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On Better Exploring and Exploiting Task

Relationships in Multi-Task Learning: Joint Model

and Feature Learning
Ya Li, Xinmei Tian, Member, IEEE, Tongliang Liu, and Dacheng Tao, Fellow, IEEE

Abstract—Multi-task learning (MTL) aims to learn multi-
ple tasks simultaneously through the interdependence between
different tasks. The way to measure the relatedness between
tasks is always a popular issue. There are mainly two ways to
measure relatedness between tasks: common parameters sharing
and common features sharing across different tasks. However,
these two types of relatedness are mainly learned independently,
leading to a loss of information. In this paper, we propose a new
strategy to measure the relatedness that jointly learns shared
parameters and shared feature representations. The objective of
our proposed method is to transform the features from different
tasks into a common feature space in which the tasks are closely
related and the shared parameters can be better optimized. We
give a detailed introduction to our proposed multi-task learning
method. Additionally, an alternating algorithm is introduced to
optimize the non-convex objection. A theoretical bound is given
to demonstrate that the relatedness between tasks can be better
measured by our proposed multi-task learning algorithm. We
conduct various experiments to verify the superiority of the
proposed joint model and feature multi-task learning method.

Index Terms—Multi-task learning, feature learning, parameter
sharing

I. INTRODUCTION

S
INGLE-TASK learning learns different tasks separately

by ignoring the intrinsic relatedness between different

tasks. However, multi-task learning can well prevent this

drawback by jointly measuring the interdependence between

different tasks. The performance of all tasks is supposed

to be improved with additional information provided by the

relationship between tasks. Consider the merits of multi-task

learning, it has been applied to various research areas, for

example, web image search [1], video tracking [2], disease

prediction [3], and relative attributes learning [4].

MTL makes the assumption that tasks have some intrinsic

relatedness. Consequently, proper measurement of task re-

latedness will benefit the learning of tasks and improve the

performance of each other. Conversely, improper relatedness

measurement introduces noise and degrades the performance.
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Recently, researchers have given substantial attention to mea-

suring task relatedness. Existing algorithms mainly use two

methods to measure the relatedness between tasks: shared

common models/parameters [5, 6, 7, 8, 9, 10] and shared

common feature representations [11, 12, 13, 14, 15, 16,

17]. MTL of sharing common models/parameters (multi-task

model learning) makes the assumption that models of different

tasks have something in common in their parameters. MTL

of sharing common feature representations (multi-task feature

learning) assumes that related tasks share a subset of features

to measure relatedness.

Both multi-task model learning and multi-task feature learn-

ing suffer from their own defects. They only consider one

aspect of task relatedness. For example, the relatedness is

directly captured in the original feature space by multi-task

model learning. However, considering the noise and complex-

ity of features in real-world datasets, task relatedness measured

by the original features may not be obvious. As a result, the

performance of multi-task model learning may degrade. Multi-

task feature learning prevents this drawback by learning a

common subset of feature representations. However, it ignores

the relatedness between model parameters. We develop a

new multi-task model and feature joint learning method in

this paper that can successfully explore task relatedness. Our

model learns a common feature space shared by different

tasks in which the relatedness between tasks is maximized.

Consequently, the common models can be better measured

jointly.

The objective function is formulated as a non-convex prob-

lem and an alternating algorithm is proposed to optimize it.

Additionally, we present sound theoretical analysis to prove

the better ability of measuring task relatedness with our joint

model and feature learning method. Various experimental

results are reported to demonstrate the effectiveness of our

proposed method ,especially on tasks with shared features or

shared models.

The remainder of this paper is organised as follows. In

Section II, we briefly review previous multi-task learning

works. In Section III, we give a detailed derivation and

optimization algorithm of our proposed method. Section IV

derives a theoretical error bound to demostrate the merits of

our proposed algorithm. Experimental results are reported in

Section V with conclusions and future work given in Section

VI.

http://arxiv.org/abs/1904.01747v1


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

II. RELATED WORK

In recent years, researchers have paid much attention to

multi-task learning. Compared to single-task learning, its ef-

fectiveness has been demonstrated through theoretical analysis

in many works [18, 19, 20, 21, 22]. For example, a novel

inductive bias learning method was proposed by Baxter [18].

This work derived explicit bounds, demonstrating that learn-

ing multiple related tasks within an environment potentially

achieves substantially better generalization than does learning

a single-task. Ben-David and Schuller proposed a useful con-

cept of task relatedness [19] to derive a better generalization

of error bounds. Maurer et al. applied the dictionary learning

and sparse coding to multi-task learning and introduced a

generalization bound by measuring the hypothesis complexity

[20]. Ando and Zhang made assumption that all tasks shared a

common structure and showed a reliable estimation of shared

parameters between tasks when the number of tasks was large.

[21].

With more extensive applications of multi-task learning,

some single-task learning algorithms have been extended to

multi-task learning framework. For example, some works

extended Bayesian method into multi-task learning methods

with the assumption that the models of tasks are indeed related

[23, 24]. Hierarchical Bayesian models can be learned by

sharing parameters as hyperparameters at a high level. The

relatedness between tasks can also be measured by deep neural

networks, such as sharing nodes or layers of the network [25].

As one of the most popular single-task learning methods,

SVM has been studied in many multi-task learning works

[5, 12, 26, 27, 28, 29, 30]. Jebara proposed a multi-task

learning method using maximum entropy discrimination based

on the large-margin SVM [12]. Zhu et al. propose an infinite

latent SVM for multi-task learning [26]. It combines the large-

margin idea with a nonparametric Bayesian model to discover

the latent features for multi-task learning.

The most difficult aspect of multi-task learning is simulta-

neously measuring the relatedness between tasks and keeping

the individual characteristics. Multi-task model learning and

multi-task feature learning are two main categories of multi-

task learning methods. For multi-task model learning, Xue

et al. proposed two different forms of MTL problem using

a Dirichlet process based statistical model and developed

efficient algorithms to solve the proposed methods [6]. Ev-

geniou and Pontil introduced a multi-task learning model by

minimizing a regularized objection similar to support vector

machines [5]. This work assumed that all tasks shared a

mean hyperplane with a particular offset on their own. A

nonparametric Bayesian model was proposed by Rai and

Daume [8] to capture task relatedness under the assumption

that parameters shared a latent subspace. The dimensionality of

the subspace is automatically inferred by the proposed model.

