
Early classification of time series by

simultaneously optimizing the accuracy and

earliness

Usue Mori ∗, Alexander Mendiburu †,
Sanjoy Dasgupta ‡, and Jose A. Lozano §

October 18, 2017

Abstract

The problem of early classification of time series appears naturally in
contexts where the data, of temporal nature, is collected over time, and
early class predictions are interesting or even required. The objective is
to classify the incoming sequence as soon as possible, while maintaining
suitable levels of accuracy in the predictions. Thus, we can say that
the problem of early classification consists in optimizing two objectives
simultaneously: accuracy and earliness. In this context, we present a
method for early classification of time series based on combining a set of
probabilistic classifiers together with a stopping rule. This stopping rule
will act as a trigger and will tell us when to output a prediction or when
to wait for more data, and it’s main novelty lies in the fact that it is built
by explicitly optimizing a cost function based on accuracy and earliness.
We have selected a large set of benchmark datasets and 4 other state-of-
the-art early classification methods and we have evaluated and compared
our framework obtaining superior results in terms of both earliness and
accuracy.

1 Introduction

Time series classification [1, 2] is a supervised learning task which deals with
predicting the class labels of time series as accurately as possible by using a

∗U. Mori is with the Department of Applied Mathematics, Statistics and Operations Re-
search, University of the Basque Country UPV/EHU, e-mail: (usue.mori@ehu.eus).
†A. Mendiburu is with the Department of Computer Arquitecture and Technology, Uni-

versity of the Basque Country UPV/EHU.
‡S. Dasgupta is with the Department of Computer Science and Engineering, University of

California, San Diego.
§J.A. Lozano is with the Departament of Computer Science and Artifical Inteligence, Uni-

versity of the Basque Country UPV/EHU, and the Basque Center for Applied Mathematics
BCAM.

1

training set of completely labeled full length time series. An example application
of this task is trying to identify which household device is working at a given
time by using the electricity usage profiles [3]. Also, Kadous and Sammut [4] use
electrocardiography (ECG) data to predict whether a patient has heart disease
or not and also to recognize sign language signs. Pei et al. [2] use image sequences
for facial expression detection, Ye and Keogh [5] use time series classification
methods to identify coffee and wheat varieties by using spectrography series, and
Pei et al. [2] and Li et al. [6] perform motion identification by using multivariate
sensor readings, which can also be interpreted as time series.

Due to its applicability, and because time series databases are increasingly
common in many real world domains, this problem has been largely studied in
the past decade. Consequently, some extensions of the classical problem have
also been proposed and worked on. Among them, semi-supervised classification
[7], positive unlabeled classification [8] and early classification [9] are the most
notable, and in this work we will focus on the latter one.

The problem of early classification of time series appears when the unlabeled
time series are collected over time, and it is desirable to obtain the class label
predictions as early as possible. For example, Evans et al. [10] show that the
monitoring of patients and early identification of physiologic deterioration can be
used to raise alerts and prevent crises in hospitalized patients. Also, Ghalwash
et al. [11] mention early stock crisis identification; Bregón et al. [12] apply early
classification to classify different types of faults in a simulated industrial plant;
Hatami and Chira [13] attempt to classify a set of different odors as early as
possible by using odor signals obtained from a set of sensors with the aim of
identifying chemical leaks. Finally, in Mori et al. [14], an early classification
approach is applied to detect and identify bird songs as early as possible, with
the objective of saving memory and battery life of the recording devices.

It is obvious that the earliness of the predictions has an influence on their
accuracy but, can this influence be quantified or modeled? Can we build mod-
els that are able to classify time series as early as possible while maintaining a
suitable level of accuracy? This is exactly the aim of early classification, finding
a trade-off between two conflicting objectives: the accuracy of the predictions
and their earliness [9]. However, the degree of conflict between these two objec-
tives changes drastically from database to database and, as more data becomes
available, the accuracy evolves differently in each database [14]. So, the problem
of early classification can be described as an optimization problem in which two
conflicting objectives must be optimized at the same time.

In this paper, we propose an early classification framework, departing from
our preliminary work in [15], which is based on combining a set of probabilistic
classifiers and an optimized stopping rule. In this previous paper, we presented
an initial version of the method, considering only a basic stopping rule and only
one specific cost function. In this paper, we propose several different stopping
rules and cost functions, we improve on the definition and design of the method,
we extend our experimentation to analyze the characteristics of our methodol-
ogy, including the influence of the parameters more in detail, and we include a
new state-of-the-art method in the comparative analysis.

2

The rest of the paper is organized as follows. In Section 2, we present
the problem of early classification and summarize the previous work on the
topic. Section 3 presents the main contribution of this paper. In Section 4, the
experimentation and validation of this method is carried out and in Section 5
we analyze the results in detail. Finally, in Section 6, we summarize the main
conclusions and propose some future research directions.

2 Early classification of time series

A time series is an ordered sequence of pairs of finite length L [9]:

TS = {(t1, x1), (t2, x2), . . . , (tL, xL)}, (1)

Note that timestamps {ti}Li=1 take positive and ascending real values, so we
are dealing with an ordered sequence. Indeed, although in the most common
examples the {ti}Li=1 values refer to temporal references (timestamps), other
types of orderings can also be defined [1]. The values of the time series ({xi}Li=1)
are usually real numbers 1. Finally, a database of time series is a set of time
series with no order, which can all be of the same length, or can have different
lengths.2

Considering these definitions, time series classification is formally defined
as a supervised data mining task in which, given a training set of complete
time series and their respective class labels X = {(TS1, CL1), (TS2, CL2),
. . . , (TSn, CLn)}, the aim is to build a model that is able to predict the class
label of new unlabeled time series as accurately as possible [1, 2, 9, 14].

As an extension of time series classification, early classification of time
series also departs from a completely labeled training set of time series. How-
ever, this problem appears when the new unlabeled time series are collected
over time. In these contexts, early class predictions are sometimes important,
for example, when collecting the data is expensive or due to the consequences
associated with making late decisions [16]. However, maintaining a suitable
level of accuracy is also usually an important requirement. To sum up, the key
to early classification of time series is not just to maximize accuracy, but rather
to find a trade-off between two conflicting objectives: accuracy and earliness.

