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 

Abstract— This paper presents an enhanced rank-order based 

learning algorithm, called SpikeTemp, for Spiking Neural 

Networks (SNNs) with a dynamically adaptive structure.  The 

trained feed-forward SNN consists of two layers of spiking 

neurons: an encoding layer which temporally encodes real valued 

features into spatio-temporal spike patterns, and an output layer 

of dynamically grown neurons which perform spatio-temporal 

classification.  Both Gaussian receptive fields and square cosine 

population encoding schemes are employed to encode real-valued 

features into spatio-temporal spike patterns. Unlike the rank-

order based learning approach, SpikeTemp uses the precise times 

of the incoming spikes for adjusting the synaptic weights such 

that early spikes result in a large weight change and late spikes 

lead to a smaller weight change.  This removes the need to rank 

all the incoming spikes and thus reduces the computational cost 

of SpikeTemp.  The proposed SpikeTemp algorithm is 

demonstrated on several benchmark datasets and on an image 

recognition task. The results show that SpikeTemp can achieve 

better classification performance and is much faster than the 

existing rank-order based learning approach.  In addition, the 

number of output neurons is much smaller when the square 

cosine encoding scheme is employed.  Furthermore, SpikeTemp is 

benchmarked against a selection of existing machine learning 

algorithms and the results demonstrate the ability of SpikeTemp 

to classify different datasets after just one presentation of the 

training samples with comparable classification performance.  

 
Index Terms—adaptive spiking neural networks, clustering, 

classification, online learning, spiking neurons, supervised 

learning.  

 

I. INTRODUCTION 

N artificial neural network (ANN) is a biologically 

inspired information processing paradigm which mimics 

the way the brain acquires and processes sensory information 

[1].  ANNs have been researched extensively and have 

successfully been used in a wide range of applications.  One of 

the fundamental issues in neuroscience is the problem of 
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neuronal coding; despite significant progress having been 

made in understanding the dynamics of biological neurons, 

there is no definitive understanding of what code is used by 

neurons to represent and transmit information in the brain. It 

has been verified that thousands of spikes are emitted per 

millisecond in a very small area of the cortex, and that 

information is transmitted and processed efficiently in the 

brain [2]. The main motivation behind the study of these 

biologically plausible neuron models is to further our 

understanding of how they communicate, how computation is 

carried out in the brain [3-8], and also to understand brain 

function and dysfunction (neurodegenerative diseases). The 

ultimate goal from a computing perspective is to exploit such 

knowledge in devising novel sophisticated intelligent 

computational systems. To date, a number of supervised and 

unsupervised learning methods [9-35] have been developed 

for SNNs; a review of some of these learning rules can be 

found in [36][37]. With a few exceptions [33-35] these efforts 

have found limited success in applying spiking neural 

networks to solving real-world problems due to the lack of 

efficient and scalable learning algorithms. Most of the existing 

learning algorithms require retraining if used in a changing 

environment and fail to scale.  Therefore, further development 

is still needed to devise efficient and scalable online learning 

mechanisms for spiking neural networks (SNNs) in order to 

increase their applicability in solving real world problems.     

  SpikeProp represents an adaptation of the classical 

backpropagation algorithm, and was the first supervised 

learning algorithm developed for SNNs [9].  Its performance 

on several benchmark datasets, including non-linearly 

separable classification problems, demonstrated that SNNs 

with temporal coding can achieve comparable results to 

classical rate-coded networks [9] [10].  However, there were 

several issues this algorithm needed to address, such as slow 

convergence especially for large datasets and the problem of 

non-firing (silent) neurons.  Subsequently, several methods 

have been developed to improve SpikeProp [11-15].  These 

gradient based algorithms are computationally powerful but 

are often regarded as non-biologically plausible because they 

require a non-local spread of error signals from one synapse to 

another. Besides, they are slow if used in an online setting, 

and getting stuck in local minima is another well known 

problem for gradient-based approaches. Belatreche et al. [16] 

proposed a derivative-free supervised learning algorithm 
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where an evolutionary strategy (ES) was used to minimise the 

error between the output firing times and the corresponding 

desired firing times.  This algorithm achieved a better 

performance than SpikeProp. However, since the algorithm 

was an ES-based iterative process, the training procedure was 

extremely time-consuming and is not suitable for online 

learning.   

  Spike-Timing Dependent Plasticity (STDP) and Hebbian 

learning are biologically plausible learning rules [17].  Like 

Hebbian learning, STDP is unsupervised, which is applied 

locally to a synapse linking pre-synaptic and post-synaptic 

neurons. The synaptic plasticity depends on the relative 

timings of pre-synaptic and post-synaptic spikes. STDP-based 

learning has been investigated in supervised learning [18-23], 

in unsupervised learning [24][25], in reinforcement learning 

[26] and in associative memory [27] [28].  

Legenstein et al. [18] presented a Supervised-Hebbian 

learning method (SHL) which forces the post-synaptic neuron 

to fire at specific desired times using an extra ‘teaching’ input 

signal. The algorithm was able to implement different 

transformations between input spike trains and output spike 

trains quite well, however it was reported that convergence 

cannot be guaranteed in a general case and that synaptic 

parameters continue to change even if the neurons fires 

exactly at the desired times.  

ReSuMe, another supervised learning method, developed by 

Ponulak [19][20][21], integrated the idea of learning-windows 

with remote supervision.  It was shown that the desired 

temporal sequences of spikes can efficiently be learnt after 

projection of the input data on a Liquid State Machine (LSM) 

network.  The authors claimed the method is suitable for 

online processing.  However, the network structure used in 

this method is fixed and does not adapt to incoming stimuli. In 

addition, the desired precise output spike timing is crucial to 

ReSuMe learning.   

Another supervised learning, called the Tempotron, was 

proposed by Gutig and Sompolinsky [22]. It updates the 

weights of a neuron using an error function which is based on 

the difference between the maximum membrane potential and 

the threshold of this neuron so that it fires or remains silent 

depending on whether the presented spiking inputs belong to 

one class or another, respectively. It was, however, reported 

by Florian [23] that this learning rule is in fact equivalent to a 

special case of ReSuMe under certain conditions. 

Masquelier et al. [24] presented an unsupervised STDP-

based learning approach, in which a single neuron uses STDP 

learning process to successfully detect and learn a repeating 

arbitrary spatiotemporal spike pattern that is hidden in equally 

dense distracter spike trains. This approach was later extended 

to multiple repeating patterns and multiple STDP neurons [25] 

where competition between neurons is achieved through the 

use of lateral inhibitory connections. 

Legenstein et al. [26] presented another unsupervised 

learning rule based on reward modulated STDP where 

complex firing patterns of presynaptic neurons can be 

distinguished with no need for a supervisor to instruct the 

neuron when it should fire. This method is sensitive to local 

fluctuations of the membrane voltage rather than the peak 

value of membrane voltage as in the Tempotron learning [22].  

