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A Semi-Supervised Approach to the Detection and

Characterization of Outliers in Categorical Data
Dino Ienco, Ruggero G. Pensa, and Rosa Meo

Abstract—In this paper we introduce a new approach of
semi-supervised anomaly detection that deals with categorical
data. Given a training set of instances (all belonging to the
normal class), we analyze the relationships among features for the
extraction of a discriminative characterization of the anomalous
instances. Our key idea is to build a model characterizing the
features of the normal instances and then use a set of distance-
based techniques for the discrimination between the normal and
the anomalous instances. We compare our approach with the
state-of-the-art methods for semi-supervised anomaly detection.
We empirically show that a specifically designed technique for
the management of the categorical data outperforms the general-
purpose approaches. We also show that, in contrast with other
approaches that are opaque because their decision cannot be
easily understood, our proposal produces a discriminative model
that can be easily interpreted and used for the exploration of the
data.

Index Terms—Anomaly detection, distance learning, categori-
cal data, semi-supervised learning.

I. INTRODUCTION

IN many application domains, such as fraud detection, intru-

sion detection, satellite image analysis and fault diagnosis,

the identification of instances that diverge from the expected

behavior is a crucial task. The detection of these instances

(called anomalies or outliers) has multiple applications: it

can be used to spot possible noisy data and clean it, thus

enhancing the analysis, or to identify undesirable events when

they happen.

From a data analysis point of view, outlier/anomaly detec-

tion is the problem of finding abnormal instances in the data,

where data are considered normal if they fit some expected

distribution. It is a multi-disciplinary research area that has

been investigated extensively by researchers from statistics,

data mining and machine learning. In practice, it can be

defined as a classification task where the goal is to decide

whether an incoming instance is normal or anomalous. For a

comprehensive survey of this area we refer to [1].

Though the goal is well defined, there exist multiple

anomaly detection techniques that can be classified on the

basis of two main perspectives: (1) the availability of sup-

plementary information on training data (e.g., class labels),

and (2) the type of data they manipulate.

Concerning the first point of view, in the literature we

identify three classes of approaches: supervised, unsupervised
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and semi-supervised [1]. Supervised techniques are often

handled using classical machine learning techniques where the

problem is treated as a binary classification problem with the

abnormal class being poorly represented (imbalanced data) [2].

Unsupervised techniques detect anomalies without knowledge

on the class variable [3]. They assume that anomalies are

geometrically separated in the features space from the normal

instances. These techniques usually employ clustering algo-

rithms assuming that normal instances are closer to each others

than to outliers which are placed in low density regions. Hence,

they require the availability at processing times of instances

from all the classes.

Unsupervised and supervised anomaly detection techniques

represent the majority of the research work in the area of

anomaly/outlier detection. A limitation of these approaches

consists in the fact that they assume that training data contain

both normal and abnormal instances. In many applications

this is a strong requirement, since abnormal data are often

difficult or expensive to obtain. For instance, in aircraft engine

fault detection, collecting data related to damaged components

requires those components to be sabotaged which is costly and

extremely difficult.

A solution to this point comes from the semi-supervised

approaches [1], [4] that do not require anomalous instances in

the training phase: they build a model of the normal class in

the training data and recognize the anomalies in test data as

those instances that most differ from the normal model. As a

positive side-effect, when normality shifts it may re-learn the

data model.

Concerning the second point of view, most anomaly de-

tection methods apply to numerical or ordinal attributes for

which the normality can be defined by a proximity notion

between instances described as vectors in a m-dimensional

space. When objects are described by numerical features, there

is a wide range of possible proximity measures.

Actually data are often described by categorical attributes

that take values in a set of unordered nominal values, and can-

not be mapped into ordinal values without loss of information.

For instance the mapping of a marital status attribute value

(married or single) or a person’s profession (engineer, teacher,

etc.) to a numerical value is not straightforward. This makes

it impossible even to rank or compute differences between

two values of the feature vectors. For categorical data the

simplest comparison measures are derived from overlap [5]

in which the proximity between two multivariate categorical

entities is proportional to the number of attributes in which

they match. Clearly, these distance metrics do not distinguish

between the different values which is a strong limitation since
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it prevents to capture similarities that are clearly identified by

human experts.

In this paper we propose a solution to the problem of

anomaly detection in categorical data with a semi-supervised

setting. Our approach is based on DILCA, a distance learning

framework we introduced in [6]. The key intuition of DILCA

is that the distance between two values of a categorical

attribute Ai can be determined by the way in which they co-

occur with the values of other attributes in the dataset : if two

values of Ai are similarly distributed w.r.t. other attributes

Aj (with i 6= j), the distance is low. The added value of

this proximity definition is that it takes into consideration

the context of the categorical attribute, defined as the set

of the other attributes that are relevant and non redundant

for the determination of the categorical values. Relevancy

and redundancy are determined by the symmetric uncertainty

measure that is shown to be a good estimate of the correlation

between attributes [7].

We validate our method by an extensive experimental anal-

ysis showing that our new approach based on data proximity

outperforms the state-of-the-art semi-supervised methods in

the field of anomaly detection considering categorical data.

This also empirically demonstrates that simply adapting an

existing numerical approach to categorical data is not a suf-

ficient strategy to successfully detect anomalies. Categorical

data needs ad-hoc strategies. Moreover, the experiments show

that our method is competitive to other methods that directly

consider categorical data. A recent proposal like FRaC [8]

that directly handles categorical data is based on predictive

models: as a consequence its accuracy performance heavily

depends on the predictor models and on the tuning of many

parameters. Moreover, the choice of the predictor models can

be done only by the experts. Our method, instead, is based

on the proximity notion which is intuitive for the end-user.

Last but not least, a positive side-effect of our method, is that

the proximity values between instances provide a descriptive

model that can be easily visualized and allows the exploration

and organization of the domain knowledge by the analyst.

The key contributions of our work are the following:

• We design an anomaly detection framework for cate-

gorical data based on the distance learning approach

presented in [6];

• We embed the distance learning algorithm within differ-

ent ranking strategies and show that our approach returns

good outlier candidates for each of the four proposed

ranking strategies;

• We compare our method with state-of-the-art semi-

supervised outlier detection methods. This comparison

highlights the necessity of designing the anomaly detec-

tion specifically for categorical data.

• We show that our method is not simply a working

method, but it provides also explanatory insights about

the data.

The remainder of this paper is organized as follows: Section

II discusses related work. In section III we briefly explain

the DILCA framework for learning distances from categorical

data [6]. The distance based algorithms, the complexity discus-

sions and the exploration capabilities are presented in Section

IV. In Section V we report the experiments while section VI

concludes.

