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Max-Margin based Discriminative Feature Learning
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Abstract—In this paper, we propose a new max-margin based
discriminative feature learning method. Specifically, we aim
at learning a low-dimensional feature representation, so as to
maximize the global margin of the data and make the samples
from the same class as close as possible. In order to enhance the
robustness to noise, we leverage a regularization term to make
the transformation matrix sparse in rows. In addition, we further
learn and leverage the correlations among multiple categories for
assisting in learning discriminative features. The experimental
results demonstrate the power of the proposed method against
the related state-of-the-art methods.

Index Terms—Feature learning, max-margin, correlation rela-
tionship, row sparsity

I. INTRODUCTION

Data classification plays a key role in many practical
applications [[1], [2]. However, the real-world data, such as
image data, often lie in a high-dimensional space, which has
high computational cost and might bring down the prediction
accuracy of classification models. To cope with this issue, a
popular way is to do dimensionality reduction, which is to
project the data into a low-dimensional subspace with the
least information loss [3]. Generally speaking, dimensional-
ity reduction can be achieved by either feature selection or
feature transformation. Feature selection aims at selecting the
most informative feature subset from the original feature set
according to a predefined selection criterion. A number of
selection criteria have been proposed in the past several years,
such as mutual information [4], kernel alignment [S]], sparsity
regularization based measures [6], [[7]], and so on. The philoso-
phy behind feature transformation is that a combination of the
original features may be more helpful for learning. Hence it
aims to map the high-dimensional data into a new meaningful
low-dimensional space. Many feature transformation methods
have been proposed over the last decades, including manifold
learning [8]], [9]], low-rank representation (LRR) [10], [[L1]], and
sparse representation (SR) [12], [[13]. According to the char-
acteristics of the mapping, feature transformation techniques
can be further grouped into linear [14f], [L3]], [L6], [L7] and
nonlinear ones [18], [8], [9], [19]. In this paper, we focus on
the linear feature transformation methods due to its simplicity
and effectiveness [20].
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In literature, principal component analysis (PCA) [15] and
linear discriminant analysis (LDA) [21] are two classical
linear algorithms, both capturing global Euclidean structure
of the data. Since the practical data often lie on or are
close to an intrinsically low-dimensional manifold, volumes
of approaches focus on how to preserve such structures in
recent years. The representative approaches include locality
preserving projection (LPP) [14], and neighborhood preserving
embedding (NPE) [16], locality sensitive discriminant analysis
(LSDA) [22], and stable orthogonal local discriminant embed-
ding (SOLDE) [17]. Meanwhile, some work integrates global
and local information during feature transformation, such as
LPMIP [23], LapLDA [24]. However, the methods above do
not consider how to effectively connect with the classifier in
the context of classification. In order to alleviate this limitation,
the maximum margin projection (MMP) algorithm [25] takes
advantage of a binary support vector machine (SVM) [26]]
classifier to obtain some hyperplanes that separate data points
in different clusters with the maximum margin. The random
projection algorithms [27], [28] aim to find some Gaussian
random projection matrices to preserve the pairwise distances
between data points in the projected subspace, which can
be effectively combined with some classifiers, such as SVM.
Varshney and Willsky [29] propose a framework to simultane-
ously learn a linear dimensionality reduction projection matrix
and a margin-based classifier defined in the reduced space.
The main idea of the maximum margin projection pursuit
(MMPP) algorithm is to integrate optimal data embedding and
SVM classification in a single framework in both bi-class and
multi-class classification [30]]. In addition, local discriminant
gaussian (LDG) [31] is a feature transformation method which
exploits a smooth approximation of the leave-one-out cross
validation error of a classifier. However, these methods do not
intend to preserve the intrinsic manifold structure of the data
and removing noisy features before feature transformation. In
addition, there are often correlations among multiple classes
in practical scenarios. Previous works do not study how to
leverage such correlations with feature transformation. Gu et
al. [32] propose a framework for joint subspace learning and
feature selection, called FSSL, which can alleviate the effect
of the noisy features for feature transformation. However, they
do not focus on how to effectively combine the classifier in
the scenario of classification.