Scarpetta and Giacco [28] use an STDP-based learning 

process to study the collective dynamics of a Leaky Integrate 

and Fire network, so that the resulted network can work as 

associative memory, in which precise relative phase 

relationship of spikes among neurons are stored then recalled. 

This model stores not only the order of activation in a 

sequence, but the precise relative times between spikes in a 

phase-coded pattern.  After changing the excitability 

parameters of the network, different regimes are observed and 

discussed. 

It is important to note though that these STDP-based 

learning methods (both supervised and unsupervised) are 

batch training methods with fixed network structures. That is, 

their networks do not evolve during learning, hence they do 

not adapt to incoming stimuli, which make them in current 

form unsuitable for online learning. 

  The work of Thorpe et al. [29] has shown that the visual 

system is capable of processing complex natural scenes in a 

timescale of 100-150ms.  A consideration of the fact that such 

a task is completed so quickly despite passing through many 

areas of the brain which is composed of billions of neurons led 

to the suggestion that the first spike should contain most of the 

information; this is reflected in the time-to-first spike 

encoding scheme.  The authors [30-32] therefore proposed an 

offline rank-order based learning approach for a feedforward 

SNN of integrate-and-fire neurons, which uses only one spike 

per neuron and can classify faces successfully.  However, two 

issues were highlighted in [33]; first, since the weight change 

is determined by a modular factor and the number of training 

samples, then the number of training samples needs be known 

in advance; and second, the trained network  is selective to the 

average pattern, so it is not suitable for online learning.    

All of the above-mentioned approaches use an SNN with a 

fixed structure, where the sizes of the hidden and output layers 

must be specified a priori, and are trained in an offline batch 

mode. Therefore, these approaches can only be applied if the 

number of classes or clusters is known up front. In addition, 

these approaches cannot be applied to problems where data is 

continuously changing as they will need to retrain both the old 

and new data samples. However, biological neural networks 

are known for their ability to learn continuously and 

incrementally which account for their continuous adaptation to 

changing non-stationary environments. Therefore, to allow a 

spiking neural network to interact with a continuously 

changing environment, it is necessary that both its structure 

and weights dynamically adapt to new data. Also, catastrophic 

interference/forgetting should be avoided when new 

information is learned.  

   Wysoski et al. [33] selected the offline learning procedure 

in [30]-[32] with a fixed structure and adapted it to online 

learning with an adaptive network structure.  The model 

presented in [33] consists of a four layer hierarchical neural 

network of two-dimensional integrate-and-fire neuronal maps.  

The proposed procedure can perform learning in an online 

mode through synaptic plasticity and adaptive network 
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structure.  The training procedure was applied to a publicly 

available face recognition dataset, and the performance 

obtained was comparable to the optimised off-line method.  In 

[33], the facial images are firstly preprocessed, the boundaries 

of the region of interest (ROI) are chosen manually between 

the inter-ocular distance and the distance between the eyes, 

and then the ROI is normalized to a size of 20 x 30 pixels; 

after an image is pre-processed to the size 20*30 pixels in 

greyscale, it is used as input to the SNN.  In real time 

applications, many data samples are 1D feature vectors, so in 

[34], Gaussian population encoding is used to encode every 

input feature into a set of spike times with a population of 

neurons such that each neuron can spike only once and then a 

rank order coding learning method is employed for the 

learning.  The learning method used to train the weights in 

[33][34] is based on the rank order of the incoming spikes 

arrival. However, in these networks [33][34], several issues 

are highlighted:  (a) The learning method used to train the 

weights is based on the order of the incoming spiking arrival.  

The precise timing information is thrown away despite the fact 

that the precise times not only carry the rank order 

information, but also how different they are [39]; (b) due to 

the time spent on the calculation of the rank order, the 

simulation time of the network  is slow for large datasets and 

networks; (c) In [33], it has been shown that SNN can be used 

to extract face images features, the network presented is 

suitable for 2D inputs; however, in real world application, 

many inputs are represented by a 1D feature vector  and the 

pre-processing of a face image in [33] is time-consuming for 

an online system.   

   This paper presents an enhanced rank-order based 

learning method, called SpikeTemp, for spiking neural 

networks with an adaptive structure where, unlike the existing 

rank-order based learning approach [33][34], the precise times 

of incoming spikes are used to determine the required change 

in synaptic weights. The proposed approach employs a two-

layer feed-forward spiking network with a layer of encoding 

neurons and a layer of output neurons.  It is suitable for inputs 

represented by a 1D feature vector. It is more appropriate for 

online systems.  SpikeTemp calculates the weight changes 

between the encoding layer and the output layer based on the 

precise times of the incoming spikes such that the amount of 

weight change decreases exponentially with later spike times, 

i.e. early spikes result in a larger weight change and late spikes 

lead to a smaller weight change.  This removes the need to 

explicitly rank order incoming spikes.  As a result, SpikeTemp 

is computationally efficient and is more applicable for a wide 

range of datasets.    Furthermore, in addition to the Gaussian 

receptive field population encoding scheme, the square cosine 

population encoding is also employed in SpikeTemp for 

temporally encoding the input features into spatio-temporal 

spike patterns.  

    The remainder of this paper is structured as follows: Section 

2 describes the employed neural model, the two temporal 

encoding schemes and presents the SNN structure design.  

Section 3 presents network structure adaptation   and learning 

procedure. Section 4 presents experimental results for training 

SNNs, using both encoding schemes, on selected benchmark 

datasets from the UCI Machine Learning Repository.  The 

results obtained are compared with those obtained from the 

rank order approach as well as standard classical machine 

learning methods.  Section 5 describes the application of 

SpikeTemp to a visual pattern recognition task and Section 6 

provides an analysis and discussion of various parameters 

effect on the learning performance.  Finally section 7 

concludes the paper and outlines future work.  

 

II. NEURAL MODEL, INFORMATION ENCODING SCHEMES AND 

NETWORK STRUCTURE 

A. Spiking Neural Model  

Neuronal models with varying degrees of computational 

complexity have been developed and reported in the literature 

[2][38]. For the proposed SpikeTemp algorithm, it was 

considered important to choose a tractable yet biologically 

relevant neuron model in order to reduce the computational 

complexity of the spiking neural network which is critical for 

online learning.  Balancing biological plausibility and 

tractability, SpikeTemp employs simple integrate-and-fire (IF) 

neurons in output layer that are also employed in related work 

[30-32]. The detailed dynamics of this model were analysed 

and explained in [30].  After a spike is generated in the output 

layer, the simulation for the current input sample is terminated 

and the PSP of firing output neuron is reset and the neuron 

remains silent.  The postsynaptic potential (PSP) of an output 

neuron i at time t relies on the spike times received from 

neurons in the encoding layer and can be described as: 

 

                   
  
 
  

       

 
 

(1) 

Where j [1, N] represents the j
th

 incoming connection, and N 

is the total number of incoming connections between the 

encoding layer and the output neuron i; tj represents the 

precise spiking time of the j
th

 encoding neuron;  τ is a time 

constant and determines the range for which each synaptic 

strengthening occurs; Wji is the synaptic weight associated 

with the synaptic connection between output neuron i and 

encoding neuron j.  If PSP(i, t) is greater than the firing 

threshold,         , of neuron i , then an output spike 

isproduced at neuron i in the output layer, and the simulation 

for the current input sample is terminated. 