This problem has been compared to other classical problems in machine
learning, such as optimal stopping, feature selection, learning with incomplete
data, etc. [16]. However, early classification has its own peculiarities, such as
the temporal correlation in the data, so, its appearance is fairly recent in the
literature. Xing et al. [9] formally defined the problem of early classification for

1The values can be univariate or multivariate, but, in this work, we will only deal with
univariate time series

2In the following sections, we will focus on datasets conformed with time series of the
same length L. However, with a few changes, our proposed method could also be applied to
sequences that take values from a finite set, databases with series of different lengths, and
even to classify series of finite but unknown lengths. The necessary modifications will be
commented on as we introduce the method.

3

the first time and proposed a method called Early Classification on Time Series
(ECTS). This work analyzes the stability of the nearest neighbor relationships
in the training set over time. Based on this information, the method selects the
training time series that can reliably be used at each timestamp within a 1NN
classifier.

Another intuitive approach is to simply learn a model for each early times-
tamp and design different mechanisms to decide which predictions are reliable
and which are not. Different types of models and reliability conditions result in a
wide variety of early classification methods such as those proposed in [13, 16, 17].

A new method, denominated Early Classification of Time Series based on
Discriminating Classes Over Time (ECDIRE)[14], lies in between these two
methods. The main objective of this method is to analyze the evolution of the
accuracy of a set of probabilistic classifiers over time, with the aim of identifying
the timestamps from whence it is safe to make predictions. Predictions will only
be made in these timestamps or later and, so, a large number of predictions are
avoided. As with the second type of method introduced in this section, ECDIRE
also incorporates a reliability condition which must also be met, and is useful
to discard outlier series that do not belong to any class.

Finally, a completely different strategy can be found in Xing et al. [18],
Ghalwash et al. [11] and He et al. [19], where the authors propose methods
based on shapelets, which refer to subsequences of time series that can be used to
discriminate a given class from the others. In the context of early classification,
the trick relies on finding a library of shapelets that is useful to discriminate the
classes as early as possible.

Note that, even if the problem of early classification is clearly an optimization
problem, neither of the approaches introduced above deal with the problem of
early classification from a cost minimization point of view. Only one recent
work [20] deals with the problem from this perspective. These authors propose
a complex meta-algorithm based on calculating the expectation of the cost of
misclassification at time t, together with the cost of making the decision at time
t. Unfortunately, this method has only been validated on one benchmark time
series, it has not been compared with other state-of-the-art methods and its
code is not available for comparison.

In this paper, we propose an early classification method based on a very
intuitive idea: we will combine a set of probabilistic classifiers and a stopping
rule which, when optimized by a suitable cost function, will act as a reliability
test. The novelty of the approach lies in the construction of the stopping rule,
which is based on an optimization process that will aim to find a trade-off
between earliness and accuracy.

As it will be seen, this approach is easy to understand for non-expert users
because it only implies using a basic rule. However, it shows improved per-
formance over other much more complex approaches in the literature and it is
capable of adapting its behavior to the different shapes that the evolution of
the accuracy over time can take, and to the different degrees of conflict between
the objectives.

4

3 Early classification of time series by minimiz-
ing a cost function

In this section we present our early classification method. The proposed frame-
work will consist of a learning phase and a prediction phase, which will be
explained in detail in the following sections.

3.1 Learning phase

The goal of this phase is to train a model which provides early and accurate
class predictions for new unlabeled time series. For this purpose, we will use a
training set X = {(TS1, CL1), (TS2, CL2), ..., (TSn, CLn)} of labeled full length
time series of finite length, and we will proceed as follows:

Step 1: Learn probabilistic classifiers

In this first step, we will train two sets of probabilistic classifiers.

• On the one hand, we will train a set of classifiers {ht}Lt=1 for all times-
tamps t ∈ {1, 2, ..., L}, or for a user-defined subset of timestamps. In our
experimentation, we use many different databases, of which we have no
specific domain knowledge, a priori. As such, based on a percentage of the
series lengths, we have selected a sequence of equidistant time points, in
which we carry out the classification. Nevertheless, the user could choose
any other subset of timestamps, based on domain knowledge or other in-
formation of the shape of the series or even by using specific time series
sampling methods. This is especially important if the series are of different
or unknown lengths or if they are unevenly sampled.

To train these classifiers, we will use the whole training set X. Each
classifier ht will receive the first t points of a series, and will output the
posterior probabilities for each class at that time. These classifiers will be
used to obtain the posterior class membership probabilities for the new
unlabeled (test) time series at each time t. We can see an illustrative
example of the construction of the ht classifiers in Figure 1, for a training
set of 5 time series.

Figure 1: Construction of the ht classifiers.

5

• On the other hand, we will build another set of classifiers {h′t,i | t =
1, ..., L , i = 1, 2, ...5.}, similar to ht but trained using a sort of 5-fold
cross-validation scheme. We will use these classifiers to obtain the pos-
terior probabilities of the training examples, but with the intention of
avoiding the overfitting phenomenon. We can see an illustrative example
of the construction of the h′t,i classifiers in Figure 2, for a training set of
5 time series. Based on this contruction, to obtain the posterior probabil-
ities of a given training series TS at time t, we will use the h′t,i classifier,
which has been trained without using series TS.

...

Figure 2: Construction of the h′t classifiers.

Step 2: Definition of stopping rules

In the second step, we define the stopping rules and the associated cost functions.
Specifically, we propose two different stopping rules, of different characteristics,
whose performance will be analyzed in the experimental section.

As a first simple stopping rule, we analyze a basic stopping rule SR1γ(·),
based on intuition and defined by the following linear rule, proposed previously
by Mori et al. [15]:

SR1γ(pt, t) =

{
0 if γ1pt1:k+γ2(pt1:k−p

t
2:k)+γ3

t
L
≤ 0

1 otherwise
(2)

pt = (pt1, p
t
2, ..., p

t
k) is the vector of posterior probabilities for the k possible

classes issued by the corresponding ht for a given time series, and pt1:k and pt2:k
are the first and second largest posterior probability values obtained at time t.

