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On the Dynamics of Hopfield Neural Networks on

Unit Quaternions
Marcos Eduardo Valle and Fidelis Zanetti de Castro

Abstract—In this paper, we first address the dynamics of the
elegant multi-valued quaternionic Hopfield neural network (MV-
QHNN) proposed by Minemoto and collaborators. Contrary to
what was expected, we show that the MV-QHNN, as well as one of
its variation, does not always come to rest at an equilibrium state
under the usual conditions. In fact, we provide simple examples
in which the network yields a periodic sequence of quaternionic
state vectors. Afterward, we turn our attention to the continuous-
valued quaternionic Hopfield neural network (CV-QHNN), which
can be derived from the MV-QHNN by means of a limit process.
The CV-QHNN can be implemented more easily than the MV-
QHNN model. Furthermore, the asynchronous CV-QHNN always
settles down into an equilibrium state under the usual conditions.
Theoretical issues are all illustrated by examples in this paper.

Index Terms—Hopfield neural network, hypercomplex-valued
neural network, quaternion, stability analysis.

I. INTRODUCTION

THE Hopfield neural network (HNN) is one of the most

important neural network with applications in different

areas, including signal reconstruction [1], image analysis [2],

and optimization [3], [4]. Although the HNN has been initially

conceived for binary state neurons [5], it have been extended

to multistate neurons over the years using complex [6], [7],

[8], [9], quaternions [10], [11], [12], [13], [14], [15], [16], and

many other hyper-complex algebras [17], [18], [19], [20].

In contrast to real-valued neural networks, hyper-complex

models treat multi-dimensional data as a single entity [21],

[22], [23]. In particular, quaternion-valued neural networks

are designed to process four dimensional data. Applications

of quaternion-valued networks include control [24], [25],

signal and image processing [14], [26], [27], [28], [29], [30],

classification and prediction [31], [32], [33], [34], [35].

In this paper, we focus on quaternionic Hopfield neural net-

works (QHNNs), a topic that has been extensively investigated

in the last years [11], [12], [14], [36], [37], [38], [39]. The

reader interested on a comprehensive review on QHNNs is

invited to consult [11]. Briefly, the main difference between the

several QHNN models resides in the activation function and its

target set – which comprehend all possible states of a neuron.

For instance, a broad class of QHNN models, referred to as

split QHNNs, are derived by applying a real-valued function,

such as the sign or tanh functions, to each component of

the activation potential of a quaternion-valued neuron [40],
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[41], [42]. In this paper, we shall confine our attention on the

particular class of Hopfield neural networks whose states are

represented by unit quaternions.

As far as we know, the first QHNN model on unit quater-

nions have been introduced by Isokawa et al. in 2008 [10],

[11]. This network uses the phase-angle representation of unit

quaternions and an extension of the signum function. Recently,

we pointed out in a conference paper that the quaternionic

signum function proposed by Isokawa et al. is computationally

unstable [39]. Furthermore, we provided an example in which

the energy of the network increases after a change of states

even if we work in exact arithmetic. As a consequence,

contrary to what have been thought, we cannot ensure that

the MV-QHNN of Isokawa always comes to rest at a stable

stationary state.

Recently, Minemoto et al. introduced a modified version

of the quaternionic multivalued signum function, which is

numerically stable [14], [39]. In few words, the model of

Minemoto et al. is obtained by shifting the phase-angles of the

previous model of Isokawa and collaborators. In spite of the

numerical stability, we remarked in the conference paper [39]

that the usual energy function of the MV-QHNN of Minemoto

does not necessarily decrease. In this paper, we address the

subtle assumptions which have been wrongly accepted as true

to assert the convergence of a sequence produced by the MV-

QHNN of Minemoto et al. [10], [11]. We believe that this

is an important theoretical issue because MV-QHNN models

have been used as the basis for other quaternionic associative

memories [14], [38].

In this paper, we also address a modified version of the MV-

QHNN of Minemoto in which all phase-angles of a neuron

are updated simultaneously. The modified version of the MV-

QHNN of Minemoto is referred to as the MV-QHNN3. In

our conference paper [39], we remarked that the sequence

produced by the MV-QHNN3 converges to a stationary state

under the usual conditions on the synaptic weight matrix. In

this paper, however, we show that this conjecture is wrong.