II. RELATED WORK

Outlier, or anomaly detection, has always attracted a lot of

research interest since its first definition in the late Sixties

[9]. With the advent of data mining and the advances in

machine learning that occurred in the 1990s, the research on

anomaly detection gained new impetus and gave rise to many

novel approaches and algorithms [1]. Even though all these

approaches can be classified depending on various aspects,

here we present some relevant recent algorithms by underlying

the type of data they handle and how they use data labels when

available. In particular, as regards the latter aspect, anomaly

detection approaches can be grouped into three classes: un-

supervised methods, which ignore whether training instances

are normal or anomalous; supervised methods, which leverage

both normal/anomalous class labels; semi-supervised methods,

which handle data that exhibit a partial labeling (generally,

only normal instances are known). Here, we will not address

supervised anomaly detection since the problem is similar to

building predictive models in the presence of imbalanced or

skewed class distributions [2].

Unsupervised and semi-supervised anomaly detection

A well-known proposal of unsupervised outlier detection

is LOF [10] that employs the distance between objects to

detecting local outliers that differ from dense regions. The

distance is computed on the k nearest neighbors: hence, LOF

strongly depends on the setting of the parameter k. In [11]

a cluster-based technique is employed with a kernel-based

technique for a robust segmentation of the customers base

and outlier identification. In [12], the authors introduce an

angle-based outlier method that employs the divergence in the

objects directions. [3] is also focused on unsupervised anomaly

detection on numerical data and categorical attributes are often

ignored, although it is well-known that a misused or unadapted

distance measure may negatively affect the results [13].

Semi-supervised anomaly detection has attracted more re-

search interests in the last fifteen years. A first formulation

was given in [14] with a semi-supervised outlier detection

algorithm based on SVM. The so-called One-Class SVM

algorithm maps input data into a high dimensional feature

space and iteratively finds the maximal margin hyperplane

which best separates the training data from the origin. In [15]

a statistical outlier detection framework is introduced: uLSIF.

It assumes that the density ratio between training and test

set tends to be small for candidate outliers and it estimates

a weight (importance factor) for each training instance. Both

these methods are studied principally for numerical or ordinal

data [16]. Another semi-supervised method is FRaC [8], which

uses normal instances to build an ensemble of feature classifi-

cation models, and then identifies instances that disagree with

those models as anomalous. It is not specifically tailored on

categorical data but it can adopt any classification algorithms

that work well on each specific feature type. All these semi-

supervised methods are compared with ours in Section V.
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Anomaly detection in categorical domains

Many of the early (unsupervised) methods to mine outliers

in categorical domains are based on frequent itemset min-

ing such as [17] and [18]. More recently, the problem of

mining outliers in the categorical domain has been tackled

by directly processing the data. In [19] a greedy algorithm

is presented and adopts a principle based on entropy-change

after instances removal. [20] proposes a method that assigns

a score to each attribute-value pair based on its frequency.

Objects with infrequent attribute values are candidate outliers.

Both these approaches are unsupervised. In [21] the authors

propose an unsupervised method for detecting anomalous

patterns in categorical datasets which is a slightly different

task than the detection of anomalous instances. [22], instead,

is a recent unsupervised method for categorical data that

marks as anomalies those instances whose compression cost

is higher than the cost required by the norm in a pattern-based

compression mechanism based on the Minimum Description

Length principle. The norm is defined as the patterns that

compress the data well (with a low compression cost). [23] is

also a pattern-based compression method, but, contrary to [22],

it works in a semi-supervised setting. However, its detection

accuracy is, on average, worse than the accuracy of OSVM

[14]. Yet it requires the computation of a collection of frequent

itemsets and a minimal support threshold to mine these.

Our work is motivated by the necessity of having a specific

semi-supervised technique that directly manages categorical

data. Our solution embeds a distance learning technique for

categorical data [6] into a distance based algorithm which

serves to characterize the normal class. This characterization

is successively employed to detect the anomalous instances

in a semi-supervised scenario. Our particular choice also

enables a human understandable characterization aiming at

supporting the analyst’s work. Investigating suitable measures

for computing distances between categorical data instances is

also an active field. In this context, another relevant contribu-

tion is [24] in which the authors evaluate the performance

of different distance measures for categorical data for the

anomaly detection task which is known to be affected in a

marked way by the employed measure. To this purpose, the

unsupervised algorithm LOF is combined with 14 different

distance measures. In this work, we don’t use this latter

solution since, as we demonstrated empirically in [6], our

distance learning approach outperforms the most efficient

metrics presented in [24].

III. DISTANCE LEARNING FOR CATEGORICAL ATTRIBUTES

A brief summary of DILCA (DIstance Learning for Cat-

egorical Attributes) is provided here. This is a framework

for computing distances between any pair of values of a

categorical attribute. DILCA was introduced by Ienco et al.

in [6] but was limited to a clustering scenario.

To illustrate this framework, we consider the dataset de-

scribed in Figure 1(a), representing a set of sales described by

means of five categorical attributes: Age, whose possible values

from the set {young, adult, senior} describe the client’s

age; Gender, which describes the client’s gender by means

of the values {M,F}; Profession, whose possible values

are {student, unemployed, businessman, retired}, Product

whose domain is {mobile, smartphone, tablet} and finally

Sales department whose domain values {center, suburbia}
give the location area of the store in which the sales occurred.

The contingency tables in Figure 1(b) and Figure 1(c) show

how the values of attribute Product are distributed w.r.t.

the two attributes Profession and Sales department. From

Figure 1(c), we observe that Product=tablet occurs only with

Sales dep=center and Product=mobile occurs only with Sales

dep=suburbia. Conversely, Product=smartphone is satisfied

both when Sales dep=center and Sales dep=suburbia. From

this distribution of data we infer that, in this particular context,

tablet is more similar to smartphone than to mobile because

the probability of observing a sale in the same department is

closer. However, if we take into account the co-occurrences

of Product values and Profession values (Figure 1(b)) we may

notice that Product=mobile and Product=tablet are closer to

each-other rather than to Product=smartphone, since they are

bought by the same professional categories of customers at a

similar extent.

This example shows that the distribution of the values in

the contingency table may help to define a distance between

the values of a categorical attribute, but also that the context

matters. Let us now consider the set F = {X1, X2, . . . , Xm}
of m categorical attributes and dataset D in which the in-

stances are defined over F . We denote by Y ∈ F the target

attribute, which is a specific attribute in F that is the target of

the method, i.e., the attribute on whose values we compute the

distances. DILCA allows to compute a context-based distance

between any pair of values (yi, yj) of the target attribute Y on

the basis of the similarity between the probability distributions

of yi and yj given the context attributes, called C(Y ) ⊆ F \Y .