B. Information encoding  

The Gaussian Receptive Field population encoding scheme, 

proposed by Bohte et al. [10], can be used to encode 

continuous input variables into spike times.  The input can be 

distributed over several neurons with overlapping and graded 

sensitivity profiles, e.g., Gaussian activation functions. In [10] 

there is detailed description of how to set the centre and width 

of a neuron.  In this work the parameter β is taken as 1.5 as 

used in [10].  Each encoding neuron fires only once during the 

time coding interval [0,Tref]; Tref = 9ms was employed in this 

work (this value is chosen arbitrarily).  As a result, each input 
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sample is translated into a spatio-temporal spike pattern.  An 

example is shown in Fig. 1 where a real-valued feature of 5.1 

(illustrated by a vertical dashed red line) is converted into 

spike times using eight Gaussian receptive fields.  Response 

values (y) can be obtained from points where the vertical 

dashed line at 5.1 intersects the Gaussian curves and the 

resulting eight response values are 0.0228, 0.4578, 0.9692, 

0.2163, 0.0051, 0, 0 and 0 respectively (note that all values lie 

between 0 and 1).  These values are then mapped linearly to 

spike times (see (2)) such as the highest response value of 1 is 

associated with spiking time t=0ms (i.e. early firing time) and 

the lowest response value of 0 is associated with spiking time 

t=9ms ((i.e. late firing time). 

   

                                                 

 

(2) 

If the resulting spike time is equal to 9ms, this neuron is 

treated as ‘silent’, and is represented by a value of ‘-1’.  Also, 

the resulting spiking times are rounded to two decimal values 

(the nearest time step) in ms. For example, the resulting 

spiking times which encode the single real-valued feature of 

5.1 using 8 receptive fields input neurons are therefore 

represented by the following series of spiking times: 8.79ms, 

4.88ms, 0.28ms, 7.05ms, 8.95, -1(silent), -1(silent) and -

1(silent).  

 
Fig. 1.  Encoding of a real valued feature of 5.1 using 8 Gaussian receptive 

fields neurons. 

 

Wu et al. [14] proposed a square cosine encoding method 

that was used to code continuous input variables into spike 

times to improve the precision of the encoded data. An 

example is shown in Fig. 2 where a feature value of 5.1 is 

converted into spike times using eight Square Cosine 

encoders.  Spike times can again be obtained from points 

where the vertical dashed line intersects the square cosine 

curves; the resulting encoding values are 0.9096, 0.9924, 

0.7868, 0.4132, 0.0904, 0.0076, 0.2132 and 0.5868, 

respectively for value 5.1 (note all values lie between 0 and 1).  

These values are again converted linearly into spike times by 

associating the highest response value 1 with spiking time 

t=0ms and the lowest response value 0 with spiking time 

t=9ms (see (2)).  The resulting spiking times are rounded to 

two decimal values, so the converted spiking times for the 

single input value 5.1 using 8 input neurons are 0.81, 0.07, 

1.92, 5.28, 8.19, 8.93, 7.08 and 3.72.    

 

 
Fig. 2.  Encoding of a real valued feature of 5.1 using 8 Square Cosine 

neurons. 

 

It can be seen that there are 8 spiking times resulted from 

both Gaussian and square cosine population encoding schemes 

for the value of 5.1; however, the Square Cosine population 

encoding scheme results in earlier spike times. Each spiking 

time is represented by a neuron in the encoding layer.  In the 

following experiments, the effect of these two population 

encoding methods on SpikeTemp performance and efficiency 

will be evaluated.  

Time-to-first spike decoding is employed at the output layer 

where an input sample is considered to be correctly classified 

if the first spike is produced at an output neuron whose class 

label matches the class label of the current input sample; 

otherwise an input sample is considered to be incorrectly 

classified. 

C. Network Topology    

Fig. 3 presents the network topology that consists of a layer of 

encoding neurons and a layer of output neurons. The neurons 

in the encoding layer convert the input features to a set of 

spiking times using Gaussian Receptive Field / Square Cosine 

population encoding.   The parameter q represents the number 

of Gaussian receptive fields / Square Cosines and its value is 

chosen by trial and error.  Each neuron in this layer provides a 

spike time which is fed to the next layer, and is fully 

connected to the neurons in the output layer. The number of 

neurons in this layer is determined by the dimensionality of 

the dataset and the value of the parameter q. For instance, if 

the dimensionality of the dataset is denoted by m then the size 

of the encoding layer is given by m*q.  The set of spiking 

times represented by these neurons in the encoding layer is in 

the range of the time coding interval [0,Tref] and Tref = 9 ms. 

    The output layer has no output neurons at the beginning of 

the training process.  A new output neuron is added 

dynamically when an incoming sample is received and is fully 

connected to the neurons in the encoding layer.  Every added 

Page 5 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 5 

output neuron is assigned a class label corresponding to the 

label of the incoming sample during training. Only one 

synaptic connection exists between every encoding neuron and 

every output neuron.  Multiple sub-connections are not used in 

this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  A  feedforward SNN with adaptive output layer. 

 

III. LEARNING AND NETWORK STRUCTURE ADAPTATION  

Delorme and Thorpe [30] proposed a learning method to 

update weights based on the rank order of the incoming spikes 

that was trained in an offline mode as shown in (3): 

 

     
            

  
 

 

 

(3) 

Where     is the change of weight between neuron j in the 

encoding layer and neuron i in the output layer. 

mod is a constant, representing the modulation factor that is in 

the range of [0 1].   

order(  )  is the relative order based on the spiking times for 

afferent neuron j.  For example, the first spike arrives 

(order(  ) = 0), the second spike arrives (order (  )= 1), the 

third spike arrives (order (  )= 2) and so on.  

Tr  is the number of samples for the training dataset.  

Wysoski et al. [33] adapted the offline learning procedure in 

[30] to online learning with an adaptive network structure.  