For the category of multi-task feature learning, Argyriou et

al. developed a convex MTL method for learning shared

features between tasks [11]. The learned common features

were regularized by a L21-norm to control the dimensionality

of the latent feature space. Jebara proposed a general multi-

task learning framework using large-margin classifiers. Three

scenarios are discussed: multit-task feature learning, multi-

task kernel combination and graphical multi-task model [12].

To improve the efficiency of multi-task learning on high-

dimensional problems, a novel multi-task learning method was

proposed by learning low-dimensional features of tasks jointly

[13].

Recently, the defects of measuring task relatedness in tradi-

tional multi-task learning methods have been widely discussed.

The assumptions that all tasks are related through sharing com-

mon parameters or common features are usually not suitable

for real-world multi-task learning problems. Considering the

defects of such assumptions, a number of works [31, 32, 33,

34] have been proposed to improve the performance of multi-

task learning. For example, Kang et al. learned a shared feature

representation across tasks while simultaneously clustering the

tasks into different groups [31]. Chen et al. proposed a robust

multi-task learning method that learned multiple tasks jointly

while simultaneously finding outlier tasks [33]. Another robust

multi-task feature learning method was proposed by Gong et

al. [32]. This model was similar to the method in [33]. This

work decomposed the weight matrix into two components

and imposed the group Lasso penalty on both components.

The group Lasso penalty was imposed on the row of the first

component for capturing the shared features between relevant

tasks, and the same group Lasso penalty was imposed on

the column of the second component to find outlier tasks.

Another work [34] proposed a dirty model for multi-task

learning by utilizing a idea similar to [32, 33]. The model uses

both block-sparse regularization and element-wise sparsity

regularization to capture the true features used for each task.

Block-sparse regularization learned the shared features across

tasks, and element-wise regularization guaranteed that some

features were used for some tasks but not all. These works

can be divided into two categories: task clustering and outlier

task finding.

However, these works only consider one aspect of task

relatedness: either shared features or shared parameters. In this

paper, we consider the shared features and shared parameters

simultaneously to overcome the problems in existing multi-

task learning methods. The relatedness can be better modeled

in our multi-task learning framework, especially when both

feature relatedness and model relatedness exist between tasks.

III. MULTI-TASK MODEL AND FEATURE JOINT LEARNING

We introduce our newly proposed multi-task learning

method specifically in this section. We first show the objec-

tive optimization problem and then convert the non-convex

problem into a convex formulation. An efficient optimization

algorithm is given at the end of this section.

The idea of our proposed method is illustrated in Figure

1. There are three related tasks in the original feature space.

However, the interdependence between them is not as strong as

assumed in multi-task learning due to the noise and complexity

of feature representation. It may lead to bad performances

of multi-task learning in the original feature space. In our

work, we transform the original feature space into a new

feature space, in which different tasks are tightly related and
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Fig. 1. Framework of our proposed multi-task learning method. In the original feature space, tasks have weak relatedness. We aim to map the data into a
new space, therefore all tasks can be more closely related and share a common hyperplane in this new feature space.

are possible to share a common hyperplane a0. The specific

characteristic of task t is represented by an offset at.

A. Non-convex objective

Suppose we have T different tasks and each task t is related

with a dataset Dt which can be formulated as follows:

Dt = {(xt1, yt1), (xt2, yt2), ..., (xtmt
, ytmt

)},
where mt is the number of data samples in task t. xti ∈ (R)d

and yti ∈ R are the corresponding feature representation and

output of sample i in task t. In this work, we consider to

learn T different linear functions to predict the output given

the input feature representation in each task:

ft(xti) = vTt xti ≈ yti, (1)

where t ∈ {1, 2, ..., T }. Single-task learning methods treat

these T linear functions as separate tasks and just utilize

the data information from each task. Consequently, it ignores

the interdependence between tasks which may provide more

valuable information about the distribution of training data.

Consider the drawbacks of single-task learning algorithm,

multi-task learning are proposed to uncover the relatedness

between tasks and gain performance improvement of all tasks.

The improvement is expected to be obvious especially with a

small amount of training data. The relatedness between tasks

can provide more additional information in such situation.

In this work, we first learn a feature mapping matrix U ∈
R

d×d to get better relatedness between tasks in the new feature

space:

ft(xti) = 〈at + a0, U
Txti〉, (2)

note vt = at + a0. a0 is the shared central hyperplane in the

new feature space and at represents the offset of task t to

maintain its own characteristic. The learned feature mapping

matrix U is supposed to guarantee the assumption that all tasks

share a central hyperplane with an offset in the new feature

space. With the above formulation, our objective function of

multi-task learning can be formulated as:

min
V,a0,U

T∑

t=1

mt∑

i=1

l
(
yti, 〈vt, UTxti〉

)
+
γ

T
‖V−a0∗1‖22,1+β‖a0‖22,

(3)

where V = [v1, v2, ..., vT ] and 1 represents a vector of all

ones. Noting that vt = at + a0, we can reformulate problem

(3) with A = [a1, a2, ..., aT ] as :

min
A,a0,U

T∑

t=1

mt∑

i=1

l
(
yti, 〈at + a0, U

Txti〉
)
+

γ

T
‖A‖22,1+β‖a0‖22.

(4)

The third regularization term in problem (4) denotes the square

of the L2-norm of vector a0 which aims to measure the

smoothness and complexity of the central hyperplane. The sec-

ond regularization term is square of the L21-norm of matrix A
which can be explicitly expressed as ‖A‖2,1 = (

∑d
i=1

‖ai‖2).
ai denotes the i-th row of matrix A. The L21-norm guarantees

that all tasks share a subset of common features and the

sparsity of shared features. The first term is the loss function

which measures the error between ground truth and predicted

results.