Precisely, we provide an example in which the MV-QHNN3,

using either asynchronous or parallel update mode, yields a

periodic sequence of quaternionic vectors.

Apart from the MV-QHNN models, in this paper we also

consider a QHNN model in which the state of a neuron

is obtained by setting its activation potential to length one

[12], [15]. This model, called continuous-valued QHNN (CV-

QHNN), corresponds to the limit of the MV-QHNN3 model

when the number of states tends to infinity. Different from the

MV-QHNNs, the CV-QHNN is not based on the phase-angle

representation of unit quaternions. Thus, it can be analyzed and

implemented more easily than the former models. Moreover,
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the CV-QHNN operating in an asynchronous update manner

always come to rest at a stable equilibrium under the usual

(quaternionic) conditions on the synaptic weights.

This paper is organized as follows: Next section presents

the mathematical background on quaternions. In Section III,

we review the MV-QHNN models and focus on convergence

issues. The CV-QHNN model is described in Section IV. The

paper finishes with concluding remarks in Section V.

II. MATHEMATICAL BACKGROUND ON QUATERNIONS

Quaternions, introduced in the late 19th century by Hamil-

ton, are four dimensional hyper-complex numbers, which

generalize real and complex numbers [25].

A quaternion q can be seen as a 4-tuple of real numbers,

i.e., q = (q0, q1, q2, q3). A quaternion q can also be represented

using the algebraic form

q = q0 + q1i+ q2j+ q3k, (1)

where i, j, and k, typed in this paper using boldface letters,

denote hyper-imaginary units that satisfy the rules

i2 = j2 = k2 = ijk = −1. (2)

Furthermore, a quaternion q can be represented as

q = q0 + ~q,

where q0 and ~q = q1i+ q2j+ q3k are called, respectively, the

real part and the vector part of q. We denote the real and the

vector part of q by Re {q} := q0 and Ve {q} := ~q, respectively.

The addition of quaternions is defined analogously to the

complex numbers, that is, by adding the respective compo-

nents. Formally, the sum of p = p0 + p1i + p2j + p3k and

q = q0 + q1i+ q2j+ q3k is given by

p+ q = (p0 + q0) + (p1 + q1)i+ (p2 + q2)j+ (p3 + q3)k.

The product of p and q, however, is the quaternion

pq = p0q0 − ~p · ~q + p0~q + q0~p+ ~p× ~q,

where ~p ·~q and ~p×~q denote, respectively, the usual scalar and

cross products between ~p and ~q. We call the reader’s attention

to the fact that the quaternion product is associative but it is

not commutative.

Like complex numbers, the conjugate q̄ and the norm |q| of

a quaternion q are given respectively by

q̄ = q0 − ~q and |q| = √
q̄q =

√

q20 + q21 + q22 + q23 .

We say that q is a unit quaternion when |q| = 1. We denote by

S the set of all unit quaternions, i.e., S = {q ∈ H : |q| = 1}.

Note that, for any quaternions p = p0+p1i+p2j+p3k and

q = q0 + q1i+ q2j+ q3k, we have

Re {q̄p} = q0p0 + q1p1 + q2p2 + q3p3.

Hence, from Cauchy-Schwarz inequality, the angle A ∈ [0, π]
between p and q satisfies

Re {q̄p} = |q||p| cos(A). (3)

We say that p and q are parallel if | cos(A)| = 1.

Alternatively, a quaternion can be expressed using the

phase-angle representation, which is derived from the rela-

tionship between quaternions and rotations in R
3 [43]. In the

phase-angle representation, a quaternion q is written as

q = |q|eiφekψejθ, (4)

where φ ∈ [−π, π), θ ∈
[

−π
2 ,

π
2

)

, and ψ ∈
[

−π
4 ,

π
4

]

. The

exponential of an hyper-imaginary unit is defined using Euler’s

formula, i.e., eiφ = cos(φ)+i sin(φ), ekψ = cos(ψ)+k sin(ψ),
and ejθ = cos(θ) + j sin(θ).

We would like to remark that not all quaternions have an

unique phase-angle representation. In fact, the phase-angle

representation of q = 0 is not unique. Furthermore, when

|ψ| = π
4 , the angles φ and θ are not uniquely determined [43].