For each context attribute Xi ∈ C(Y ) DILCA computes the

conditional probability for both the values yi and yj given the

values xk ∈ Xi and then it applies the Euclidean distance.

The Euclidean distance is normalized by the total number of

considered values:

d(yi, yj) =

√

∑

X∈C(Y )

∑

xk∈X(P (yi|xk)− P (yj |xk))2
∑

X∈C(Y ) |X |
(1)

The selection of a good context is not trivial, particularly

when data is high-dimensional. In order to select a relevant

and non redundant set of features w.r.t. a target one, we adopt

the FCBF method: a feature-selection approach originally

presented by Yu and Liu [7] exploited in [6] as well. The

FCBF algorithm has been shown to perform better than other

approaches and its parameter-free nature avoids the tuning step

generally needed by other similar approaches. It takes into

account the relevance and the redundancy criteria between

attributes. The correlation for both criteria is evaluated through

the Symmetric Uncertainty measure (SU). SU is a normalized

version of the Information Gain [25] and it ranges between 0

and 1. Given two variables X and Y , SU=1 indicates that

the knowledge of the value of either Y or X completely

predicts the value of the other variable; 0 indicates that Y
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ID Age Gender Profession Product Sale dep.

1 young M student mobile suburbia
2 senior F retired mobile suburbia
3 senior M retired mobile suburbia
4 young M student smartphone suburbia
5 senior F businessman smartphone center
6 adult M unemployed smartphone suburbia
7 adult F businessman tablet center
8 young M student tablet center
9 senior F retired tablet center
10 senior M retired tablet center

(a) Sales table

mobile smartphone tablet

student 1 1 1

unemployed 0 1 0

businessman 0 1 1

retired 2 0 2
(b) Product-Profession

mobile smartphone tablet

center 0 1 4

suburbia 3 2 0
(c) Product-Sales dep.

Fig. 1. Sales: a sample dataset with categorical attributes (a) and two related contingency tables (b and c).

and X are independent. During the step of context selection,

a set of context attributes C(Y ) for a given target attribute

Y is selected. Informally, these attributes Xi ∈ C(Y ) should

have a high value of the Symmetric Uncertainty and are

not redundant. SUY (Xi) denotes the Symmetric Uncertainty

between Xi and the target Y . DILCA first produces a ranking

of the attribute Xi in descending order w.r.t. SUY (Xi). This

operation implements the relevance step. Starting from the

ranking, it compares each pairs of ranked attributes Xi and

Xj . One of them is considered redundant if the Symmetrical

Uncertainty between them is higher than the Symmetrical

Uncertainty that relates each of them to the target. In particular,

Xj is removed if Xi is in higher position of the ranking and

the SU that relates them is higher than the SU that relates

each of them to the target (SUXj
(Xi) > SUY (Xi) and

SUXj
(Xi) > SUY (Xj)). This second part of the approach

implements the redundancy step. The results of the whole

procedure is the set of attributes that compose the context

C(Y ).
At the end of the process, DILCA returns a distance model

M = {MXi
| i = 1, . . . ,m}, where each MXi

is the matrix

containing the distances between any pair of values of attribute

Xi, computed using Eq. 1.

IV. SEMI-SUPERVISED ANOMALY DETECTION FOR

CATEGORICAL DATA

The distance learning approach described in the previous

section has been successfully employed in a clustering sce-

nario (see [6] for details). In this section, we define a semi-

supervised anomaly detection framework for categorical data

which takes benefit of DILCA.

Before entering the core of our approach of anomaly de-

tection for categorical datasets, we recall the definition of a

semi-supervised anomaly detection problem [1].

Let D = {d1, . . . , dn} be a set of n normal data objects

described by a set of categorical features F . Let T =
{t1, . . . , tm} be another set of m data objects described by

the same set F , and such that part of the objects are normal

and the remaining ones are abnormal. To distinguish between

normal and abnormal objects, we define a class variable

class which takes values in the set {A,N}, and such that

∀d ∈ D, class(d) = N and ∀t ∈ T, class(t) ∈ {A,N}. The

goal of the semi-supervised anomaly detection framework is

to decide whether a previously unseen data object t ∈ T is

normal or abnormal, by learning the normal data model from

D.

Typically in anomaly detection there are two ways to present

the results: the first one is to assign a normal/abnormal label to

each test data instance; the second is to give an anomaly score

(a sort of anomaly degree) to each tested instance. The last

method is often preferred since it enables the user to decide a

cutoff threshold over the anomaly score, or to retain the top-

k instances ranked by the anomaly score values. Depending

on the constraints w.r.t. the admitted false positives or true

negatives present in the results, the user may set a high or

low threshold, or decide to consider a high or low value of

k. Our approach supplies the second type of output: given a

training data set D, the normality model learned on D and a

test instance t ∈ T , it returns the value of the anomaly score

of t.
Our approach, called SAnDCat (Semi-supervised Anomaly

Detection for Categorical Data), consists of two phases: during

the first phase, we learn a model of the normal class N
from the training data D; in the second phase we select k
representative objects from D and we take them as a reference

for the computation of the anomaly score of each test instance.

In details, SAnDCat works as follows:

1) It learns a model consisting of a set of matrices M =
{MXi

}, one for each attribute Xi ∈ F . Each element

mi(j, l) = d(xi
j , x

i
l) is the distance between the values

xi
j and xi

l of the attribute Xi, computed using DILCA

by evaluation of Equation 1 over the training dataset

D. These matrices provide a summarization in terms of

the DILCA distance function on the distribution of the

values of the attributes Xi given the other attributes in

the instances of the normal class.

2) Given the above computed matrices MXi
, it is possible
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to compute a distance between any two data instances

d1 and d2 on the basis of the DILCA distance between

the categorical values, using the following formula:

dist(d1, d2) =

√

∑

MXi
∈M

mi(d1[Xi], d2[Xi])2 (2)

where d1[Xi] and d2[Xi] are respectively the values

of the attribute Xi in the objects d1 and d2. Finally,

SAnDCat measures the outlier score OS associated to

each test instance t ∈ T as the sum of the distances

between t and a subset of k (1 ≤ p ≤ k ≤ n) instances

dp belonging to D, i.e.:

OS(t) =
k
∑

p=1

dist(t, dp) (3)

where dist(t, dp) is computed using Equation 2.