There are three main differences between our proposed

formulation and the formulation proposed in [11]. First, the

learning ability of feature mapping matrix U has some limita-

tion due to its orthogonal property. However, such limitations

are ignored by the method proposed in [11]. It is more

reasonable to share a subset of common features around a0
instead of a fix point at the origin. The proposed method can

well prevent the limitation of orthogonal matrix U by selecting

features around a more robust point a0. Second, the proposed

method considers the task relatedness of both features and

model parameters. However, the method proposed in [11] just

uncovers the shared common features across tasks leading to

loss of information between related models. These tasks are

treated independently when learning their model parameters

in the learned new feature space. Third, it is more challenging
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to solve an optimization problem learning both of common

features and common model parameters.

The proposed objective function is non-convex. To briefly

show the non-convexity of the problem, we give a counter

example. Assuming that all the variables are scalars, it is

easy to show that proposed objective is non-convex. It is

usually difficult to get an optimal solution of a non-convex

objective. Instead, we convert the non-convex objective into

an equivalent convex problem. And an alternating algorithm

is proposed to solve it in the following sections.

B. Conversion to an equivalent convex optimization problem

For simple optimization, the non-convex optimization prob-

lem (4) is converted to an equivalent convex problem in this

section.

Theorem 1. The non-convex problem (4) can be equivalently

converted to a convex optimization problem as follows:

min
W,w0,D

T∑

t=1

mt∑

i=1

l (yti, 〈wt + w0, xti〉) (5)

+
γ

T

T∑

t=1

〈wt, D
+wt〉+ β〈w0, w0〉,

s.t. trace(D) ≤ 1, range(W ) ⊆ range(D), D ∈ Sd
+.

Suppose (Ŵ , ŵ0, D̂) is an optimal solution of convex prob-

lem (5), the corresponding optimal solution (Â, â0, Û) of non-

convex problem (4) can be formulated as Â = ÛT Ŵ , â0 =
ÛT ŵ0 and the columns of Û form an orthonormal basis of

eigenvectors of D̂. Additionally, suppose (Â, â0, Û ) forms an

optimal solution of non-convex problem (4), the corresponding

optimal solution of convex problem (5) can be formulated as

Ŵ = ÛÂ, ŵ0 = Û â0, and D̂ = ÛDiag( ‖âi‖2

‖Â‖2,1
)di=1Û

T .

Note that trace(D) =
∑d

i=1
Dii and D ∈ Sd

+ indicates

that D is a positive semidefinite symmetric matrix. range(W )
represents a set of vectors {x ∈ R

n : x = Wz, for

some z ∈ RT }. D+ denotes the pseudoinverse of matrix D.

Diag(a0)
d
i=1 is a diagonal matrix and the vector a0 forms the

diagonal elements.

To show the convexity of problem (5), an additional function

is introduced as f : Rd × Sd → R
⋃{+∞} which can be

explicitly formulated as:

f(w,D) =

{

wTD+w if D ∈ Sd
+ and w ∈ range(D)

+∞
(6)

With the additional function, problem (5) is equal to min-

imizing the sum of T additional functions plus the loss term

and the term 〈w0, w0〉 in problem (5), subjected to the trace

constraints. Its rightness can be guaranteed by the equality

between the T constraints wt ∈ range(D) and the constraint

range(W ) ∈ range(D). The loss term in problem (5) is

the sum of loss function l, which is convex for (wt, w0) and

a linear map, therefore it is convex. Additionally, the term

〈w0, w0〉 and the trace constraint is also convex. To show the

convexity of problem (5), it is sufficient to show that f is

convex. The details of f being convex can be found in [11].

C. An optimization algorithm

An alternating optimization algorithm is proposed to opti-

mize problem (5) corresponding to parameters (W,w0) and

D in this section. Additionally, the final optimal solution of

problem (4) can be obtained according to Theorem 1.

We first optimize problem (5) with respect to parameters

(W,w0) by fixing matrix D. The optimization problem can

be separated into T different tasks with a fix D in [11].

Comparing with the optimization of the objective in [11], the

optimization of our newly proposed objective function is more

challenging because of the shared parameter w0. It cannot be

viewed as T independent optimization problems. Our objective

can be formulated as:

min
W,w0

T∑

t=1

mt∑

i=1

l (yti, 〈wt + w0, xti〉) (7)

+
γ

T

T∑

t=1

〈wt, D
+wt〉+ β〈w0, w0〉,

s.t. trace(D) ≤ 1, range(W ) ⊆ range(D), D ∈ Sd
+.

The loss function used in our work is a least square loss

which is the same as that used in previous works. To solve

problem (7), we introduce some additional variables. Note

that Xt = [xt1, xt2, ..., xtmt
] ∈ Rd×mt which denotes a data

matrix of task t and the corresponding output of task t is

represented as Yt = [yt1, yt2, ..., ytmt
]T ∈ Rmt . M denotes

the sum of amount of data points from all T tasks:

M = m1 +m2 + ...+mT .

Let X = bdiag(X1, X2, ..., XT ) ∈ R
dT×M and Y =

[Y T
1 , Y T

2 , ..., Y T
T ]T ∈ RM . bdiag{X1, X2, ..., XT } denotes a

block diagonal matrix and its diagonal entries are data from

the T tasks. Y denotes the outputs of all data belonging

to the T different tasks. Note D0 = bdiag(D,D, ..., D
︸ ︷︷ ︸

T

) ∈

R
dT×M , W0 = [wT

0 , w
T
0 , ..., w

T
0

︸ ︷︷ ︸

T

]T ∈ R
dT and W1 =

[wT
1 , w

T
2 , ..., w

T
T ]

T ∈ RdT .

