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Abstract—In spam and malware detection, attackers exploit
randomization to obfuscate malicious data and increase their
chances of evading detection at test time; e.g., malware code
is typically obfuscated using random strings or byte sequences
to hide known exploits. Interestingly, randomization has also
been proposed to improve security of learning algorithms against
evasion attacks, as it results in hiding information about the clas-
sifier to the attacker. Recent work has proposed game-theoretical
formulations to learn secure classifiers, by simulating different
evasion attacks and modifying the classification function accord-
ingly. However, both the classification function and the simulated
data manipulations have been modeled in a deterministic manner,
without accounting for any form of randomization. In this work,
we overcome this limitation by proposing a randomized predic-
tion game, namely, a non-cooperative game-theoretic formulation
in which the classifier and the attacker make randomized strategy
selections according to some probability distribution defined
over the respective strategy set. We show that our approach
allows one to improve the trade-off between attack detection
and false alarms with respect to state-of-the-art secure classifiers,
even against attacks that are different from those hypothesized
during design, on application examples including handwritten
digit recognition, spam and malware detection.

Index Terms—Pattern classification, adversarial learning, game
theory, randomization, computer security, evasion attacks.

I. INTRODUCTION

Machine-learning algorithms have been increasingly
adopted in adversarial settings like spam, malware and
intrusion detection. However, such algorithms are not
designed to operate against intelligent and adaptive attackers,
thus making them inherently vulnerable to carefully-crafted
attacks. Evaluating security of machine learning against such
attacks and devising suitable countermeasures, are two among
the main open issues under investigation in the field of
adversarial machine learning [1]–[11]. In this work we focus
on the issue of designing secure classification algorithms
against evasion attacks, i.e., attacks in which malicious
samples are manipulated at test time to evade detection. This
is a typical setting, e.g., in spam filtering, where spammers
manipulate the content of spam emails to get them past the
anti-spam filters [1], [2], [12]–[14], or in malware detection,
where hackers obfuscate malicious software (malware, for
short) to evade detection of either known or zero-day exploits
[8], [9], [15], [16]. Although out of the scope of this work,
it is worth mentioning here another pertinent attack scenario,
referred to as classifier poisoning. Under this setting, the
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attacker can manipulate the training data to mislead classifier
learning and cause a denial of service; e.g., by increasing the
number of misclassified samples [6], [7], [17]–[20].

To date, several authors have addressed the problem of
designing secure learning algorithms to mitigate the impact of
evasion attacks [1], [6], [10], [11], [21]–[27] (see Sect. VII for
further details). The underlying rationale of such approaches
is to learn a classification function that accounts for potential
malicious data manipulations at test time. To this end, the
interactions between the classifier and the attacker are modeled
as a game in which the attacker manipulates data to evade
detection, while the classification function is modified to clas-
sify them correctly. This essentially amounts to incorporating
knowledge of the attack strategy into the learning algorithm.
However, both the classification function and the simulated
data manipulations have been modeled in a deterministic
manner, without accounting for any form of randomization.

Randomization is often used by attackers to increase their
chances of evading detection, e.g., malware code is typically
obfuscated using random strings or byte sequences to hide
known exploits, and spam often contains bogus text randomly
taken from English dictionaries to reduce the “spamminess”
of the overall message. Surprisingly, randomization has also
been proposed to improve classifier security against evasion
attacks [3], [6], [28]. In particular, it has been shown that
randomizing the learning algorithm may effectively hide in-
formation about the classification function to the attacker,
requiring her to select a less effective attack (manipulation)
strategy. In practice, the fact that the adversary may not
know the classification function exactly (i.e., in a deterministic
sense) decreases her (expected) payoff on each attack sample.
This means that, to achieve the same expected evasion rate
attained in the deterministic case, the attacker has to increase
the number of modifications made to the attack samples [28].

Motivated by the aforementioned facts, in this work we
generalize static prediction games, i.e., the game-theoretical
formulation proposed by Brückner et al. [10], [11], to account
for randomized classifiers and data manipulation strategies.
For this reason, we refer to our game as a randomized predic-
tion game. A randomize prediction game is a non-cooperative
game between a randomized learner and a randomized attacker
(also called data generator), where the player’s strategies
are replaced with probability distributions defined over the
respective strategy sets. Our goal is twofold. We do not only
aim to assess whether randomization helps achieving a better
trade-off in terms of false alarms and attack detection (with
respect to state-of-the-art secure classifiers), but also whether
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our approach remains more secure against attacks that are
different from those hypothesized during design. In fact, given
that our game considers randomized players, it is reasonable
to expect that it may be more robust to potential deviations
from its original hypotheses about the players’ strategies.

The paper is structured as follows. Randomized prediction
games are presented in Sect. II, where sufficient conditions for
the existence and uniqueness of a Nash equilibrium in these
games are also given. In Sect. III we focus on a specific game
instance involving a linear Support Vector Machine (SVM)
learner, for which we provide an effective method to find
an equilibrium by overcoming some computational problems.
We discuss how to enable the use of nonlinear (kernelized)
SVMs in Sect. IV. In Sect. V we report a simple example to
intuitively explain how the proposed methods enforce security
in adversarial settings. Related work is discussed in Sect. VII.
In Sect. VI we empirically validate the soundness of the
proposed approach on an handwritten digit recognition task,
and on realistic adversarial application examples involving
spam filtering and malware detection in PDF files. Notably,
to evaluate robustness of our approach and state-of-the-art
secure classification algorithms, we also consider attacks that
deviate from the models hypothesized during classifier design.
Finally, in Sect. VIII, we summarize our contributions and
sketch potential directions for future work.

II. RANDOMIZED PREDICTION GAMES

Consider an adversarial learning setting involving two ac-
tors: a data generator and a learner.1 The data generator
produces at training time a set D̂ = {x̂i, yi}ni=1 ⊆ X ×Y of n
training samples, sampled from an unknown probability distri-
bution. Sets X and Y denote respectively the input and output
spaces of the learning task. At test time, the data generator
modifies the samples in D̂ to form a new dataset D ⊆ X ×Y ,
reflecting a test distribution, which differs in general from
the training distribution and it is not available at training
time. We assume binary learners, i.e. Y = {−1,+1}, and
we assume also that the data transformation process leaves the
labels of the samples in D̂ unchanged, i.e., D = {(xi, yi)}ni=1.
Hence, a perturbed dataset will simply be represented in terms
of a tuple X = (x1, . . . ,xn) ∈ X n, each element being
the perturbation of the original input sample x̂i, while we
implicitly assume the label to remain yi. The role of the learner
is to classify samples x ∈ X according to the prediction
function h(x) = sign[f(x;w)], which is expressed in terms
of a linear generalized decision function f(x;w) = w>φ(x),
where w ∈ Rm, x ∈ X and φ : X → Rm is a feature map.

Static prediction games have been introduced in [11] by
modeling the learner and the data generator as players of
a non-cooperative game that we identify as l-player and d-
player, respectively. The strategies of l-player correspond to
the parametrizationsw of the prediction function f . The strate-
gies of the data generator, instead, are assumed to live directly
in the feature space, by regarding Ẋ = (ẋ>1 , . . . , ẋ

>
n )> ∈ Rmn

as a data generator strategy, where ẋi = φ(xi). By doing
so, the decision function f becomes linear in either players’

1We adopt here the same terminology used in [11].

strategies. Each player is characterized also by a cost function
that depends on the strategies played by either players. The
cost function of d-player and l-player are denoted by cd and
cl, respectively, and are given by

cl(w, Ẋ) = ρlΩl(w) +

n∑

i=1

`l(w
>ẋi, yi) , (1)

cd(w, Ẋ) = ρdΩd(Ẋ) +
n∑

i=1

`d(w
>ẋi, yi) , (2)

where w ∈ Rm is the strategy of l-player, Ẋ ∈ Rmn is the
strategy of the d-player, and yi denotes the label of ẋi as per
D̂. Moreover, ρd/l > 0 is a trade-off parameter, `d/l(w>ẋi, y)
measures the loss incurred by the l/d-player when the decision
function yields w>ẋi for the ith training sample while the
true label is y, and Ωd/l can be regarded as a penalization
for playing a specific strategy. For the d-player, this term
quantifies the cost of perturbing D̂ in feature space.

The goal of our work is to introduce a randomization
component in the model of [11], particularly to what concerns
the players’ behavior. To this end, we take one abstraction
step with respect to the aforementioned prediction game,
where we let the learner and the data generator sample their
playing strategy in the prediction game from a parametrized
distribution, under the assumption that they are expected cost-
minimizing (a.k.a. expected utility-maximizing). By doing so,
we introduce a new non-cooperative game that we call ran-
domized prediction game between the l-player and the d-player
with strategies being mapped to the possible parametrizations
of the players’ respective distributions, and cost functions
being expected costs under the same distributions.

A. Definition of randomized prediction game

Consider a prediction game as described before. We in-
ject randomness in the game by assigning each player a
parametrized probability distribution, i.e., pl(w;θl) for the
learner and pd(Ẋ;θd) for the data generator, that governs the
players’ strategy selection. Players are allowed to select the
parametrization θl and θd for the respective distributions. For
any choice of θl, the l-player plays a strategy w sampled from
pl(·;θl). Similarly, for any choice of θd, the d-player plays a
strategy Ẋ sampled from pd(·;θd). If the players adhere to the
new rules, we obtain a randomized prediction game.

A randomized prediction game is a non-cooperative game
between a learner (l-player) and data generator (d-player) that
has the following components:

1) an underlying prediction game with cost functions
cl/d(w, Ẋ) as defined in (1) and (2),

2) two parametrized probability distributions pl/d(·;θl/d)
with parameters in Θl/d,

3) Θl/d are non-empty, compact and convex subsets of a
finite-dimensional metric space Rsl/d .