The key intuition behind SAnDCat is that a distance that

fits for the training dataset D should fit also for the instances

tn ∈ T whose class(tn) = N , but not for the instances ta
whose class(ta) = A. Hence, we expect that those instances

of T belonging to the normal class N are closer to instances in

D than those belonging to the abnormal class A. The reason

is that combinations of characteristic attribute values of the

normal instances in D produce low distance values between

the normal instances, and these ones are maintained also in

the normal instances of the test set T . On the contrary these

characteristic attribute values are not necessarily present in

the abnormal instances and this produces higher values of the

distances between a normal and an abnormal instance.

A. Selecting k data representatives

We discuss now the problem of the selection of a represen-

tative set of k instances of D for the computation of the outlier

score. Here, we present four different heuristics: two of them

depend on the position of the test instance in the feature space,

and require then to be re-executed for each test instance; the

other two are executed once for all, since they do not depend

on the tested instance. For this reason, the last two heuristics

are suitable also for on-line outlier detection, in application

where data need to be analyzed in real time. In the following,

we present in detail each heuristic strategy.

• Minimum Distance Top-k (MinDTK): given a test

instance t, we compute the outlier score considering the

k training instances that are closer to t. This operation

requires n distance computations to compute distances.

The complexity of choosing the top k similar instances

for each test instance is then O(n). To process the

whole test set T , this strategy requires O(mn) operations.

Supposing m ∼ n, the overall complexity of this heuristic

is O(n2).
• Maximum Distance Top-k (MaxDTK): this strategy is

similar to the previous one, except that in this case we

select the k instances that are most distant from t. The

complexity is the same as in the previous method.

• Random k (RandK): we select k random instances from

the training set, and we compute the outlier score using

these instances for all the test set. This strategy requires

O(k × m) operations. Supposing k ≪ m and m ∼ n,

the overall complexity is O(n). This method is the less

expensive from the computational point of view.

• Central k (CentralK): this heuristic selects the k most

central instances in the training set. As regards the cen-

trality of an instance di ∈ D, we propose the following

measure that should be minimized to find the k most

central instances:

CD(di) =
∑

dp∈D, dp 6=di

dist(di, dp)
2

We use these k instances for computing the outlier score

of the whole test set. This strategy requires O(n2) opera-

tions to compute centrality values, O(n log n) operations

to rank the training instances and O(k ×m) operations

to compute the outlier score of the test set. Supposing

k ≪ m and m ∼ n, the overall complexity of this

heuristic depends on the first step, i.e., O(n2). However,

once the central instances have been selected, it only

requires k distance computations to process each test

instance.

B. Overall complexity

The overall complexity of SAnDCat depends on three

factors: (1) the complexity of the training algorithm, which

depends on DILCA, (2) the selected strategy for computing the

k data representatives, and (3) the type of output (threshold-

based or ranked list). Concerning (1), from [6] it turns out that

the complexity of DILCA is O(nl2 log l), where l = |F |. For

(2), the worst case is given by the first two strategies, which

require O(n2) operations. Finally, for (3), using a threshold

requires constant time, while ranking the test instances requires

O(m logm) operations. Supposing m ∼ n, in the worst

case, SAnDCat requires O(nl2 log l+n2+n logn) operations.

In general l ≪ n of at least one order of magnitude:

we can assume then that the component O(n2) prevails on

O(nl2 log l), and the overall complexity is O(n2) (we show

this empirically in Section IV-B). When using the RandK

strategy, the second component is O(n), leading to an overall

complexity of O(nl2 log l).

C. Characterization, inspection and exploration of anomalies

In addition to the anomaly detection abilities (discussed

in Section V) our approach also supports the characteri-

zation and the exploratory analysis of the anomalies. To

this purpose it provides the analyst with the explana-

tory proximity values between the values of the cate-

gorical attributes. In order to concretely show the added

value of our distance learning approach, we analyze in

detail the Contact-Lenses dataset [26]. The dataset con-

tains 24 instances belonging to 3 classes: soft, hard, none.

Each instance is described by four attributes: Age ∈
{young, pre-presbyotic, presbyotic}, Spectacle prescrip ∈
{myope, hypermetrope}, Astigmatism ∈ {no, yes},

Tear prod rate ∈ {re− duced, normal}. Its small size

allows us to show the behavior of our approach and to easily
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Age young pre-presbyotic presbyotic

young 0 0.2357 0.4714
pre-presbyotic 0.2357 0 0.2357
presbyotic 0.4714 0.2357 0

(a)

Tear Prod Rate normal reduced

normal 0 0.6680
reduced 0.6680 0

(b)

Astigmatism yes no

yes 0 0.2202
no 0.2202 0

(c)

Spectacle Prescrip myope hypermetrope

myope 0 0.2202
hypermetrope 0.2202 0

(d)

Fig. 2. Distance matrices for attribute Age (a), Tear prod rate (b), Astigma-

tism (c) and Spectacle prescrip (d) in the instances of the normal class

give a rational explication of the obtained results. In order

to be used for the purpose of anomaly detection, we update

the dataset to be organized in two classes: the normal class

including all the instances from the original class (none) and

the abnormal class including all the instances for which one of

the contact lenses types was prescribed (hard or soft). Then for

training, we apply DILCA to learn the distance matrices using

the instances alternatively from one of the two resulting classes

(normal and abnormal). In Table I for each feature we show

the attributes belonging to the related context. For instance

we observe that attribute Astigmatism is always correlated

with (Spectacle prescrip, Tear prod rate). This is actually

confirmed by a common knowledge on ophthalmology: astig-

matism is often related to a high production of tears. Also,

we observe that tear production is related to age, as expected.

When we consider the abnormal class, attribute Age becomes

part of the context of all the attributes. This also confirms a

medical common-sense, since age is an influencing factor in

eyesight problems.