Problem (7) can be reformulated as

min
W1,W0

‖Y −XT (W1+W0)‖22+
γ

T
WT

1 D+

0 W1+βwT
0 w0. (8)

Note that W0 = I0 × w0 with I0 = [I, I, ..., I
︸ ︷︷ ︸

T

]T ∈ RdT×d

and I ∈ Rd×d denotes an identity matrix. We can reformulate

problem (8) as a L2-norm regularized regression problem with

some additional variables. Note that Z1 =
√

γ
T
(D+

0 )
1
2W1, and

let Z2 =
√
βw0. Then, W1 =

√
T
γ
(D+

0 )
− 1

2Z1 and W0 =
√

1

β
I0Z2. (D+

0 )
1
2 = bdiag((D+)

1
2 , (D+)

1
2 , ..., (D+)

1
2

︸ ︷︷ ︸

T

) and

(D+
0 )

− 1
2 = bdiag((D+)−

1
2 , (D+)−

1
2 , ..., (D+)−

1
2

︸ ︷︷ ︸

T

). We have
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γ

T
WT

1 D+
0 W1 + βwT

0 w0 = [ZT
1 , Z

T
2 ][Z

T
1 , Z

T
2 ]

T = ZTZ

W1 +W0 = [

√

T

γ
(D+

0 )
− 1

2 ,

√
1

β
I0][Z

T
1 , Z

T
2 ]

T = MZ,

(9)

note that M = [
√

T
γ
(D+

0 )
− 1

2 ,
√

1

β
I0] and Z = [ZT

1 , Z
T
2 ].

Consequently, the above problem is reformulated as the fol-

lowing standard L2-norm regularized problem:

min
Z

‖Y −XTMZ‖22 + ZTZ. (10)

The solution can be explicitly expressed as the following:

Z = (MTXXTM + I)−1MTXY. (11)

Additionally, we need to optimize problem (5) with respect to

matrix D by fixing parameters (W,w0). The objective can be

simply formulated as the following:

min
D

T∑

t=1

〈wt, D
+wt〉, (12)

s.t. D ∈ Sd
+, trace(D) ≤ 1, range(W ) ⊆ range(D).

The optimal solution is explicitly shown as (the details can be

found in [11]):

D̂ =
(WWT )

1
2

trace(WWT )
1
2

. (13)

IV. THEORETICAL ANALYSIS

For better understanding the merits of our method, a gener-

alization bound of the non-convex problem (4) is analysed in

this section. We first reformulate the problem by converting

the two soft constraints γ
T
‖A‖22,1 and β‖a0‖22 into hard ones

as the following:

min
at,a0,U,ε1,ε2

T∑

t=1

mt∑

i=1

l
(
yti,
〈
at + a0, U

Txti

〉)
+ ε1 + ε2,

s.t. γ
1

T
‖A‖22,1 ≤ ε1, (14)

β‖a0‖22 ≤ ε2.

The demonstration of the equality between problem (14)

and problem (4) can be found in [35], and ε1, ε2 are of order

O(1) . Denote that ε1 = ε2 = O(1), the above problem can

be formulated as follows:

min
at,a0,U

T∑

t=1

mt∑

i=1

l
(
yti,
〈
at + a0, U

Txti

〉)
,

s.t. ‖A‖22,1 ≤ O
(
T

γ

)

, (15)

‖a0‖22 ≤ O
(
1

β

)

.

Consequently, we analyse the problem with hard constraints

instead. We derive a generalization bound of the proposed

problem following a similar way to that of [36] by setting

ε = 1:

min
at,a0,U

T∑

t=1

mt∑

i=1

l
(
yti,
〈
at + a0, U

Txti

〉)
,

s.t. ‖A‖22,1 ≤ T

γ
, (16)

‖a0‖22 ≤ 1

β
.

The loss function l is supposed to satisfy the following

Lipschitz-like condition, to simplify the analysis of the upper

bound of the generalization error. This has been also used in

[37].

Definition 1. A loss function l is c-admissible with respect to

the hypothesis class H if there exists a c ∈ R+, where R+

denotes the set of non-negative real numbers, such that for

any two hypotheses h, h′ ∈ H and example (x, y) ∈ X × R,

the following inequality holds:

|l(y, h(x))− l(y, h′(x))| ≤ c|h(x) − h′(x)|.

We can have:

Theorem 2. Suppose B is the upper bound of loss function

l, such that l(y, f(x)) ≤ B. And the loss function l is c-
admissible corresponding to the linear function class. For

any optimal solution (A, a0, U) of problem (4), by replacing

the hard constraints ‖A‖22,1 ≤ T
γ

and ‖a0‖22 ≤ 1

β
with soft

constraints γ 1

T
‖A‖22,1 and β‖a0‖22, and for any δ > 0, we

have the following results with probability of at least 1− δ:

Ex

T∑

t=1

mt∑

i=1

l
(
yti,
〈
at + a0, U

Txti

〉)

−
T∑

t=1

mt∑

i=1

l
(
yti,
〈
at + a0, U

Txti

〉)
≤

2c

(√

T

γ
+

√
1

β

)
√
√
√
√

T∑

t=1

mtS(Xt) + 3B

√
∑T

t=1
mt ln(

2

δ
)

2
,

where S(Xt) = tr
(

Σ̂(xt)
)

= 1

mt

∑mt

i=1
‖xti‖22 is the empir-

ical covariance for the observations of the t-th task. Letting

m1 = . . . = mT = m and ‖xt‖2 ≤ r, t = 1, . . . , T , with a

probability of at least 1− δ, we have

1

T

T∑

t=1

Exl
(
yt,
〈
at + a0, U

Txt

〉)

− 1

T

T∑

t=1

1

m

m∑

i=1

l
(
yti,
〈
at + a0, U

Txti

〉)

≤ 2cr√
γm

+
2cr√
βmT

+ 3B

√

ln(2/δ)

2mT
.

Remark 1. The first term 2cr√
γm

in Theorem 2 is the gen-

eralization bound related to the learning of matrix A and

the second term 2cr√
βmT

corresponding to a0. This theoretical

result demonstrates that the learning of shared hyperplane
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Fig. 2. Visualization of matrix A0 learned on School dataset.

Fig. 3. Visualization of matrix A learned on School dataset.

a0 is of order O(
√

1/mT ) and it can be better learned

with more tasks. Consequently, our proposed multi-task joint

learning method can perform better than single-task learning

methods. Additionally, a0 is encouraged to be larger with the

constraints of ‖A‖2,1 and the utility of feature mapping matrix

U . Thus, the generalization bound of our proposed method

have a faster convergence than the method proposed in [11],

which demonstrates the efficiency of our method.

The proof of Theorem 2 is given in Appendix A.