This singularity is known in the theory of Euler matrices as

Gimbal lock. We define the set A of all quaternions that can

be uniquely represented using (4). Formally, we have

A =
{

q = |q|eiφekψejθ : q 6= 0 and |ψ| 6= π

4

}

. (5)

III. MULTIVALUED QUATERNIONIC HOPFIELD NEURAL

NETWORKS

As far as we know, the first multivalued quaternionic

Hopfield network (MV-QHNN) on unit quaternions have been

proposed and analyzed by Isokawa et al. [10], [11]. Briefly,

using the phase-angle representation, Isokawa and collabo-

rators defined a quaternionic multi-valued signum function

which generalizes the complex-valued signum function of

Jankowski et al. [6]. It turns out that the quaternionic multi-

valued signum function proposed initially by Isokawa and

collaborators is numerically unstable [39]. Therefore, in this

paper we only consider the multivalued QHNN (MV-QHNN)

proposed recently by Minemoto et al. [14], [38]. In few

words, the MV-QHNN of Minemoto is obtained by a simple

modification on the quaternionic multivalued signum function

proposed initially by Isokawa and collaborators.

A. MV-QHNN of Minemoto

Like the traditional discrete-time Hopfield neural network,

the MV-QHNN is a single-layer recursive neural network.

Let wij denotes the jth quaternionic synaptic weight of

the ith neuron of a network with n neurons. Also, let

x(t) = [x1(t), x2(t), . . . , xn(t)]
T represent the state of the

MV-QHNN at time t, that is, the component xi(t) corresponds

to the state of the ith neuron. Like the complex-valued

Hopfield network of Jankowski [6], the state of the ith neuron

of the MV-QHNN (of Minemoto et al.) is determined by the

phase-quanta [14]: Given positive integers K1, K2, and K3,

called resolution factors, the phase quanta are defined by

∆φ =
2π

K1
, ∆ψ =

π

2K2
, and ∆θ =

π

K3
. (6)

Precisely, the state of the ith neuron is an unit quaternion of

the form

xi(t) = eφi(t)ieψi(t)keθi(t)j, (7)
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where the phase-angles belong to the following finite sets:

φi(t) ∈
{−2π + (2ℓ+ 1)∆φ

2
: ℓ = 0, . . . ,K1 − 1

}

,

ψi(t) ∈
{−π/2 + (2ℓ+ 1)∆ψ

2
: ℓ = 0, . . . ,K2 − 1

}

,

θi(t) ∈
{−π + (2ℓ+ 1)∆θ

2
: ℓ = 0, . . . ,K3 − 1

}

.

As usual, the activation potential of the ith neuron at time t
is the quaternion defined by

vi(t) =
n
∑

j=1

wijxj(t). (8)

If the activation potential has a phase-angle representation

vi(t) = |vi(t)|eαi(t)ieβi(t)keγi(t)j, (9)

then the next state x(t + ∆t) of the MV-QHNN is obtained

by updating the ith neuron according to the rule

xi(t+∆t) =































eφM ieψi(t)keθi(t)j,

or

eφi(t)ieψMkeθi(t)j,

or

eφi(t)ieψi(t)keθM j

(10)

where the phase-angles φM , ψM , and θM are the midpoints

of the arcs that contain respectively αi(t), βi(t), and γi(t).
Formally, we have

φM =
1

2

(

−2π +∆φ

(

2

⌊

π + αi(t)

∆φ

⌋

+ 1

))

, (11)

ψM =
1

2

(

−π
2
+ ∆ψ

(

2

⌊ π
4 + βi(t)

∆ψ

⌋

+ 1

))

, (12)

θM =
1

2

(

−π +∆θ

(

2

⌊ π
2 + γi(t)

∆θ

⌋

+ 1

))

. (13)

Note that the angles φM , ψM , and θM do not differ from

αi(t), βi(t), and γi(t) by more than half of the phase quanta,

i.e., the following inequalities hold true:

|φM−αi(t)| <
∆φ

2
, |ψM−βi(t)| <

∆ψ

2
, |θM−γi(t)| <

∆θ

2
.

(14)

We would like to point out that, in order to avoid ambiguities,

the state of the ith neuron remains unchanged if the activation

potential vi(t) does not have an unique phase-angle represen-

tation. In other words, xi(t+∆t) = xi(t) if vi(t) 6∈ A, where

A is the set given by (5).