The sets of parameters Θl/d are the pure strategy sets (a.k.a.
action spaces) for the l-player and d-player, respectively. The
costs functions of the two players, which quantify the cost
that each player incurs when a strategy profile (θl,θd) ∈
Θl ×Θd is played, coincide with the expected costs, denoted
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by cl/d(θl,θd), that the two players have in the underlying
prediction game if strategies are sampled from pl(·;θl) and
pd(·;θd), according to the expected cost-minimizing hypoth-
esis:

cl(θl,θd) = Ew∼pl(·;θl)
Ẋ∼pd(·;θd)

[cl(w, Ẋ)] , (3)

cd(θl,θd) = Ew∼pl(·;θl)
Ẋ∼pd(·;θd)

[cd(w, Ẋ)] , (4)

where E[·] denotes the expectation operator. We assume cl/d
to be well-defined functions, i.e. the expectations to be finite
for any (θl,θd) ∈ Θl ×Θd. To avoid confusion between cl/d
and cl/d, in the remainder of this paper we will refer them
respectively as cost functions, and expected cost functions.

By adhering to a non-cooperative setting, the two players
involved in the prediction game are not allowed to communi-
cate and they play their strategies simultaneously. Each player
has complete information of the game setting by knowing the
expected cost function and strategy set of either players. Under
rationality assumption, each player’s interest is to achieve the
greatest personal advantage, i.e., to incur the lowest possible
cost. Accordingly, the players are prone to play a Nash
equilibrium, which in the context of our randomized prediction
game is a strategy profile (θ?l ,θ

?
d) ∈ Θl × Θd such that no

player is interested in changing his/her own playing strategy.
In formal terms, this yields:

θ?l ∈ arg min
θl∈Θl

cl(θl,θ
?
d) , θ?d ∈ arg min

θd∈Θd

cd(θ
?
l ,θd) . (5)

B. Existence of a Nash equilibrium

The existence of a Nash equilibrium of a randomized pre-
diction game is not granted in general. A sufficient condition
for the existence of a Nash equilibrium is thus given below.

Theorem 1 (Existence). A randomized prediction game admits
at least one Nash equilibrium if

(i) cl/d are continuous in Θl ×Θd,
(ii) cl(·,θd) is quasi-convex in Θl for any θd ∈ Θd,

(iii) cd(θl, ·) is quasi-convex in Θd for any θl ∈ Θl.

Proof: The result follows directly from the Debreu-
Glicksberg-Fan Theorem [29].
C. Uniqueness of a Nash equilibrium

In addition to the existence of a Nash equilibrium, it is of
interest to investigate if the equilibrium is unique. However,
determining tight conditions that guarantee the uniqueness of
the Nash equilibrium for any randomized prediction game is
challenging; in particular, due to the additional dependence on
a probability distribution for the learner and the data generator.

We will make use of a classical result due to Rosen [30] to
formulate sufficient conditions for the uniqueness of the Nash
equilibrium of randomized prediction games in terms of the
so-called pseudo-gradient of the game, defined as

gr =

[
rl∇θl

c̄l
rd∇θd

c̄d

]
, (6)

with any fixed vector r = [rl, rd]
> ≥ 0. Specifically, a

randomized prediction game admits a unique Nash equilibrium
if the following assumption is verified

Assumption 1.
(i) cl/d are twice differentiable in Θl ×Θd,

(ii) cl(·,θd) is convex in Θl for any θd ∈ Θd,
(iii) cd(θl, ·) is convex in Θd for any θl ∈ Θl,

and gr is strictly monotone for some fixed r > 0, i.e.,

[gr(θl,θd)− gr(θ′l,θ
′
d)]
>
[
θl − θ′l
θd − θ′d

]
> 0 ,

for any distinct strategy profiles (θl,θd), (θ
′
l,θ
′
d) ∈ Θl×Θd.2

In his paper, Rosen provides also a useful sufficient condi-
tion that guarantees a strictly monotone pseudo-gradient. This
requires the Jacobian of the pseudo-gradient, a.k.a. pseudo-
Jacobian, given by

Jr =

[
rl∇2

θlθl
cl rl∇2

θlθd
cl

rd∇2
θdθl

cd rd∇2
θdθd

cd

]
, (7)

to be positive definite.

Theorem 2. A randomized prediction game admits a unique
Nash equilibrium if Assumption 1 holds, and the pseudo-
Jacobian Jr(θl,θd) is positive definite for all (θl,θd) ∈
Θl ×Θd and some fixed r > 0.

Proof: Under Assumption 1, the positive definiteness of
Jr for all strategy profiles and some fixed vector r > 0
implies the strict monotonicity of gr, which in turn implies
the uniqueness of the Nash equilibrium [30, Thm. 6].

In the rest of the section, we provide sufficient conditions
that ensure the positive definiteness of the pseudo-Jacobian
and thus the uniqueness of the Nash equilibrium via Thm. 2.
To this end we decompose c̄l/d(θl,θd) as follows

c̄l(θl,θd) = ρlΩl(θl) + L̄l(θl,θd) ,

c̄d(θl,θd) = ρdΩd(θd) + L̄d(θl,θd) ,
(8)

where Ωl/d and L̄l/d are the expected regularization and loss
terms given by

Ωl(θl) = Ew∼pl(·,θl)[Ωl(w)] ,

Ωd(θd) = EẊ∼pd(·,θd)[Ωd(Ẋ)] ,

L̄l(θl,θd) = Ew∼pl(·;θl)
Ẋ∼pd(·;θd)

[
n∑

i=1

`l(w
>xi, yi)

]
,

L̄d(θl,θd) = Ew∼pl(·;θl)
Ẋ∼pd(·;θd)

[
n∑

i=1

`d(w
>xi, yi)

]
.

Moreover, we require the following convexity and differentia-
bility conditions on Ωl/s and L̄l/d:

Assumption 2.
(i) Ωl/d is strongly convex and twice continuously differen-

tiable in Θl/d,
(ii) L̄l(·,θd) is convex and twice continuously differentiable

in Θl for all θd ∈ Θd, and
(iii) L̄d(θl, ·) is convex and twice continuously differentiable

in Θd for all θl ∈ Θl.

2Assumption 1.(i) could be relaxed to continuously differentiable.
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Finally, we introduce some quantities that are used in the
subsequent lemma, which gives sufficient conditions for the
positive-definiteness of the pseudo-Jacobian:

λΩ
l = inf

θl∈Θl

λmin
[
∇2
θlθl

Ωl(θl)
]
,

λΩ
d = inf

θd∈Θd

λmin
[
∇2
θdθd

Ωd(θd)
]
,

λLl = inf
(θl,θd)∈Θl×Θd

λmin
[
∇2
θlθl

Ll(θl,θd)
]
,

λLd = inf
(θl,θd)∈Θl×Θd

λmin
[
∇2
θdθd

Ld(θl,θd)
]
,

τ = sup
(θl,θd)∈Θl×Θd

λmax
[
R(θl,θd)R(θl,θd)

>] ,

where R(θl,θd) = 1
2

[
∇2
θlθd

L̄l(θl,θd)
> +∇2

θdθl
L̄d(θl,θd)

]

and λmax/min give the maximum/minimum eigenvalue of the
matrix in input. Note that the quantities listed above are finite
and positive if Assumption 2 holds, given the compactness of
Θl/d.

Lemma 1. If Assumption 2 holds and

(ρlλ
Ω
l + λLl )(ρdλ

Ω
d + λLd ) > τ

then the pseudo-Jacobian Jr(θl,θd) is positive definite for all
(θl,θd) ∈ Θl ×Θd by taking r = (1, 1)>.

Proof: The pseudo-Jacobian in (7) can be written as
follows given the decomposition of c̄l/d in (8):

Jr =

[
ρl∇2

θlθl
Ωl +∇2

θlθl
L̄l ∇2

θlθd
L̄l

∇2
θdθl

L̄d ρd∇2
θdθd

Ωd +∇2
θdθd

L̄d

]
,

where we omitted the arguments of Ωl/d and L̄l/d for nota-
tional convenience. Let us denote by Jllr , Jldr , Jdlr , and Jddr the
four matrices composing Jr (in top-down, left-right order).

Consider the following matrix:

H =

[
Hll Hld

Hdl Hdd

]
=

[
ρlλ

Ω
l + λLl R(θl,θd)

>

R(θl,θd) ρdλ
Ω
d + λLd

]
.

Then we have for all t = (t>l , t
>
d ) 6= 0

t>Jrt = t
Jr + J>r

2
t>

= tlJ
ll
r tl︸ ︷︷ ︸

≥tlHlltl

+ tdJ
dd
r td︸ ︷︷ ︸

≥t>d Hddtd

+t>l
Jldr + Jdl>r

2︸ ︷︷ ︸
Hld+Hdl>

td ≥ t>Ht ,

where the under-braced relations follow from the definitions of
λΩ
l/d, λLl/d and R. Accordingly, the positive-definiteness of Jr

can be derived from the positive-definiteness of matrix H. To
prove the latter, we will show that all roots of the characteristic
polynomial det(H−λI) of H are positive. By properties of the
determinant3 we have

det(H− λI) = det((ρlλ
Ω
l + λLl − λ)I)

· det

(
(ρdλ

Ω
d + λLd − λ)I− S

ρlλΩ
l + λLl − λ

)
,

3det

[
aI B>

B dI

]
= det(aI) det(dI − 1

a
BB>) and if USU> is the eigen-

decomposition of BB> then the latter determinant becomes det(U(dI −
1
a
S)U>) = det(dI− 1

a
S)

Algorithm 1 Extragradient descent (adapted from [11])
Input: Cost functions c̄l/d; parameter spaces Θl,Θd; a small

positive constant ε.
Output: The optimal parameters θl,θd.