6

γ = (γ1, γ2, γ3) is a vector of parameters that takes real values between -1 and
1.

The interpretation of this stopping rule is the following: if the rule outputs a
value of 1, we conclude that the prediction is reliable enough, and thus, the class
corresponding to the maximum posterior probability value is provided. On the
contrary, a value of 0 indicates that the prediction is not yet reliable, and so, we
should wait until a larger part of the time series is available. If the entire time
series is available and the stopping rule has not triggered, the class prediction
obtained at t = L is used.

As indicated above, the shape of the stopping rule has been chosen based
on intuition. We assume that the value of p1:k and the difference between the
two largest posterior probabilities are indicators of the goodness and reliability
of the prediction obtained. As such, we include these two terms in the stopping
rule. Furthermore, the time in which the prediction is made can also be an
influencing factor, so we also include this parameter in the stopping rule. Note
that in posterior steps, the γi parameters in this stopping rule will be optimized
using a suitable cost function and so, each of the components of the stopping
rule will be given more or less relevance, depending on their corresponding γi
value.

As a second and novel stopping rule, we avoid defining the shape of the
stopping rule a priori and we introduce all the posterior probabilities (SR2γ):

SR2γ(pt, t) =

{
0 if γ1pt1:k+· · ·+γkptk:k+γk+1

t
L
≤ 0

1 otherwise
(3)

Step 3: Definition of the cost function

Recall that the final aim is to find an optimized stopping rule, which takes ear-
liness and accuracy into account. For this, departing from the general stopping
rules defined in the previous step, we will try to find the γ parameters that
minimize a given cost function, based on accuracy and earliness. In this section
we will propose various cost functions of different characteristics, which will be
compared later in the experimental section.

To begin with, we propose the following basic cost function proposed initially
in [15]:

CF1(X,SRγ) =
∑
x∈X

CF1(x, SRγ) =
∑
x∈X

(αCa(x, SRγ)+(1−α)Ce(x, SRγ)) (4)

where α ∈ [0, 1] is a user-defined parameter that represents the weight associated
to each of the objectives, and Ca and Ce are the cost of accuracy and earliness,
and will be presented at the end of this section.

Additionally, when we are using the SR2 stopping rule, we would like our
optimization process to select some of the posterior probabilities from the stop-
ping rule automatically, based on their relevance. This means that we want to
reward simpler models that will have as many 0-s in the γ vector as possible.

7

In optimization, this is denominated regularizing the cost function for sparsity
in the parameter vector.

The most direct manner of rewarding this sparsity is introducing a non-
convex penalization term to the basic cost function, based on the 0-norm of the
chosen parameters. This term will penalize the vectors of parameters that have
many non-zero components and will result in the following new cost function
(CF2):

CF2(X,SRγ) =
∑
x∈X

CF2(x, SRγ) =
∑
x∈X

(αCa(x, SRγ)+(1−α)Ce(x, SRγ))−λ ‖γ‖0 (5)

Note that this penalization term is non-convex and its application results in
NP-hard optimization problems. As such, in practice, it is common to use a
relaxed but convex penalization term for sparsity, based on the ‖γ‖1 norm. This
is typically done in the basic LASSO method, where this penalization term is
added to the classic least squares formulation for regression [21]. The introduc-
tion of this penalization term in the cost function will result in the third cost
function that will be considered in this work:

CF3(X,SRγ) =
∑
x∈X

CF3(x, SRγ) =
∑
x∈X

(αCa(x, SRγ)+(1−α)Ce(x, SRγ))−λ ‖γ‖1 (6)

The functions Ca and Ce, which appear in all the cost functions, can be
defined in several ways. In this case:

Ce(x, sγ) =
t∗x
L

(7)

t∗x being the earliest timestamp in which sγ(·) outputs a value of 1 (halt) for
series x, and

Ca(x, γ) = I(argmaxi=1,...,k{p
t∗x
x,i} 6= CLx) (8)

where argmaxi=1,...,k{p
t∗x
x,i} is the class with highest predicted probability value

at instant t∗x for time series x, and CLx its true class value. I(·) takes a value
of 1 if the condition is true, and 0 otherwise. In essence, this is the classical
0-1 cost function, based on comparing the true label with the label obtained at
time t∗x.

Based on the two stopping rules and the three cost functions we obtain the
following combinations: SR1-CF1, SR2-CF1, SR2-CF2, SR2-CF3.

Step 4: Optimization process

The γ vector that minimizes this cost function can be found by using several
different optimization algorithms. Of course, we must take into account the

8

nature of the defined cost function. Specifically, the non-convexity of the cost
function and its lack of differentiability, among other features, will be determi-
nant when choosing the optimization algorithm. The specific algorithms chosen
in this work will be introduced in the experimental section, but note that other
optimization algorithms which do not require convexity or differentiability of
the cost function could be used without loss of generality.

In order to apply any optimization algorithm, we have to be able to, at
least, evaluate the objective function at different points. Note that the objective
function is defined as the cost associated to different γ values. Given a training
set of time series (X) for which the true class value is known, in Figure 3, we
can see an example of how the cost associated to a given training example (x)
would be computed for a certain stopping rule (SR) and a specific parameter
vector (γ). Consequently, the cost of the whole training set is calculated by
summing the costs of all its conforming time series.

Figure 3: Evaluation of the cost function for a certain training example x.

As can be seen, starting from timestamp t = 1, the posterior probabilities for
the training examples are obtained by using the corresponding h′t probabilistic
classifiers, as explained previously. These posterior probabilities are introduced
into the stopping rule, which is completely defined by the chosen γ vector. If
the stopping rule returns a value of 1, the process terminates and the current

class prediction (ĈLx = argmaxi=1,...,k{p
t∗x
x,i}) and timestamp (t∗x) will be used

directly to calculate the cost. If the stopping rule outputs a 0, then we must
add the next data point to the time series and repeat the process.