The learning method used to train the weights in [33] is based 

on the rank order of the incoming spiking arrival and hence 

the precise timing information is thrown away. Weight change 

 w is only determined by the mod term as shown in (4): 

 

                  

 

(4) 

In SpikeTemp, the precise spike time is exploited to update 

the weights.  Equation 5 describes the change in the weight 

       of the synapse connecting an encoding neuron j to an 

output neuron i, where tj denotes the precise spiking time of 

the encoding neuron j instead of the order of spiking times as 

in [33], such that earlier firing times invoke a larger weight 

change, τ represents a time constant.  This weight change is 

added to the initial baseline weight.  

 

           
  
 
   

 

 

(5) 

A. Comparison between SpikeTemp and the rank-order based 

learning approaches 

To illustrate the difference between SpikeTemp and the 

rank-order based approaches consider a simple SNN that 

consists of a layer of three encoding neurons and a layer of 

one output neuron which receives two input vectors (2.0, 5.0, 

8.0) and (1.1, 2.0, 8.2) respectively.  The three encoding 

neurons are fully connected to the output neuron. 

Using a rank order approach the rank ordering stays the 

same and the learning algorithm maintains a constant weight 

update for both input patterns.  Therefore, the maximum 

postsynaptic potential for this output neuron, which is 

computed using (1) when all three input spikes have been 

used, is the same for both input patterns.  However, with the 

SpikeTemp approach the different spike times inherently 

cause different weight changes, and different maximum 

postsynaptic potential for this output neuron for the two input 

patterns.  As a result, the weight changes and the maximum 

postsynaptic potential now correlate better with the input 

pattern, which contributes to an improved learning 

performance.   Furthermore as SpikeTemp approach removes 

the need to rank all the spikes in a window, it reduces the 

computational effort with respect to the rank order approach. 

 

B. Learning Procedure   

The overall aim of the proposed supervised procedure is to 

map a set of input samples to a set of classes. The weights are 

updated after each sample is propagated into the network.  The 

following sequential steps describe the learning procedure of 

SpikeTemp: 

1) Each real-valued feature of a data sample is encoded 

using q Gaussian receptive fields/Square Cosine encoders.  An 

output neuron is then created and all weights between every 

neuron in the encoding layer and this added output neuron are 

initialised to a constant 0.1 (this value was chosen by 

systematic experiments based on classification performance, 

please see section VI.A).  The weights are updated when an 

incoming sample is propagated into the network using (5).    

2) The maximum postsynaptic potential for this added 

output neuron,              , is calculated using (1) when all 

input spikes have occurred.  The firing threshold of this added 

output neuron              is a fraction of the maximum 

postsynaptic potential represented by (6), so similar samples 

can trigger an output spike.   

                               (6) 

  

Encoding Layer Output Layer 

Feature 1 

Feature m 

 
 
 
 

 

  
  
  
 

 

1 
 

2 

 

 

 

q 

 
 
 
 

 

Input features 

  
  
  
 

 

1 

 

2 

 

 

 

q 
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con is a constant (0< con < 1) that represents how similar a 

sample can trigger an output spike.  During training, the class 

label of this new added output neuron is set as the label of the 

current sample, this is a supervised process. 

3) The similarity between this new added output neuron i 

and other output neurons that have the same class label is 

calculated.  It is defined as the inverse of the Euclidean 

distance between the weights of this newly added output 

neuron and other output neurons (k) that belong to the same 

class.  If the similarity with one of the existing output neurons 

is greater than a predefined threshold, then the newly added 

output neuron is merged with the output neuron whose 

synaptic weights are most similar to it. The SNN structure is 

then updated.  Currently this threshold is set based on 

performance, in terms of accuracies by trial and error in the 

range of [0.5 1.0], please see detailed discussion in section 

VI.C.  For example if the i
th

 output neuron was merged with 

the k
th

  output neuron, the resultant weights wjk and firing 

threshold of this merged neuron k in the output layer are 

determined by (7) and (8) respectively. The total trained 

number of samples for output neuron k,   
      

, is then 

incremented by one.  The above mentioned rules for pruning 

output neurons were inspired by [33]. 

 

    
      

      
    

  
      

  
 

 

 

 

  (7) 

          
           

      
         

  
      

  
 

 

     

(8) 

4)  In order to evaluate the performance of the system, after 

the one pass training, the weights were fixed and the training 

dataset and testing dataset were fed into the network so that 

the classification accuracy on both training and testing 

datasets can be calculated.  There are no weight updates and 

neuron merging during testing as weight updates and neuron 

merging happen during training only.  The spikes from all 

neurons in the encoding layer are integrated by each neuron in 

the output layer and when the threshold of an output neuron 

has been reached, a spike is emitted.  When an output neuron 

fires first, if the class label represented by this output neuron 

matches the class label of this sample, we treat it as correctly 

classified. Otherwise, we treat it as incorrectly classified.  

During the testing stage, once a spike is emitted in the output 

layer, the simulation for this sample is finished, and another 

sample can be presented to the network.   The supervision 

mechanism is used to set the class label of every new added 

output neuron as the label of the incoming sample, and 

similarity is calculated between the output neurons which have 

the same class label during training so that pruning can only 

occur on the output neurons that have the same class label.  

IV. BENCHMARKING: EXPERIMENTS AND RESULTS  

In this section selected benchmark datasets, from the UCI 

Machine Learning Repository, were used to test and evaluate 

the performance of SpikeTemp, employing either Gaussian or 

Square Cosine population encoding. The results obtained from 

SpikeTemp have also been compared with the results obtained 

using the rank order based learning rule used in [33][34] and 

standard classical machine learning methods.  Lateral 

inhibition in the simulations of rank-order and SpikeTemp 

learning is not used in the following experiments.   

A. Data description and simulation results for SpikeTemp 

and rank order method 

The following benchmark datasets from the UCI Machine 

Learning Repository are used: Pima diabetes, Bupa Liver 

disorders, Ionosphere, Wisconsin Breast Cancer (WBC), 

Image segmentation, Abalone, Yeast, EEG eye state and IRIS.  