1: Randomly select θ(0) = (θ
(0)
l ,θ

(0)
d ) ∈ Θl ×Θd.

2: Set iteration count k = 0, and select σ, β ∈ (0, 1).
3: Set r = (rl, rd)

>
= (1, ρl/ρd)

>
.

4: repeat
5: Set d(k) = ΠΘl×Θd

(
θ(k) − gr

(
θ

(k)
l ,θ

(k)
d

))
− θ(k).

6: Find maximum step size t(k) ∈ {βp|p ∈ N} s.t.

−gr
(
θ̄

(k)
l , θ̄

(k)
d

)>

d(k) ≥ σ
(∥∥∥d(k)

∥∥∥
2

2

)
,

where θ̄(k)
= θ(k) + t(k)d(k).

7: Set η(k) = − t(k)
∥∥∥gr

(
θ̄
(k)
l ,θ̄

(k)
d

)∥∥∥
2

2

gr

(
θ̄

(k)
l , θ̄

(k)
d

)>

d(k).

8: Set θ(k+1) = ΠΘl×Θd

(
θ(k) − η(k)gr

(
θ̄

(k)
l , θ̄

(k)
d

))
.

9: Set k = k + 1.
10: until

∥∥∥θ(k) − θ(k−1)
∥∥∥

2

2
≤ ε

11: return θl = θ
(k)
l , θd = θ

(k)
d

where S is a diagonal matrix with the eigenvalues of
R(θl,θd)R(θl,θd)

>. The roots of the first determinant term
are all equal to ρlλΩ

l + λLl , which is positive because ρl > 0
by construction and λΩ

l > 0 follows from the strong-convexity
of Ωl in Assumption 2-i. As for the second determinant term,
take the ith diagonal element Sii of S. Then two roots are the
solution of the following quadratic equation

λ2 − λ(a+ b) + ab− Sii = 0 ,

which are given by

λ
(i)
1,2 = a+ b±

√
(a− b)2 + 4Sii .

where a = ρlλ
Ω
l + λLl and b = ρdλ

Ω
d + λLd . Among the two,

λ
(i)
2 (the one with the minus) is the smallest one, which is

strictly positive if

ab = (ρlλ
Ω
l + λLl )(ρdλ

Ω
d + λLd ) > Sii .

Since the condition has to hold for any choice of the
eigenvalue Sii in the right-hand-side of the inequality, we
take the maximum one maxi Sii, which coincides with
λmax(R(θl,θd)R(θl,θd)

>). We further maximize the latter
quantity with respect to (θl,θd) ∈ Θl × Θd, because we
want the result to hold for any parametrization. Therefrom we
recover the variable τ and the condition (ρlλ

Ω
l +λLl )(ρdλ

Ω
d +

λLd ) > τ , which guarantees that all roots of the character-
istic polynomial of H are strictly positive for any choice of
(θl,θd) ∈ Θl × Θd and, hence, Jr is positive definite over
Θl ×Θd.

In addition to Lem. 1, we provide in the supplementary
material alternative (stronger) sufficient conditions, which gen-
eralize the ones given in [11].
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D. Finding a Nash equilibrium

From the computational perspective, we can find a Nash
equilibrium in our game by exploiting algorithms similar to the
ones adopted for static prediction games [11]. In particular, we
consider a modified extragradient descent algorithm [11], [31],
[32] that finds a solution to the following variational inequality
problem, provided that gr is continuous and monotone:

gr(θ?l ,θ
?
d)

>
(θ − θ?) ≥ 0 ,∀(θl,θd) ∈ Θl ×Θd , (9)

where θ = [θ>l ,θ
>
d ]> and similarly for θ?. Any solution θ? to

this problem can be shown to correspond bijectively to a Nash
equilibrium of a game having gr as pseudo-gradient [11], [32].

If Theorem 1 holds, the pseudo-Jacobian J̄r can be shown
to be positive semidefinite, and gr is thus continuous and
monotone. Hence, the variational inequality can be solved
by the modified extragradient descent algorithm given as
Algorithm 1, which is guaranteed to converge to a Nash
equilibrium point [31], [33]. The algorithm generates a se-
quence of feasible points whose distance from the equilibrium
solution is monotonically decreased. It exploits a projection
operator ΠΘl×Θd

(θ) to map the input vector θ onto the closest
admissible point in Θl×Θd, and a simple line-search algorithm
to find the maximum step t on the descent direction d.4

In the next section, we apply our randomized prediction
game to the case of linear SVM learners, and compute the
corresponding pseudo-gradient, as required by Algorithm 1.

III. RANDOMIZED PREDICTION GAMES FOR SUPPORT
VECTOR MACHINES

In this section, we consider a randomized prediction game
involving a linear SVM learner [34], and Gaussian distribu-
tions as the underlying probabilities pl/d.

The learner. The decision function of the learner is of
the type f(x;w) = w>φ(x) where the feature map is
given by φ(x) =

[
x> 1

]>
. For convenience, we consider

a decomposition of w into
[
w̃> b

]>
, where w̃ ∈ Rm−1

and b ∈ R. Hence, the decision function can also be written
as f(x;w) = w̃>x + b. Accordingly, the input space X is
a (m− 1)-dimensional vector space, i.e. X ⊆ Rm−1. The
distribution pl for the learner is assumed to be Gaussian.
In order to guarantee the theoretical existence of the Nash
equilibrium through Thm. 1, we assume the parameters of
the Gaussian distribution to be bounded. For the sake of
clarity, we use in this section axis-aligned Gaussians (i.e. with
diagonal covariance matrices) for our analysis, even though
general covariances could be adopted as well. Under these
assumptions, we define the strategy set for the learner as
Θl =

{
(µw,σw) ∈ Rm × Rm

+

}
∩ Bl, where Bl ⊂ Rm × Rm

+

is an application-dependent non-empty, convex, bounded set,
restricting the set of feasible parameters. The parameter vec-
tors µw and σw encode the mean and standard deviation of
the axis-aligned Gaussian distributions. The loss function `l
of the learner corresponds to the hinge loss of the SVM, i.e.,
`l(z, y) = [1−zy]+ with [z]+ = max(0, z), while the strategy

4We refer the reader to [11], [31], [32] (and references therein) for detailed
proofs that derive conditions for which d is effectively a descent direction.

penalization term Ωl(w) is the squared Euclidean norm of w̃.
As a result, the cost function cl corresponds to the C-SVM
objective function, and it is convex in w:

cl(w, X) =
ρl
2
‖w̃‖2 +

n∑

i=1

[1− yi(w̃>xi + b)]+ . (10)

The data generator. For convenience, we consider X rather
than Ẋ as the quantity undergoing the randomization. This
comes without loss of generality, because there is a one-
to-one correspondence between ẋi and xi if we consider
the linear feature map ẋi = φ(xi) = [x>i , 1]>. Moreover,
we assume that samples xi can be perturbed independently.
Accordingly, the distribution pd for the data generator fac-
torizes as pd(X;θd) =

∏n
i=1 pd

(
xi;θ

(i)
d

)
, where θd =

(θ
(1)
d , . . . ,θ

(n)
d ). We consider pd

(
xi;θ

(i)
d

)
to be a k-variate

axis-aligned Gaussian distribution with bounded mean and
standard deviation given by θ(i)

d = (µxi
,σxi). In summary,

the strategy set adopted for the data generator is given by Θd =∏n
i=1 Θ

(i)
d , where Θ

(i)
d =

{
(µxi

,σxi
) ∈ Rk × Rk

+

}
∩ Bd.

Here, Bd ⊂ Rk × Rk
+ is a non-empty, convex, bounded set.

The loss function `d of the data generator is the hinge loss
under wrong labelling, i.e., `d(z, y) = [1 + zy]+. In this
way the data generator is penalized if the learner correctly
classifies a sample point. Finally, the strategy penalization
function Ωd is the squared Euclidean distance of the perturbed
samples in X from the ones in the original training set D̂, i.e.
Ωd(X) =

∑n
i=1 ‖xi − x̂i‖2. The resulting cost function cd is

convex in X:

cd(w, X) =
ρd
2

n∑

i=1

‖xi − x̂i‖2

+
n∑

i=1

[1 + yi(w̃
>xi + b)]+ . (11)

Existence of a Nash equilibrium. The proposed random-
ized prediction game for the SVM learner admits at least one
Nash equilibrium. This can be proven by means of Thm. 1.
Indeed, the required continuity of c̄l/d hold and, as for the
quasi-convexity conditions, we can rewrite (3) as follows by
exploiting the fact that pl is a Gaussian distribution with mean
µw and standard deviation σw:

cl(θl,θd) = Ez∼N (0,I)
X∼pd(·;θd)

[cl(µw +D(σw)z, X)] , (12)

where N (0, I) is a m-dimensional standard normal distri-
bution and D(σw) is a diagonal matrix having σw on the
diagonal. Since cl is convex in its first argument and convexity
is preserved under addition of convex functions, positive
rescaling, and composition with linear functions, we have that
cl is convex (and thus quasi-convex) in θl = (µw,σw). As
for the quasi-convexity condition of the data generator’s cost,
we can exploit the separability of cd to rewrite (4) as follows:

cd(θl,θd) =
n∑

i=1

Ew∼pl(·;θl)
z∼N (0,I)

[c
(i)
d (w,µxi

+D(σxi
)z)] ,

where

c
(i)
d (w,x) =

ρd
2
‖x− x̂i‖2 + [1 + yi(w

>x̃i + b)]+ .
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Since c
(i)
d is convex in its second argument, by following

the same reasoning used to show the quasi-convexity of the
learner’s expected cost, we have that each expectation in cd is
convex in θ(i)

d = (µxi
,σxi

), 1 ≤ i ≤ n. As a consequence,
cd is convex and, hence, quasi-convex in θd, being the sum
of convex functions.