Remark. Note that (10) allows for 3 different ways to update a

neuron. In order to circumvent ambiguities, we first update the

phase-angle φ of all neurons of the network. Then, we update

the phase-angle ψ and, lastly, we update the phase-angle θ,

for i = 1, . . . , n. Furthermore, we consider ∆t = 1/(3n) if

the neurons are updated asynchronously and ∆t = 1/3 if the

neurons are updated in parallel. In both cases, the three phase-

angles are updated sequentially for the whole MV-QHNN in

one time unit.

The dynamic of a QHNN model is predominantly analyzed

by considering the energy function

E(x) = −1

2
x∗Wx, (15)

where x∗ denotes the conjugate transpose of x and W , whose

entries are wij , is the quaternionic synaptic weight matrix.

In fact, the sequence {x(t)}t≥0 produced by a QHNN is

convergent if the strict inequality

∆E(t) = E(x(t+∆t)) − E(x(t)) < 0,

holds true whenever x(t + ∆t) 6= x(t). In this case, the

time evolution of the QHNN yields a minima of (15). Equiv-

alently, the network comes to rest at an equilibrium. Like

the traditional Hopfield neural network, the convergence is

often ensured by assuming that the neurons are updated

asynchronously [5], [44], [45]. Also, the conditions

wij = w̄ji and wii ≥ 0, ∀i, j ∈ {1, . . . , n}, (16)

are usually required for the convergence of the sequence

{x(t)}t≥0 produced by a QHNN model [11], [12], [14].

Based on the arguments of Isokawa and collaborators [10],

[11], which also hold true for the MV-QHNN given by (10),

Minemoto et al. claim that ∆E(t) < 0 if condition (16)

is satisfied [14]. In the following, we address the subtle

assumptions which have been wrongly accepted to show that

the MV-QHNN always comes to rest at an equilibrium state.

B. Argument of Isokawa and Collaborators

First, Isokawa et al. derived from (15) the algebraic identity

∆E = −(X1 −X2) + wii(X3 − 1), (17)

where X1 = Re {x̄i(t+∆t)vi(t)}, X2 = Re {x̄i(t)vi(t)},

and X3 = Re {x̄i(t+∆t)xi(t)}. Then, they expressed X1,

X2, and X3 using phase-angles.

The phase-angles of xi(t+∆t) can be obtained by shifting

the phase-angles of xi(t) by multiples of the phase quanta. In

mathematical terms, we have

φi(t+∆t) = φi(t) + a∆φ, (18)

ψi(t+∆t) = ψi(t) + b∆ψ, (19)

θi(t+∆t) = θi(t) + c∆θ, (20)

where a, b and c are integers. Thus, the state xi(t+∆t) satisfies

xi(t+∆t) = e(a∆φ+φi(t))ie(b∆ψ+ψi(t))ke(c∆θ+θi(t))j.

After some algebraic manipulations, Isokawa et al. obtained

X3 =cos(a∆φ) cos(b∆ψ) cos(c∆θ) (21)

− sin(a∆φ) sin(b∆ψ + 2ψi(t)) sin(c∆θ).

Similarly, the phase-angles αi(t), βi(t), and γi(t) of the acti-

vation potential vi(t) can be obtained by shifting φi(t+∆t),
ψi(t+∆t), and θi(t+∆t) by δφ, δψ, and δθ. In other words,

αi(t) = φi(t+∆t) + δφ, (22)

βi(t) = ψi(t+∆t) + δψ, (23)

γi(t) = θi(t+∆t) + δθ, (24)
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and

vi(t) = |vi(t)|ei(δφ+φi(t+∆t))ek(δψ+ψi(t+∆t))ej(δθ+θi(t+∆t)).

Moreover, X1 and X2 satisfy respectively the equations

X1 = |vi(t)|(cos(δθ) cos(δψ) cos(δφ)
− sin(δθ) sin(2b∆ψ + 2ψi(t) + δψ) sin(δφ)), (25)

and

X2 = |vi(t)|(cos(c∆θ + δθ) cos(b∆ψ + δψ) cos(a∆φ+ δφ)

− sin(c∆θ + δθ) sin(b∆ψ + 2ψi(t) + δψ) sin(a∆φ + δφ)).
(26)

It turns out that X1, X2, and X3 can be simplified by

considering the update scheme defined by (10). Precisely, since

either φi(t + ∆t) = φi(t) or θi(t + ∆t) = θi(t), we have

either a = 0 or c = 0 in (21). On one hand, if a = 0, then

X3 = cos(c∆θ) cos(b∆ψ) ≤ 1. On the other hand, we have

X3 = cos(a∆φ) cos(b∆ψ) ≤ 1 if c = 0. In both cases, the

inequality wii(X3 − 1) ≤ 0 holds true if wii ≥ 0.