Each dataset is divided into training (Tr) and test (Ts) sets as 

outlined in Table I.   
TABLE I 

DESCRIPTION OF DIFFERENT DATASETS 

 

 

Table I summarises the properties of each dataset: size of 

dataset (T), number of training (Tr) and testing (Ts) samples, 

number of features or the dataset dimension (m), the number 

of classes presented in each dataset (c), the number of 

Gaussian receptive fields /Square Cosine curves for each 

dataset (q) and the size of the encoding layer (N). For 

example, the Wisconsin breast cancer dataset consists of 699 

instances with 9 feature values:  16 samples of the 699 

instances that have missing data are removed in this 

experiment for simplicity.  So there are 683 samples 

remaining that are divided into two sets (the first 455 samples 

for training and the remaining 228 samples for testing).  Each 

feature value is encoded with 15 Gaussian receptive fields 

/Square Cosine curves resulting in a total of 135 neurons in the 

encoding layer (encoding layer, 15*9 neurons).  In the Image 

Segmentation dataset, there are 19 continuous feature values, 

but since the fourth feature values are similar for all the 

samples, this feature is removed for simplicity.  Each feature 

value of the remaining 18 feature values is encoded with 10 

Gaussian receptive fields /Square Cosine curves resulting in a 

total of 180 neurons in the encoded layer (encoded layer, 

10*18 neurons).  In the Ionosphere dataset, there are 34 

numeric feature values, since the second feature values are 

also similar for all the samples, this feature is also removed for 

simplicity.  Each feature value of the remaining 33 feature 

values is encoded with 7 Gaussian receptive fields /Square 

Cosine curves resulting in a total of 231 neurons in the 

encoded layer (encoded layer, 7*33 neurons). Please see 

section VI.D for detail of how to decide the number of the 

Gaussian receptive fields for each dataset.   

Database T Tr Ts m c q N 

IRIS 150 90 60 4 3 30 120 

WBC 683 455 228 9 2 15 135 

Image 2310 210 2100 18 7 10 180 

Abalone 4177 2000 2177 7 3 7 49 

Pima Diabetes 768 512 256 8 2 10 80 

Liver Disorder 345 230 115 6 2 25 150 

Ionosphere 351 234 117 33 2 7 231 

Yeast 1484 990 494 8 10 10 80 

EEG eyeState 14980 9990 4990 14 2 10 140 
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TABLE II 

CLASSIFICATION PERFORMANCE IN TERMS OF SIMULATION TIMES AND SIZE OF OUTPUT LAYER FOR SPIKETEMP AND RANK ORDER METHOD  

USING GAUSSIAN/SQUARE COSINE POPULATION ENCODING  

 SpikeTemp Rank order method 

Database Gaussian Square Cosine Gaussian  Square Cosine 

 Tsim(min) Num_o Tsim(min) Num_o Tsim(min) Num_o Tsim(min) Num_o 

IRIS 0.85 87 0.15 63 11.7 84 1.58 58 

WBC 3.59 306 1.13 284 209.8 280 58.2 265 

Image 6.82 174 1.69 130 367.1 191 41.4 114 

Abalone 6.56 39 2.03 46 66.0 16 14.6 13 

Pima Diabetes 5.21 431 0.76 365 191.6 265 37.0 187 

Liver Disorder 1.65 226 0.31 170 149.4 215 9.67 157 

Ionosphere 3.11 223 0.26 210 36.2 213 12.2 215 

Yeast 14.3 549 0.80 300 307.9 184 74.3 258 

EEG eyeState 6.56 7 5.42 5 60.7 5 21.0 5 

 
TABLE III 

COMPARISON OF THE CLASSIFICATION ACCURACY OF SPIKETEMP  WITH A SELECTION OF MACHINE LEARNING APPROACHES   

 SpikeTemp Rank order approach KNN MLP SVM 

Database (Gaussian) (Square Cosine) (Gaussian) (Square Cosine) (k=3)   

   Acc_TR(%)/ Acc_TS(%)    

IRIS 100/96.7 100/95.0 100/95.0 98.9/93.3 96.0/92.0 100/94.8 100/96.7 

WBC 99.1/98.3 99.6/92.1 99.6/98.7 92.5/89.9 96.9/98.7 97.4/90.9 96.7/98.2 

Image 89.1/82.0 91.9/84.4 71.9/70.9 86.7/80.0 96.7/86.3 71.6/52.1 91.4/87.6 

Abalone 45.7/47.8 52.2/52.0 44.5/44.8 53.4/51.7 82.2/59.3 67.4/60.5 50.4/51.7 

Pima diabetes 77.5/67.6 91.2/70.3 81.0/61.7 79.9/67.6 84.4/69.9 84.5/76.2 79.3/80.5 

Liver disorder 93.0/58.3 80.4/52.2 86.5/59.1 78.7/56.5 81.7/67.8 89.8/59.0 100/65.2 

Ionosphere 86.8/91.5 92.7/95.7 81.6/74.4 85.9/70.9 90.2/95.7 99.5/83.6 100/85.5 

Yeast 56.7/31.6 53.5/37.2 50.5/31.4 53.3/31.2 84.0/51.6 53.2/35.9 40.8/33.0 

EEG eyeState 55.4/54.6 55.5/54.4 55.4/54.6 55.5/54.4 99.9/53.9 86.0/53.5 88.8/53.0 

 

 

In the following tables, Acc_Tr/Acc_Ts represents the 

training/testing classification accuracy; Num_o represents the 

total number of neurons in the output layer after training; Tsim 

is the running time in minutes which represents the complete 

simulation time including calculation of training and test 

accuracies.  The simulations are run on a laptop with the 

following specifications:  Intel Core 2 Duo, 2.17GHz, 2 GB 

RAM. 

    Table II shows the classification performance of 

SpikeTemp and rank order method for different datasets in 

terms of running time and the number of the output neurons 

after training using Gaussian receptive fields /Square Cosine 

population encoding.  Classical methods such as the k-nearest 

neighbour algorithm (KNN), Support Vector Machine (SVM) 

and Multi-layer Perceptron Neural Network (MLP), are 

popular machine learning techniques and are used to 

benchmark the performance of SpikeTemp.  Table III 

compares the classification performance of these selected 

datasets using SpikeTemp with rank order method, KNN (K is 

set to 3), SVM (Quadratic kernel function) and MLP.  The 

results listed in Table III using the MLP network are based on 

15 neurons in the hidden layer and 1 neuron in the output 

layer, and the network is trained using Levenberg-Marquardt 

backpropagation.  The number of hidden neurons is chosen by 

trial and error in terms of accuracy performance.  A 

comparable level of performance has been reached for these 

datasets across all methods.  The reported results using 

Gaussian receptive fields population encoding are obtained by 

employing con=0.45, Th_sim=0.8, τ=40 for SpikeTemp and 

by employing con=0.45, Th_sim=0.8, mod=0.98 for rank 

order method.  These values were selected following analysis 

of trial experiments, please see section VI.  The reported 

results using Square Cosine population encoding are obtained 

by employing con=0.45, Th_sim=0.8, τ=3 for SpikeTemp, 

and by employing con=0.45, Th_sim=0.8, mod=0.98 for rank 

order method.  

B. Analysis of results    

  From Table II and Table III we can see that both the rank-

order and SpikeTemp methods have the ability to classify a 

wide range of datasets with various dimensions and number of 

classes after just one presentation of the training samples.  