Uniqueness of a Nash equilibrium. In the previous section
we have shown that c̄l(·,θd) and c̄d(θl, ·) are convex as
required by Assumption 1-(ii-iii). In particular we have that
the single expected regularization terms Ωl/d(·) and loss terms
L̄l(·,θd), L̄d(θl, ·) are convex as well. Moreover, they are
twice-continuously differentiable by having Gaussian distri-
butions for pl/d. It is then sufficient to have Ωl/d are strongly
convex to prove the uniqueness of the Nash equilibrium via
Lem. 1. While it is easy to see that Ωd is strongly convex,
we have that Ωl is not strongly convex with respect to b
due to the presence of an unregularized bias term b in the
learner. The problem derives from the fact that the SVM itself
may not have a unique solution when the bias term is present
and non-regularized (see [35], [36] for a characterization of
the degenerate cases). As a result, the proposed game is not
guaranteed to have a unique Nash equilibrium in its actual
form. On the other hand, a unique Nash equilibrium may
be obtained by either considering an unbiased SVM, i.e., by
setting b = 0 as in [11], or a regularized bias term, e.g., by
adding ε

2b
2 to the learner’s objective function with ε > 0. In

both cases, all conditions that ensure the uniqueness of the
Nash equilibrium via Thm. 2 and Lem. 1 would be satisfied,
under proper choices of ρl/d.

It is worth noting however that the necessary and sufficient
conditions under which a biased (non-regularized) SVM has
no unique solution are quite restricted [35], [36]. For this rea-
son, we believe that uniqueness of the Nash equilibrium could
be proven also for the biased SVM under mild assumptions.
However, this requires considerable effort in trying to relax
the sufficiency conditions of Rosen [30], which is beyond the
scope of our work. We thus leave this challenge to future
investigations. Moreover, we believe that enforcing a unique
Nash equilibrium in our game by making the original SVM
formulation strictly convex may lead to worse results, similarly
to exploiting convex approximations to solve originally non-
convex problems in machine learning [37], [38]. For the above
reasons, in this paper, we choose to retain the original SVM
formulation for the learner, by sacrificing the uniqueness of
the Nash Equilibrium. We nevertheless provide in Sect. V a
discussion of why having a unique Nash Equilibrium is not so
important in practice for our game, and we empirically show
in Sect. VI that our approach can anyway achieve competitive
performances with respect to other state-of-the-art approaches.

The rest of this section is devoted to showing how to com-
pute the pseudo-gradient (6) by providing explicit formulae
for ∇θl

c̄l and ∇θd
c̄d.

A. Gradient of the learner’s cost

In this section, we focus on computing the gradient
∇θl

c̄l(θl,θd), where c̄l is defined as in (10). By properties
of expectation and since w follows an axis-aligned Gaussian
distribution with mean µw and standard deviation σw, we can

reduce the cost of the learner to:

c̄l(θl,θd) =
ρl
2

(
‖µw̃‖2 + ‖σw̃‖2

)

+
n∑

i=1

E w∼pl(·;θl)

xi∼pd(·;θ(i)
d )

[
[1− yi(w̃>xi + b)]+

]
, (13)

where we are assuming the following decompositions for
the mean µw =

[
µ>w̃ µb

]>
and standard deviation σw =[

σ>w̃ σb
]>

. The hard part for the minimization is the term in
the expectation, which can not be expressed to our knowledge
in a closed-form function of the Gaussian’s parameters. We
thus resort to a Central-Limit-Theorem-like approximation,
by regarding si = 1 − yi(w̃

>xi + b) as a Gaussian-
distributed variable with mean µsi and standard deviation σsi ,
i.e. si ∼ N (µsi , σsi). In general, si does not follow a Gaussian
distribution, since the product of two normal deviates is not
normally distributed. However, if the number of features k
is large, the approximation becomes reasonable. Under this
assumption, we can rewrite the expectation as follows:

E w∼pl(·;θl)

xi∼pd(·;θ(i)
d )

[
[1− yi(w̃>xi + b)]+

]

= Esi∼N (µsi
,σsi

)[[si]+] . (14)

The mean and variance of the Gaussian distribution in the
right-hand-side of Eq. (14) are respectively given by

µsi = E w∼pl(·;θl)

xi∼pd(·;θ(i)
d )

[
1− yi(w̃>xi + b)

]

= 1− yi(µ>w̃µxi
+ µb) , (15)

σ2
si = V w∼pl(·;θl)

xi∼pd(·;θ(i)
d )

[
1− yi(w̃>xi + b)

]

= σ2
w̃
>

(σ2
xi

+ µ2
xi

) + µ2
w̃
>
σ2
xi

+ σ2
b , (16)

where V is the variance operator, and we assume that squaring
a vector corresponds to squaring each single component.

The expectation in Eq. (14) can be transformed after sim-
ple manipulations into the following function involving the
Gauss error function (integral function of the standard normal
distribution) denoted as erf():

h(µsi , σsi) =
σsi√
2π

exp

(
− µ2

si

2σ2
si

)

+
µsi
2

[
1− erf

(
− µsi√

2σsi

)]
. (17)

The learner’s cost in Eq. (13) can thus be approximated as:

c̄l(θl,θd) ≈ Ll(µw,σw) =
ρl
2

(
‖µw̃‖2 + ‖σw̃‖2

)

+

n∑

i=1

h(µsi(θl), σsi(θl)) . (18)

We can now approximate the gradient ∇θl
cl in terms of

∇θl
Ll. In the following, we denote the Hadamard (a.k.a.

entry-wise) product between any two vectors a and b as a◦b,
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and we assume any scalar-by-vector derivative to be a column
vector. The gradients of interest are given as:

∂Ll
∂µw

= ρl

[
µw̃
0

]
+

n∑

i=1

(
∂h

∂µsi

∂µsi
∂µw

+
∂h

∂σ2
si

∂σ2
si

∂µw

)
, (19)

∂Ll
∂σw

= ρl

[
σw̃
0

]
+

n∑

i=1

(
∂h

∂µsi

∂µsi
∂σw

+
∂h

∂σ2
si

∂σ2
si

∂σw

)
, (20)

where it is not difficult to show that
∂h

∂µsi
=

1

2

[
1− erf

(
− 1√

2

µsi
σsi

)]
, (21)

∂h

∂σ2
si

=
1

2

1√
2πσsi

exp

(
−1

2

µ2
si

σ2
si

)
, (22)

and that
∂µsi
∂µw

= −yi
[
µxi

1

]
,

∂µsi
∂σw

= 0 , (23)

∂σ2
si

∂µw
=

[
2σ2

xi
◦ µw̃

0

]
,

∂σ2
si

∂σw
= 2σw ◦

[
σ2
xi

+ µ2
xi

1

]
.

(24)

B. Gradient of the data generator’s cost
In this section we turn to the data generator and we focus on

approximating ∇θd
cd, where cd is defined as in Eq. (11). We

can separate cd into the sum of n functions acting on each data
sample independently, i.e. cd(θl,θd) =

∑n
i=1 c

(i)
d (θl,θ

(i)
d ),

where for each i ∈ {1, . . . , n}:

c
(i)
d (θl,θ

(i)
d ) = E w∼pl(·;θl)

xi∼pd(·;θ(i)
d )

[ρd
2
‖xi − x̂i‖2

+[1 + yi(w̃
>xi + b)]+

]
. (25)

By exploiting properties of the expectation and since
pd(·;θ(i)

d ) is an axis-aligned Gaussian distribution with mean
µxi

and standard deviation σxi
, we can simplify Eq. (25) as:

c
(i)
d (θl,θ

(i)
d ) =

ρd
2

(
‖µxi

− x̂i‖2 + ‖σxi
‖2
)

+ E w∼pl(·;θl)

xi∼pd(·;θ(i)
d )

[
[1 + yi(w̃

>xi + b)]+

]
. (26)

As in the case of the learner, the expectation is a troublesome
term having the same form of (14), except for an inverted sign.
We adopt the same approximation used in Sect. III-A to obtain
a closed-form function. Accordingly, ti = 1 + yi(w̃

>xi +
b) is assumed to be normally distributed with mean µti and
σti . Then the expectation in Eq. (26) can be approximated as
h(µti , σti), where function h is defined as in Eq. (17). The
variance σ2

ti is equal to σ2
si (Eq. 16), while µti is given by:

µti = E w∼pl(·;θl)

xi∼pd(·;θ(i)
d )

[
1 + yi(w̃

>xi + b)
]

= 1 + yi(µ
>
w̃µxi

+ µb) .

The sample-wise cost of the data generator (Eq. 26) can
thus be approximated as

c
(i)
d (θl,θ

(i)
d ) ≈ Ld(µxi

,σxi
) =

ρd
2

(
‖µxi

− x̂i‖2 + ‖σxi
‖2
)

+ h(µti(θ
(i)
d ), σti(θ

(i)
d )) . (27)

The corresponding gradient is given by

∂Ld
∂µxi

= (µxi
− x̂i) + ρd

(
∂h

∂µti

∂µti
∂µxi

+
∂h

∂σ2
ti

∂σ2
ti

∂µxi

)
,

(28)

∂Ld
∂σxi

= σxi + ρd

(
∂h

∂µti

∂µti
∂σxi

+
∂h

∂σ2
ti

∂σ2
ti

∂σxi

)
, (29)

where ∂h
∂µti

and ∂h
∂σ2

ti

are given as in Eqs. (21)-(22), and

∂µti
∂µxi

= yiµw̃ ,
∂µti
∂σxi

= 0 , (30)

∂σ2
ti

∂µxi

= 2σ2
w̃ ◦ µxi

,
∂σ2

ti

∂σxi

= 2σxi
◦
(
σ2
w̃ + µ2

w̃

)
. (31)

IV. KERNELIZATION

Our game, as in Bruckner et al. [11], assumes explicit
knowledge of the feature space φ, where the data generator
is assumed to randomize the samples ẋ = φ(x). However,
in many applications, the feature mapping is only implicitly
given in terms of a positive semidefinite kernel function
k : X ×X → R that measures the similarity between samples
as a scalar product in the corresponding kernel Hilbert space,
i.e., there exists φ : X → R such that k(x,x′) = φ(x)>φ(x′).
Note that in this setting the input space X is not restricted to a
vector space like in the previous section (e.g. it might contain
graphs or other structured entities).