In this paper, we propose a new Max-Margin based feature
transformation method to Learn Discriminative Features for
classification, called MMLDF. In the learned low-dimensional
feature space, our method aims at maximizing the global clas-
sification margin; in the meantime, the distances of samples
from the same class are minimized. Additionally, in many real-
world applications, there are often correlations among multiple
classes, and capturing such correlations are helpful for learning



discriminative features and designing classifiers [33]. In light
of this point, we add a regularization term to capture the
correlations among multiple categories for feature learning.
Extensive experiments are conducted on eight publicly avail-
able datasets, and the experimental results demonstrate the
effectiveness of the proposed method against the state-of-the-
art methods.

The rest of the paper is organized as follows. Section II
gives the details of the proposed method. The experimental
results are reported and analyzed in Section IIl. Section IV
concludes the paper.

II. PROPOSED METHOD

Let X = {(x;,¥:;)}"; denote a training data set, where
x; € R? is the i-th data point and y; € {1,..., K} represents
the corresponding class label. Our goal is to obtain a projection
matrix P € R?*" that maps the d-dimensional input vector
to an r-dimensional vector (r < d) by z; = PTx;. For the
transformation matrix P, let p, represent its ¢-th row, and P;;
denote its (4, j)-th entry. As usual, we use ¢r(P) to denote the
trace of P, and ||P||2,; denotes I ; norm of P defined as:
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A. Binary Classification: K = 2

Margin maximization has been demonstrated to be a good
principle applied by various learning methods [34], [35].
Among these methods, support vector machine (SVM) is
a popular one that maximizes the global margin of data
points of different classes, but it only focuses on how to
learn a max-margin based classifier. In this paper, we aim at
learning a low-dimensional feature space to further improve
the performance of max-margin based classification, and we
present a unified framework to integrate feature learning and
classification together. To do this, we propose the following
objective function:

1 n
min J(P,w,b)= §||w||2+0 E l(w,b,P;x;, ;)
i=1

+n > |[PTxi =P x| Ai; +A|| P

4,5=1

21 (2)

where C, 1 and A are three trade-off parameters, in order to
balance the contribution of each term to learn discriminative
features. Through these parameters, our model can be flexible
to different scenarios. w is the learned weight vector, as in
SVM. P is the learned transformation matrix which projects
the original data into low-dimensional feature space. P7x;
is the new low-dimensional representation of x;. A;; denotes
the edge weight of the within-class graph. Here, either Heat
kernel or Simple-minded can be used for weighting the edges.
For similarity, we choose Simple-minded in our experiment,
which is expressed as:
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(a) Without /21 norm constraint

(b) With l2 1 norm constraint

Fig. 1. The visualization of the learned P (r = 10) on the LSVT Voice
Rehabilitation dataset. Each row is the l2 norm value of each row of P. Dark
blue denotes that the values are close to zero.

Aij _{ 0 otherwise @)

[(e) is a hinge loss function. The standard hinge loss
function in SVM is not differentiable everywhere. In order
to take advantage of the gradient-based optimization method
to solve the proposed objective function, we adopt a similar
but differentiable quadratic hinge loss:

I(w,b,P;x;,y;) = [min(0,y;- (W' (PTx;)+b)—1)]*  (4)

Minimizing the first two terms of (2) means finding a
low-dimensional subspace, in which the margin of different
classes can be maximized, and the classification loss can be
minimized. Minimizing the third term makes the scatter of the
data in the same class as small as possible in the subspace. The
last term is a regularization term to make the transformation
matrix P sparse in rows, so that the learned subspace is robust
to noise, and the model complexity is lowered too.