In order to analyze (25) and (26), the authors admit the

following hypothesis:

a = 0 ⇐⇒ δφ = 0 and c = 0 ⇐⇒ δθ = 0. (H1)

As a consequence, if a = 0 then δφ = 0 and

X1 −X2 = |vi(t)|(cos(δθ) cos(δφ)
− cos(c∆θ + δθ) cos(b∆ψ + δψ)).

Similarly, if c = 0 then δθ = 0 and

X1 −X2 = |vi(t)|(cos(δψ) cos(δφ)
− cos(b∆ψ + δψ) cos(a∆φ + δφ)).

In both cases, the difference X1 − X2 is positive under the

additional hypothesis inspired by (14):

|δφ| < ∆φ, |δψ| < ∆ψ, and |δθ| < ∆θ. (H2)

Concluding, if both (H1) and (H2) hold true, then the inequal-

ity ∆E < 0 also holds and the MV-QHNN comes to rest at

an equilibrium.

C. A Detailed Counterexample for the MV-QHNN

It turns out that hypothesis (H1) is false because the acti-

vation potential vi(t) does not depend on the update scheme

of the MV-QHNN model. Also, although the inequalities (14)

hold true, the phase shifts δφ or δθ may take arbitrary values if

either φi(t+∆t) = φi(t) or θi(t+∆t) = θi(t), as prescribed

by (10). As a consequence, we cannot assert that ∆E < 0 if

the ith neuron changes its state. Also, we are not able to ensure

that the sequence produced by the network is convergent.

Example 1. Consider K1 = K2 = K3 = 2 and the synaptic

weight matrix

W =

[

0 5 + i+ 7j+ 2k
5− i− 7j− 2k 0

]

∈ H
2×2. (27)

Note that W satisfies the usual quaternionic conditions (16).

Also, consider the initial state

x(0) =

[

e−
π

2
ie−

π

8
ke−

π

4
j

e−
π

2
ie−

π

8
ke−

π

4
j

]

. (28)

Evidently, the phase-angles of x1(0) are

φ1(0) = −π
2
, ψ1(0) = −π

8
, and θ1(0) = −π

4
.

The energy of MV-QHNN at x(0) is

E(x(0)) = −1

2
x∗(0)Wx(0) = −5.

The activation potential of the first neuron at time t = 0 is

v1(0) = −0.1121 + 1.577i− 5.207j+ 7.028k,

and its phase-angles are

α1(0) = 2.1939, β1(0) = 0.09455, and γ1(0) = 1.4181.
(29)

From (11)-(13), we obtain

φM =
π

2
, ψM =

π

8
, and θM =

π

4
. (30)

According to (10), if we update the phase-angle φ of the first

neuron, we obtain x1(1/6) = e
π

2
ie−

π

8
ke−

π

4
j. Note that the

phase-angles

φ1(1/6) =
π

2
, ψ1(1/6) = −π

8
, and θ1(1/6) = −π

4
,

of x1(1/6) satisfy (18)-(20) with the integers:

a = 1, b = 0, and c = 0.

Also, the shifts δφ, δψ, and δθ in (22)-(24) are given by

δφ = 0.6231, δψ = 0.4873, and δθ = 2.2035.

Note that c = 0 because θ1(1/6) = θ1(0), but δθ 6= 0,

which contradicts (H1). In addition, δθ = 2.2035 > π
2 = ∆θ,

violating (H2). Finally, the energy of the network at the state

vector x(1/6) = [e
π

2
ie−

π

8
ke−

π

4
j, e−

π

2
ie−

π

8
ke−

π

4
j]T is

E(x(1/6)) = −1

2
x∗(1/6)Wx(1/6) = 5.