3.2 Prediction step

Finally, once the framework has been trained, we can use it to predict the class
labels of new time series. As can be seen in Figure 4, each time a new data
point of the new time series becomes available, we will introduce the truncated
series into the corresponding ht classifier specific for that t and trained with all
the training set X as explained before. This classifier, in turn, will output a
vector of posterior probabilities for that time series and that specific time stamp
t. Next, this probability vector will be introduced into the optimized stopping
rule, together with the current time stamp. The stopping rule will provide an
answer of 0 or 1, and, based on this, we will halt and provide a class prediction,
or, on the contrary, wait until more data is available.

9

Figure 4: Early classification of a test example xtest.

Note that, for each database, the accuracy evolves differently as more data
becomes available. As shown in [14], in some databases, the accuracy is strictly
increasing. In others, in contrast, the accuracy becomes stable after some point,
and in some databases, the accuracy even drops after some point due to the
noise that the additional data incorporates. The proposed method has been
designed to be very flexible, and does not require the stability or convergence
of the stopping rules, as do other methods in the literature such as [9, 14]. This
enables a better adjustment to the different forms that the accuracy can take
over time and allows the method to profit more from early class predictions.

4 Experimental setup

In this section we detail the setting of the experiments carried out to evaluate
our method 3.

4.1 The data

To evaluate our proposal, we have considered the 45 databases available at the
time of experimentation from the UCR time series database archive [22]. This
archive collects the majority of the publicly available synthetic and real time
series databases designed for clustering and classification purposes, and is the
classical benchmark used for evaluation in this study area.

4.2 Parameter selection

As aforementioned, in Section 4, the ht and h′t classifiers can be trained in every
timestamp, t = {1, ..., L}, but a smaller set of timestamps can also be chosen.
In this case, due to the large number of databases considered and because we
want to control the computational cost of the experimentation, we build the
classifiers only with a granularity of 5% of the length of time series. However,
some additional experiments that consider other granularities and analyze the
effect of this parameter are provided in Section 5.2.

To build these two sets of probabilistic classifiers we have used Gaussian Pro-
cess (GP) classifiers [23], because they have shown good performance in similar
frameworks [14, 15]. Nevertheless, any other probabilistic model could be used

3The complete code of the proposed methodology will be made available in our web page
when the last version of the paper is ready.

10

Method Variants Parameter name Values

ECTS [9] -Strict

-Loose

Minimum support 0, 0.05, 0.1, 0.2, 0.4, 0.8

EDSC [18] Chebyshev Inequality version Chebyshev bound 2.5, 3, 3.5

RelClass [16] -Naive Gaussian

Quadratic set

-Gaussian Naive Bayes box

Reliability

threshold τ

0.001, 0.1, 0.5, 0.9

ECDIRE acc perc 100%

Table 1: Combinations and variants of the comparison methods.

equivalently within our framework. Indeed, in order to obtain some additional
insights, and to analyze the effect of using another alternative probabilistic clas-
sifier, in Section 5.4, we show the results of some experiments using Support
Vector Machines (SVM) combined with Platt’s scaling [24].

The GPs are implemented using an extension of the vbmp package of R [25]
previously used in [14]. Similarly to this work, the parameters for the vbmp
function have all been set to their default values except for the convergence
threshold (set to 10−8), and the maximum iteration number (set to 24). Finally,
after preliminary experiments, the inner product kernel has been chosen as the
covariance function. On the contrary, the SVM classifiers have been trained
using the e1071 R package [26], using the Gaussian kernel and leaving the
remaining parameters in their default values.

In previous studies, the use of specific distance measures for time series, such
as Dynamic Time Warping or Edit distances has shown to improve the results
of classification algorithms when dealing with time series classification [27]. As
such, following the example of [14] and [28], we enable the use of different
distance measures within the probabilistic classifiers, by using a suitable distance
matrix as input to the classifiers, instead of the raw time series. This distance
matrix will save the pairwise distances between all the series in the training
set, and can be built using any distance measure of choice which enables us to
deal with discrete series and series of different lengths, simply by choosing a
suitable distance matrix. However, since the objective is not to evaluate the
performance of different distance measures, in this experimentation we always
use the standard Euclidean Distance.

Regarding the α parameter, which appears in the cost functions defined in
Section 3.1, we analyze 4 weight values (α ∈ {0.6, 0.7, 0.8, 0.9}). The reason
why we only choose α values higher that 0.5 is that the other early classification
methods that we will use for comparison (see next Section) aim at obtaining the
same accuracy that is obtained when the full series is available. In this context,
we will also lean towards this objective. However, in Section 5.1 we will analyze
the effect of modifying this parameter.

As mentioned previously, different optimization algorithms can be used within
the presented framework, always taking into account the properties of the de-

11

fined cost function. In our case, since we can not calculate an analytic expres-
sion of the gradient of the cost function, and we do not always have information
about its convexity, we have chosen to use Genetic Algorithms [29]. These
algorithms make few assumptions about the search space and are suitable to
solve many kinds of complex optimization problems. As such, we can also use
this optimization algorithm when the shape of the cost function is unknown or
non-convex and, so, the optimization problem can not be solved efficiently by
standard algorithms. We implement the Genetic Algorithm using the ga func-
tion of the GA package written in R [30] using the default parameter values
of this function. The population size is 50 and the initial population is chosen
uniformly at random. With regard to the genetic operators, at each iteration, a
whole new population is created by first applying selection, carried out by us-
ing fitness proportional selection with linear scaling [31]. Then, using the local
arithmetic crossover operator, these solutions are recombined with a probability
of 0.8 [32], and mutated with a probability of 0.1 using the nonuniform random
mutation operator [33]. The individuals created after applying these operations
will conform the new population, but 5% of the best fitted individuals from the
initial population will survive at each generation and will replace the worst 5%
obtained from the genetic operations. Finally, the algorithm is halted after 100
iterations.