We take the LSVT Voice Rehabilitation dataset [36]], a bi-
class classification dataset, as an example to illustrate the
effectiveness of the /5 ; norm constraint on P in the objective
function (2). Fig. [I] (a) and (b) show the visualizations of
P without /5 ; norm and with /3 ; norm in (Iz[), respectively.
We can see that many rows in P become sparse by adding
the [, norm constraint, which can eliminate noisy features
in the process of feature transformation, and can reduce the
model complexity. In the later experiment, we will further
demonstrate that our method is robust to noise by introducing
ly,1 norm.

B. Multi-class Classification: K > 2

In the case of multi-class classification, we can extend @)
to the following objective function:

min J,.(W, b, P)

K n
:% Z HWm”2 +CZ Z l(Wmvamby“bm,P;Xi,yi)
m=1

i=1 m#y;
" T T, |2
+772m.:1 [P~ xi — P x;["Aij + A[P|2,1 )
where W = [wy,...,wi] is the set of the learned weight

vectors. (Wi, Wy, , by,, bm, P; X;, y;) measures the loss when
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Fig. 2. The visualization of the learned correlation coefficient matrix on the
Urban Land Cover dataset. Both x-axis and y-axis represent weight vectors.
Dark red denotes that the correlation coefficients are close to 1.

the sample x; is wrongly classified into the m-th (m # y;)
class. Similarly, the loss function [ is revised as:

Z(Wm, Wi by, 5 bma Pa Xiy yz)
= [min(0, (wy, PTx; + by, — Wi PTx; — b, —2)]°  (6)

In real-world applications, one classification task is often
correlated with other classification tasks, and mining the
correlations among multiple categories can be good for feature
learning [33]. Our experiments also demonstrate this point
(See the details in [[lI-C). Thus, we add a regularization term
into (3) to capture the correlations among multiple categories,
and the new objective function becomes:

min Jp,.(W,b,P,T)

K n
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where p is a trade-off parameter. |[WT |2 = tr(WI'WT) is
the Mahalanobis norm of the matrix W7 T' plays the role
of the inverse covariance matrix that encodes the correlations
among the weight vectors w; [37]]. The inverse matrix of I" is
constrained to be positive definite and unit trace, in order to
obtain a valid solution. The effect of the last term in (7)) is to
penalize the complexity of W relying on the Mahalanobis
norm, as well as to learn the inverse covariance matrix I’
simultaneously.

We use the Urban Land Cover dataset [38]], a multi-class
classification dataset, to visualize the correlation coefficient
matrix of the weight vectors, which can be obtained based on
the learned I'. The result is shown in Fig. 2] We can see that
there are indeed correlations among the multiple categories
(e.g. the second and the third weight vectors).

C. Optimization Procedure

We first introduce how to solve the optimization problem
in the binary classification case. The objective function (@) is
not convex with respect to the variables w, b, and P simulta-
neously. Therefore it is unrealistic to expect an algorithm to
easily find the global minimum of J. Therefore, we adopt an
alternating optimization strategy to find the local minimum.
Under this scheme, we update P, w, and b in an alternating
manner.

Update P, with fixed w and b: When w and b are fixed,
(2) becomes a convex problem, so P can be obtained by
minimizing the following objective function:

T(P) =C Y lmin0, i - (w” - (PTx) )~ 1)

n
+1 > IPTx =P x;[* Ay + AP |21

i,j=1

Taking the derivative of J; with respect to P, we can obtain:

o5 (P) _ T T T
P =2C Z (xix; Pww’ —(y;—b)x,w" )
(xi,y:) €O
+ 2nXLXTP + 2ADpP ®)

where X = [x1,...,%X,]. L =D 4—A is the Laplacian matrix,
where D 4 is a diagonal matrix with its entries being row sum
of A, Da(i,i) = X;A;;. Dp is a diagonal matrix with the
i-th diagonal element D p(i, ) = m. O denotes the set of
(x;,y:) satisfying the following condition: y;(wT (PTx;) +
b)—1<(

Setting the derivative in (@) to zero, these is no closed-from
solution of P. Therefore, we adopt a gradient-based method
to derive the optimal P. Here we choose the limited-memory
BFGS (L-BFGS) algorithm for its efficiency [39], [40]], which
is summarized in Algorithm 1. The core idea in Algorithm
1 is to estimate the inverse Hessian matrix H only using the
latest m updates of the position p; and gradient g to lower
memory complexity, where m is usually small.

