

and WBC, to explore the effect of different parameters on the

performance of SpikeTemp and the rank order methods using

Gaussian receptive fields population encoding. These

parameters include the initial weight value, the con value, the

threshold value (Th_sim) for merging neurons, the τ value and

the number of Gaussian receptive fields/Square cosine chosen

(q value). In addition, the robustness of these methods to white

noise is evaluated and compared.

A. Effect of initial weight values

 Experiments were carried out to explore the effect of initial

weight values wij between the encoding layer and the output

layer on the performance of SpikeTemp and the rank order

approach. Fig. 9 (a) and (b) shows the change in

classification performance with respect to the initial weight

values between the encoding layer and the output layer for

IRIS and WBC datasets, respectively. In the experiments

reported earlier, the initial value of the weights between the

encoding layer and the output layer is set to 0.1. The results

shown in Fig. 9 (a) indicate that the obtained accuracy

performance for the IRIS dataset degrades as the initial weight

wij is increased, while the classification accuracies remain

above 95% for weight values wij<=1.0 for SpikeTemp, and

weight values wij<=0.7 for the rank order approach. The

results shown in Fig. 9 (b) indicate that the obtained accuracy

performance for the WBC dataset degrades as the initial

weight wij is increased, while the classification accuracies

remain above 95% for weight values wij<=0.8 for SpikeTemp,

and weight values wij<=1.8 for the rank order approach.

Fig. 9. Classification accuracies for (a) IRIS and (b) WBC datasets against

the initial values of the weights between the encoding layer and

the output layer.

B. Effect of the maximum PSP fraction (con)

Fig. 10 (a) and (b) show the changes in classification

performance with respect to the con values for IRIS and WBC

datasets respectively. For both SpikeTemp and the rank order

method, the results using Gaussian population encoding

shown in Fig. 10 indicates that the classification accuracies for

both training and testing datasets remain above 95% when the

value of the parameter con is set in the range of [0.45 0.55] for

the IRIS dataset, and is set in the range of [0.35 0.60] for the

WBC dataset. The classification accuracies gradually

degrades when the value of the parameter con is greater than

Page 11 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 11

0.55 in the case of IRIS and when it is greater than 0.60 in the

case WBC.

Fig. 10. Classification accuracies for IRIS (a) and WBC (b) datasets against

the con value.

C. Effect of the pruning threshold (Th_sim)

Fig. 11. Classification accuracies for IRIS (a) and WBC (b) datasets against

the threshold value for merging neurons.

 The Changes in classification performance with respect to

the threshold value (Th_sim) for merging neurons are shown

in Fig. 11 (a) and (b) for IRIS and WBC datasets, respectively.

For both SpikeTemp and the rank order methods, the results

using Gaussian population encoding shown in Fig. 11 indicate

that the accuracy for both training and testing datasets is

maintained above 95% when Th_sim is greater than 0.5 for the

IRIS dataset, and when it is greater than 0.4 for the WBC

dataset. A smaller threshold value increases the likelihood of

an added output neuron that should not be merged being

merged, the classification accuracies degrades gradually when

the threshold value is less than 0.5 in the case of the IRIS

dataset and when it is less than 0.4 in the case of the WBC

dataset.

D. Effect of the number of receptive Gaussian fields/Square

cosines (q)

The changes in classification performance with respect to

the number of Gaussian receptive fields (q value) are shown in

Fig. 12 (a) and (b) for IRIS and WBC datasets, respectively.

The results using Gaussian population encoding indicate that

the best performance is obtained when the number of Gaussian

receptive fields is set to 30 for the IRIS dataset, and is set to

15 for the WBC dataset for both SpikeTemp and the rank

order methods. From Fig. 12 (a) we can see that for IRIS

dataset the accuracies for training datasets are maintained

above 95% when q is in the range of [20, 50] for both

SpikeTemp and the rank order method. For WBC dataset,

Fig. 12 (b) shows that training and testing accuracies for both

SpikeTemp and the rank order methods are maintained above

95% when q is in the range of [10, 25]. However, the

performance degrades when q is less than 10.

Fig. 12. Classification accuracies for IRIS (a) and WBC (b) datasets against

the number of Gaussian receptive fields.