In Figure 2 and Figure 3 we report the four distance matrices

learned by DILCA in the normal and abnormal cases. Let us

first consider the normal case (Figure 2). We observe that a

difference between the values of the attribute Tear prod rate

has more influence on the final distance (because the contribu-

tion to the distance is higher) than a mismatch on the attribute

Age or on Astigmatism. As regards the attribute Age we notice

that the mismatch between young and presbyotic has more

impact then all the other possible mismatches on the values

of ⁀Age. This distance matrix is valid even considering the

order that exists among the three values according to their

real meaning: young, pre-presbyotic and presbyotic. When we

look at the abnormal class (Figure 3) the distance matrices for

Astigmatism and Spectacle prescip are confirmed, while the

differences between the values of Tear prod rate appear more

significant (they influence at a greater extent the distances

between the instances of this class). The contribution to the

distances between the values of the attribute Age, instead,

looks less significant. Indeed, Age is part of the context of

the other attributes for this class (it contributes already to the

Age young pre-presbyotic presbyotic

young 0 0.1368 0.1949
pre-presbyotic 0.1368 0 0.1144
presbyotic 0.1949 0.1144 0

(a)

Tear Prod Rate normal reduced

normal 0 1.0
reduced 1.0 0

(b)

Astigmatism yes no

yes 0 0.2430
no 0.2430 0

(c)

Spectacle Prescrip myope hypermetrope

myope 0 0.2430
hypermetrope 0.2430 0

(d)

Fig. 3. Distance matrices for attribute Age (a), Tear prod rate (b), Astigma-

tism (c) and Spectacle prescrip (d) in the instances of the abnormal class

distance computation of all the other attributes) but in isolation

it does not help much to detect instances of this class.

1) The Attribute Model Impact: Obviously, looking at each

distance matrix individually can be frustrating, especially

when dealing with high-dimensional data. We then provide an

automated way to measure the impact of each attribute in the

distance model and visualize the contribution of all attributes

at a glance. We recall that the model generated by SAnDCat

supplies a set of matrices M = {MXi
| i = 1, . . . ,m} (one

for each attribute Xi). Each of them corresponds to a point-

wise distance matrix representing the distance between each

pair of values of a given attribute Xi. The attribute model

impact of Xi, namely I(Xi), is computed as the mean of the

upper (or lower) triangular part of the corresponding matrix

MXi
= {mi(k, l)}:

I(Xi) =

∑N−1
k=1

∑N

l=k+1 m
i(k, l)

N(N − 1)/2

where N is the number of values taken by the attribute Xi.

Clearly, the attribute impact takes values in the interval [0, 1]
and higher values of I(Xi) indicate a stronger impact of the

attribute on the distance. The attribute model impact computed

for the normal and abnormal classes of Contact-Lenses are

given in Table II. It is clear that the attribute Age helps to

detect well the instances of the normal class (even better for

the normal class is the attribute Tear Prod Rate); although

Age results quite insignificant in detecting the instances of the

abnormal class, while the other three attributes work better.

2) The Attribute Distance Impact: Since our method does

not compute any distance model for the abnormal class (but

only for the normal class), the attribute model impact can

only be employed when a sufficient number of anomalous

instances has been detected. However, a similar principle can

be applied to any individual test instance. In this case, instead

of computing the attribute model impact, we measure the

contribution of each attribute on the distance between the test

instance and the instances from the normal class. For a given

attribute Xi, an anomalous instance ta and the set of normal
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TABLE I
CONTACT-LENSES ATTRIBUTE CONTEXTS FOR NORMAL AND ABNORMAL CLASSES

Context Attributes

Attribute Normal class Abnormal class

Age Tear prod rate Spectacle prescrip, Tear prod rate
Spectacle prescrip Astigmatism, Tear prod rate Age, Astigmatism, Tear prod rate
Astigmatism Spectacle prescrip, Tear prod rate Age, Spectacle prescrip, Tear prod rate
Tear prod rate Age, Spectacle prescrip Age

TABLE II
THE ATTRIBUTE MODEL IMPACT AND DISTANCE IMPACT FOR THE

ATTRIBUTES OF Contact-Lenses.

Attribute model impact

Class Age Tear Prod Rate Astigm. Spectacle P.

normal 0.3143 0.6680 0.2202 0.2202
abnormal 0.1487 1.000 0.2430 0.2430

Attribute distance impact

Class Age Tear Prod Rate Astigm. Spectacle P.

abnormal 0.2165 0.5344 0.1109 0.1109

instances D, the attribute distance impact of Xi in ta, namely

I(Xi, ta) is given by:

I(Xi, ta) =

∑

dj∈Repr(D) m
i(ta[Xi], dj [Xi])

|Repr(D)|

where ta[Xi] and dj [Xi] are respectively the values of the

attribute Xi in the instances ta and dj and mi(ta[Xi], dj [Xi])
is the corresponding element in MXi

∈ M. Notice that the

set of instances dj ∈ D considered for the computation of the

attribute distance impact is the set Repr(D), i.e., the set of

the representative instances of the normal class D selected by

any of the methods described in Section IV-A.

The attribute distance impact takes values in the interval

[0, 1]: a higher value of I(Xi) indicates a stronger impact of

the attribute on the distance between the abnormal instance

and the normal ones. The average of the values of the

attribute distance impact for each attribute, where the average

is computed for all the anomalous instances of Contact-Lenses

is given in Table II.

The expressiveness of the attribute distance impact can be

further exploited by means of some visual analytic tool. For

instance, in Figure 4 we employ the well known word cloud

paradigm. A word cloud is a visual representation for text

data where the importance of each word is shown with the

font size and/or its color. In our application, the font size of

each attribute is proportional to its impact. The two clouds in

Figure 4(a) and 4(b) clearly show the impact change of the

attribute Age when moving from the instances of the normal

class to the instances of the abnormal one. Figure 4(c), instead,

shows the higher impact of some attributes (in particular of

Tear Prod Rate) in terms of the attribute distance impact for

the computation of the distance between abnormal instances

and the instances of the normal class.

D. Exploration of the data by the DILCA distances

Finally, our method also supports visual analytic tools

for the exploration of the data and the visualization of the

tearprodrate
age

spectacleprescrip

astigmatism

(a)

tearprodrate
age

spectacleprescrip

astigmatism

(b)

tearprodrate
age

spectacleprescrip
astigmatism

(c)

Fig. 4. Word clouds for the attribute model impact in Contact-Lenses for the
instances of the normal class (a), the abnormal one (b) and the cloud for the
attribute distance impact for the instances of the abnormal class (c).
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Fig. 5. Test instances visualized using Multi Dimensional Scaling for Contact-
Lenses.

anomalous instances. In fact, differently from the competitors,

SAnDCat computes a distance model (provided by the DILCA

distances) that can be employed to visualize and explore

anomalies using the Multi Dimensional Scaling algorithm [27].

This well-known technique is usually employed to derive

an m-dimensional representation of a given set of instances

(points) by only computing all the point-to-point distances.

It computes a geometrical projection of the data points such

that the original distances are preserved as much as possible.

The only required parameter is the number of dimensions m.