Algorithm 1 L-BFGS

Input: Randomly initialize Py € R™*", and reshape Py into
a vector po; Randomly initialize a symmetric and positive
definite matrix Hy; Set the integer m = 25.
k<0
Output: P
Repeat
Compute the gradient G =
into a vector gy.
Compute di < —Hj, - g using a two-loop recursion;
Compute pr+1 < Pr + ardi, where oy, satisfies
the Wolfe conditions;
Sk < Pk+1 — Pk, Yk < 8k+1 — 8k
m < min{k,m — 1};
Update Hessian matrix Hj, using the pairs {y;,s; }fzk_ﬁl;
Reshape px+1 into a matrix Pyy1;
k<« k+1;
Until Convergence criterion satisfied;
P« Pk.

971(P) |, , and reshape Gy,

Update w, with fixed b and P: When b and P are fixed,
[@) is convex in terms of w, so we minimize the following
objective function to obtain the optimal w:

Jo(w) = 3 [w[*+C 3 min0, i - (w” - (BTx) ) ~1))

i=1

'When © = ¢, we define Y (x;xI PwwT —(y; —b)x;wT) = 0.
(x3,y:) €O



Taking the derivative of Jy(w) with respect to w, and
setting it to zero, we obtain:

I+2C > PlIxxIPw)!

(x:,y:) €O
w = x(2C Y (y;i —b)PTxy) if (x;,y;) € ©
(xi’yl)ee
0 otherwise
9

Update b, with fixed w and P: When w and P are fixed,
is convex in terms of b, so b can be acquired by optimizing
the following objective:

min J3(b) = 27—1 1(b; w, P x;, ;)

Taking the derivative of J(b) with b, and setting it to zero,

we obtain:
(yi—wTPTx;)
(x;,y;)€EO
b= &

if O £ ¢

otherwise

(10)

where |O| denotes the size of the set ©.

The procedure of the proposed algorithm can be summa-
rized in Algorithm 2. We randomly initialize the parameters,
and adopt the second updating rule in [41] for deriving the lo-
cal optimal solution. Experimental results verify that MMLDF
converges quickly and obtains promising local minimums.

In the multi-classification case, we still adopt the alternating
optimization strategy to find the local minimum. We take
advantage of the L-BFGS to update P and w;. b still has
a closed-form solution derived by using the same optimiza-
tion method with the binary classification case. The rule for
updating the variable I" in (7)) is as follows:

Tw)1/2
tr(WTW)1/2)

Details of the proof on (II)) can be found in [37].

D. Discussion

Varshney and Willsky [29] propose a linear dimensionality
reduction method, which represents the learned mappings
by matrices on the Stiefel manifold and on margin-based
classifiers. Nikitidis et al. [30]] present the maximum margin
projection pursuit (MMPP) algorithm, which learns the opti-
mal data embedding and the SVM classifier simultaneously.
However, our approach constructs the graph Laplacian through
local learning to capture the intrinsic structure of the data,
and incorporates /5 ;-norm minimization into our framework to
alleviate the effects of noisy features. In addition, our method
can mine the correlations among multiple categories, which is
beneficial to both feature transformation and classifier training.
When n — 0,A — 0, p — 0 in (7), our objective function has
similar effects to those of [[29]] and [30]].

Gu et al. [32] propose a framework for joint subspace
learning and feature selection, where subspace learning is
reformulated as solving a linear system equation, and feature
selection is achieved by utilizing /5 ;-norm on the projection
matrix. However, they do not explore how to effectively
combine the classifier for classification. When C' — 0, p — 0,

and adding a constraint on the projection matrix in (7)), the
formulation of our method is reduced to that of [32].

