
This is a repository copy of Rank-One Matrix Completion with Automatic Rank Estimation 
via L1-Norm Regularization.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/125541/

Version: Accepted Version

Article:

Shi, Q., Lu, H. and Cheung, Y.M. (2018) Rank-One Matrix Completion with Automatic Rank
Estimation via L1-Norm Regularization. IEEE Transactions on Neural Networks and 
Learning Systems, 29 (10). pp. 4744-4757. ISSN 2162-237X 

https://doi.org/10.1109/TNNLS.2017.2766160

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, TNNLS-2016-P-6932.R2 1

Rank-One Matrix Completion with Automatic Rank

Estimation via L1-Norm Regularization
Qiquan Shi, Student Member, IEEE, Haiping Lu, Member, IEEE, and Yiu-ming Cheung, Senior Member, IEEE

Abstract—Completing a matrix from a small subset of its
entries, i.e., matrix completion, is a challenging problem arising
from many real-world applications, such as machine learning
and computer vision. One popular approach to solving the
matrix completion problem is based on low-rank decomposi-
tion/factorization. Low-rank matrix decomposition-based meth-
ods often require a pre-specified rank, which is difficult to
determine in practice. In this paper, we propose a novel low-rank
decomposition-based matrix completion method with automatic
rank estimation. Our method is based on rank-one approximation
where a matrix is represented as a weighted summation of a set
of rank-one matrices. To automatically determine the rank of
an incomplete matrix, we impose L1-norm regularization on the
weight vector and simultaneously minimize the reconstruction
error. After obtaining the rank, we further remove the L1-
norm regularizer and refine recovery results. With a correctly
estimated rank, we can obtain the optimal solution under certain
conditions. Experimental results on both synthetic and real-world
data demonstrate that the proposed method not only has good
performance in rank estimation, but also achieves better recovery
accuracy than competing methods.

Index Terms—Rank estimation, matrix completion, rank-one
approximation, low-rank decomposition.

I. INTRODUCTION

Matrix completion aims to recover a whole matrix from

its partial observations. It has witnessed a burst of activities,

motivated by many applications such as machine learning [1]–

[5], image processing [6]–[8], and computer vision [9]–[11].

Most existing methods assume the target matrix has a low-

rank structure since most real-world data (e.g., images) are

low-rank or approximately low-rank. Thus, for a target matrix

M ∈ R
I1×I2 with partial observations in an index set Ω,

the matrix completion problem can be formulated as a rank

minimization problem:

min
X

rank(X) s.t. PΩ(X) = PΩ(M), (1)

where rank(X) is the rank of X ∈ R
I1×I2 , and Ω ∈ R

I1×I2

is the binary index matrix: Ωij = 1 if Xij is observed, and

Ωij = 0 otherwise. PΩ is the associated sampling operator

which acquires only the entries indexed by Ω. However, the

model (1) is NP-hard due to the non-convexity and combina-

tional nature of the rank function.

To address this problem, a popular convex relaxation of rank

function is based on minimization of the nuclear norm (a.k.a.,
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trace norm or Schatten p-norm with p = 1) [1], [12]–[14]. In

this way, the rank minimization model (1) is rewritten as a

nuclear norm minimization model:

min
X

‖X‖∗ s.t. PΩ(X) = PΩ(M), (2)

where the nuclear norm ‖X‖∗ is the summation of the singular

values of X. Assuming the observed entries are uniformly

sampled from the original matrix M, Candès and Recht [1]

prove that the missing entries can be exactly recovered if M

(with rank R) satisfies certain incoherence conditions and ob-

serves at least O(N1.2R log(N)) (N = max(I1, I2)) entries.

This sampling bound is narrowed to O(NR log(N)) in [13].

A number of nuclear norm minimization-based algorithms

have been proposed to solve the convex model (2). Singu-

lar Value Thresholding (SVT) [15] employs the linearized

Bremgan iterations [16] to solve the dual of a regularized

approximation of (2). Accelerated Proximal Gradient with

Linesearch algorithm (APGL) [17] accelerates the convergence

of SVT by a fast iterative shrinkage thresholding algorithm

[18]. Fixed Point Continuation with Approximate singular

value decomposition (SVD) (FPCA) [19] addresses the same

problem as APGL while utilizing a fast Monte Carlo algorithm

for SVD calculations. Soft-Impute [20] exploits a “sparse plus

low-rank” structure to allow efficient SVD in each iteration,

with accelerated version (AIS-Impute) in [21]. Other well-

known works include [22]–[26].