E. Effect of time constant (τ)

 The changes in classification performance for the IRIS and

WBC datasets with respect to the value of τ for SpikeTemp

and the value of mod for the rank order method are shown in

Fig. 13 (a) and (b), respectively. Fig. 13 (a) shows that the

classification accuracies remain above 95% when τ is set in

the range of [20 50]. Fig. 13 (b) shows that the value of mod

has little effect on the classification accuracies for rank order

method using Gaussian population encoding.

Page 12 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 12

Fig. 13. Classification accuracies against (a) and (b) values using

Gaussian population encoding.

F. Robustness to input noise

Noise analysis is conducted by adding different levels of

additive white Gaussian noise to the IRIS, WBC and Pima

Diabetes datasets. It is worth noting that the ‘noiseless’ data

described in section 4 was used to train the adaptive SNN, and

the SNN produced was employed to test the classification

accuracies of the noisy training dataset and testing dataset.

We conducted ten experimental trials for each level of additive

white Gaussian noise where the average performance is

computed.

Fig. 14. SpikeTemp (a) and rank order method (b) classification accuracies

with respect to different signal to noise ratios (SNR).

Fig. 14 (a) and (b) show the averaged training and testing

accuracies of ten runs obtained in each level of additive white

Gaussian noise when different levels of noise were added to

the IRIS, WBC and Pima Diabetes datasets for SpikeTemp

and the rank order method, respectively. For the IRIS dataset,

it can be seen that the classification accuracies for both

training and testing sets remain above 90% for signal to noise

ratio (SNR) up to 12 dB for both SpikeTemp and rank order

methods. For the WBC dataset, it can be seen that the

classification accuracies for both training and testing sets

remain above 96% for signal to noise ratio (SNR) up to 10 dB

for both SpikeTemp and the rank order method. As for the

Pima Diabetes dataset, it can be seen that the classification

accuracies for training datasets remain above 70% for signal to

noise ratio (SNR) up to 10 dB; the classification accuracies for

testing datasets remain above 70% for signal to noise ratio

(SNR) up to 1dB for SpikeTemp. However, for the rank order

method, the classification accuracies for training datasets

remain above 70% for signal to noise ratio (SNR) up to 5 dB

and the classification accuracies for testing datasets remain

above 60% for signal to noise ratio (SNR) up to 10 dB. These

results indicate noise robustness for both the proposed method

and the existing rank order approach.

VII. CONCLUSION

 This paper presents an enhanced rank-order based learning

approach (SpikeTemp) for SNNs with an adaptable structure

where the learning method is based on the precise times of

incoming spikes which removes the need to explicitly rank the

order of the incoming spikes. As a result, SpikeTemp is a

more efficient than the rank order learning method. The

neurons in the encoding layer temporally encode real valued

feature vectors into spatio-temporal spike patterns, and output

neurons, which process spatio-temporal inputs from the

encoding layer, are dynamically grown and pruned as new

spatio-temporal spiking patterns are presented to the spiking

neural network. The proposed SpikeTemp approach was

benchmarked on a selection of datasets from the UCI machine

learning repository and on an image recognition task. It was

shown that SpikeTemp can classify different datasets with

improved accuracy and simulation times than those of the rank

order method. As for the rank-order learning method,

SpikeTemp is scalable for a wide range of datasets with

various dimensions and numbers of classes and is more

efficient than the existing rank order learning method.

 Both the Gaussian receptive fields and the Square Cosine

population encoding methods are employed to convert input

data into a set of spiking times. The results show that the

simulation time of the network using the Square Cosine

population encoding methods is shorter and the number of

output neurons added for most of the datasets is much smaller.

The results are also compared with existing machine learning

algorithms and it was shown that SpikeTemp is able to

classify different datasets after just one presentation of the

training samples with comparable classification performance.

In addition, SpikeTemp allows the detection of new classes

without forgetting those that were previously learned.

Furthermore, as each sample is handled only once and there is

Page 13 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 13

no need to repeatedly re-feed the training set unlike the

classical classifiers, this makes SpikeTemp computationally

efficient and thus more widely applicable.

 The trained feed-forward SNN in SpikeTemp consists of

two layers of spiking neurons, a population of output neurons

are added to encode each class, a large number of output

neurons are added/required in the output layer to represent

each class after training. Future work will explore the

alternative approaches to reduce the neuron count and yet

expand the network topology of SpikeTemp.

REFERENCES

[1] S. Haykin, Neural Networks: A Comprehensive Foundation. New York:

MacMillan Publishing Company Press, 1994.

[2] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single

Neurons, Populations, Plasticity. Cambridge, U.K.: Cambridge

University Press, 2002.