Xu et al. [42] propose a semi-supervised feature selection
method called FS-Manifold, where the feature selection pro-
cess is embedded with a manifold regularized SVM classifier.
Different from FS-Manifold, our method aims to incorporate
the feature transformation process into the SVM framework.

In addition, MMLDEF is easily extended into the kernel ver-
sion. We take binary classification as an example, and handle
the multi-classification case in the same way. According to
[35], we know the original max-margin objective function of
SVM can be transformed into its dual version as:

1
max 6(a) = 21: a; — 5 XZ: zj: Otiajyiijiij (12)
s.t. Zaiyi =0,0, >0

Based on (12)), we can incorporate the feature transformation
process into the kernel SVM framework as:

1
max f(a, P) = Z @ =5 Z Z aiajyiyjk(PTxi, PTXj)

? J
n

=1 > [P % =P, |?Aij =A|P2,1
ij=1

(13)
s.t. Z a;y; =0,a; >0

where k(PTx;,PTx;) is the kernel function, such as the
radial basis function (RBF), polynomial kernel, and so on.

E. Time Complexity Analysis

The time complexity of Algorithm 2 consists of three parts:
initialization on line 1, Laplacian matrix construction on line 2,
and the iterative update of the three variables on lines 3-8. The
complexities of the first two parts can be ignored compared
to the third part. In the third part, we need to update w, b,
and P, respectively. For updating w, the worst complexity is
O(ndr + r3). Updating b costs O(ndr). For updating P, it
needs O(t1 * mdc) for the two-loop recursion scheme, where
t1 denotes the total number of iterations. According to @),
the worst case of computing partial gradient w.r.t. P is O(t5 *
(nd? + n%d)), where t, is the total number of computing the
gradient. The complexity of evaluating the objective function
values is O(t3 * (rn? +ndr+r2d)), where t3 denotes the total
number of evaluations. Therefore, the total time complexity of
MMLDF is of order O(t * (ndr +r3) +t1 * mdc +to * (nd* +
n2d) + t3 * (rn? 4+ ndr + r2d)), where t is the total number
of iterations in Algorithm 2. Since ¢ < t3 and r < d, the
complexities of the parts updating w and b can be ignored,
compared to that of updating P, i.e., the time complexity of
MMLDF is dominated by updating P.

F. Evaluation of Convergence Rate

Although the convergence of the MMLDF algorithm cannot
be proved theoretically, we find that it converges asymptoti-
cally in our experiments. Fig. [3] shows the convergence curves



Algorithm 2 Max-Margin based Discriminative Feature Learning

Input: Training dataset X = {x;, y: }im1;
The parameters: C, A\, 7, p;
Reduced dimension r

Method

1. Initialize iteration step ¢ = 0; Randomly initialize
wt, b, Pt

2. Construct Laplacian matrix L ;

3. Repeat

4. Fixing P* and b, update w'™ by Eq. (9);

5. Fixing P? and w'™, update b'™' by Eq. ;

6. Fixing w'™ and b, update P*** by Algorithm 1;

7. t=t+1;

8. Until Convergence criterion satisfied.

Output: Transformation matrix P € R¢X"
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Fig. 3. Empirical study on the convergence of MMLDF on the LSVT Voice
Rehabilitation dataset and the Urban Land Cover dataset.

of MMLDF on the LSVT Voice Rehabilitation dataset and the
Urban Land Cover dataset, respectively. As in Fig. |3] we can
see MMLDF has a good convergence rate. It will converge
after only about 6 iterations.