Since this algorithm is a randomized heuristic, for each database and α value,
we carry out 30 executions and select the γ value that obtains the median of
the costs obtained in the 30 repetitions.

As special cases, in combinations SR2-CF2 and SR2-CF3 when we apply reg-
ularization for sparsity, we experiment with the values λ ∈ {0, 0.1, 0.5, 1, 5, 10, 50}
in the first step. Then, for each λ we save the result (γ) that obtains the me-
dian of the costs obtained in the 30 repetitions. Then, we choose the λ that
minimizes the cost within the training set. We are aware that this may cause
overfitting, but, for the sake of simplicity, we choose this selection method to
avoid adding another external cross-validation process to the framework.

4.3 Comparison to other early classification methods

To validate our proposal, we have compared its performance with the four state-
of-the-art early classification methods which, to the best of our knowledge, have
available source codes 4 5 6. A summary of the methods chosen and the param-
eter configurations experimented with are summarized in Table 1. Note that
this selection has been made based on the experimentation carried out by the
corresponding authors.

Note that, additionally, in the RelClass method, the local discriminative
Gaussian dimensionality reduction has been enabled because it reduces com-
putational costs and can reduce noise and yield higher accuracy values [16],
and the joint Gaussian estimation method has been chosen because it is more

4ECTS and EDSC: http://zhengzhengxing.blogspot.com.es/p/research.html
5Rel.Class.: http://www.mayagupta.org/publications/Early Classification For Web.zip
6ECDIRE: http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/ECDIRE.html

12

efficient and obtains similar results to those obtained by the other estimation
methods considered.

4.4 Evaluation method

The databases from the UCR archive are provided with pre-specified training
and testing sets, which have been used directly to enable reproducibility and
comparison. Furthermore, the two objectives of the early classification problem
are evaluated separately based on the previously defined cost of accuracy (Ca)
and cost of earliness (Ce):

Accuracy =
1

|Xtest|
∑

x∈Xtest

I(argmaxi=1,...,k{p
t∗x
x,i} = CLx) (9)

Earliness =
1

|Xtest|
∑

x∈Xtest

t∗x
L
·100% (10)

In addition to measuring and comparing these two objectives separately,
we must consider the multi-objectiveness of the problem. As such, we use the
Pareto optimality criterion as in [14], which states that a solution dominates
another if it obtains better results in at least one of the objectives while not
degrading any of the others. We compare the methods pairwise and calculate
the number of times in which our method dominates the other and vice versa.

Based on the domination counts, we also calculate two summary indices:
Summary 1 is calculated by assigning one point for each database in which our
method wins and substracting one point for each time it loses; Summary 2 is
calculated by assigning one point for winning, half point for each draw and 0
points for losing.

5 Results

In Table 2, we show the domination counts for each configuration of our method
(SR1-CF1, SR2-CF1, SR2-CF2, SR2-CF3) compared to the other state-of-the-
art methods (ECDIRE, Rel.Class., ECTS, EDSC) 7. We also show the scores
Summary 1 and Summary 2, for each combination of our method and, also,
average values for each α value.

Note that, for ECDIRE, RelClass, ECTS and EDSC, from all the parameter
combinations enumerated in Table 1, which we have considered in the experi-
mentation, we only show the results for the configuration that dominates our
method the most times. If there are ties within a method, the configuration
that is dominated a lower number of times by our method is chosen. Anyhow,

7After a month of computation, the EDSC method has not provided any solutions for
the StarLightCurves, NonInvasiveFatalECG Thorax1 and NonInvasiveFatalECG Thorax2
databases, so these results are not considered in the domination counts calculated for this
method.

13

the raw accuracy and earliness values obtained by all the methods and all the
parameter configurations can be found in our website 8.

As we can see, all four proposed methods dominate the rest of the methods by
a large margin, proving that our methodology is an effective way of performing
early classification. Furthermore, if we analyze the statistical significance of
these results using a signed permutation test [34] (corrected with the Holm-
Bonferroni post-hoc test to control the family-wise error), all the p-values that
we obtain except SR2-CF1 or SR2-CF3 with α = 0.6 compared to Rel.Class.,
indicate significant differences for a significance level of 0.05, supporting the
previous statement further. The p-values issued from these statistical tests are

8http://www.sc.ehu.es/ccwbayes/members/umori/
EarlyClassification/EarlyClassification.html

α = 0.6 ECDIRE Rel.Class. ECTS EDSC Summary1 Summary2

SR1-CF1 15/30/0 11/33/1 21/23/1 29/16/0 18.50 31.75

SR2-CF1 18/27/0 7/37/1 18/26/1 29/16/0 17.50 31.25

SR2-CF2 16/29/0 9/35/1 18/26/1 29/16/0 17.50 31.25

SR2-CF3 18/27/0 7/37/1 18/26/1 29/16/0 17.50 31.25

17.75 31.38

α = 0.7 ECDIRE Rel.Class. ECTS EDSC Summary1 Summary2

SR1-CF1 18/27/0 12/31/2 24/20/1 31/13/1 20.25 32.63

SR2-CF1 20/25/0 14/29/2 23/21/1 30/14/1 20.75 32.88

SR2-CF2 21/24/0 15/28/2 25/19/1 30/14/1 21.75 33.38

SR2-CF3 20/25/0 14/29/2 23/21/1 30/14/1 20.75 32.88

20.88 32.94

α = 0.8 ECDIRE Rel.Class. ECTS EDSC Summary1 Summary2

SR1-CF1 28/17/0 22/21/2 28/15/2 31/14/0 26.25 35.63

SR2-CF1 25/20/0 20/23/2 29/15/1 30/15/0 25.25 35.13

SR2-CF2 27/18/0 22/21/2 29/15/1 31/14/0 26.50 35.75

SR2-CF3 25/20/0 20/23/2 29/15/1 30/15/0 25.25 35.13

25.81 35.41

α = 0.9 ECDIRE Rel.Class. ECTS EDSC Summary1 Summary2

SR1-CF1 28/17/0 23/19/3 29/15/1 28/17/0 26.00 35.50

SR2-CF1 24/20/1 23/19/3 32/11/2 28/17/0 25.25 35.13

SR2-CF2 22/22/1 24/19/2 32/11/2 28/17/0 25.25 35.13

SR2-CF3 24/20/1 23/19/3 32/11/2 28/17/0 25.25 35.13

25.44 35.22

Table 2: Domination counts for our method with GP-s in comparison to ECDIRE, ECTS,
EDSC and Rel.Class. The first number corresponds to the number of times our method
dominates the other method, the second number refers to the draws and the third number
counts the times the comparison method dominates our method.