Another class of techniques is based on low-rank matrix

decomposition/factorization, which is more suitable for large-

scale cases. Since any matrix Z ∈ R
I1×I2 can be modeled in

a bilateral factorization form: UV
⊤, where U ∈ R

I1×R,V ∈
R

I2×R, the low-rank decomposition-based matrix completion

model is formulated as:

min
Z,U,V

‖Z−UV
⊤‖2F s.t. PΩ(Z) = PΩ(M), (3)

where the integer R (R < min(I1, I2)) is the rank of matrix

M. Gradient-based optimization algorithms such as alternating

minimization methods [27]–[30] are widely used to solve the

model (3). Although (3) is non-convex, many works demon-

strate that low-rank decomposition-based methods can perform

more efficiently and are empirically as reliable as the convex

methods [31]–[38]. Besides, there have been some works

[27], [38], [39] that provide theoretical guarantee for their

performance. For example, Jain et al. [27] theoretically prove

that the alternating minimization also can exactly recover

the matrix under certain conditions similar to the conditions

given in [1] (decomposition-based methods may require more

observations than nuclear norm minimization-based methods

(O(NR log(N))) [27]).
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Many matrix completion methods especially low-rank

matrix decomposition-based methods often require a pre-

specified rank. Determining the rank of an incomplete matrix

is a challenging task, with several existing studies [35], [40]–

[44]. Based on the model (3), Wen et al. [35] propose a

low-rank matrix fitting algorithm (LMaFit) that estimates the

rank by two heuristic strategies (decreasing rank strategy

and increasing rank strategy) and solve it by a nonlinear

successive over-relaxation method [45]. Keshavan et al. [39],

[40], [46] reformulate the LMaFit model (3) into an SVD

form and propose a gradient descent algorithm on Grassmann

manifold (OptSpace), which integrates the spectral techniques

with manifold optimization and determines the rank by com-

puting the SVD of the trimmed observations [40]. Recently,

MaCBetH [43] is proposed to improve OptSpace by a different

spectral procedure that detects the rank (by estimating the

negative eigenvalues of a Bethe Hessian matrix) and a better

initialization for the approximation minimization. These three

methods have achieved good performance of rank estimation

on synthetic matrices while they do not work well on real-

world images, at least in our preliminary studies. On the other

hand, for a fixed-rank smooth Riemannian manifold algo-

rithm named LRGeomCG [47], Uschmajew and Vandereycken

propose GeomPursuit [44] that adds a greedy outer iteration

to LRGeomCG to increase the rank with a step-size l for

better recovery performance. Based on our empirical studies,

however, GeomPursuit does not obtain exact true ranks and

becomes much slower for larger matrices.

Rank-one approximation is a specific low-rank matrix

decomposition popularly used in matrix completion [48]–

[53]. Here, any matrix Z is represented as the weighted

summation of R factorized rank-one matrices: Z =
∑R

r=1 wrurv
⊤
r = Udiag(w)V⊤, where the weight vector

w = [w1, · · · , wr, · · · , wR]
⊤,U ∈ R

I1×R = {ur}
R
r=1,V ∈

R
I2×R = {vr}

R
r=1. Actually, SVD is a special rank-one ap-

proximation whose factors {ur}
R
r=1 and {vr}

R
r=1 are orthogo-

nal, and it is used in OptSpace. Wang et al. [50], [51] recently

propose an efficient rank-one matrix pursuit method (R1MP)

by extending orthogonal matching pursuit to the matrix case.

R1MP usually achieves better results given a rank higher than

the true rank. In other words, R1MP cannot estimate the rank

and does not pursue a low-rank approximation.

In this paper, we propose a novel rank-one matrix

completion method with automatic rank estimation. Under

the low-rank assumption, we aim to automatically determine

the rank of an incomplete matrix and recover the matrix.

When a rank is given, we can minimize the reconstruction

error of the rank-one approximation via least squares to

predict the missing entries. We present it as Rank-One Matrix

Completion (R1MC). With a correctly estimated rank, R1MC

likes other fixed-rank methods such as [32], [47], [54] can

achieve the optimal solution for matrix completion under

certain conditions [1], [27], according to the Eckart–Young–

Mirsky theorem [55], [56]. However, the rank estimation is a

difficult task for incomplete matrices. By solving this problem,

the main contributions of this paper are:

• We address the rank estimation problem by imposing an

L1-norm regularization on the weight vector (analogous

to the vector of singular values) while minimizing the

reconstruction error. We call this L1-norm regularized

rank-one Matrix Completion method with automatic rank

estimation as L1MC.

• We further develop L1MC with refinement (L1MC-RF)

by proposing a refinement strategy: once the rank

is automatically determined by L1MC, we remove the

L1-norm regularization, and further refine the recovery

results by directly minimizing the reconstruction errors

via R1MC. Essentially, L1MC-RF integrates L1MC and

R1MC, while R1MC can be replaced by other fixed-rank

completion methods such as [32].