For the representer theorem to hold [39], we assume that
the randomized weight vectors of the learner live in the
same subspace of the reproducing kernel Hilbert space, i.e.,
w =

∑
j αjφ(x̂j), where α ∈ Rn. Analogously, we restrict

the randomized samples obtained by the data generator to
live in the span of the mapped training instances, i.e., ẋi =∑n
j=1 ξijφ(x̂j), where ξi = (ξi1, . . . , ξin)

> ∈ Rn.
Now, instead of randomizing w and Ẋ, we let the data

generator and the learner randomize Ξ = (ξ1, . . . , ξn) and α,
respectively. Moreover, we assume that the expected costs c̄l/d
can be rewritten in terms of α and Ξ in a way that involves only
inner products of φ(x), to take advantage of the kernel trick.
This is clearly possible for the termw>ẋi = α>Kξi in (1) and
(2), where K is the kernel matrix. Hence, the applicability of
the kernel trick only depends on the choice of the regularizers.
It is easy to see that due to the linearity of the variable
shift, existence and uniqueness of a Nash equilibrium in our
kernelized game hold under the same conditions given for the
linear case.5

Although the data generator is virtually randomizing strate-
gies in some subspace of the reproducing kernel Hilbert
space, in reality manipulations should occur in the original
input space. Hence, to construct the real attack samples
{xi}ni=1 corresponding to the data generator’s strategy at the
Nash equilibrium, one should solve the so-called pre-image
problem, inverting the implicit feature mapping φ−1(Kξi) for
each sample. This problem is in general neither convex, nor

5Note that, on the contrary, manipulating samples directly in the input
space would not even guarantee the existence of a Nash equilibrium, as
the data generator’s expected cost becomes non-quasi-convex in x for many
(nonlinear) kernels, invalidating Theorem 1.
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Fig. 1. Two-dimensional examples of randomized prediction games, for SVMs with linear (top) and RBF kernels (bottom). Each row shows how the algorithm
gradually converges to a Nash equilibrium. Blue (gray) points represent the legitimate (malicious) class. The mean of each manipulated attack sample is shown
as a red point (for clarity, its variance is not shown). The black solid line represents the expected decision boundary, and the green shaded area highlights
its variability within one standard deviation. Note how the linear SVM’s decision boundary tends to shift towards the legitimate class, while the nonlinear
boundary provides a better enclosing of the same class. This intuitively allows for a higher robustness to different kinds of attack, as it requires the adversary
to make a higher number of modifications to the attack samples to evade detection, at the expense of a higher number of misclassified legitimate samples.

it admits a unique solution. However, reliable solutions can
be easily found using well-principled approximations [11],
[39]. It is finally worth remarking that solving the pre-image
problem is not even required from the learner’s perspective,
i.e., to train the corresponding, secure classification function.

V. DISCUSSION

In this section, we report a simple case study on a two-
dimensional dataset to visually demonstrate the effect of
randomized prediction games on SVM-based learners. From a
pragmatic perspective, this example suggests also that unique-
ness of the Nash Equilibrium should not be taken as a strict
requirement in our game.

An instance of the proposed randomized prediction game
for a linear SVM and for a non-linear SVM with the RBF
kernel is reported in Fig. 1. As one may note from the plots,
the main effect of simulating the presence of an attacker that
manipulates malicious data to evade detection is to cause
the linear decision boundary to gradually shift towards the
legitimate class, and the nonlinear boundary to find a better
enclosing of the legitimate samples. This should generally
improve the learner’s robustness to any kind of evasion at-
tempt, as it requires the attacker to mimic more carefully the
feature values of legitimate samples – a task typically harder
in several adversarial settings than just obfuscating the content
of a malicious sample to make it sufficiently different from the
known malicious ones [7], [9].

Based on this observation, any attempt aiming to satisfy the
sufficient conditions for uniqueness of the Nash Equilibrium
will result in an increase of the regularization strength in either
the learner’s or the attacker’s cost function. Indeed, to satisfy
the condition in Lem. 1, one could sufficiently increase ρl, ρd,
or both. This amounts to increasing the regularization strength
of either players, which in turn reduces in some sense their
power. Hence, it should be clear that enforcing satisfaction

of the sufficient conditions that guarantee the uniqueness of
the Nash equilibrium might be counterproductive, by inducing
the learner to weakly enclose the legitimate class, either due
to a too strong regularization of the learners’ parameters, or by
limiting the ability of the attacker to manipulate the malicious
samples, thus allowing the leaner to keep a loose boundary.
This will in general compromise the quality of the adversarial
learning procedure. This argument shares similarities with the
idea of addressing non-convex machine learning problems
directly, without resorting to convex approximations [37], [38].

Besides improving classifier robustness, finding a better
enclosure of the legitimate class may however cause a higher
number of legitimate samples to be misclassified as malicious.
There is indeed a trade-off between the desired level of
robustness and the fraction of misclassified legitimate sam-
ples. The benefit of using randomization here is to make
the attacker’s strategy less pessimistic than in the case of
static prediction games [10], [11], which should allow us
to eventually find a better trade-off between robustness and
legitimate misclassifications. This aspect is investigated more
systematically in the experiments reported in the next section.

VI. EXPERIMENTS

In this section we present a set of experiments on hand-
written digit recognition, spam filtering, and PDF malware
detection. Despite handwritten digit recognition is not a proper
adversarial learning task as spam and malware detection, we
consider it in our experiments to provide a visual interpretation
of how secure learning algorithms are capable of improving
robustness to evasion attacks.

We consider only linear classifiers, as they are a typical
choice in these settings, and especially in spam filtering [2],
[7], [14]. This also allows us to carry out a fair comparison
with state-of-the-art secure learning algorithms, as they yield
linear classification functions. We compare our secure linear
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Fig. 2. Security evaluation curves, reporting the average TP at FP=1% (along with its standard deviation, shown with error bars) against an increasing amount
of manipulations to the attack samples (measured by dmax), for handwritten digit (first and second plot), spam (third plot), and PDF (fourth plot) data.

SVM learner (Sect. III) with the standard linear SVM imple-
mentation [40], and with the state-of-the-art robust classifiers
InvarSVM [21], [22], and NashSVM [11] (see Sect. VII).

The goal of these experiments is to test whether these secure
algorithms work well also under attack scenarios that differ
from those hypothesized during design – a typical setting
in security-related tasks; e.g., what happens if game-based
classification techniques like that proposed in this paper and
NashSVM are used against attackers that exploit a different
attack strategy, i.e., attackers that may not act rationally
according to the hypothesized objective function? What hap-
pens when the attacker does not play at the expected Nash
equilibrium? These are rather important questions to address,
as we do not have any guarantee that real-world attackers will
play according to the hypothesized objective function.

Security evaluation. To address the above issues, we
consider the security evaluation procedure proposed in [7].
It evaluates the performance of the considered classifiers
under attack scenarios of increasing strength. We consider the
True Positive (TP) rate (i.e., the fraction of detected attacks)
evaluated at 1% False Positive (FP) rate (i.e., the fraction
of misclassified legitimate samples) as performance measure.
We evaluate the performance of each classifier in the absence
of attack, as in standard performance evaluation techniques,
and then start manipulating the malicious test samples to
simulate attacks of different strength. We assume a worst-case
adversary, i.e., an adversary that has perfect knowledge of the
attacked classifier, since we are interested in understanding the
worst-case performance degradation. Note however that other
choices are possible, depending on specific assumptions on
the adversary’s knowledge and capability [7], [13], [14]. In
this setting, we assume that the optimal (worst-case) sample
manipulation x∗ operated by the attacker is obtained by
solving the following optimization problem:

x∗ ∈ arg min
x

yf(x;w),

s.t. d(x, x̂i) ≤ dmax,
(32)

where y is the malicious class label, d(x,xi) measures the
distance between the perturbed sample x and the ith malicious
data sample x̂i (in this case, we use the `2 norm, as done by the
considered classifiers). The maximum amount of modifications
is bounded by dmax, which is a parameter representing the
attack strength. It is obvious that the more modifications
the adversary is allowed to make on the attack samples, the

higher the performance degradation incurred by the classifier
is expected to be. Accordingly, the performance of more secure
classifiers is expected to degrade more gracefully as the attack
strength increases [7], [14].

The solution of the above problem is trivial when we
consider linear classifiers, the Euclidean distance, and x is
unconstrained: it amounts to setting x∗ = x̂i − ydmax

w
||w|| . If

x lies within some constrained domain, e.g. [0, 1], then one
may consider a simple gradient descent with box constraints
on x (see, e.g., [9]). If x takes on binary values, e.g., {0, 1},
then the attack amounts to switching from 0 to 1 or vice-versa
the value of a maximum of dmax features which have been
assigned the highest absolute weight values by the classifier.
In particular, if y wk > 0 (y wk < 0) and the k-th feature
satisfies x̂ik = 1 (x̂ik = 0), then x∗k = 1 (x∗k = 0) [7], [14].