14

available at 9. As such, these results indicate that our method, by means of the
posterior probabilities obtained from the classifiers and the optimization process,
is able to analyze how the accuracy evolves as more data becomes available, and
is capable of identifying when the best moment to stop and provide a prediction
is.

Additionally, if we study the domination counts and also the values obtained
by the two summary indexes (Summary1 and Summary2), we can see that,
overall, α = 0.8 seems to achieve the most impressive differences when compared
to the other state-of-the-art methods.

If we compare the different combinations of our method, combinations SR1-
CF1 and SR2-CF2 obtain the highest values for Summary1 and Summary2,
being the former the winner when α is 0.6 or 0.9 and the latter when it is 0.7
or 0.8.

After analyzing these general results, in the next sections we will provide
a more detailed analysis and discussion of the effect of modifying the different
parameters of the framework: the α parameter, the sampling granularity of the
series, the stopping rule, the cost function and the underlying classifier.

5.1 Effect of modifying α

Based on the formulation of the cost functions, when we increase α, we expect
the accuracy to increase whereas the earliness values should become worse. To
show that this is indeed so, in Figure 5, we plot the mean value (averaged over
all databases) of the accuracy and earliness for different α-s.

As we can see, the trend of the plots is clearly increasing, for all four proposed
methods. In this sense, if accuracy requirements were lower, we could use other
smaller α values.

In any case, as commented previously, if we analyze the domination counts
obtained by different α values in comparison to the rest of the state-of-the-art
methods (see Table 2), it seems that the best results are obtained by larger α-s.
This is somewhat expected, since all the rest of the methods aim at obtaining
100% accuracy. Specifically, if we consider the values of the performance scores
Summary1 and Summary2, both considering each stopping rule and cost func-
tion combination separately, and also averaging over them, the best results are
obtained by α = 0.8. As such, from now on, we will only take into account this
value of α.

However, note that the selection of the most suitable α can be made following
other criteria and, it strongly depends on the database and also on the interest
or requirements of the user in terms of accuracy and earliness.

9http://www.sc.ehu.es/ccwbayes/members/umori/EarlyClassification/pvalues.pdf

15

0.68 0.70 0.72 0.74 0.76

2
0

2
5

3
0

3
5

SR1−CF1

Accuracy

E
a

rl
in

e
s
s
 (

%
)

α=0.6

α=0.7

α=0.9

0.68 0.70 0.72 0.74 0.76

2
0

2
5

3
0

3
5

SR2−CF1

Accuracy

E
a

rl
in

e
s
s
 (

%
)

α=0.6

α=0.7

α=0.8

α=0.9

0.68 0.70 0.72 0.74 0.76

2
0

2
5

3
0

3
5

SR2−CF2

Accuracy

E
a

rl
in

e
s
s
 (

%
)

α=0.8

α=0.9

0.68 0.70 0.72 0.74 0.76

2
0

2
5

3
0

3
5

SR2−CF3

Accuracy

E
a

rl
in

e
s
s
 (

%
)

α=0.6

α=0.7

α=0.8

α=0.9

α=0.6

α=0.7

α=0.8

Figure 5: Evolution of accuracy and earliness according to α.

5.2 Effect of modifying the granularity of the sampling

The sampling granularity of the time series, which has been set to 5%, is also a
parameter of the model. As such, with the aim of analyzing to what extent the
results are affected by this parameter, we have carried out some experiments
based on the SR1-CF1 combination and α = 0.8, but using different granulari-
ties. The accuracy and earliness summaries can be found in Figure 6, and the
domination counts when compared to the other state-of-the-art methods are
shown in Table 3.

As can be seen, there are no large differences between the obtained accuracies
and earliness values. When the granularity is increased, the earliness results
become a bit better, of course, in detriment of the accuracy. However, the
domination results clearly show that our method still outperforms the rest by a
large margin with all four granularity values we have chosen.

16

Figure 6: Accuracy and earliness values for the considered databases, depending
on the sampling granularity.

α = 0.8 ECDIRE Rel.Class. ECTS EDSC

granularity=1% 26/19/0 22/22/1 28/15/2 31/14/0

granularity=2% 27/18/0 23/21/1 27/16/2 32/13/0

granularity=5% 27/18/0 23/20/2 30/14/1 32/13/0

granularity=10% 21/23/1 18/25/2 28/15/2 32/13/0

Table 3: Domination counts for SR1-CF1 with GP-s and different sampling granularities in
comparison to ECDIRE, ECTS, EDSC and Rel.Class.

5.3 Effect of modifying the cost function and the stopping
rule

In order to analyze the effect of modifying the cost function and stopping rule,
we select α = 0.8 as explained previously and, in Table 4, we compare the results
obtained by the 4 configurations of our method.

Firstly, if we analyze the effect of the different stopping rules, we must
emphasize that the simplest stopping rule (SR1) obtains quite good results
when comparing it with other state-of-the-art methods (see Table 2). However,
it performs a little bit worse than the other combinations of our own method. In
Table 4, we can see that the SR2 rule obtains slightly higher domination counts
than SR1, for all three cost functions considered. Even if these differences

17

α = 0.8 SR1-CF1 SR2-CF1 SR2-CF2 SR2-CF3

SR1-CF1 - 7 /28/10 7/28/10 7 /28/10

SR2-CF1 10/28/7 - 12/23/10 0/43/2

SR2-CF2 10/28/7 10/23/12 - 10/21/14

SR2-CF3 10/28/7 2/43/0 14/21/10 -

Table 4: Domination counts for SR1-CF1, SR2-CF1, SR2-CF2 and SR2-CF3. The first
number corresponds to the times the method in the corresponding row wins, the second
number counts the draws and the third number the number of times the method in the
corresponding column wins.

are not statistically significant, it seems that using SR2 better adjusts to the
characteristics of some databases and is thus a better choice, in general.