However, the results in Table III show that the SpikeTemp 

classification accuracy is better on datasets such as Image, 

Abalone, Pima Diabetes and Ionosphere as compared to the 

rank order method using Gaussian receptive fields population 

encoding and a comparable performance is achieved on the 

remaining datasets.  The results in Table III show that a 

comparable performance is achieved on the datasets when 

square cosine population encoding is employed.  Furthermore,  

the results in Table II show that the simulation time of the 

SpikeTemp network is much faster than that of the rank order 

based approach on the selected datasets as the computational 

overhead is much lower.  

    From Table II and Table III, we can see that for SpikeTemp, 

better accuracy is achieved for the Image, Abalone, Pima 

Diabetes and Ionosphere datasets when Square Cosine 

population encoding is employed, and less output neurons are 

added after training using square cosine encoders as compared 

to Gaussian encoders except the Abalone dataset. The 

simulation time of the network is much faster when Square 

Cosine encoders are employed for these selected datasets.  A 

detailed comparison of the resulting eight spiking times 
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produced by both approaches (please see section II.B) 

illustrates that the Square Cosine encoder results in earlier 

spike times. Note an early spike time results in a faster 

simulation because the simulation is terminated when a spike 

is produced in the output layer. 

Although both the time coding and rank order coding are 

dependent on timing of spikes the former has a much greater 

information capacity [39].  The use of the absolute time of a 

spike over a set of N neurons can provide       bits of 

maximum amount of information capacity [39]. If one neuron 

can have only one spike,   possible timing of spikes are used 

to encode patterns.  In contrast a rank order method only uses 

the relative time of spikes over a set of N neurons, and thus 

can provide        bits of maximum amount of information 

capacity if one neuron can have only one spike, N! possible 

order of spiking are used to encode patterns.  Thus time 

coding can represent a greater amount of information capacity 

than the rank order coding.   

In sub-sections IV.C and IV.D, we use the popular IRIS and 

WBC datasets, to depict weight distribution after training and 

dynamic changes of the sizes of the output layer during 

training for SpikeTemp and the rank order methods using 

Gaussian receptive fields population encoding. 

C. Weight distribution after training  

For the IRIS dataset, the distribution of the final updated 

weights for every added output neuron after training for 

SpikeTemp and the rank order approach are depicted in Fig. 4 

(a) and (b), respectively. For the WBC dataset, the distribution 

of the final updated weights for every added output neuron 

after training for SpikeTemp and the rank order approach are 

depicted in Fig. 5 (a) and (b), respectively.  From these 

figures, we can see that the proposed learning rule and the 

rank order learning method have quite different effect on the 

updated weights distribution after training. This is due to the 

difference between weights adjustments in both methods. In 

rank order method, it is the order of spike timings that is 

 

 Fig. 4.  Weight distribution after training with the proposed learning  

method (a) and the rank order method (b) for the IRIS dataset. 

    

 
Fig. 5.  Weight distribution after training with the proposed learning rule (a) 

and rank order method (b) for the WBC dataset. 

 

important for the weights update while in SpikeTemp it is 

rather the precise timing of spikes that contributes to the 

weights update.  
 

D. Evolution of the size of the output layer  

The dynamic evolution of the number of output neurons 

during training on the IRIS and WBC datasets is illustrated in 

Fig. 6 (a) and (b), respectively.  It can be seen how output 

neurons are dynamically changed as more training samples are 

presented to the network. As described in section II.C and 

III.B, a new output neuron is added dynamically when an 

incoming sample is received, then if the similarity between 

this new added output neuron with one of the existing output 

neurons is greater than a predefined threshold, the newly 

added output neuron is merged, so if the number of output 

neurons does not increase linearly as a new sample is 

propagated into the network, then it implies that an output 

neuron has been pruned.  This pruning effect is more 

pronounced in Fig. 6 (b) as compared to Fig. 6 (a). 

 
Fig. 6.  Changes of number of output neurons against the number of training 

samples during training for IRIS (a) and WBC (b) datasets (con=0.45, 

Th_sim=0.8, τ=40, mod=0.98).  The black, dotted, diagonal line   represents a 

linear addition of output neurons, which makes it easier to see the pruning 

effect. 
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V. APPLICATION OF SPIKETEMP TO FACE RECOGNITION  

This section describes the application of SpikeTemp to 

visual pattern recognition using the AT&T dataset. This 

dataset was used to test and evaluate the performance of the 

rank-order method in [33] using PCA to extract the features 

and is available from [40].  The results are again compared 

with both the rank-order approach and classical machine 

methods. 

A. Data preparation and simulation results  

The AT&T dataset consists of 400 greyscale face images 

 (92 x 112 pixels) corresponding to 40 persons such that each 

person has 10 face views.  Images for some individuals were 

taken at different sessions, so light conditions and facial 

expressions are not systematically controlled.  Figure 7 depicts 

three face image samples, one frontal view, one view taken 

from the left side (30°) and one view taken from the right side 

(-30°).  The topology of SpikeTemp is only suitable for a 1D 

inputs so the features of these face images have to be 

presented in this format.  The approach employs a linear 

transformation of the input image to extract its principal 

components using PCA (principal component analysis) 

function in Matlab which are then presented to the network.  

An increase in the number of principal components results in a 

better classification performance until it reaches a fixed value.  

In the following experiments, the number of principal 

components selected was 20 and seven samples from each 

individual were used for training; the remaining  three samples 

of each person were used for testing, so a set of 280 image 

samples is used for training and a set of 120  image samples is 

used for testing.  Each feature value is encoded with 10 

Gaussian receptive fields /Square Cosine curves resulting in a 

total of 200 neurons in the encoded layer (encoded layer, 

20*10 neurons).    

 
Fig. 7.  Example of three face image samples (frontal, 30° and -30°) [40]. 

 

    Tables IV and V list the number of output neurons after 

training, the classification performance for the AT&T dataset 

using SpikeTemp and Rank order method and the running 

times that include calculation of training and testing 

accuracies when the similarity threshold value is taken as 0.2, 

0.25, 0.3, 0.5 and 0.8 respectively, while the values of the 

parameters con and τ are kept the same.   The results in Table 

IV are derived from a network that used the Gaussian 

receptive fields based encoding scheme whereas the results in 

Table V the square cosine encoding scheme is used instead. 