Thus, the variation of the energy of the network from t = 0
to t = 1/6 is ∆E = E(x(1/6)) − E(x(0)) = 10 > 0. By

updating the phase-angle φ of the second neuron, we obtain

x(1/3) = [e
π

2
ie−

π

8
ke−

π

4
j, e

π

2
ie−

π

8
ke−

π

4
j]T and, the energy of

the MV-QHNN at this state is E(x(1/3)) = −5. Proceeding in

a similar manner, the asynchronous MV-QHNN does not reach

a stationary state. In fact, we obtain a periodic sequence of

quaternionic state vectors. Similarly, the parallel MV-QHNN

also yields a periodic sequence of quaternionic vectors. The

energy produced by the MV-QHNN of Minemoto using either

asynchronous or parallel updates is shown in Fig. 1.
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Fig. 1. Energy of the asynchronous and parallel MV-QHNN of Minemoto.

D. Modified MV-QHNN Model

In Example 1, we pointed out that the update scheme (10)

violates the hypothesis (H2). It turns out, however, that (H2)

holds true if we consider the following update scheme in which

the three phase-angles are updated simultaneously:

xi(t+∆t) = eφM ieψMkeθM j, (31)

where φM , ψM , and θM are defined by (11)-(13), respectively.

On the downside, we cannot simplify the terms X1, X2, and

X3 in (17). In fact, contrary to what we conjectured in [39],

we cannot guarantee ∆E < 0 yet. The following example

confirms this remark.

Remark. Since the three phase-angles of a neuron are updated

simultaneously, we refer to the model defined by (31) as MV-

QHNN3. Again, we assume that all the neurons of the MV-

QHNN3 are updated in one time unit. Thus, ∆t = 1/n if

the neurons are updated asynchronously and ∆t = 1 if the

neurons are updated in parallel.

Example 2. Consider K1 = K2 = K3 = 2 and let W
and x(0) be the quaterionic synaptic weight matrix and initial

state given respectively by (27) and (28). By considering (31)

instead of (10), the first neuron becomes

x1(1/2) = eφM ieψMkeθM j = e
π

2
ie

π

8
ke

π

4
j,

where φM , ψM , and θM are given by (30). The energy

of the network in the quaternionic state vector x(1/2) =
[e

π

2
ie

π

8
ke

π

4
j, e−

π

2
ie−

π

8
ke−

π

4
j]T is

E(x(1/2)) = −1

2
x∗(1/2)Wx(1/2) = −7.

Although the energy decreased from t = 0 to t = 1/2,

the asynchronous MV-QHNN3 model does not settle down

into a stationary state. In fact, this network yields a periodic

sequence. Fig. 2 shows the energy of the asynchronous MV-

QHNN3 described by (31). This figure also shows the energy

of the MV-QHNN3 obtained by updating the neurons in

parallel, which also produces a periodic sequence.
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Fig. 2. Energy of the asynchronous and parallel MV-QHNN3 model.

E. Large Resolution Factors

Although we provided an example in which the energy of

the MV-QHNN3 described by (31) increases, this network will

probably come to rest at an equilibrium state if the resolution

factors K1, K2, and K3 are sufficiently large. Indeed, consider

the following:

• A1 is the angle between xi(t+∆t) and vi(t),
• A2 the angle between xi(t) and vi(t),
• A3 the angle between xi(t+∆t) and xi(t).

From (3), the terms X1, X2, and X3 in the algebraic identity

∆E = −(X1 −X2) + wii(X3 − 1) satisfy

X1 = Re {x̄i(t+∆t)vi(t)} = |vi(t)| cos(A1), (32)

X2 = Re {x̄i(t)vi(t)} = |vi(t)| cos(A2), (33)

X3 = Re {x̄i(t+∆t)xi(t)} = cos(A3). (34)

Note that, if the ith neuron of the network changes its state

from time t to t+∆t, then xi(t+∆t) 6= xi(t). Thus, X3 =
cos(A3) < 1 because xi(t + ∆t) and xi(t) are not parallel.

Furthermore, the difference X1 −X2 satisfies

X1 −X2 = |vi(t)|
(

cos(A1)− cos(A2)
)

. (35)

Now, if K1,K2,K3 → ∞, then ∆φ,∆ψ,∆θ → 0. More-

over, φM → αi(t), ψM → βi(t), and θM → γi(t). As

a consequence, we have A1 → 0. In other words, if the

resolution factors K1, K2, and K3 are sufficiently large,

then xi(t + ∆t) and vi(t) are almost parallel vectors and,

consequently, cos(A1) → 1. In contrast, A2 usually does not

tend to 0 and, thus, the inequality cos(A2) < 1 often holds.