Secondly, if we analyze the different cost functions by comparing the results
obtained by SR2-CF1, SR2-CF2 and SR2-CF3, we conclude that applying reg-
ularization improves the results slightly. With α = 0.8, SR2-CF2 obtains the
best results when compared to other state-of-the-art algorithms (see Table 2).
This is because it obtains very good earliness values, while maintaining compet-
itive results on accuracy. Contrarily, SR2-CF3 obtains results almost identical
to those obtained by its unregularized version (SR2-CF1), but it improves on
the earliness in two datasets. SR2-CF3 tends more towards accuracy than SR2-
CF2, which results in higher domination counts for the former when we compare
these two configurations among each other (see Table 4). However, SR2-CF2
seems to benefit more from the regularization that SR2-CF3.

5.4 Effect of modifying the underlying classifier

In order to compare the performance of GP and the SVM classifiers within our
framework, we choose the most simple approach (SR1-CF1) and, in Table 5, we
show the domination counts of our method, using SVMs as underlying classifiers
instead of GPs. Based on these results, it is evident that the GP classifiers obtain
much better results.

SR1-CF1 ECDIRE Rel.Class. ECTS EDSC

α = 0.6 3/41/1 4/39/2 6/37/2 22/23/0

α = 0.7 3/41/1 4/38/3 6/37/2 24/21/0

α = 0.8 5/34/6 4/36/5 7/36/2 25/17/3

α = 0.9 5/31/9 2/36/7 10/33/2 20/23/2

Table 5: Domination counts for our method using SVM-s with Platt’s scaling in comparison
to ECDIRE, Rel.Class., ECTS and EDSC. The first number corresponds to the number of
times our method dominates the other method, the second number refers to the draws and
the third number counts the times the comparison method dominates our method.

As expected, our framework is limited to the prediction ability of the chosen
underlying classifiers, since they will set bounds to the maximum accuracy that
can be obtained. In this case, the SVMs do not yield high accuracy results, and

18

as such, even when we increase the value of α, the domination values remain
quite low, especially when we compete with methods that obtain high accuracy
values. However, note that even when using SVM classifiers, our method dom-
inates the rest of the comparison methods more times that it is dominated in
most cases, which proves the usefulness of our method.

6 Conclusions and Future Work

In this work we have proposed an early classification framework based on com-
bining a set of probabilistic classifiers and a stopping rule, designed by minimiz-
ing the cost in earliness and accuracy. The method is conceptually simple and
does not require complex parameter settings. Furthermore, it is one of the few
approaches that tackles the problem of early classification from an optimization
point of view.

We have experimented with different cost functions conformed with these
two objectives and also with different stopping rules by using 45 benchmark
databases from the UCR archive. We have also compared our results to other
early classification methods from the state-of-the-art, showing superior results
in terms of earliness and accuracy.

As future work, we propose designing a more complex structure for the
stopping rule, in which a different stopping rule is associated to each class or
more common reliability measures are used. The idea is to capture the different
behaviors of the classes, if they exist. Additionally, more complex methods,
such as genetic programming, could be used to learn more suitable stopping
rules in a more automatic manner.

Finally, the problem of early classification has two conflicting objectives. In
this paper, the balance between these two objectives has been sought by means
of the α parameter, and we have emphasized that the choice of a suitable α
strongly depends on the database at hand, and also on the requirements and
needs of the user. In this sense, providing strategies to optimize this parameter
in some specific context could be an interesting future research line. Addition-
ally, and in this same line, it could be interesting to approach this problem
as a multi-objective optimization problem, in which no α parameter would be
necessary.

Aknowledgements

We would like to thank the UCR archive for providing access to the data
used in this study. This work has been partially supported by the Research
Groups 2013-2018 (IT-609-13) programs (Basque Government), TIN2016-78365-
R (Spanish Ministry of Economy, Industry and Competitiveness) and Severo
Ochoa Program SEV-2013-0323 (Spanish Ministry of Economy, Industry and
Competitiveness).

19

References

[1] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on sequence
classification. ACM SIGKDD Explorations Newsletter, 12(1):40–48, 2010.

[2] W. Pei, H. Dibekliolu, D. M. J. Tax, and L. van der Maaten. Multivariate
time-series classification using the hidden-unit logistic model. IEEE Trans-
actions on Neural Networks and Learning Systems, PP(99):1–12, 2017.

[3] Jason Lines, Anthony Bagnall, Patrick Caiger-Smith, and Simon Anderson.
Classification of household devices by electricity usage profiles. In Intel-
ligent Data Engineering and Automated Learning - IDEAL 2011, volume
6936 LNCS, pages 403–412, 2011.

[4] Mohammed Waleed Kadous and Claude Sammut. Classification of multi-
variate time series and structured data using constructive induction. Ma-
chine Learning, 58(2-3):179–216, 2005.

[5] Lexiang Ye and Eamonn Keogh. Time series shapelets: A novel technique
that allows accurate, interpretable and fast classification. Data Mining and
Knowledge Discovery, 22(1-2):149–182, 2011.

[6] Chuanjun Li, Latifur Khan, and Balakrishnan Prabhakaran. Feature selec-
tion for classification of variable length multiattribute motions. Knowledge
and Information Systems, 10(2):163–183, 2006.

[7] Li Wei and Eamonn Keogh. Semi-Supervised Time Series Classification. In
KDD 06: Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 748–753, 2006.

[8] Mabel González, Christoph Bergmeir, Isaac Triguero, Yanet Rodŕıguez,
and José M Beńıtez. On the stopping criteria for k-nearest neighbor in
positive unlabeled time series classification problems. Information Sciences,
328(C):42–59, January 2016.