Increasing the similarity threshold (Th_sim) increases the 

total number of output neurons required which has an impact 

on the classification performance.  This is because the 

 

TABLE IV 

RESULTS WITH DIFFERENT SIMILARITY THRESHOLD (TH_SIM) FOR SPIKETEMP 

AND RANK ORDER APPROACH (CON=0.45; 10 GAUSSIAN RECEPTIVE FIELDS ) 

 Th_sim 0.2 0.25 0.3 0.5 0.8 

 Num_o 53 100 152 266 280 

PCA+SpikeTemp Acc_Tr 94.6 99.6 100 100 100 

(τ=25, Gaussian) Acc_Ts 86.7 89.2 92.5 93.3 93.3 
 Tsim(min) 0.920 1.37 1.75 3.05 3.56 

 Num_o 40 45 77 185 257 

PCA+Rank order  Acc_Tr 95.4 97.9 98.6 100 100 

method Acc_Ts 80.8 85.0 82.5 88.3 88.3 

(mod=0.98,Gaussian)  Tsim(min) 13.8 14.9 22.0 30.5 45.8 

 

 
TABLE V 

RESULTS WITH DIFFERENT SIMILARITY THRESHOLD (TH_SIM) FOR SPIKETEMP 

AND RANK ORDER APPROACH (CON=0.45; 10 SQUARE COSINE CURVES) 

 Th_sim 0.2 0.25 0.3 0.5 0.8 

 Num_o 50 93 132 230 266 

PCA+SpikeTemp Acc_Tr 96.8 99.3 99.6 100 100 

(τ=3, Square  Acc_Ts 84.2 86.7 89.2 90.8 90.8 
Cosine) Tsim(min) 0.465 0.596 0.602 0.707 1.59 

 Num_o 40 55 99 222 269 

PCA+Rank order  Acc_Tr 95.7 97.1 99.6 100 100 

Method(mod=0.98, Acc_Ts 78.3 83.3 89.2 87.5 87.5 

Square Cosine)  Tsim(min) 2.49 2.75 3.05 5.01 5.69 

 
similarity threshold (Th_sim) determines if an added output 

neuron should be merged or not, so a smaller similarity 

threshold increases the likelihood of an added output neuron 

being merged.  After comparing the results in Table IV and 

Table V, we can see for the AT&T dataset that not only the 

performance of SpikeTemp is better than that of rank order 

method [33], but also the simulation time of the network using 

SpikeTemp is much faster than using the rank order method. 

 

B. Comparison between SpikeTemp and other machine 

learning methods    

To further assess the performance of SpikeTemp, it is 

compared with other existing classifiers used in face 

recognition, namely SVM, MLP and SNN.   Table VI 

summarises the obtained comparison results. 
 

TABLE VI 

COMPARES AMONG DIFFERENT METHODS OF FACE RECOGNITION 

 (CON=0.45, Τ=25, MOD=0.98, 10 GAUSSIAN RECEPTIVE FIELDS) 

Methods Acc_Ts 

(%) 

Num_o/Th_sim Property 

PCA+SpikeTemp  93.3  

92.5   

89.2  

266/0.5 

152/0.3 

100/0.25 

One-pass online 

One-pass online 

One-pass online  

PCA+Rank order method 88.3 185/0.5 One-pass online 

PCA+SVM [33] 90.7  Batch mode 

PCA+MLP [33] 89.6  Batch mode 

PCA+KNN (k=3) 92.5  Batch mode 

 

C. Analysis of results    

   The results in Table VI clearly show that after just one 

presentation of the training samples, SNNs trained with the 

proposed learning approach SpikeTemp outperforms the rank 

order method for this face recognition dataset, with 

comparable performance to other machine learning offline 

methods. 
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Fig. 8.  The PSP threshold (        for each added output neuron for (a) the 

rank order approach (b) SpikeTemp. 

As described in the previous section, the parameter 

similarity threshold (Th_sim) determines how many output 

neurons are added after training.  In the following 

experiments, Th_sim is set to 0.8 or more for SpikeTemp, and 

is set to 1.0 or more for rank order method so that it is enough 

to add an output neuron for every sample for both SpikeTemp 

and the rank order method.  The dynamic characteristics of the 

PSP thresholds (        used for each added neuron during 

training are shown in Fig. 8 (a) and (b) for the rank order 

approach and the proposed SpikeTemp, respectively.   

The average of these PSP thresholds for the proposed 

SpikeTemp is 39.18±0.70, and the average of these PSP 

thresholds for the rank order method is 13.38±0.02 (see blue 

straight lines in Fig. 8).  The difference of standard deviations 

between SpikeTemp and the rank order method clearly shows 

that the thresholds of PSP for each added output neuron for 

SpikeTemp oscillate a lot more around the average value than 

the rank order method; this might be the reason that 

SpikeTemp outperforms the rank order method for face 

recognition dataset. 

VI. EVALUATION OF VARIOUS PARAMETERS EFFECT ON THE 

LEARNING PERFORMANCE  

    In this section we use two popular datasets, namely the IRIS 

and WBC, to explore the effect of different parameters on the 

performance of SpikeTemp and the rank order methods using 

Gaussian receptive fields population encoding. These 

parameters include the initial weight value, the con value, the 

threshold value (Th_sim) for merging neurons, the τ value and 

the number of Gaussian receptive fields/Square cosine chosen 

(q value). In addition, the robustness of these methods to white 

noise is evaluated and compared. 

A. Effect of initial weight values  

    Experiments were carried out to explore the effect of initial 

weight values wij between the encoding layer and the output 

layer on the performance of SpikeTemp and the rank order 

approach.    Fig. 9 (a) and (b) shows the change in 

classification performance with respect to the initial weight 

values between the encoding layer and the output layer for 

IRIS and WBC datasets, respectively.  In the experiments 

reported earlier, the initial value of the weights between the 

encoding layer and the output layer is set to 0.1.  The results 

shown in Fig. 9 (a) indicate that the obtained accuracy 

performance for the IRIS dataset degrades as the initial weight 

wij is increased, while the classification accuracies remain 

above 95% for weight values wij<=1.0 for SpikeTemp, and 

weight values wij<=0.7 for the rank order approach.  The 

results shown in Fig. 9 (b) indicate that the obtained accuracy 

performance for the WBC dataset degrades as the initial 

weight wij is increased, while the classification accuracies 

remain above 95% for weight values wij<=0.8 for SpikeTemp, 

and weight values wij<=1.8 for the rank order approach.   

 

 
 

Fig. 9.  Classification accuracies for (a) IRIS and (b) WBC datasets against 

the initial values of the weights between the encoding layer and  

the output layer. 

 

B. Effect of the maximum PSP fraction (con)   

Fig. 10 (a) and (b) show the changes in classification 

performance with respect to the con values for IRIS and WBC 

datasets respectively.  For both SpikeTemp and the rank order 

method, the results using Gaussian population encoding 

shown in Fig. 10 indicates that the classification accuracies for 

both training and testing datasets remain above 95% when the 

value of the parameter con is set in the range of [0.45 0.55] for 

the IRIS dataset, and is set in the range of [0.35 0.60] for the 

WBC dataset.  The classification accuracies gradually 

degrades when the value of the parameter con is greater than 
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0.55 in the case of IRIS and when it is greater than 0.60 in the 

case WBC. 