III. EXPERIMENTS
A. Datasets and Experimental Settings

We evaluate the performance of MMLDF on eight real-
world datasets, including one aerial image dataset Urban Land
Cover [38]], two biomedical area datasets DNA and Glioma,
one large scale learning competition dataset Epsilon, one
speech signal processing area dataset LSVT Voice Rehabilita-
tion [36], one business area dataset CNAE-9, one face recog-
nition dataset Yale Face, and one scene classification dataset
15 scene. The datasets DNA and Epsilon are downloaded

TABLE I
SUMMARY OF EXPERIMENTAL DATASETS. #SIZE, #TRAIN, #TEST,
#DIM, AND #CAT DENOTE THE NUMBER OF SAMPLES, THE NUMBER OF
TRAINING, THE NUMBER OF TESTING, THE NUMBER OF FEATURES, AND
THE NUMBER OF CATEGORIES, RESPECTIVELY.

Dataset #Size | #Train | #Test | #Dim | # Cat
Urban Land Cover 168 42 126 148 9
CNAE-9 1,080 100 980 857 9
DNA 2,000 100 1,900 180 3
Glioma 50 10 40 4,434 4
LSVT Voice Rehab. 126 10 116 309 2
Epsilon 5,000 1,000 4,000 2,000 2
Yale 165 30 135 512 15
15 scene 4,485 500 3,985 512 15

from LIBSVM official web pageﬂ and the dataset CNAE-
9 is downloaded from UCI Machine Learning Repositoryﬂ
Datasets from different areas serve as a good test bed for a
comprehensive evaluation. Table 1 summarizes the details of
the datasets used in the experiments.

To verify the effectiveness of MMLDF, we compare it
with the following seven related linear feature transformation
methods:

e SOLDE: Stable Orthogonal Local Discriminant Embed-
ding [17] reduces the dimensions by considering both the
diversity and similarity.

e LDG: Local Discriminant Gaussian [31] exploits a
smooth approximation of the leave-one-out cross valida-
tion error of a quadratic discriminant analysis classiﬁeﬂ

o LPMIP: Locality-Preserved Maximum Information Pro-
jection [23] aims to preserve the local structure while
maximizing the global information simultaneously.

o LapLDA: Laplacian Linear Discriminant Analysis [24]
presents a least squares formulation for LDA, which
intends to preserve both of the global and local structures.

o LSDA: Locality Sensitive Discriminant Analysis [22]
aims to seek a projection which maximizes the margin
between data points from different classes at local areas.

o FSSL: This method proposes a framework for joint fea-
ture selection and subspace learning [32].

e MMPP: Maximum Margin Projection Pursuit [30] aims
to find a subspace based on maximum margin principle.

To some extent, our method is related to these methods:
similar to SOLDE and LSDA, our method aims to preserve the
manifold structure in the learned low-dimensional subspace.
Moreover, our method tries to preserve global and local
information simultaneously, like LPMIP and LapLDA. In our
work, we also try to unify feature transformation and feature
selection in a framework, inspired by FSSL. Additionally,
LDG and MMPP are two latest feature learning methods.
LDG tries to preserve the local information during feature
transformation, while MMPP is based on subspace learning
under maximum margin principle.

In the experiment, we mainly investigate the effectiveness of
the learned subspace by leveraging classifier learning. Hence
we compare our method with the above feature transforma-
tion methods. In order to conduct fair comparisons, we use
the same classifier, SVM with linear kernel, to evaluate the
subspaces derived by different methods. The classification
accuracy is used as the evaluation measure. In the experiments,
we vary the reduced dimensions from 10 to 100 with a stepsize
of 10. In our work, there are four parameters: C and A, 7, and
p- The parameters C, n, and p are chosen by cross-validation,
and the parameter ) is always set to 10~* (We found when
A = 1074, the performance was consistently good on all
the datasets). For a fair comparison, the parameters in FSSL,
LPMIP, LapLDA, LSDA, and MMPP are searched in the same
space with that of MMLDF. For all the experiments, we repeat
them 10 times, and report the average results.