Concluding, if the resolution factors are sufficiently large, the

variation of energy of the network should satisfy

∆E → |vi(t)|(cos(A2)− 1) + wii(cos(A3)− 1) < 0.

These arguments leads to the continuous-valued Quaternionic

Hopfield Neural Network (CV-QHNN), which corresponds to

the limit K1,K2,K3 → ∞.
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IV. CONTINUOUS-VALUED QUATERNIONIC HOPFIELD

NEURAL NETWORK

The CV-QHNN, proposed by Valle [12] and further inves-

tigated by Kobayashi1 [15], corresponds to the limit of the

modified MV-QHNN described by (31) when the resolution

factors tend to infinity. The evolution of the CV-QHNN is

defined by

xi(t+∆t) =

{

vi(t)/|vi(t)|, vi(t) 6= 0,

xi(t), otherwise.
(36)

In few words, the next state of the ith neuron is obtained

by normalizing its activation potential to length one. Thus,

it can be easily implemented and analyzed. In particular, it

does not require the phase-angle representation of quaternions.

Notwithstanding, if we know the phase-angle representation

vi(t) = |vi(t)|eαi(t)ieβi(t)keγi(t)j, the next state of the ith
neuron can be alternatively determined by

xi(t) = eαi(t)ieβi(t)keγi(t)j. (37)

We would like to point out that σ can be viewed as the

quaternionic version of continuous-valued complex activation

function proposed by Aizenberg et al. [46]. This kind of

activation function has also been considered by Kobayashi in

his hyperbolic Hopfield neural network model [18].

The sequence produced by (36), in an asynchronous update

mode, is convergent for any initial state x(0) ∈ S
n if the

synaptic weights satisfy wij = w̄ji and wii ≥ 0 for any i, j ∈
{1, . . . , n} [12]. Precisely, the energy of the asynchronous

CV-QHNN always decreases if a neuron changes its states.

In general terms, we derive this result from (17) by noting

that (32)-(34) hold true with cos(A1) = 1, cos(A2) < 1, and

cos(A3) < 1. Although we can ensure the convergence of the

sequence produced by the asynchronous CV-QHNN, nothing

can be said about the CV-QHNN using parallel dynamic. The

following example, which is similar to Examples 1 and 2,

confirms these remarks.

Remark. Accordingly, we assume that all the neurons of the

CV-QHNN are updated in one time unit. Thus, ∆t = 1/n if

the neurons are updated asynchronously and ∆t = 1 if the

neurons are updated in parallel.

Example 3. Consider K1 = K2 = K3 = 2. Let the

synaptic weight matrix W and the initial state x(0) be given

respectively by (27) and (28). Using asynchronous update, we

obtain from (36) the quaternionic vector

x(1/2) =

[

−0.01261+ 0.1774i− 0.5858j+ 0.7907k
−0.2706− 0.6533i− 0.2706j+ 0.6533k

]

,

which is a stationary state of the network. Furthermore, it is

not hard to verify that

∆E = E(x(1/2))− E(x(0)) = −8.888 + 5 = −3.888.

In contrast, if we use parallel update, (36) yields the vector

x(1) =

[

−0.01261+ 0.1774i− 0.5858j+ 0.7907k
−0.2918− 0.9124i+ 0.2814j− 0.05567k

]

,

1We would like to point out that the CV-QHNN corresponds to the left-
QHNN model in [15].
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Fig. 3. Energy of the asynchronous and parallel CV-QHNN model.

whose energy value is the same as that of the initial state, i.e.,

E(x(1)) = −5. Proceeding in a similar manner, we obtain

x(2) =

[

−0.2706− 0.6533i− 0.2706j+ 0.6533k
−0.2706− 0.6533i− 0.2706j+ 0.6533k

]

,

which, despite the algebraic representation, is equal to the

initial state x(0). Therefore, the parallel CV-QHNN oscillates

between the quaternionic state vectors x(0) and x(1) without

changing the energy value. Fig. 3 shows the energy of the CV-

QHNN using both asynchronous and parallel update modes.

As pointed out previously, the CV-QHNN model can

be obtained from the MV-QHNN3 by taking the limit

K1,K2,K3 → ∞. Since the asynchronous CV-QHNN al-

ways settle down into an equilibrium, the asynchronous MV-

QHNN3 must also come to rest at equilibrium state if the

resolution factors are sufficiently large. The following example

addresses this issue. Moreover, in contrast to the previous ex-

amples, we consider quaternionic networks with 100 neurons.