V. EXPERIMENTS

We show various experimental results and analyses on the

experiments to demonstrate the effectiveness of our proposed

multi-task learning method in this section. The comparison

with several state-of-the-art multi-task learning algorithms

further supports the merits of our multi-task model and feature

joint learning methods (MTMF). We compare our MTMF

with two single-task learning methods - L2-norm regularized

regression (L2-R) and L1-norm regularized regression (L1-

R), as well as five state-of-the-art multi-task learning algo-

rithms including trace norm regularized multi-task learning

(TraceMT), low rank regularized multi-task learning with

sparse structure (LowRankMT) [38], convex multi-task feature

learning(CMTL) [11], multi-task learning with a dirty model

(MTDirty) [34], group sparse and low-rank regularized ro-

bust multi-task learning (SLMT) [33]. These five multi-task

learning algorithms are representative methods of multi-task

learning and the performance of them has been demonstrated

to be promising on various datasets. The comparison with

these methods can sufficiently demonstrate the effectiveness

of our proposed MTMF. The datasets used in our experiments

are School dataset 1, SARCOS dataset 2, Isolet dataset 3, and

MNIST dataset 4.

A. School dataset

This dataset was collected to evaluate the effectiveness of

schools by Inner London Education Authority. It consists of

139 related tasks to predict the examination scores of students

from 139 secondary schools. The information of each student

is encoded into a binary feature vector of 27 dimensions.

There are totally 15362 samples. Single-task learning methods,

such as L1-R and L2-R, learn these 139 tasks independently

using their own data. All multi-task learning methods aim to

improve the performance of these 139 tasks by uncovering the

relatedness between tasks. The experimental settings follow

previous works to fairly compare their performance.

Different ratios (10%, 20%, 30% ) of training samples are

randomly selected for training and the rest of samples are

split into validation and test set. Consider the randomness

of selection which may cause large variations in the results,

we repeat all selections 10 times. All parameters are selected

via the validation set. For all methods, the performance are

evaluated by average mean squared error (aMSE) and normal-

ized mean squared error (nMSE) which have been used in

[32, 33]. The aMSE can be calculated through dividing the

mean squared error by the variance of target vector and the

nMSE can be calculated through dividing the mean squared

error by the squared norm of target vector.

Table I gives the performance of all methods on School

dataset. From the table, we can conclude that all multi-task

learning methods can well uncover the relationships between

tasks and improve the performance comparing to single-task

learning methods. Another observation is that our proposed

method performs the best with different training ratios. The

improvement is especially obvious with a small amount of

training samples, which indicates the success of our method to

learn a new feature space and the strong ability of discovering

latent relatedness between tasks.

To analyse the properties of learned weight matrix A0 =
[a0, a0, ..., a0
︸ ︷︷ ︸

T

] and A, we visualize them in Fig. 2 and Fig. 3.

The results are obtained using 20% of the training samples.

The zero values are denoted as black pixels in the figures. Most

of the pixels in Figure 3 are black, which reveal the sparsity of

the learned matrix A. A small subset of the features are shared

across tasks corresponding to the 15 nonzero rows of matrix

A. From Figure 2, we observe that A0 is also a sparse matrix.

1http://ttic.uchicago.edu/ argyriou/code/.
2http://www.gaussianprocess.org/gpml/data/.
3https://archive.ics.uci.edu/ml/datasets/ISOLET
4http://yann.lecun.com/exdb/mnist/
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TABLE I
EXPERIMENTAL RESULTS COMPARISON ON SCHOOL DATASET.

Measure Training ratio L2-R L1-R TraceMT LowRankMT CMTL SLMT MTDirty MTMF

10% 1.0398 ± 0.0038 1.0261 ± 0.0132 0.9359 ± 0.0370 0.9175 ± 0.0261 0.9413 ± 0.0021 0.9130 ± 0.0039 0.9543 ± 0.0129 0.7783 ± 0.0082

nMSE 20% 0.8773 ± 0.0043 0.8754 ± 0.0194 0.8211 ± 0.0032 0.8126 ± 0.0132 0.8327 ± 0.0039 0.8055 ± 0.0103 0.8396 ± 0.0142 0.7432 ± 0.0045

30% 0.8171 ± 0.0090 0.8144 ± 0.0091 0.7870 ± 0.0012 0.7657 ± 0.0091 0.7922 ± 0.0052 0.7600 ± 0.0032 0.7985 ± 0.0053 0.7299 ± 0.0064

10% 0.2713 ± +0.0023 0.2682 ± 0.0036 0.2504 ± 0.0102 0.2419 ± 0.0081 0.2552 ± 0.0032 0.2330 ± 0.0018 0.2327 ± 0.0031 0.1898 ± 0.0018

aMSE 20% 0.2303 ± 0.0003 0.2289 ± 0.0051 0.2156 ± 0.0015 0.2114 ± 0.0041 0.2131 ± 0.0071 0.2018 ± 0.0025 0.2048 ± 0.0036 0.1813 ± 0.0010

30% 0.2156 ± 0.0021 0.2137 ± 0.0012 0.2089 ± 0.0012 0.2011 ± 0.0022 0.1922 ± 0.0102 0.1822 ± 0.0014 0.1943 ± 0.0016 0.1776 ± 0.0019

TABLE II
EXPERIMENTAL RESULTS COMPARISON ON SARCOS DATASET.

Measure Training size L2-R L1-R TraceMT LowRankMT CMTL SLMT MTDirty MTMF

50 0.2454 ± 0.0260 0.2337 ± 0.0180 0.2257 ± 0.0065 0.2127 ± 0.0033 0.2192 ± 0.0016 0.2123 ± 0.0038 0.1742 ± 0.0178 0.1640 ± 0.0208

nMSE 100 0.1821 ± 0.0142 0.1616 ± 0.0027 0.1531 ± 0.0017 0.1495 ± 0.0023 0.1568 ± 0.0037 0.1456 ± 0.0138 0.1274 ± 0.0060 0.1155 ± 0.0215

150 0.1501 ± 0.0054 0.1469 ± 0.0028 0.1318 ± 0.0053 0.1236 ± 0.0004 0.1301 ± 0.0034 0.1245 ± 0.0015 0.1129 ± 0.0039 0.1057 ± 0.0043