Zhttp://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
3http://archive.ics.uci.edu/ml/datasets/CNAE-9
4The MATLAB code for LDG was obtained from the authors of [31])



TABLE 11
CLASSIFICATION ACCURACY(MEAN+DEVIATION (%)) OF DIFFERENT ALGORITHMS ON ALL THE EIGHT DATASETS
Datasets Method
MMPP FSSL LDG LPMIP LSDA SOLDE LapLDA MMLDF
Urban Land Cover | 70.6+£3.9 | 49.04£6.2 | 57.945.5 | 58.84£5.8 | 55.2+6.8 | 67.24+5.3 | 57.9+4.8 | 75.2+4.0
(30) (40) (10) (20) (10) (60) © (70)
CNAE-9 744429 | 77.64+3.6 | 72.942.8 | 79.8+2.7 | 76.4+69 | 742432 | 78.24+4.1 | 83.6+1.6
(70) (10) (10) (30) (70) (40) ) (20)
DNA 76.01+2.5 72.4+1.6 82.04+2.8 | 79.44+29 | 72.8419 | 81.64+2.2 | 749+1.8 | 83.61+1.6
(30) (10) (10) (50) (10) (60) (3) (10)
Glioma 50.5£6.3 | 28.0+10.1 | 40.8+8.2 | 46.3+£7.9 | 47.3£6.0 | 51.5+6.9 | 49.3+5.8 | 54.0+7.3
(30) (10) (10) (10) (10) (20) 4 (40)
LSVT Voice Rehab. | 72.7£7.5 71.3+6.4 | 63.348.3 | 68.7+6.3 | 68.7£8.0 | 71.6+6.5 | 72.4+7.6 | 77.2+7.2
(100) 40) (10) (20) (10) (20) 2) (20)
Epsilon 70.6+1.3 67.8+0.8 75.7+£0.8 | 74.1£1.0 | 67.9+£0.8 | 74.6+£0.4 | 70.4+£0.3 | 78.20.6
(10) (10) (100) (100) (10) (100) 2) (10)
Yale 55.0£4.9 | 21.6%6.5 58.8+6.8 | 60.1+6.1 | 62.2+6.4 | 543+4.2 | 60.7+6.3 | 65.5£5.1
(60) (30) (20) 30) (20) (20) (15) 40)
15 scene 35.0+3.6 17.9409 | 59.242.1 | 59.042.1 8.5+09 | 59.44+2.0 | 15.7£1.6 | 64.24+0.9
(100) (20) (70) (90) (10) (100) (15) (50)
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Fig. 4. Classification accuracy of different algorithms vs. the reduced dimensions on all the eight datasets.

B. General Performance

We first evaluate the classification performance of the pro-
posed approach on all the datasets. Table II reports the exper-
imental results of each algorithm with the optimal dimension.
The optimal dimensions are listed in the brackets of Table
IL. It can be seen that MMLDF consistently outperforms the
other seven algorithms on all the eight datasets. Compared
with the second best result on each dataset, our method
achieves 6.5%, 4.8%, 2.0%, 6.9%, 6.5%, 3.3%, 5.3%, and
8.1% relative improvement on the Urban Land Cover, CNAE-
9, DNA, Glioma, LSVT Voice Rehabilitation, Epsilon, Yale
Face, and 15 scene datasets, respectively. Some baselines
obtain considerably poor performance on certain datasets (e.g.,
FSSL on the Glioma and 15 scene datasets, LSDA on the
15 scene dataset). The reason may be that the generalization

ability of these algorithms is limited, making them difficult to
be applied to different areas datasets.

We also studied the influence on the performance of dif-
ferent dimensions. Since LapLLDA can be only reduced to
dimensions, where I denotes the number of the class, we
did not compare our method with LapLDA. Fig. 4 shows the
results. It can be seen that our method outperforms the other
algorithms under all the cases.

C. Analyses on Components’ Roles

We verify the effectiveness of the components in the objec-
tive functions (2) and (7), individually. When the parameters
A, m, and p are set to zeros, MMLDF is reduced to MMPP, thus
we use MMPP as the baseline. We perform the experiments
on the binary classification dataset LSVT Voice Rehabilitation
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Fig. 5. Verify the effectiveness of each component in our algorithm on the
LSVT Voice Rehabilitation dataset and the Urban Land Cover dataset.