 
Fig. 10.  Classification accuracies for IRIS (a) and WBC (b) datasets against 

the con value. 

   

C. Effect of the pruning threshold (Th_sim)   

     

 
Fig. 11.  Classification accuracies for IRIS (a) and WBC (b) datasets against 

the threshold value for merging neurons.  

 

     The Changes in classification performance with respect to 

the threshold value (Th_sim) for merging neurons are shown 

in Fig. 11 (a) and (b) for IRIS and WBC datasets, respectively.  

For both SpikeTemp and the rank order methods, the results 

using Gaussian population encoding shown in Fig. 11 indicate 

that the accuracy for both training and testing datasets is 

maintained above 95% when Th_sim is greater than 0.5 for the 

IRIS dataset, and when it is greater than 0.4 for the WBC 

dataset.  A smaller threshold value  increases the likelihood of 

an added output neuron that should not be merged being 

merged, the classification accuracies degrades gradually when 

the threshold value is less than 0.5 in the case of the IRIS 

dataset and when it is less than 0.4 in the case of the WBC 

dataset. 

  

D. Effect of the number of receptive Gaussian fields/Square 

cosines (q)    

The changes in classification performance with respect to 

the number of Gaussian receptive fields (q value) are shown in 

Fig. 12 (a) and (b) for IRIS and WBC datasets, respectively.  

The results using Gaussian population encoding indicate that 

the best performance is obtained when the number of Gaussian 

receptive fields is set to 30 for the IRIS dataset, and is set to 

15 for the WBC dataset for both SpikeTemp and the rank 

order methods.  From Fig. 12 (a) we can see that for IRIS 

dataset the accuracies for training datasets are maintained 

above 95% when q is in the range of [20, 50] for both 

SpikeTemp and the rank order method.  For WBC dataset,  

Fig. 12 (b) shows that training and testing accuracies for both 

SpikeTemp and the rank order methods are maintained above 

95% when q is in the range of [10, 25]. However, the 

performance degrades when q is less than 10.  

 

 
Fig. 12.  Classification accuracies for IRIS (a) and WBC (b) datasets against  

the number of Gaussian receptive fields. 

 

E. Effect of time constant (τ)    

    The changes in classification performance for the IRIS and 

WBC datasets with respect to the value of τ for SpikeTemp 

and the value of mod for the rank order method are shown in 

Fig. 13 (a) and (b), respectively.  Fig. 13 (a) shows that the 

classification accuracies remain above 95% when τ is set in 

the range of [20 50].    Fig. 13 (b) shows that the value of mod 

has little effect on the classification accuracies for rank order 

method using Gaussian population encoding. 
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Fig. 13.  Classification accuracies against   (a) and     (b) values using 

Gaussian population encoding. 

  

 

F. Robustness to input noise 

Noise analysis is conducted by adding different levels of 

additive white Gaussian noise to the IRIS, WBC and Pima 

Diabetes datasets.  It is worth noting that the ‘noiseless’ data 

described in section 4 was used to train the adaptive SNN, and 

the SNN produced was employed to test the classification 

accuracies of the noisy training dataset and testing dataset.  

We conducted ten experimental trials for each level of additive 

white Gaussian noise where the average performance is 

computed.   

 

 
Fig. 14.  SpikeTemp (a) and rank order method (b) classification accuracies 

with respect to different signal to noise ratios (SNR). 

Fig. 14 (a) and (b) show the averaged training and testing 

accuracies of ten runs obtained in each level of additive white 

Gaussian noise when different levels of noise were added to 

the IRIS, WBC and Pima Diabetes datasets for SpikeTemp 

and the rank order method, respectively.  For the IRIS dataset, 

it can be seen that the classification accuracies for both 

training and testing sets remain above 90% for signal to noise 

ratio (SNR) up to 12 dB for both SpikeTemp and rank order 

methods.  For the WBC dataset, it can be seen that the 

classification accuracies for both training and testing sets 

remain above 96% for signal to noise ratio (SNR) up to 10 dB 

for both SpikeTemp and the rank order method. As for the 

Pima Diabetes dataset, it can be seen that the classification 

accuracies for training datasets remain above 70% for signal to 

noise ratio (SNR) up to 10 dB; the classification accuracies for 

testing datasets remain above 70% for signal to noise ratio 

(SNR) up to 1dB for SpikeTemp. However, for the rank order 

method, the classification accuracies for training datasets 

remain above 70% for signal to noise ratio (SNR) up to 5 dB 

and the classification accuracies for testing datasets remain 

above 60% for signal to noise ratio (SNR) up to 10 dB.  These 

results indicate noise robustness for both the proposed method 

and the existing rank order approach.  
 

VII. CONCLUSION 

    This paper presents an enhanced rank-order based learning 

approach (SpikeTemp) for SNNs with an adaptable structure 

where the learning method is based on the precise times of 

incoming spikes which removes the need to explicitly rank the 

order of the incoming spikes.  As a result, SpikeTemp is a 

more efficient than the rank order learning method.  The 

neurons in the encoding layer temporally encode real valued 

feature vectors into spatio-temporal spike patterns, and output 

neurons, which process spatio-temporal inputs from the 

encoding layer, are dynamically grown and pruned as new 

spatio-temporal spiking patterns are presented to the spiking 

neural network.  The proposed SpikeTemp approach was 

benchmarked on a selection of datasets from the UCI machine 

learning repository and on an image recognition task. It was 

shown that SpikeTemp can classify different datasets with 

improved accuracy and simulation times than those of the rank 

order method.  As for the rank-order learning method, 

SpikeTemp is scalable for a wide range of datasets with 

various dimensions and numbers of classes and is more 

efficient than the existing rank order learning method.  

    Both the Gaussian receptive fields and the Square Cosine 

population encoding methods are employed to convert input 

data into a set of spiking times.  The results show that the 

simulation time of the network using the Square Cosine 

population encoding methods is shorter and the number of 

output neurons added for most of the datasets is much smaller. 

The results are also compared with existing machine learning 

algorithms and it was shown that SpikeTemp is able to 

classify different datasets after just one presentation of the 

training samples with comparable classification performance.       

In addition, SpikeTemp allows the detection of new classes 

without forgetting those that were previously learned. 

Furthermore, as each sample is handled only once and there is 
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no need to repeatedly re-feed the training set unlike the 

classical classifiers, this makes SpikeTemp computationally 

efficient and thus more widely applicable. 

    The trained feed-forward SNN in SpikeTemp consists of 

two layers of spiking neurons, a population of output neurons  

are added to encode each class,  a large number of output 

neurons are added/required in the output layer to represent 

each class after training. Future work will explore the 

alternative approaches to reduce the neuron count and yet 

expand the network topology of SpikeTemp. 
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