50 0.1330 ± 0.0143 0.1228 ± 0.0083 0.1122 ± 0.0064 0.1073 ± 0.0026 0.1156 ± 0.0011 0.0982 ± 0.0026 0.0625 ± 0.0063 0.0588 ± 0.0074

aMSE 100 0.1053 ± 0.0096 0.0907 ± 0.0023 0.0805 ± 0.0026 0.0793 ± 0.0047 0.0852 ± 0.0013 0.0737 ± 0.0083 0.0458 ± 0.0021 0.0415 ± 0.0023

150 0.0846 ± 0.0045 0.0822 ± 0.0014 0.0772 ± 0.0023 0.0661 ± 0.0062 0.0755 ± 0.0025 0.0674 ± 0.0014 0.0405 ± 0.0011 0.0379 ± 0.0012

However, the features not used in matrix A are appeared in

matrix A0, which means that our proposed MTMF can better

utilize the information of the features. If we only use matrix A,

all the tasks are forced to share some of the features without

the utilization of other features. The relatedness between tasks

becomes closer than they really are. A0 helps all the tasks

utilize more information from the features that are not shared

through the matrix A. This is one of the reasons that our

MTMF outperforms the CMTL.

B. SARCOS dataset

This dataset is used to learn the inverse dynamic of a SAR-

COS anthropomorphic robot arm. It aims to predict the seven

joint torques using the provided 48933 samples described

by a feature vector of 21 dimensions. In this experiment,

we have seven tasks corresponding to predict these seven

joint torques. Different amount of samples (50, 100, 150)

are randomly selected as training data and 5000 samples

are selected correspondingly as validation set and test set.

The best parameters are selected on validation set for all

methods. Consider the randomness of selection, we repeat all

experiments 15 times and average performance is reported.

The comparison of experimental results between different

methods is shown in Table II. Similar conclusions can be

made to those of experiments on School dataset. Our proposed

method can consistently outperform all other algorithms and

all multi-task learning methods perform better than the two

single-task learning methods. This further demonstrates the

merits of multi-task learning and effectiveness of our method

compared to other multi-task learning methods.

C. Isolet dataset

In this section, we conduct experiments on Isolet dataset

from the UCI repository. It consists of 7797 pronunciation

samples of the 26 English letters from 150 speakers. These

speakers are split into five groups corresponding to five differ-

ent tasks. The goal of each task is to predict the labels (1-26) of

letters according to the pronunciation. In the experiment, labels

of English letters are treated as regression values following

the same setup as used in [39]. Different ratio (15%, 20%,

25%) of samples are randomly selected as training data and

the rest is split into validation set and test set. All experiments

are repeated 10 times and the best parameters are selected on

validation set. We first reduce the dimensionality of the data

to 100 using PCA.

The performance are reported in Table III. Note that the two

single-task learning methods L2-R and L1-R are not tested on

Isolet dataset because of the bad performance on School and

SARCOS datasets. Our proposed multi-task learning method

outperforms other baselines obviously on this dataset, which

proves the robustness of our method on various applications.

D. MNIST dataset

We further study the effectiveness of our approach on a

handwritten digit recognition dataset: MNIST. This dataset is

composed of 60000 training examples and 10000 test exam-

ples. There are ten different handwritten digit numbers, corre-

sponding to ten different binary classification tasks. Multi-way

classification is treated as a multi-task learning problem, where

each task is a classification task of one digit against all the

other digits [31, 40]. We randomly select 500, 1000, and 1500

examples (50, 100, and 150 examples are selected from each

digit number) from the 60000 training samples as training set

and 1000 samples from the test samples to form the test sets.

The dimensionality of images is reduced to 64 using PCA. All

experiments are repeated 20 times and mean average precision

(mAP) is reported.

The results on this dataset are shown in Table IV. We com-

pare our MTMF method with five other multi-task regression

learning methods. The results show that our proposed method

outperforms the other five multi-task learning methods on the

MNIST dataset.

E. Analysis on p-values

To further demonstrate that the proposed method is indeed

statistically significantly better than the next best method, we

present the p-values between our proposed method and the

next best method in Table V. The table includes six groups

of experiments on the School dataset (nMSE: 10%, 20%,

30%; aMSE: 10%, 20%, 30%), SARCOS dataset (nMSE: 50,
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TABLE III
EXPERIMENTAL RESULTS COMPARISON ON ISOLET DATASET.

Measure Training ratio TraceMT LowRankMT CMTL SLMT MTDirty MTMF

15% 0.6044 ± 0.0154 0.6307 ± 0.0058 0.7000 ± 0.0106 0.5987 ± 0.0092 0.6764 ± 0.0112 0.5691± 0.0082

nMSE 20% 0.5705 ± 0.0069 0.6166 ± 0.0093 0.6491 ± 0.0108 0.5741 ± 0.0078 0.6344 ± 0.0182 0.5526± 0.0046

25% 0.5622 ± 0.0086 0.6011 ± 0.0165 0.6288 ± 0.0049 0.5635 ± 0.0087 0.6212 ± 0.0299 0.5498± 0.0090

15% 0.1424 ± 0.0035 0.1486 ± 0.0019 0.1650 ± 0.0029 0.1411 ± 0.0024 0.1594 ± 0.0029 0.1314± 0.0019

aMSE 20% 0.1343 ± 0.0015 0.1452 ± 0.0022 0.1528 ± 0.0025 0.1352 ± 0.0017 0.1494 ± 0.0043 0.1301± 0.0012

25% 0.1321 ± 0.0025 0.1412 ± 0.0042 0.1477 ± 0.0017 0.1324 ± 0.0025 0.1459 ± 0.0076 0.1292± 0.0025

TABLE IV
EXPERIMENTAL RESULTS COMPARISON ON MNIST.

Training size 50 100 150

TraceMT 0.8088 ± 0.0118 0.8297 ± 0.0114 0.8382 ± 0.0111

LowRankMT 0.7483 ± 0.0260 0.8088 ± 0.0181 0.8289 ± 0.0192

CMTL 0.8091 ± 0.0108 0.8343 ± 0.0124 0.8391 ± 0.0115

SLMT 0.7578 ± 0.0165 0.8144 ± 0.0160 0.8264 ± 0.0147

MTDirty 0.7955 ± 0.0131 0.8152 ± 0.0128 0.8202 ± 0.0191

MTMF 0.8180 ± 0.0125 0.8394 ± 0.0144 0.8484 ± 0.0111

TABLE V
P-VALUES BETWEEN OUR PROPOSED METHOD AND THE NEXT BEST

METHOD ON ALL THE DATASETS.