Figure 5 shows the multi-dimensional scaling representation of

9 test instances from Contact-lenses plotted in a 2-dimensional

space (m = 2). The point-to-point distance has been computed

by equation 2 having selected only k = 15 representative

training instances dj . Notice that the projection of some

of the instances in the 2-dimensional space makes some of

the instances coincide in the same point. The picture shows

quite a sharp separation between the normal instances and

the abnormal ones (the instances from the opposite classes

coincide only in two points out of six). This confirms that

the instances coming from the opposite classes tend to have

different attribute values and are placed in a different region

of the space. Moreover, the distances between instances of

the opposite classes are on average higher than the distances

between instances of the same class.
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V. EXPERIMENTS

To assess the quality of our approach we conducted several

experiments on real world categorical datasets. In this section

we first evaluate the four heuristics, for different values of k.

Then, we compare our approach with state-of-the-art methods.

Finally, we present a simple example to analyze the obtained

model and illustrate how this model could be used to improve

the exploratory analysis.

To evaluate the performance of an outlier detection al-

gorithm, we must take into account both the detection rate

(the amount of instances of the abnormal class found by the

algorithm) and the detection error (the amount of instances

of the normal class that the algorithm misjudges as outliers).

To consider both measures at the same time, it is common to

evaluate the results using the Area Under the Curve (AUC)

[28]. In this work, we use the approach proposed in [29], in

which the AUC score is computed with a closed-form formula:

AUC =
S0 − n0(n0 + 1)/2

n0n1

where n0 is the number of test instances belonging to the

normal class, n1 is the number of abnormal test instances and

S0 =
∑n0

i=1 ri, where ri is the rank given by the class model

of the normal class to the i-th normal instance in the test set.

In our case it is the OS score given to each normal instance

in the test set.

In order to evaluate our approach we use 13 real-world

datasets, from the UCI Machine Learning repository [26].

A summary of the information about the datasets is shown

in Table III, where we report the number of normal and

anomalous instances, the number of attributes and the overall

number of different attribute-value pairs. These datasets have

been chosen because they exhibit a variety of properties in

terms of number of attributes, attribute cardinality and number

of objects.

We compare our method with four competitors: LOF (Local

Outlier Factor) [10], OSVM (One-Class Support Vector Ma-

chine) [14], uLSIF (Unconstrained Least-Square Importance

Fitting) [15] and FRaC (Feature Ensemble model) [8]. We

use the authors’ implementations of OSVM (in C++), uLSIF

(in Octave), FRaC (in Java) and our own implementation of

LOF in Java. SAnDCat is implemented in Java.

To allow LOF working with categorical attributes we need

to couple it with a distance function that is able to manage this

kind of data. In [24] a comparative study of similarity/distance

functions for categorical data is presented. We choose to

couple LOF with the Occurrence frequency (OF) distance

function because this measure was reported to obtain the

highest performance results. This measure assigns a high

distance value to mismatches on infrequent values.

For each dataset, we discretized the numerical features using

equi-depth bins with the number of bins equal to ten. We

performed the data pre-processing required by uLSIF and

OSVM and converted each categorical attribute assigning a

boolean attribute to each categorical value (a standard pre-

processing for SVM). We adopt the same pre-processing for

uLSIF.

TABLE III
DATASETS CHARACTERISTICS.

Dataset # Normal # Abnormal # Attr. # Val.

Adult 37 155 350 13 118
Audiology 57 1 69 154
Breast-cancer 201 6 9 51
Credit-a 383 9 15 101
Dermatology 112 3 34 139
Lymph 81 1 18 74
Hepatitis 123 3 19 86
Madelon 1 300 39 500 5 000
Mushroom 4 208 126 22 125
Nursery 4 320 129 8 27
Page-blocks 4 913 147 10 100
Spambase 2 788 54 57 570
Votes 267 8 16 32

The experiments were conducted as follows. Given a

dataset, we labeled as normal instances the instances belonging

to the majority class (the class with the highest number of

instances). Then we selected randomly 3% of instances from

the other classes and we label these instances as abnormal.

To evaluate the performance of the different semi-supervised

approaches we performed a 5-fold cross validation. This means

that for each dataset we divided all the instances of the normal

class into 5 folds. At each iteration of the cross-validation we

learned the model on 4 folds and tested the method on the

remaining fold plus the instances of the abnormal class. At the

end of the procedure we report the average on the different

folds. All the experiments were conducted on a MacBook Pro

equipped with a 2.6 GHz Intel Core i5 processor, 8GB RAM

and running OS X 10.9.2.

Unfortunately OSVM outlier scores cannot be obtained

directly. Thus, in our experiments, the outlier score is the

distance from the separating hyperplane, as suggested in [15].

uLSIF is based on a random selection of training instances.

Hence, we ran the algorithm 30 times and we retained the

average of the results. Similarly it was done for the RandomK

strategy: we averaged its results over 30 runs. Finally, LOF

was launched using four different values (10, 20, 30, 40) of

the k parameter (the number of neighbors).

A. Evaluation of the results

In Figure 6 we report the results of the first experiment that

had the purpose of evaluating the four different strategies em-

ployed by SAnDCat for the selection of the k representatives.

For each heuristic the value of k ranges over the set: {10,

20, 30, 40}. In Figure 6 we report the average AUC results

of SAnDCat on all the datasets. In general the average AUC

values are quite high. They vary from a minimum of 0.7568 for

the MinDTK method with k = 10, to a maximum of 0.8001
for the MaxDTK method (with k = 40). Interestingly, this

method achieves the best results for all the employed values

of k. In general, however, the different strategies return similar

results, and the value of k does not seem to be much significant

for the accuracy of our algorithm. It shows that values of

k between 20 and 30 are sufficient to guarantee acceptable

anomaly detection rates. Moreover, the differences in AUC

for a given heuristic are not significant.
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k MinDTK MaxDTK RandomK CentralK

10 0.7568 0.7805 0.7782 0.7654

20 0.7775 0.7966 0.7816 0.7693

30 0.7858 0.799 0.7865 0.7735

40 0.7832 0.8001 0.7877 0.777
(a)

k MinDTK MaxDTK RandomK CentralK

10 2 3 0 0

20 1 1 0 0

30 1 0 0 1

40 1 3 0 0
(b)

Fig. 6. Average AUC (a) and number of wins (b) for all heuristics of SAnDCat
and for any given value of k.

k 10 20 30 40

Avg. AUC 0.3976 0.5067 0.5898 0.6147

No. of wins 1 1 3 8

Fig. 7. LOF’s average AUC and number of wins for any given value of k.