[9] Zhengzheng Xing, Jian Pei, and Philip S. Yu. Early classification on time
series. Knowledge and Information Systems, 31(1):105–127, apr 2011.

[10] R Scott Evans, Kathryn G Kuttler, Kathy J Simpson, Stephen Howe,
Peter F Crossno, Kyle V Johnson, Misty N Schreiner, James F Lloyd,
William H Tettelbach, Roger K Keddington, Alden Tanner, Chelbi Wilde,
and Terry P Clemmer. Automated detection of physiologic deterioration
in hospitalized patients. Journal of the American Medical Informatics As-
sociation : JAMIA, 22(2):350–60, 2015.

[11] Mohamed F. Ghalwash, Vladan Radosavljevic, and Zoran Obradovic. Uti-
lizing temporal patterns for estimating uncertainty in interpretable early
decision making. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD ’14, pages
402–411, New York, New York, USA, 2014. ACM Press.

20

[12] Ańıbal Bregón, M Aránzazu Simón, Juan José Rodŕıguez, Carlos Alonso,
Belarmino Pulido, and Isaac Moro. Early Fault Classification in Dynamic
Systems Using Case-Based Reasoning. In Proceeding CAEPIA’05 Proceed-
ings of the 11th Spanish association conference on Current Topics in Arti-
ficial Intelligence, pages 211–220, 2006.

[13] Nima Hatami and Camelia Chira. Classifiers With a Reject Option for
Early Time-Series Classification. In IEEE Symposium on Computational
Intelligence and Ensemble Learning (CIEL), pages 9–16, 2013.

[14] Usue Mori, Alexander Mendiburu, Eamonn Keogh, and Jose A Lozano. Re-
liable early classification of time series based on discriminating the classes
over time. Data Mining and Knowledge Discovery, pages 1–31, 2016.

[15] Usue Mori, Alexander Mendiburu, Sanjoy Dasgupta, and Jose A. Lozano.
Early classification of time series from a cost minimization point of view.
In Neural Information Processing Systems. Time Series Workshop, NIPS
2015, 2015.

[16] Nathan Parrish, Hyrum S Anderson, and Dun Yu Hsiao. Classifying With
Confidence From Incomplete Information. Journal of Machine Learning
Research, 14:3561–3589, 2013.

[17] Mohamed F. Ghalwash, Dusan Ramljak, and Zoran Obradovic. Early clas-
sification of multivariate time series using a hybrid HMM/SVM model. In
IEEE International Conference on Bioinformatics and Biomedicine, pages
1–6, oct 2012.

[18] Zhengzheng Xing, Philip S Yu, and Ke Wang. Extracting Interpretable
Features for Early Classification on Time Series. In Proceedings of the
Eleventh SIAM International Conference on Data Mining, pages 247–258,
2011.

[19] Guoliang He, Yong Duan, Rong Peng, Xiaoyuan Jing, Tieyun Qian, and
Lingling Wang. Early classification on multivariate time series. Neurocom-
puting, 149:777–787, feb 2015.

[20] Asma Dachraoui and Alexis Bondu. Early Classification of Time Series
as a Non Myopic Sequential Decision Making Problem. In ECML PKDD
2015, volume Part I, pages 433–447, 2015.

[21] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Monthly Weather Review, 78:1–3, 1996.

[22] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bag-
nall, Abdullahand Mueen, and Gustavo. Batista. The UCR Time Se-
ries Classification/Clustering Homepage. URL www.cs.ucr.edu/~eamonn/

time_series_data/.

21

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

[23] Carl Edward Rasmussen and Chris Williams. Gaussian Processes for Ma-
chine Learning. The MIT Press, 2006.

[24] John C. Platt. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. In Advances in large margin
classifiers, pages 61–74. MIT Press, 1999.

[25] Nicola Lama and Mark Girolami. vbmp: Variational Bayesian Multino-
mial Probit Regression. R package version 1.34.0., 2014. URL http://

bioinformatics.oxfordjournals.org/cgi/content/short/btm535v1.

[26] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel,
Friedrich Leisch, Chih-Chung Chang, and Chih-Chen Lin. e1071: Misc
Functions of the Department of Statistics. R package version 1.6-4. 2014.
URL http://cran.r-project.org/web/packages/e1071.

[27] P.-F. Marteau and S Gibet. On Recursive Edit Distance Kernels With
Applications To Time Series Classification. IEEE Transactions on Neural
Networks and Learning Systems, PP(6):1–13, 2014.

[28] Rohit J. Kate. Using dynamic time warping distances as features for im-
proved time series classification. Data Mining and Knowledge Discovery,
pages 283–312, 2015.

[29] J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI, USA, 1975.

[30] Luca Scrucca. GA: A Package for Genetic Algorithms in R. Journal of
Statistical Software, 53(4), 2013.

[31] Back T. and Fogel D. Evolutionary Computation 1: Basic Algorithms
and Operators. Decision Engineering. IOP Publishing Ltd., Bristol and
Philadelphia, 2000.

[32] X. Yu and Gen M. Introduction to Evolutionary Algorithms. Decision
Engineering. Springer-Verlag, London, 2010.

[33] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Nat-
ural Computing. Springer-Verlag, Berlin, 2015.

[34] Stefano Bonnini, Livio Corain, Marco Marozzi, and Luigi Salmaso. Non-
parametric Hypothesis Testing. Wiley.

22

http://bioinformatics.oxfordjournals.org/cgi/content/short/btm535v1
http://bioinformatics.oxfordjournals.org/cgi/content/short/btm535v1
http://cran.r-project.org/web/packages/e1071

	Introduction
	Early classification of time series
	Early classification of time series by minimizing a cost function
	Learning phase
	Prediction step

	Experimental setup
	The data
	Parameter selection
	Comparison to other early classification methods
	Evaluation method

	Results
	Effect of modifying
	Effect of modifying the granularity of the sampling
	Effect of modifying the cost function and the stopping rule
	Effect of modifying the underlying classifier

	Conclusions and Future Work