Parameter selection. The considered methods require set-
ting different parameters. From the learners’ perspective, we
have to tune the regularization parameter C for the standard
linear SVM and InvarSVM, while we respectively have ρ−1

and ρl for NashSVM and for our method. In addition, the
robust classifiers require setting the parameters of their at-
tacker’s objective. For InvarSVM, we have to set K, i.e., the
number of modifiable features, while for NashSVM and for
our method, we have to set the value of the regularization
parameter ρ+1 and ρd, respectively. Further, to guarantee
existence of a Nash Equilibrium point, we have to enforce
some box constraints on the distribution’s parameters. For the
attacker, we restrict the mean of the attack points to lie in [0, 1]
(as the considered datasets are normalized in that interval), and
their variance in [10−3, 0.5]. For the learner, the variance of
w is allowed to vary in [10−6, 10−3], while its mean takes
values on [−W,W ], where W is optimized together with the
other parameters. All the above mentioned parameters are set
by performing a grid-search on the parameter space (C, ρ−1,
ρd ∈ {0.01, 0.1, 1, 10, 100}; K ∈ {8, 13, 25, 30, 47, 52, 63};
ρ+1, ρd ∈ {0.01, 0.05, 0.1, 1, 10}; W ∈ {0.01, 0.05, 0.1, 1}),
and retaining the parameter values that maximize the area
under the security evaluation curve on a validation set. The
reason is to find a parameter configuration for each method that
attains the best average robustness over all attack intensities
(values of dmax), i.e. the best average TP rate at FP=1%.
A. Handwritten Digit Recognition

Similarly to [21], we focus on two two-class sub-problems
of discriminating between two distinct digits from the MNIST
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Original InvarSVMSVM NashSVM RNashSVM

Fig. 3. Examples of obfuscated digits against each classifier when dmax =
2.5 for 1 vs 3 (top row), and when dmax = 5 for 6 vs 7 (bottom row).

dataset [41], i.e. 1 vs 3, and 6 vs 7, where the second digit in
each pair represents the attacking class (y = +1). The digits
are originally represented as gray-scale images of 28 × 28
pixels. They are simply mapped to feature vectors by ordering
the pixels in raster scan order. The overall number of features
is thus d = 784. We normalize each feature (pixel value) in
[0, 1], by dividing its value by 255. We build a training and a
validation set of 1,000 samples each by randomly sampling the
original training data available for MNIST. As for the test set,
we use the default set provided with this data, which consists
of approximately 1,000 samples for each digit (class). The
results averaged on 5 repetitions are shown in the first and
second plot of Fig. 2 respectively for 1 vs 3, and 6 vs 7. As
one may notice, in the absence of attack (i.e. when dmax = 0),
all classifiers achieved comparable performance (the TP rate
is almost 100% for all of them), due to a conservative choice
of the operating point (FP=1%), that should also guarantee a
higher robustness against the attack. In the presence of attack,
our approach (RNashSVM) exhibits comparable performance
to NashSVM on the problem of discriminating 1 vs 3, and
to InvarSVM on 6 vs 7. NashSVM outperforms the standard
SVM implementation in both cases, but exhibits lower security
(robustness) than InvarSVM on 6 vs 7, despite the attacker’s
regularizer in InvarSVM is not even based on the `2 norm.

Finally, in Fig. 3 we report two attack samples (a digit
from class 1 and one from class 6) and show how they are
obfuscated by the attack strategy of Eq. (32) to evade detection
against each classifier. Notice how the original attacking
samples (1 and 6) tend to resemble more the corresponding
attacked classes (3 and 7) when natively robust classifiers are
used. This visual example confirms the analysis of Sect. V,
i.e., that higher robustness is achieved when the adversary is
required to mimic the feature values of samples of the legit-
imate class, instead of slightly modifying the attack samples
to differentiate them from the rest of the malicious data.

B. Spam Filtering

In these experiments we use the benchmark, publicly avail-
able, TREC 2007 email corpus [42], which consists of 75,419
real emails (25,220 legitimate and 50,199 spam messages)
collected between April and July 2007. We exploit the bag-
of-words feature model, in which each binary feature denotes
the absence (0) or presence (1) of the corresponding word
in a given email [7], [11], [13], [14]. Features (words) are
extracted from training emails using the tokenization method

of the widely-known anti-spam filter SpamAssassin,6 and then
n = 1, 000 distinct features are selected using a supervised
feature selection approach based on the information gain
criterion [43]. We build a training and a validation set of 1,000
samples each by randomly sampling the first 5,000 emails in
chronological order of the original dataset, while a test set of
about 2,000 samples is randomly sampled from the subsequent
set of 5,000 emails. The results averaged on 5 repetitions
are shown in the third plot of Fig. 2. As in the previous
case, in the absence of attack (dmax = 0) all the classifiers
exhibit a very high (and similar) performance. However, as the
attack intensity (dmax) increases, their performance degrades
more or less gracefully, i.e. their robustness to the attack is
different. Surprisingly, one may notice that only InvarSVM
and RNashSVM exhibited an improved level of security. The
reason is that these two classifiers are able to find a more
uniform set of weights than SVM and NashSVM, and, in this
case, this essentially requires the adversary to manipulate a
higher number of features to significantly decrease the value
of the classifier’s discriminant function. Note that a similar
result has been heuristically found also in [13], [14].

C. PDF Malware Detection

We consider here another relevant application example in
computer security, i.e., the detection of malware in PDF files.
The main reason behind the diffusion of malware in PDF
files is that they exhibit a very flexible structure that al-
lows embedding several kinds of resources, including Flash,
JavaScript and even executable code. Resources simply
consists of keywords that denote their type, and of data streams
that contain the actual object; e.g., an embedded resource in
a PDF file may be encoded as follows:

13 0 obj << /Kids [ 1 0 R 11 0 R ]
/Type /Page ... >> end obj

where keywords are highlighted in bold face. Recent work
has exploited machine learning techniques to discriminate
between malicious and legitimate PDF files, based on the
analysis of their structure and, in particular, of the embed-
ded keywords [44]–[48]. We exploit here a similar feature
representation to that proposed in [45], where each feature
denotes the presence of a given keyword in the PDF file.
We collected 5993 recent malware samples from the Contagio
dataset,7 and 5951 benign samples from the web. Following
the procedure described in [45], we extracted 114 keywords
from the first 1,000 samples (in chronological order) to build
our feature set. Then, we build training, validation and test
sets as in the spam filtering case, and average results over
5 repetitions. Attacks in this case are simulated by allowing
the attacker only to increase the feature values of malicious
samples, which corresponds to adding the constraint x ≥ x̂i
(where the inequality holds for all features) to Problem 32. The
reason is that removing objects (and keywords) from malicious
PDFs may compromise the intrusive nature of the embedded
exploitation code, whereas adding objects can be easily done
through the PDF versioning mechanism [9], [46], [48].

6http://spamassassin.apache.org
7http://contagiodump.blogspot.it
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Results are shown in the 4th plot of Fig. 2. The considered
methods mostly exhibit the same behavior shown in the spam
filtering case, besides the fact that, here, there is a clearer
trade-off between the performance in the absence of attack,
and robustness under attack. In particular, InvarSVM and
RNashSVM are significantly more robust under attack (i.e.,
when dmax > 0) than SVM and NashSVM, at the expense
of a slightly worsened detection rate in the absence of attack
(i.e., when dmax = 0).

To summarize, the reported experiments show that, even if
the attacker does not play the expected attack strategy at the
Nash equilibrium, most of the proposed state-of-the-art secure
classifiers are still able to outperform classical techniques,
and, in particular, that the proposed RNashSVM classifier may
guarantee an even higher level of robustness. Understanding
how this property relates to the use of probability distributions
over the set of the classifier’s and of the attacker’s strategies
remains an interesting future question.

VII. RELATED WORK

The problem of devising secure classifiers against different
kinds of manipulation of samples at test time has been widely
investigated in previous work [1], [6], [10], [11], [21]–[27].
Inspired by the seminal work by Dalvi et al. [1], several
authors have proposed a variety of modifications to existing
learning algorithms to improve their security against different
kinds of attack. Globerson et al. [21], [22] have formulated the
so-called Invariant SVM (InvarSVM) in terms of a minimax
approach (i.e., a zero-sum game) to deal with worst-case
feature manipulations at test time, including feature addition,
deletion, and rescaling. This work has been further extended
in [23] to allow features to have different a-priori importance
levels, instead of being manipulated equally likely. Notably,
more recent research has also considered the development of
secure learning algorithms based on zero-sum games for sen-
sor networks, including distributed secure algorithms [27] and
algorithms for detecting adversarially-corrupted sensors [26].

The rationale behind shifting from zero-sum to non-zero-
sum games for adversarial learning is that the classifier and the
attacker may not necessarily aim at maximizing antagonistic
objective functions. This in turn implies that modeling the
problem as a zero-sum game may lead one to design overly-
pessimistic classifiers, as pointed out in [11]. Even considering
a non-zero-sum Stackelberg game may be too pessimistic,
since the attacker (follower) is supposed to move after the
classifier (leader), while having full knowledge of the chosen
classification function (which again is not realistic in practical
settings) [11], [24]. For these reasons, Brückner et al. [10], [11]
have formalized adversarial learning as a non-zero-sum game,
referred to as static prediction game. Assuming that the players
act simultaneously (conversely to Stackelberg games [24]),
they devised conditions under which a unique Nash equi-
librium for this game exists, and developed algorithms for
learning the corresponding robust classifiers, including the so-
called NashSVM. Our work essentially extends this approach
by introducing randomization over the players’ strategies.