TABLE III
THE ROBUSTNESS (MEAN+DEVIATION (%)) OF l2 1 TO DIFFERENT NOISY
LEVELS ON THE LSVT VOICE REHABILITATION DATASET.

# Noisy features - MMLDF -
without 2 1-norm | with [2 1-norm
50 71.34+6.2 75.24+7.3
100 70.245.0 74.5+6.8
150 69.74+5.2 74.41+6.8
200 68.54+5.7 73.0+6.1

and the multi-class classification dataset Urban Land Cover.
The experimental setting is as follows: we first set 1 to zero
in (]Z[), and set 7 and p to zeros in (]ZI), in order to demonstrate
the effectiveness of the module filtering noisy features. We
name it MMLDF-I for short. Then, we set p to zero in
, which indicates that we learn the feature representation
without considering the correlations among multiple classes
in the case of multi-class classification. We name it MMLDF-
II. The dimensions are fixed to 20 and 70 on the LSVT Voice
Rehabilitation dataset and the Urban Land Cover respectively,
because of better performance of MMLDF under such dimen-
sions on the two datasets based on Table II.

The results are shown in Fig. 5] We can see that MMLDEF-
I outperforms MMPP on the datasets, which shows that the
row sparseness constraint on the projection matrix is bene-
ficial to learn discriminative feature representation. On the
LSVT Voice Rehabilitation dataset, MMLDEF achieves better
results than MMLDF-I, which means that within-class scatter
minimization is good for classification. This point is also
verified on the Urban Land Cover dataset, since MMLDF-II is
superior to MMLDF-I. On the multi-class dataset, the result of
MMLDF is better than that of MMLDEF-II, which illustrates
that capturing the correlations among multiple categories is
helpful for enhancing the discriminative ability of the learned
features. MMLDF achieves the best results on both of the two
datasets. It shows that the combination of these components
is effective for classification.

We further verify the robustness of /3 ;-norm to different
noise levels on the LSVT Voice Rehabilitation dataset. We
generate N (= 50, 100, 150, 200)-dimensional white Gaussian
noise respectively, and concatenate the original features with
these noisy features as the new representation of each data.
After that, we run MMLDF with /5 ;-norm and without /5 ;-
norm on the new dataset, respectively. We fix the reduced
dimensions to 20, and the experimental results are listed in
Table III. We can see the performance of MMLDF with [5 ;-

§.0.6 3
504 504
Q Q

02 02

90 90

70 70

50 50
C 10 %0 10 %

Feature # Feature #

(a) Vary C and reduced dimensions (b) Vary A and reduced dimensions

70

n 10 Feature # P 10 Feature #

(¢) Vary n and reduced dimensions (d) Vary p and reduced dimensions

Fig. 6. Sensitivity study of the parameters on the Urban Land Cover dataset.

norm is better than that of MMLDF without I3 ;-norm, i.e.,
l3,1-norm in MMLDF can indeed alleviate the effects of noisy
features on feature transformation.

D. Sensitivity Analysis

We also studied the sensitivity of parameters C, A, 1, and
p in our algorithm on the Urban Land Cover dataset. Fig.
[6] shows the results. With the fixed feature dimensions, our
method is not sensitive to A, 77 and p with wide ranges. As for
parameter C, when we fix the dimensions, the performance
is gradually improved as C' increases. When C' > 1073, the
performance is gradually degraded as C' increases. When C' is
set to 1073, the performance is the best.

IV. CONCLUSION

This paper proposed a novel feature transformation method
for max-margin based classification. The proposed method
aimed to find a low-dimensional feature space to maximize the
classification margin of the data and minimize the within class
scatter simultaneously. Moreover, we added a regularization
term to eliminate noisy or redundant features. Finally, another
regularization term was introduced to capture the correlations
among multiple categories to help to learn discriminative
features. Extensive experiments on publicly available bench-
marks demonstrated the effectiveness of the proposed method
compared to several related methods.
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