Example 4. In order to evaluate the convergence of sequence

produced by the QHNN models, we proceeded as follows:

We first generated a 100 × 100 quaternionic matrix R with

entries rij = randn0+randn1i+randn2j+randn3k, where

randn yields a random scalar drawn from the standard normal

distribution. Then, we computed U = 1
2 (R + R∗), where

R∗ denotes the conjugate transpose of R, and defined the

quaternionic synaptic weight matrix by

W = U − diag(u11, u22, . . . , u100,100),

where diag(u11, . . . , u100,100) is the diagonal matrix com-

posed of the diagonal elements of U . Note that W satisfies

wij = w̄ji and wii = 0 for all any indexes i and j. Moreover,

the real and imaginary parts of wij are normally distributed

random numbers. Given the resolution factors K1, K2, and

K3, we also defined the initial quaternionic vector x(0) by
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Fig. 4. Probability of the QHNN models to settle down into an equilibrium
by the resolution factors.

means of the equation xi(0) = eφi(0)ieψi(0)keθi(0)j, for all

i = 1, . . . , n, where

φi(0) =
1

2
(−2π +∆φ(2randi(K1) + 1)) ,

ψi(0) =
1

2

(

−π
2
+ ∆ψ(2randi(K2) + 1)

)

,

θi(0) =
1

2
(−π +∆θ(2randi(K3) + 1)) ,

and randi(Kℓ) yields an integer between 0 and Kℓ − 1.

Fig. 4 shows the probability of a randomly generated QHNN

model to settle down into an equilibrium state in at most

1000 iterations, that is, we allowed the network to evolve

while t ≤ 1000. The probabilities have been computed

by repeating the procedure 100 times for each resolution

factor. We would like to point out that the synaptic weight

matrix W and the initial state x(0) were the same for all

QHNN models. Note that the probability of a parallel model

to reach a stationary state is always less than or equal to

the probability of the corresponding asynchronous model. In

particular, the parallel MV-QHNN3 failed to settle down into

an equilibrium in all simulations for any resolution factors.

In contrast, the probability of the asynchronous MV-QHNN3

to settle down into a stationary state is greater than 0.80 for

all K1,K2,K3 ≥ 4. Furthermore, in agreement with Section

III-E, the asynchronous MV-QHNN3 coincides with the asyn-

chronous CV-QHNN model if K1, K2, and K3 are sufficiently

large, namely, K1,K2,K3 ≥ 217. The asynchronous MV-

QHNN of Minemoto often failed to come to rest at an

equilibrium state even for large resolution factors. Finally,

although the asynchronous CV-QHNN model eventually failed

to reach a stationary state, we confirmed that this network

tended monotonically to equilibrium.

V. CONCLUDING REMARKS

Multivalued quaternionic Hopfield neural networks (MV-

QHNNs) represent an elegant generalization of the Hopfield

network using unit quaternions. In this paper, we first ad-

dressed the convergence of the sequence produced by the MV-

QHNN of Minemoto [14]. Then, we considered a modification

of the MV-QHNN model, referred to as MV-QHNN3, in

which all phase-angle are updated simultaneously. Contrary

to what was believed, these networks do not always comes

to rest at a stationary state. Indeed, we provided a simple

example in which the MV-QHNN of Minemoto as well as the

MV-QHNN3 oscillates forever using both parallel and asyn-

chronous update mode. Furthermore, we pointed out exactly

which were the wrong subtle assumptions used to show the

convergence of sequence defined by the MV-QHNN model

[10], [11]. We believe this is an important theoretical issue

because MV-QHNNs have been used as the basis for many

other quaternionic associative memory models [38]. Moreover,

we expect to instigate further research on the dynamics of

multivalued quaternionic recurrent neural networks.

Besides the multivalued models, in this paper we also

addressed the continuous-valued Hopfield neural network (CV-

QHNN) [12], [15]. The CV-QHNN can be implemented and

analyzed more easily than the MV-QHNN models. Although

the CV-QHNN corresponds to a limit case of a MV-QHNN,

the asynchronous CV-QHNN always produces a convergent

sequence under the usual conditions on the synaptic weights.

Like the traditional bipolar Hopfield network, the parallel CV-

QHNN may oscillate forever.
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