In order to compare our approach with the competitors,

we selected the combination of k value and heuristics for

SAnDCat that provides the best average results (that in our

case corresponds with one of the combinations that win most

of the times as well). Thus, we select MaxDTK with k = 40.

We perform a similar experiment for LOF. We compare the

results for k = {10, 20, 30, 40} (see Figure 7) and retain the

parameter value which provides the best result (k = 40).

The results of the experiments are reported in Table IV.

SAnDCat wins most of the times (8 datasets over 13). If we

look at the competitors, OSVM wins on three datasets only,

FRaC wins on 4 datasets; uLSIF and LOF never achieve the

best result, but this is not surprising. These two algorithms

performs poorly on high-dimensional data, since they are

based on density estimation, which is known to work well

only on low-dimensional numerical data. Notice that, even

when our approach does not win, its AUC is close to the

winner’s one. The only exception is constituted by Lymph,

but other combination of SAnDCat’s parameters bring to better

results for this dataset (e.g., MaxDTK with k = 20 achieves

an AUC of 0.8404). These results underline that taking into

account the inter-dependence between attributes allows the

management of the categorical data and it helps to obtain

the best accuracy results for the detection of the anomalous

instances. This impression is also confirmed by the average

results (see Figure 8) showing that SAnDCat’s average AUC

computed on all datasets is sensibly higher than competitors’

ones.

It is worth noting also the poor performance of all al-

gorithms when applied to Madelon. In this case, the low

AUC values are due to the extremely high dimensionality of

the dataset: 500 attributes with 10 values per attribute for a

relatively small amount of instances. In these situations, most

algorithms are prone to generalization errors.

As additional evaluation, we also perform statistical tests to

show the significance of the obtained results. More in detail,

TABLE IV
AUC RESULTS ON UCI DATASETS: SANDCAT VS LOF, ULSIF, OSVM

AND FRAC.

Dataset SAnDCat LOF uLSIF OSVM FRaC

Adult 0.5743 0.4478 0.3706 0.5961 0.551
Audiology 0.8606 0.8245 0.3595 0.4956 0.4504
Breast-cancer 0.6070 0.5091 0.3624 0.5268 0.5258
Credit-a 0.7494 0.5201 0.3572 0.7317 0.4761
Dermatology 1.0000 0.7857 0.3587 1.0000 1.0000
Hepatitis 0.8860 0.6476 0.3607 0.8136 0.8758
Madelon 0.5063 0.4770 0.2506 0.496 0.5186
Lymph 0.7890 0.8641 0.3635 0.8520 0.8657
Mushroom 0.9995 0.5243 0.3594 0.6730 0.6959
Nursery 1.0000 0.5852 0.3592 0.5667 0.5807
Page-blocks 0.7513 0.2993 0.3626 0.6314 0.6665
Spambase 0.7022 0.4451 0.3383 0.7281 0.7132
Vote 0.9762 0.8979 0.5000 0.9375 0.9942

Avg. AUC 0.8001 0.6021 0.3617 0.6960 0.6856
Std. Dev. 0.1710 0.1868 0.0517 0.1661 0.1927
Max AUC 1.0000 0.8979 0.5000 1.0000 1.0000
Min AUC 0.5063 0.2993 0.2506 0.4956 0.4504
Avg. Rank 1.6154 3.5385 4.9231 2.4615 2.2308
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Fig. 8. Average AUC results for different Algorithms.

we employ the Friedman test [30] based on the average rank

of 5 algorithms on 10 datasets. We compare SAnDCat with

all the competitors (FRaC, uLSIF, OSVM, LOF) over all the

datasets. The average rank is provided on bottom of Figure IV.

According to the Friedman test, the null hypothesis is that all

the methods obtain similar performances, i.e., the Friedman

statistics X 2
F is lower or equal to the critical value of the chi-

square distribution with k − 1 degrees of freedom (k being

the number of algorithms). At significance levels of α = 0.01,

X 2
F = 29.09 while the critical value of the chi-square dis-

tribution is 13.28. Thus, the null hypothesis is comfortably

rejected underling statistically significant differences among

the methods. The post-hoc Nemenyi test [30] confirms that,

at significance level α = 0.10, our algorithm is the only one

that achieves statistically better results w.r.t. the two worst

competitors in our experiments, the critical difference being

CDα=0.1 = 1.7036.

B. Computational complexity

As we have shown in Section IV-B, the theoretical com-

putational complexity of our algorithm is O(nl2 log l) for

training and O(n2) for testing, where l is the number of
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Fig. 9. Runtime of SAnDCat for increasing percentages of instances (left)
and features (right).

features and n is the number of data objects (assuming that

the number of training instances and test instances are of the

same order of magnitude). To confirm this theoretical result

experimentally, we perform a scalability test by measuring the

time performances of SAnDCat (using MaxDTK as heuristic)

w.r.t. the number of data instances and features. In details, we

consider different percentages (from 10% to 100%) of data

instances from Adult, and different percentages (from 10% to

100%) of features from Madelon. Then we train SAnDCat on

80% of the instances and test the remaining 20%. In Figure 9

we report the measured running time for training and test in

the two cases. The curves confirm our theoretical analysis.

In particular, training time is mostly affected by dataset

dimensionality, while test time strongly depends on dataset

size. These results highlight a limitation of our approach:

when MaxDTK is chosen as strategy for testing new instances,

it is not adapted to online/real-time anomaly detection tasks.

However, CentralK and RandK strategies can be used to speed-

up the test phase at a reasonable cost in terms of detection

accuracy (see Figure 6(a)).

Since the algorithms are implemented in different program-

ming languages, we didn’t perform any runtime performance

comparison, which would be biased by the specific compiler

optimizations and weaknesses. Nonetheless, here we provide

a discussion about the theoretical complexity of all the com-

petitors.

The only competitor that achieve better theoretical perfor-

mances is LOF, whose complexity depends on the nearest

neighbors materialization step which requires O(n logn) op-

erations [10]. However, when LOF operates on categorical

data, it can not leverage any optimized data structure. In

this case its complexity is also quadratic. The performances

of the other two competitors are in line with those of our

algorithm. OSVM involves a complex quadratic programming

problem whose solution requires between O(n2) and O(n3)
operations [14], uLSIF requires a matrix inversion step [15],

whose complexity is cubic, even though there exist slightly less

complex approximation algorithms. Finally, the complexity of

FRaC depends on the complexity of the predictors employed

to compute the feature models. Some predictors are linear in

the number of data objects (e.g., Naive Bayes), however FRaC

runs multiple cross-validation loops for each feature and for

each classifier of the ensemble, so the complexity may easily

approach O(n2) in some cases.
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Fig. 10. Attribute clouds for the normal and abnormal classes of Hepatits (a
and b), Breast cancer (c and d), and Adult (e and f) employing the attribute
model impact.