For completeness, we also mention here that in [25]
Bayesian games for adversarial regression tasks have been

recently proposed. In such games, uncertainty on the objective
function’s parameters of either player is modeled by consid-
ering a probability distribution over their possible values. To
the best of our knowledge, this is the first attempt towards
modeling the uncertainty of the attacker and the classifier on
the opponent’s objective function.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have extended the work in [11] by intro-
ducing randomized prediction games. To operate this shift, we
have considered parametrized, bounded families of probability
distributions defined over the set of pure strategies of either
players. The underlying idea, borrowed from [3], [6], [28],
consists of randomizing the classification function to make the
attacker select a less effective attack strategy. Our experiments,
conducted on an handwritten digit recognition task and on
realistic application examples involving spam and malware
detection, show that competitive, secure SVM classifiers can
be learnt using our approach, even when the conditions behind
uniqueness of the Nash equilibrium may not hold, i.e., when
the attacker may not play according to the objective function
hypothesized for her by the classifier. This mainly depends on
the particular kind of decision function learnt by the learning
algorithm under our game setting, which tends to find a better
‘enclosing’ of the legitimate class. This generally requires the
attacker to make more modifications to the malicious samples
to evade detection, regardless of the attack strategy chosen. We
can thus argue that the proposed methods exhibit robustness
properties particularly suited to adversarial learning tasks.
Moreover, the fact that the proposed methods may perform
well also when the Nash equilibrium is not guaranteed to be
unique suggests us that the conditions behind its uniqueness
may hold under less restrictive assumptions (e.g., when the
SVM admits a unique solution [35], [36]). We thus leave a
deeper investigation of this aspect to future work.

Another interesting extension of this work may be to apply
randomized prediction games in the context of unsupervised
learning, and, in particular, clustering algorithms. It has been
recently shown that injecting a small percentage of well-
crafted poisoning attack samples into the input data may
significantly subvert the clustering process, compromising the
subsequent data analysis [49], [50]. In this respect, we believe
that randomized prediction games may help devising secure
countermeasures to mitigate the impact of such attacks; e.g.,
by explicitly modeling the presence of poisoning samples
(generated according to a probability distribution chosen by
the attacker) during the clustering process.

It is worth finally mentioning that our work is also slightly
related to previous work on security games, in which the
goal of the defender is to adopt randomized strategies to
protect his or her assets from the attacker, by allocating a
limited number of defensive resources; e.g., police officers
for airport security, protection mechanisms for network se-
curity [51]–[53]. Although our game is not directly concerned
to the protection of a given set of assets, we believe that
investigating how to bridge the proposed approach within this
well-grounded field of study may provide promising research
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directions for future work, e.g., in the context of network
security [52], [53], or for suggesting better user attitudes
towards security issues [54]. This may also suggest interesting
theoretical advancements; e.g., to establish conditions for
the equivalence of Nash and Stackelberg games [51], and
to address issues related to the uncertainty on the players’
strategies, or on their (sometimes bounded) rationality, e.g.,
through the use of Bayesian games [25], security strategies
and robust optimization [52], [53]. Another suggestion to
overcome the aforementioned issues is to exploit higher-level
models of the interactions between attackers and defenders
in complex, real-world problems; e.g., through the use of
replicator equations to model adversarial dynamics in security-
related tasks [55]. Exploiting conformal prediction may be also
an interesting research direction towards improving current
adversarial learning systems [56]. To conclude, we believe
these are all relevant research directions for future work.
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Springer Berlin Heidelberg, 2013, pp. 387–402.

[10] M. Brückner and T. Scheffer, “Nash equilibria of static prediction
games,” in NIPS 22, Y. Bengio et al., Eds. MIT Press, 2009, pp.
171–179.

[11] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games for
adversarial learning problems,” J. Mach. Learn. Res., vol. 13, pp. 2617–
2654, September 2012.

[12] G. L. Wittel and S. F. Wu, “On attacking statistical spam filters,” in 1st
Conf. Email and Anti-Spam (CEAS), Mountain View, CA, USA, 2004.

[13] A. Kolcz and C. H. Teo, “Feature weighting for improved classifier
robustness,” in 6th Conf. Email and Anti-Spam (CEAS), Mountain View,
CA, USA, 2009.

[14] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier systems for robust
classifier design in adversarial environments,” Int’l J. Mach. Learn. and
Cybernetics, vol. 1, no. 1, pp. 27–41, 2010.

[15] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant,
“Semantics-aware malware detection,” in IEEE Symp. Security and
Privacy, May 2005, pp. 32–46.

[16] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee, “Poly-
morphic blending attacks,” in USENIX-SS’06: 15th Conf. USENIX Sec.
Symp.. Berkeley, CA, USA: USENIX Association, 2006, pp. 241–256.

[17] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein,
U. Saini, C. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine
learning to subvert your spam filter,” in LEET’08: 1st USENIX Workshop
on Large-Scale Exploits and Emergent Threats. Berkeley, CA, USA:
USENIX Association, 2008, pp. 1–9.

[18] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao,
N. Taft, and J. D. Tygar, “Antidote: understanding and defending against
poisoning of anomaly detectors,” in 9th ACM Internet Measurement
Conf., ser. IMC ’09. New York, NY, USA: ACM, 2009, pp. 1–14.

[19] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in 29th Int’l Conf. Mach. Learn., J. Langford and
J. Pineau, Eds. Omnipress, 2012, pp. 1807–1814.

[20] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli,
“Is feature selection secure against training data poisoning?” in JMLR
W&CP - 32nd Int’l Conf. Mach. Learn., F. Bach and D. Blei, Eds.,
vol. 37, 2015, pp. 1689–1698.

[21] A. Globerson and S. T. Roweis, “Nightmare at test time: robust learning
by feature deletion,” in 23rd Int’l Conf. Mach. Learn., W. W. Cohen and
A. Moore, Eds., vol. 148. ACM, 2006, pp. 353–360.

[22] C. H. Teo, A. Globerson, S. Roweis, and A. Smola, “Convex learning
with invariances,” in NIPS 20, J. Platt, D. Koller, Y. Singer, and
S. Roweis, Eds. Cambridge, MA: MIT Press, 2008, pp. 1489–1496.

[23] O. Dekel, O. Shamir, and L. Xiao, “Learning to classify with missing
and corrupted features,” Machine Learning, vol. 81, pp. 149–178, 2010.

[24] M. Brückner and T. Scheffer, “Stackelberg games for adversarial predic-
tion problems,” in 17th ACM Int’l Conf. Knowl. Disc. and Data Mining,
ser. KDD ’11. New York, NY, USA: ACM, 2011, pp. 547–555.

[25] M. Großhans, C. Sawade, M. Brückner, and T. Scheffer, “Bayesian
games for adversarial regression problems,” in JMLR W&CP - 30th
Int’l Conf. Mach. Learn., vol. 28, no. 3, 2013, pp. 55–63.

[26] K. Vamvoudakis, J. Hespanha, B. Sinopoli, and Y. Mo, “Detection in
adversarial environments,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3209–3223, Dec 2014.

[27] R. Zhang and Q. Zhu, “Secure and resilient distributed machine learning
under adversarial environments,” in 18th Int’l Conf. on Information
Fusion. IEEE, July 2015, pp. 644–651.

[28] B. Biggio, G. Fumera, and F. Roli, “Adversarial pattern classification
using multiple classifiers and randomisation,” in 12th Joint IAPR Int’l
Workshop on Structural and Syntactic Patt. Rec., ser. LNCS, vol. 5342.
Orlando, Florida, USA: Springer-Verlag, 2008, pp. 500–509.

[29] I. L. Glicksberg, “A further generalization of the Kakutani fixed point
theorem, with application to Nash equilibrium,” Proceedings of the
American Mathematical Society, vol. 3, no. 1, pp. 170–174, 1952.

[30] J. B. Rosen, “Existence and uniqueness of equilibrium points for concave
n-person games,” Econometrica, vol. 33, no. 3, pp. 520–534, 1965.

[31] D. Zhu and P. Marcotte, “Modified descent methods for solving the
monotone variational inequality problem,” Operations Research Letters,
vol. 14, no. 2, pp. 111–120, 1993.

[32] P. T. Harker and J. Pang, “Finite-dimensional variational inequality and
nonlinear complementary problems: A survey of theory, algorithms and
applications,” Math. Programming, vol. 48, no. 2, pp. 161–220, 1990.

[33] C. Geiger and C. Kanzow, Theorie und Numerik restringierter Optim-
imierungsaufgaben. Springer, 1999.

[34] C. Cortes and V. N. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, 1995.

[35] S. Abe, “Analysis of support vector machines,” in Proc. 12th IEEE
Workshop on Neural Networks for Signal Processing, 2002, pp. 89–98.

[36] C. J. C. Burges and D. J. Crisp, “Uniqueness of the SVM solution,” in
NIPS, S. A. Solla, T. K. Leen, and K.-R. Müller, Eds. The MIT Press,
1999, pp. 223–229.

[37] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Trading convexity for
scalability,” in 23rd Int’l Conf. Mach. Learn., ser. ICML ’06. New
York, NY, USA: ACM, 2006, pp. 201–208.

[38] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards AI,” in
Large Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and
J. Weston, Eds. MIT Press, 2007.

[39] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Muller,
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Abstract—This document provides sufficient conditions for the
uniqueness of a Nash equilibrium in randomized prediction
games. The provided conditions generalize the ones given in [1].

This document is devoted to provide fine-grained assump-
tions that guarantee the positive definiteness of Jr and, hence,
the uniqueness of the Nash equilibrium via Thm. ??. In
particular, we will provide a first set of conditions to rewrite
the pseudo-Jacobian Jr(θl,θd) of our game in terms of the
pseudo-Jacobian Jr(w, Ẋ) of the underlying prediction game,
i.e.,

Jr(w, Ẋ) =

[
rl∇2

w,wcl(w, Ẋ) rl∇2
w,Ẋ

cl(w, Ẋ)

rd∇2
Ẋ,w

cd(w, Ẋ) rd∇2
Ẋ,Ẋ
cd(w, Ẋ)

]
, (32)

and then provide a further set of conditions on Jr(w, Ẋ),
adapted from [1], to ensure the uniqueness of the Nash
equilibrium in our game.

The first set of conditions is related to the parametrized
probability distributions pl/d(·;θl/d) of the two players.