Index Number School dataset SARCOS dataset Isolet dataset MNIST dataset

1 3.47 × 10−5 0.5963 1.47 × 10−10 4.34 × 10−5

2 2.86 × 10−8 0.4447 2.87 × 10−6 2.59 × 10−2

3 2.64 × 10−6 0.4245 1.51 × 10−6 1.33 × 10−5

4 3.89 × 10−6 0.5923 2.42 × 10−10 -

5 2.26 × 10−9 0.4436 2.76 × 10−6 -

6 9.28 × 10−5 0.4244 1.62 × 10−6 -

100, 150; aMSE:50, 100, 150), Isolet dataset (nMSE: 15%,

20%, 25%; aMSE: 15%, 20%, 25%), and three groups of

experiments on the MNIST dataset (AP: 50, 100, 150). We

index the experiments for all the datasets from 1 to 6. From

Table V, our proposed method significantly outperforms the

next best methods on the School dataset, Isolet dataset and

MNIST dataset, as the p-values are substantially smaller than

0.05. On the SARCOS dataset, our method does not perform

significantly better than the next best method. However, the

proposed method performs much better than all other methods.

The main reason that our proposed method outperforms

other multi-task learning methods is that our proposed method

considers the shared features and shared parameters simulta-

neously. Therefore, our proposed method can perform better

if the data has both feature relatedness and model relatedness.

Additionally, we can balance the importance between feature

relatedness and model relatedness through tradeoff parameters

γ and β. Thus our model can degenerate to just share feature

representations or share model. Consequently, our proposed

model is more robust to various data.

F. Sensitivity analysis on MTMF

In this section, we conduct experiments to analyze the

sensitivity of our proposed MTMF method. We will mainly

discuss how the regularization parameters γ and β and the

training size affect the performance of our MTMF method.

All the experiments are conducted on the School dataset.

Analysis of the training ratio: In these experiments, we

randomly select 10%, 20%, 30%, 40%, 50%, and 60% of the
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Fig. 4. Sensitivity analysis on training size

data as training sets and use the remaining data as test sets.

We study how the training size affects the performance of

MTMF. The experiments are repeated 10 times, and the reg-

ularization parameters (γ, β) are selected through validation.

The results are shown in Figure 4. We can conclude that the

proposed method outperforms the other methods significantly

with consistent increase of training ratio. It is also found that

the performance of multi-task learning algorithms improves

quicker when having a small amount of training samples and

that the performance improves only slightly when the training

ratio reaches a high level. It is consistent with the learning

ability of multi-task learning. The relatedness between differ-

ent tasks can provide more information to each task especially

when the amount of training data is small. This results in a

rapid increase in performance. However, the contribution of

information from other tasks will decrease when task itself has

sufficient training samples, which leads to a smaller increase

in performance.

Analysis of the regularization parameters: We conduct

experiments on the School dataset to analyze the sensi-

tivity of the two regularization parameters. We randomly

select 20% of the data as training set and the remain-

ing data as test set. For the sensitivity analysis of the

parameter γ, we fix β = 1 and vary the value of γ
as {1, 10, 100, 200, 500, 1000, 2000, 3000, 5000}. For the pa-

rameter β, we fix γ = 100 and vary the value of β
as {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 50, 100}. The results

are shown in Figure 5 and Figure 6. In Figure 5, we can

see that the best performance by MFJL is obtained by setting
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γ = 1000 when β = 1 is fixed. From Figure 6, we see that

the best performance by MTMF is obtained by setting the

value of β as a small value. Additionally, the performance of

MFJL changes slightly when the value of β is in the range

of [10−4, 1]. In general, MFJL performs well when the ratio
γ
β

reaches a relatively high value (approximately 1000). This

means that only a few features will be shared across tasks and

that the central hyperplane a0 will play an important role.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we summarize the defects of traditional multi-

task learning methods and propose a novel multi-task learning

framework, which learns shared latent feature representation

and shared parameters jointly. The proposed method is intro-

duced in detail and a new algorithm for optimizing the non-

convex problem is proposed. Additionally, we theoretically

demonstrate the merits of the proposed method compared

to single-task learning and its strong ability to measure the

relatedness between tasks. We conduct various experiments

on four multi-task learning datasets and the results have

demonstrated the effectiveness of the proposed method.

In the future, we consider to extend the multi-task model and

feature joint learning method into a more general framework.

In this paper, the learned feature mapping matrix U is an

orthogonal matrix. It may be more efficient if the orthogonal

matrix U is replaced by a common matrix. Additionally, we

make assumptions that all tasks share a common parameter,

which is not suitable for some real-world cases. Considering

this, we will attempt to automatically learn the relatedness

between tasks and not make assumptions about the relatedness.

APPENDIX A

PROOF OF THEOREM 2

Before we provide the proof of Theorem 2, we need to

introduce some used tools. We first give an introduction to

the concentration inequality [41], which is better known as

Hoeffding’s inequality.

Theorem 3. Let x1, . . . , xn be independent random variables

with the range [ai, bi] for i = 1, . . . , n. Let Sn =
∑n

i=1
xi.

Then, for any ǫ > 0, the following inequalities hold:

Pr{Sn − ESn ≥ ǫ} ≤ exp

( −2ǫ2
∑n

i=1
(bi − ai)2

)

,

Pr{ESn − Sn ≥ ǫ} ≤ exp

( −2ǫ2
∑n

i=1
(bi − ai)2

)

.

We then introduce the Rademacher complexity [42], which

is suitable to derive dimensionality-independent generalization

bounds.

Definition 2. Let X = {x1, . . . , xn} ∈ Xn be an independent

distributed sample, and let F be a function class on X . Let

σ1, . . . , σn be independent Rademacher variables, which are

uniformly distributed in {−1, 1}. The empirical Rademacher

complexity is defined as

Rn(F ) = Eσ sup
f∈F

2

n

n∑

i=1

σif(xi).