C. Characterization of anomalies

Here, we show how to inspect the model generated by

SAnDCat with the purpose of understanding the contribution

of each single attribute to the final decision and supporting

the usage of visual analytic tools for the exploration of the

data. For this experiment, we employ Adult, Breast-cancer and

Hepatitis datasets. We have chosen these three datasets since

the names of their attributes are self-explaining and may then

support a qualitative (rather than quantitative) analysis of the

results.

We first employ the attribute impact metric (see Sec-

tion IV-C) to obtain visual hints regarding the importance

of each attribute. In Figure 10 the word cloud paradigm is

adopted in order to provide a graphical representation of the

attribute impact.

We observe, for instance, that in Breast cancer attributes

menopause, irradiat and nodeCaps have discriminant values

for the normal class (patients with no recurrence events,

Figure 10(c)), while a variation of these attributes values is

less significant for the abnormal class (patients with recurrence

events, Figure 10(d)). This means that the values of these

particular attributes are homogeneously distributed over all

the instances belonging to the abnormal class (therefore they

are not predictive of this class). On the other hand, breast,

breastQuad and tumorSize have a different distribution in

the anomalous instances. This change is detected by our

algorithm and used to decide whether an instance is normal or

anomalous. In Adult, the normal class corresponds to people

making less than 50K dollars per year (Figure 10(e)). In this

class, the most discriminative attributes are race and sex.
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Fig. 11. Attribute clouds for Hepatits(3) (a), Breast cancer(3) (b), and
Adult(3) (c) employing the average attribute distance impact.

In the abnormal class, race is distributed more uniformly,

while many other attributes have a more important impact (see

Figure 10(f)). Clear variations between the attributes impact

are also evidenced in Hepatitis (e.g., see the attribute liverFirm

in Figures 10(a) and 10(b)).

In Figure 11 we report the word clouds representing the

average attribute distance impact values of the anomalous

class. In Adult (we recall again that this dataset has the goal

of retaining the people making more than 50K dollars per

year, Figure 11(c)), we can observe that race and sex do not

contribute much to the distance computation (i.e., the values

of these attributes do not differ so much between the normal

and anomalous instances). In the case of Hepatitis, the main

differences between the anomalous class (died patients, Fig-

ure 11(a)) and the normal one (survived patients, Figure 10(a))

lie in the impact of the attribute histology that does not result

so important for the purposes of detecting instances of the

normal class while it plays an important role in discriminating

between normal and anomalous instances. In the same dataset,

we note that the attribute ascites represents a valuable infor-

mation because it helps to distinguish normal instances and

it is also crucial to discriminate anomalous examples. Similar

considerations apply for attributes menopause and invNodes in

Breast cancer as well (see Figure 11(b)).

As a further study, we analyze the discriminative power of

SAnDCat with respect to the attribute impact. To this purpose,

we rank the attributes in ascending order of I(Xi) and we

retain only top-n features to build the discriminative model.

By varying n, we may measure how the attribute impact

is related to the accuracy of SAnDCat. The results of these

experiments are reported in Figure 13: on the X-axis we report

the number of retained attributes, while on the Y-axis we show

the achieved AUC. As a general remark, we observe that using

half of the attributes in the prediction allows SAnDCat to

obtain reasonable and competitive results as with the whole

feature space. In some cases using a low number of attributes

has a positive impact over the final results. We can observe

this phenomenon in Figure 13(c) for SAnDCat applied on

Adult. In this case the model built using only 4 to 7 attributes

outperforms the model built on the whole attribute space (14

attributes). As a future work, we will study how this selection
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Fig. 12. Test instances visualized using Multi Dimensional Scaling for
Dermatology (a) and Hepatitis (b).

process can be related to the feature selection task whose goal

is the selection of a subset of attributes with the purpose of

improving the performance of a classifier [31].

As a final experiment, we employ the MDS (multi-

dimensional scaling) technique to plot normal and anomalous

data points in a reduced dimensional space. Figure 12 shows

the plots obtained by applying a 2-dimensional scaling to the

test examples of two datasets: Dermatology and Hepatitis. We

observe that the normal instances are well separated from

the abnormal ones. Interestingly, some abnormal points are

close to each other and they form small clusters in this

2-dimensional representation. A possible application of this

technique, is to employ an interactive MDS plot, where the

color of each point depends on the outlier score given in

Section IV by Equation 3. Thanks to this tool, an analyst

may select potential anomalies and inspect them. This tool

also supports an active learning process: in fact, the analyst’s

feedback on potential anomalies can be used to enrich the

positive model, thus providing a more accurate classifier.

In conclusion, while the competitors only aim at the im-

provement of the detection performances, SAnDCat not only

obtains comparable or better results, but it also supplies

explanatory information that supports an exploratory analysis

of the anomalies. Statistical information extracted from the

model learnt by SAnDCat can be easily exploited by the user

in order to get extra information on how the process works

and how it makes its decision.
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Fig. 13. AUC for Hepatits (a), Breast cancer (b) and Adult (c), considering only top-k attributes ranked by their impact.

VI. CONCLUSION

Managing and handling categorical data is a recurrent

problem in data mining. Most of the times this kind of data

requires ad-hoc techniques in order to obtain satisfactory re-

sults. Following this direction, in this paper we have presented

a new approach to semi-supervised anomaly detection for

categorical data. We have shown that our framework, based on

information-theoretic techniques, is able to model categorical

data using a distance-based algorithm. We obtain very good

results w.r.t. other state-of-the-art semi-supervised methods

for anomaly detection. We show that our approach outper-

forms also a fully unsupervised anomaly detection technique

like LOF that we have coupled with a specific measure

for categorical data. We underline also the complementary

information that our approach produces during the learning

step. In the paper we gave some practical examples of how it

is possible to exploit this additional information extracted by

our method (distances between instances and the models) in a

visualization framework and providing a summary information

on the classes.

As a future work we will investigate the following issues: i)

new data structures to handle categorical data more efficiently

and speed-up the anomaly detection task; ii) new distance-

based algorithms that are able to couple the DILCA measure

with the usage of feature weights and their employment for

data cleaning; iii) a way to extend our analysis in order to

manage both continuous and categorical attributes in a unique

and more general framework; iv) an extension of the semi-

supervised method with active learning.
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