[3] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A

tutorial,” Computer, IEEE, vol. 29, no. 3, pp. 31- 44, Mar. 1996.

[4] R. Van Rullen, R. Guyonneau, and S. J. Thorpe, "Spike times make

sense," TRENDS in Neurosciences, vol. 28, no. 1, pp. 1-4, 2005.

[5] W. Maass, "Fast sigmoidal networks via spiking neurons," Neural

Computation, vol. 9, pp. 279-304, 1997.

[6] S. M. Bohte, "The Evidence for Neural Information processing with

Precise Spike-times: A survey,” Natural Computing, vol. 3, no. 2, pp.

195-206, 2004.

[7] W. Maass, "Noisy spiking neurons with temporal coding have more

computational power than sigmoidal neurons," in Advances in Neural

Information Processing Systems, M. Mozer, M.I. Jordan, and T. Petsche,

Eds, Cambridge, MA: The MIT press, vol. 9, pp. 211-217, 1996.

[8] S. J. Thorpe, A. Delorme, and R. Van Rullen, "Spike-based strategies for

rapid processing," Neural Networks, vol. 14, no. 6-7, pp. 715-726, 2001.

[9] S. M. Bohte, J. N. Kok, and H. L. Poutre, “Spike-prop: error

backprogation in multi-layer networks of spiking neurons,” in

Proceedings of the 8th European Symposium on Artificial Neural

Networks ESANN'2000, Bruges, Belgium, Apr. 2000, pp. 419-425.

[10] S. M. Bohte, J. N. Kok, and H. L. Poutre, “Error-backprogation in

temporally encoded networks of spiking neurons," Neurocomputing, vol.

48, no. 1-4, pp. 17-37, 2002.

[11] S. Moore, Back-Propagation in Spiking Neural Networks. M.S. thesis,

University of Bath, U.K., 2002.

[12] B. Schrauwen and J. V. Campenhout, "Improving SpikeProp:

Enhancements to an Error-Backpropagation Rule for Spiking Neural

Networks," in Proceedings of the 15th ProRISC Workshop, Veldhoven,

Netherlands, Nov. 2004, pp. 301-305.

[13] S. McKennoch, D. Liu, and L. G. Bushnell, "Fast modifications of the

SpikeProp algorithm," in Proceedings of the 2006 IEEE International

Joint Conference on Neural Networks, Vancouver, BC, Canada, Jul.

2007, pp. 3970-3977.

[14] Q.X.Wu, T.M. McGinnity, L.P. Maguire, B. Glackin, and A. Belatreche,

“Learning under weight constraints in networks of temporal encoding

spiking neurons,” Neurocomputing, vol. 69, no. 16-18, pp. 1912-1922,

2006.

[15] S. M. Silva and A. E. Ruano, “Application of the Levenberg-Marquardt

method to the training of spiking neural networks,” in Proceedings of

the 2006 IEEE International Joint Conference on Neural Networks,

Vancouver, BC, Canada, Jul. 2007, pp. 3978-3982.

[16] A. Belatreche, L. P. Maguire, and T. M. McGinnity, "Advances in

design and application of Spiking Neural Networks," Soft Computing,

vol. 11, no. 3, pp. 239-248, 2007.

[17] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic strength,

and postsynaptic cell type,” Journal of Neuroscience, vol. 18, no. 24,

pp.10464– 10472, 1998.

[18] R. Legenstein, C. Naeger, and W. Maass, "What can a neuron learn with

spike-timing-dependent plasticity?," Neural Computation, vol. 17, no.

11, pp. 2337-2382, 2005.

[19] F. Ponulak, "ReSuMe - new supervised learning method for Spiking

Neural Networks," Institute of Control and Information Engineering,

Poznan University of Technology, Poland, Tech. Rep. 2005. [Online].

Available: http://d1.cie.put.poznan.pl/~fp/

[20] F. Ponulak, "Analysis of the ReSuMe learning process for spiking neural

networks," International Journal of Applied Mathematics and Computer

Science, vol. 18, no. 2, pp. 117-127, 2008.

[21] F. Ponulak and A. Kasinski, "Supervised learning in spiking neural

networks with ReSuMe: Sequence learning, classification and spike-

shifting,” Neural Computation, vol. 22, no. 2, pp.467–510, 2010.