The Rademacher complexity is defined as

R(F ) = ExRn(F ).

According to the symmetric distribution property of random

variables, the following theorem [37] holds:

Theorem 4. Let

Φ(X) = sup
f∈F

1

n

n∑

i=1

(Exf(x)− f(xi)).

Then,

ExΦ(X) ≤ R(F ).

Combining Theorem 4 and Hoeffding’s inequality, we have

the following:

Theorem 5 ([37]). Let F be an [a, b]-valued function class

on X , and X = {x1, . . . , xn} ∈ Xn. For any δ > 0, with a

probability of at least 1− δ, we have

sup
f∈F

(

Exf(x)−
1

n

n∑

i=1

f(xi)

)

≤ R(F ) + (b− a)

√

ln(1/δ)

2n
,

or

sup
f∈F

(

Exf(x)−
1

n

n∑

i=1

f(xi)

)

≤ Rn(F ) + 3(b− a)

√

ln(2/δ)

2n
,
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The following property of Rademacher complexity [42] will

help to construct the upper bound.

Lemma 1. If φ : R → R is Lipschitz with constant L and

satisfies φ(0) = 0, then

Rn(φ ◦ F ) ≤ 2LRn(F ).

Lemma 2. Let

Rn(l◦(A, a0, U)) = 2Eσ sup
at,a0,U

T∑

t=1

mt∑

i=1

σtil
(
yti,
〈
at + a0, U

Txti

〉)
,

where σti are Rademacher variables indexed by t = 1, . . . , T
and i = 1, . . . ,mt. We have

Rn(l ◦ (A, a0, U)) ≤ 2c

(√

T

γ
+

√
1

β

)
√
√
√
√

T∑

t=1

mtS(Xt),

where S(Xt) = tr

(

Σ̂(xt)
)

= 1

mt

∑mt

i=1
‖xti‖22 is the empiri-

cal covariance for the observations of the t-th task.

Proof. We have

Rn(l ◦ (A, a0, U))

= 2Eσ sup
at,a0,U

T∑

t=1

mt∑

i=1

σtil
(
yti,
〈
at + a0, U

Txti

〉)

= 2Eσ sup
at,a0,U

T∑

t=1

mt∑

i=1

σtil (yti, 〈U(at + a0), xti〉)

(Using Lemma 1)

≤ 2cEσ sup
at,a0,U

T∑

t=1

mt∑

i=1

σti 〈U(at + a0), xti〉

≤ 2cEσ sup
at,U

T∑

t=1

mt∑

i=1

σti 〈Uat, xti〉

+2cEσ sup
a0,U

T∑

t=1

mt∑

i=1

σti 〈Ua0, xti〉

= 2cEσ sup
at,U

T∑

t=1

〈

Uat,

mt∑

i=1

σtixti

〉

+2cEσ sup
a0,U

〈

Ua0,

T∑

t=1

mt∑

i=1

σtixti

〉

(Using Hölder’s inequality)

≤ 2cEσ sup
at,U

√
√
√
√

T∑

t=1

‖Uat‖22

√
√
√
√

T∑

t=1

∥
∥
∥
∥
∥

mt∑

i=1

σtixti

∥
∥
∥
∥
∥

2

2

+2cEσ sup
a0,U

‖Ua0‖2

∥
∥
∥
∥
∥

T∑

t=1

mt∑

i=1

σtixti

∥
∥
∥
∥
∥
2

(Since UTU = I)

= 2cEσ sup
at

√
√
√
√

T∑

t=1

‖at‖22

√
√
√
√

T∑

t=1

∥
∥
∥
∥
∥

mt∑

i=1

σtixti

∥
∥
∥
∥
∥

2

2

+2cEσ sup
a0

‖a0‖2

∥
∥
∥
∥
∥

T∑

t=1

mt∑

i=1

σtixti

∥
∥
∥
∥
∥
2

≤ 2cEσ sup
at

‖A‖2,1

√
√
√
√

T∑

t=1

∥
∥
∥
∥
∥

mt∑

i=1

σtixti

∥
∥
∥
∥
∥

2

2

+2cEσ sup
a0

‖a0‖2

∥
∥
∥
∥
∥

T∑

t=1

mt∑

i=1

σtixti

∥
∥
∥
∥
∥
2

(

Since ‖A‖22,1 ≤
T

γ
, ‖a0‖22 ≤ 1

β

)

≤ 2c
√
T√
γ

Eσ

√
√
√
√

T∑

t=1

∥
∥
∥
∥
∥

mt∑

i=1

σtixti

∥
∥
∥
∥
∥

2

2

+
2c√
β
Eσ

∥
∥
∥
∥
∥

T∑

t=1

mt∑

i=1

σtixti

∥
∥
∥
∥
∥
2

=
2c
√
T√
γ

Eσ

√
√
√
√

T∑

t=1

∥
∥
∥
∥
∥

mt∑

i=1

σtixti

∥
∥
∥
∥
∥

2

2

+
2c√
β
Eσ

√
√
√
√

∥
∥
∥
∥
∥

T∑

t=1

mt∑

i=1

σtixti

∥
∥
∥
∥
∥

2

2

(Since the sqrt function is concave)

≤ 2c
√
T√
γ

√
√
√
√Eσ

T∑

t=1

∥
∥
∥
∥
∥

mt∑

i=1

σtixti

∥
∥
∥
∥
∥

2

2

+

2c√
β

√
√
√
√Eσ

∥
∥
∥
∥
∥

T∑

t=1

mt∑

i=1

σtixti

∥
∥
∥
∥
∥

2

2

(Since σti are independent and Eσti = 0, Eσ2
ti = 1)

≤ 2c
√
T√
γ

√
√
√
√

T∑

t=1

mt∑

i=1

‖xti‖22 +
2c√
β

√
√
√
√

T∑

t=1

mt∑

i=1

‖xti‖22

≤ 2c

(√

T

γ
+

√
1

β

)
√
√
√
√

T∑

t=1

mtS(Xt).

�

Theorem 2 follows by combining Theorem 5 and Lemma

2.
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