Assumption 3. There exist random matrices Vl ∈ Rm×sl and
Vd ∈ Rnm×sd (each defined on a probability space) such that
• random variable w distributed as pl(w;θl) is equivalent

in distribution to Vlθl for all θl ∈ Θl,
• random variable Ẋ distributed as pd(Ẋ;θd) is equivalent

in distribution to Vdθd for all θd ∈ Θd, and
• random variables Vl/d do not depend on θl/d, respec-

tively.

Intuitively, random variables w and Ẋ depend on the pa-
rameters θl and θd in a non-linear way via their probability
distributions pl(w;θl) and pd(Ẋ;θd). Assumption 3 paves the
way for the application of a reparametrization trick, which
moves the dependence on θl/d from the probability distribu-
tion to the sample space of a new random variable and, at the
same time, makes this dependence linear. This shift allows us
to reparametrize the expectations in c̄l/d as follows:

cl/d(θl,θd) = E[cl/d(Vlθl, Vdθd)] . (33)

Note that Assumption 3 is not too restrictive, as many known
distributions satisfy the provided conditions (e.g., at least
all those within the location-scale family such as Gaussian,
Laplace, uniform, Cauchy, Weibull, exponential and many
others). Indeed, if e.g. pl is in the location-scale family,
then w is equivalent in distribution to µ + diag(σ)z, where
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M. Pelillo is with DAIS, Università Ca’ Foscari, Venezia, Italy
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diag(·) denotes a diagonal matrix with diagonal given by the
argument, µ ∈ Rsl is the location parameter, σ ∈ Rsd++

is the positive, scale parameter, and z is a random variable
belonging to the same family with standard parametrization
(i.e. location zero and unit scale). By setting θl = (µ>,σ>)>

and Vl = [I, diag(z)] we have that Vlθl = µ + diag(σ)z =
µ + diag(z)σ, which is equivalent in distribution to w as
required by Assumption 3.

In order to be able to rewrite the pseudo-Jacobian Jr of
our game in terms of Jr, we further require cl/d to be twice
differentiable. This also implies the satisfaction of condition
(i) in Assumption ??, i.e., the twice differentiability of cl/d.
To satisfy Assumption ??, as required by Theorem ??, we
also assume cl/d to be convex. For this to hold, it is sufficient
to assume the convexity of regularizers and losses. This, in
conjunction with the linearity of Vl/dθl/d, will then imply (ii-
iii) in Assumption ??. These conditions are summarized in the
following assumption.

Assumption 4. For all values of w and Ẋ sampled from pl
and pd, respectively, the following conditions are satisfied:

(i) regularizers Ωl/d are strongly convex and twice differen-
tiable at (w, Ẋ)

(ii) for all y ∈ Y and i ∈ {1, . . . , n}, loss functions `l/d(·, y)
are convex in R, and twice differentiable at w>ẋi.

Under Assumptions 3 and 4, we can finally compute the
pseudo-Jacobian Jr of our game in terms of the pseudo-
Jacobian Jr of the underlying prediction game:

Jr(θl,θd) = E
[
V>Jr(Vlθl, Vdθd)V

]
. (34)

Here, matrix V is the result of the application of the chain rule
for the derivatives in (??), and it is a block-diagonal random
matrix defined as

V =

[
Vl 0

0 Vd

]
.

To ensure the positive definiteness of Jr we require some
additional conditions given in Assumption 5, which depend on
the following quantities:

λl = inf
θl∈Θl

λmin(E[V>l ∇2Ωl(Vlθl)Vl]) ,

λd = inf
θd∈Θd

λmin(E[V>d ∇2Ωd(Vdθd)Vd]) ,

Q(θl,θd) =
∑

i

E[ψi(θ
>
l V
>
l V

(i)
d θd)V

(i)
d V>l ] ,

where ψi(z) = d
dz `l(z, yi) + d

dz `d(z, yi), ∇2 is the Hessian
operator, λmin(·) is the smallest eigenvalue of the matrix given
as argument, and V

(i)
d is the submatrix of Vd corresponding to
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ẋi, i.e. V(i)
d θd is equivalent in distribution to ẋi. Note that

λl/d are finite since Θl/d are compact spaces.

Assumption 5.
(i) for all y ∈ Y , i ∈ {1, . . . , n}, and for almost all values

of w and Ẋ sampled from pl and pd, respectively,

`′′l (w>ẋi, y) = `′′d(w>ẋi, y) ,

(ii) the players’ regularization parameters ρl/d satisfy

ρlρd >
τ

4λlλd
,

where τ = sup
θl/d∈Θl/d

λmax
(
Q(θl,θd)Q(θl,θd)

>) ,

Here, `′′l/d(z, y) = d2

dz2 `l/d(z, y) and λmax(·) returns the largest
eigenvalue of the matrix given as argument.

The subsequent lemma states that the positive definiteness
of Jr is implied by Assumptions 3-5:

Lemma 3. If a randomized prediction game satisfies Assump-
tions 3–5 then the pseudo-Jacobian Jr(θl,θd) is positive
definite for all (θl,θd) ∈ Θl ×Θd by taking r = (1, 1)>.

Proof: By substituting (32) into (34) and unfolding the
derivatives we can rewirte Jr(θl,θd), after simple algebraic
manipulations, as the sum of the following matrices

J(1) = E


∑

i

[
`′′l,iI 0

0 `′′d,iI

] [
V>l V

(i)
d θd

V
(i)>
d Vlθl

][
V>l V

(i)
d θd

V
(i)>
d Vlθl

]>


J(2) =

[
ρlE[V>l ∇2Ωl(Vlθl)Vl]

∑
i E[`′l,iV

>
l V

(i)
d ]∑

i E[`′d,iV
(i)>
d Vl] ρdE[V>d ∇2Ωd(Vdθd)Vd]

]

where we wrote `′′l,i for `′′l (θ>l V
>
l V

(i)
d θd, yi), and `′′d,i for

`′′d(θ>l V
>
l V

(i)
d θd, yi). Similarly, we wrote `′l,i and `′d,i for the

first-order derivatives.
It is clear from the structure of J(1) that it is positive

semidefinite for any θl/d ∈ Θl/d if `′′l,i = `′′d,i holds almost
surely. Therefore, it sufficies to show that J(2) is positive
definite to prove that Jr(θl,θd) is positive definite. Consider
the following matrix

H =

[
2ρlλlI Q(θl,θd)

>

Q(θl,θd) 2ρdλdI

]
.

For any t = (t>l , t
>
d )> 6= 0 we have

t>Ht = 2ρlλl‖tl‖2 + 2ρdλd‖td‖2 + 2t>d Q(θl,θd)tl

≤ t>(J(2) + J(2)>)t ,

where we used the definition of Q and the inequalities

λl‖tl‖2 ≤ t>l E[V>l ∇2Ωl(Vlθl)Vl]tl

λd‖td‖2 ≤ t>d E[V>d ∇2Ωd(Vdθd)Vd]td ,

which follow from the definitions of λl/d. Accordingly, we can
prove the positive definiteness of J(2) by showing the positive
definitness of H. To this end, we proceed by showing that all

roots of the characteristic polinomial det(H − λI) of H are
positive. By properties of the determinant1 we have

det(H− λI) = det((2ρlλl − λ)I)

· det

(
(2ρdλd − λ)I− S

2ρlλl − λ

)
,

where S is a diagonal matrix with the eigenvalues of
Q(θl,θd)Q(θl,θd)

>. The roots of the first determinant term
are all equal to 2ρlλl, which is positive because ρl > 0 by
construction and λl > 0 follows from the strong-convexity of
Ωl in Assumption 4-i. As for the second determinant term,
take the ith diagonal element Sii of S. Then two roots are
given by the solution of the following quadratic polinomial

λ2 − 2λ(ρlλl + ρdλd) + 4ρlρdλlλd − Sii = 0 ,

which are given by

λ
(i)
1,2 = ρlλl + ρdλd ±

√
(ρlλl − ρdλd)2 + Sii .

Among the two, λ(i)
2 (the one with the minus) is the smallest

one, which is strictly positive if ρlρd > Sii
4λlλd

. Since the
condition has to hold for any choice of the eigenvalue Sii in the
right-hand-side of the inequality, we take the maximum one
maxi Sii, which coincides with λmax(Q(θl,θd)Q(θl,θd)

>).
We further maximize the right-hand-side with respect to
(θl,θd) ∈ Θl × Θd, because we want the result to hold for
any parametrization. Therefrom we recover the variable τ and
the condition (ii).

We finally use this lemma in conjunction to Theorem ?? to
prove the uniqueness of the Nash equilibrium of a randomized
prediction game satisfying Assumptions 3-5.

Theorem 3 (Uniqueness). A randomized prediction game
satisfying Assumptions 3–5 has a unique Nash equilibrium.

Proof: From Assumption 4 it follows that cl/d are twice
differentiable and, hence, also cl/d is twice-differentiable and
admits the pseudo-Jacobian. Moreover, by Lemma 3 the
pseudo-Jacobian Jr is positive definite. It is also easy to see
from (33) that c̄l(·;θd) is convex in Θl for all θd ∈ Θd.
Indeed, cl is convex in w in view of Assumption 4, and Vlθl
is linear in θl. Therefore, cl(Vlθl, Vdθd) is convex with respect
to θl, and since expectations preserve convexity, it follows that
c̄l(·;θd) is convex in Θl as required. By the same arguments,
also the convexity of c̄d(θl; ·) in Θd holds. Hence, Assumption
?? holds and Theorem ?? applies to prove the uniqueness of
the Nash equilibrium.
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[
aI B>

B dI

]
= det(aI) det(dI − 1

a
BB>) and if USU> is the eigen-

decomposition of BB> then the latter deterimnant becomes det(U(dI −
1
a
S)U>) = det(dI− 1

a
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