[22] R. Gutig and H. Sompolinsky, “The tempotron: a neuron that learns

spike timing-based decisions,” Nature Neuroscience, vol. 9, no. 3, pp.

420-428, 2006.

[23] R. V. Florian, “Tempotron-like learning with ReSuMe,” in Proceedings

of the 18th International Conference on Artificial Neural Networks -

ICANN 2008, Part II, Prague, Czech Republic, Sep. 2008, pp. 368–375.

[24] T. Masquelier, R. Guyonneau, and S. Thorpe, “Spike timing dependent

plasticity finds the Start of repeating patterns in continuous spike trains,”

PLoS ONE, vol. 3, no. 1, p. e1377, 2008.

[25] T. Masquelier, R. Guyonneau, and S. Thorpe, “Competitive STDP-based

spike pattern learning,” Neural Computation, vol. 21, no. 5, pp. 1259–

1276, 2009.

[26] R. Legenstein., D. Pecevski, and W. Maass, “A learning theory for

reward-modulated spike-timing dependent plasticity with application to

biofeedback,” PLoS Computational Biology, vol. 4, no. 10, p. e1000180,

2008.

[27] S. Scarpetta, F. Giacco, and A. de Candia, “Storage capacity of phase-

coded patterns in sparse neural networks,” Europhysics Letters, vol. 95,

no. 2, 2011.

[28] S. Scarpetta and F. Giacco, “Associative memory of phase-coded
spatiotemporal patterns in Leaky Integrate and Fire networks,” Journal

of Computational Neuroscience, vol. 34, no. 2, pp. 319–336, 2013.
[29] S. Thorpe, D. Fize, and C. Marlot, ”Speed of processing in the human

visual system,” Nature, vol. 381, no. 6582, pp. 520-522, 1996.

[30] A. Delorme and S. Thorpe, “Face identification using one spike per

neuron: Resistance to image degradation,” Neural Networks, vol. 14, no.

6-7, pp. 795-804, 2001.

[31] A. Delorme, J. Gautrais, R.van Rullen, and S. Thorpe, “SpikeNet: A

simulator for modeling large networks of Integrate and Fire neurons,”

Neurocomputing, vol. 26-27, pp. 989-996, 1999.

[32] A. Delorme, L. Perrinet, and S. Thorpe, “Networks of Integrate-and-Fire

neurons using rank order coding B: Spike timing dependent plasticity

and emergence of orientation selectivity,” Neurocomputing, vol. 38-40,

pp. 539-545, 2001.

[33] S. Gomes Wysoski, L. Benuskova, and N. Kasabov, "On-line learning

with structural adaptation in a network of spiking neurons for visual

pattern recognition," in Proceedings of the 16th International

Conference on Artificial Neural Networks, Athens, Greece, Sep. 2006,

pp. 61-70.

[34] K. Dhoble, N. Nuntalid, G. Indiveri, and N. Kasabov, “On-line

spatiotemporal pattern recognition with evolving spiking neural

networks utilising address event representation, rank order- and temporal

spike learning,” in Proceedings of the IEEE International Joint

Conference on Neural Networks, Brisbane, Australia, Jun. 2012, pp.554

– 560.

[35] F. Alnajjar, I. Bin Mohd Zin, and K. Murase, “A spiking neural network

with dynamic memory for a real autonomous mobile robot in dynamic

environment,” in Proceedings of the IEEE International Joint

Conference on Neural Networks, Hong Kong, China, Jun. 2008, pp.2207

– 2213.

[36] A. Kasinski and F. Ponulak, “Comparison of supervised learning

methods for spike time coding in spiking neural networks,”

International Journal of Applied Mathematics and Computer Science,

vol. 16, no. 1, pp.101-113, 2006.

[37] J. Wang, A. Belatreche, L. P. Maguire, and T. M. McGinnity, "Online

versus offline learning for spiking neural networks: A review and new

strategies," in Proceedings of the 8th IEEE International Conference on

Cybernetic Intelligent Systems (CIS), University of Birmingham,

Birmingham, UK, Sep. 2009, pp.1-6.

[38] E. M. Izhikevich, “Which model to use for cortical spiking neurons?”

IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1063-1070,

Sep. 2004.

[39] S. Thorpe and J. Gaustrais, “Rank order coding,” in Computational

Neuroscience: Trends in Research, J. Bower, Ed. New York: Plenum

Press, 1998.

[40] The AT&T dataset. [Online]. Available:

 http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html

Page 14 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