Thus, L1MC-RF can automatically estimate the true rank

and exactly predict the missing entries under certain conditions

[1], [32], [57]. We solve the optimization problem by the block

coordinate descent approach (a.k.a., alternating minimization

method or nonlinear (block) Gauss-Seidel scheme), where

each variable is iteratively updated with all the others fixed.

In the next section, we review necessary preliminaries and

related works. We present the proposed methods in Sec. III

and then evaluate them in Sec. IV. Finally, a conclusion is

drawn in Sec.V.

II. PRELIMINARIES AND RELATED WORKS

A. Notations

In this paper, a vector is denoted by a bold lower-case

letter x ∈ R
I and a matrix is denoted by a bold capital

letter X ∈ R
I1×I2 . The ith entry of a vector a ∈ R

I is

denoted by ai, and the (i, j)th entry of a matrix X is denoted

by Xij . The Frobenius norm of a matrix X is defined by

‖X‖F =
√

〈X,X〉. Ω ∈ R
I1×I2 is a binary index matrix:

Ωij = 1 if Xij is observed, and Ωij = 0 otherwise. PΩ is the

associated sampling operator which acquires only the entries

indexed by Ω, defined as:

(PΩ(X))ij =

{

Xij , if(i, j) ∈ Ω

0, if(i, j) ∈ Ω
c

, (4)

where Ω
c is the complement of Ω. We have PΩ(X) +

PΩc(X) = X.

B. The Eckart–Young–Mirsky Theorem

Given a matrix M ∈ R
I1×I2 with rank R (with singular

values of M {σ1 ≥ · · ·σp ≥ σp+1 ≥ · · · ≥ σR > 0}),

the optimal low-rank approximation is given by a truncated

SVD of M according to the classical Eckart–Young–Mirsky

theorem [55], [56]. That is, if M = UΣV
⊤, then Mp =

∑p

i=1 σi uiv
⊤
i is the unique optimal rank-p approximation

(p < R) of M. We present the Eckart–Young–Mirsky theorem

under Frobenius norm in Theorem 1 following [58]. This

theorem is employed for matrix/tensor decompositions in [12],

[58], [59].

Theorem 1. (The Eckart–Young–Mirsky Theorem) Let

M ∈ R
I1×I2 has rank R < min(I1, I2) and its

SVD is: M = UΣV
⊤ =

∑R

i=1 σiuiv
⊤
i , where Σ =

diag(σ1, · · · , σp, · · · , σR, 0, · · · , 0) and σ1 ≥ · · ·σp ≥
σp+1 ≥ · · · ≥ σR > 0. Denote M as the set of I1 × I2
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matrices with rank p < R < min(I1, I2). The unique optimal

solution of:

min
A∈M

‖M−A‖2F , s.t. rank(A) = p (5)

is given by the rank-p approximation (truncated SVD) of M:

Mp =
∑p

i=1 σiuiv
⊤
i , and we have

min
A∈M

‖M−A‖2F = ‖M−Mp‖
2
F =

R
∑

j=p+1

σ2
j (6)

C. Existing Completion Methods with Rank Estimation

Rank estimation is important for matrix completion meth-

ods requiring a rank a priori [36], [60]. The state-of-the-art

matrix completion methods with automatic rank estimation are

LMaFit [35], Optspace [39], [40], [46], MaCBetH [43], and

GeomPursuit [44].

LMaFit: Based on the low-rank matrix decomposition

model (3): minZ,U,V ‖Z − UV
⊤‖2F s.t. PΩ(Z) = PΩ(M),

LMaFit [35] is proposed to heuristically estimate a rank

starting from an over-estimated rank or under-estimated rank

(initially higher or lower than the true rank) for matrix

completion. Moreover, LMaFit only requires solving a linear

least squares problem per iteration instead of a SVD and

integrates an efficient nonlinear successive over-relaxation

scheme to accelerate the convergence.

OptSpace: Keshavan et al. [46] propose OptSpace with

another matrix decomposition form (SVD form):

min
U,Σ,V

‖X−UΣV
⊤‖2F s.t. PΩ(X) = PΩ(M), (7)

where the factor matrices U and V have orthogonal columns

and Σ is a diagonal matrix. OptSpace consists of three steps

[40], [46]. First, it trims the observed matrix PΩ(M) by

setting to zero all rows (resp. columns) with more observed

entries than twice the average number of observed entries per

row (resp. per column). Second, it computes the best rank-R
approximation of the trimmed matrix via sparse SVD, where

the rank R is estimated as the singular value index if the

ratio between two consecutive singular values is minimum

[40]. Third, it minimizes the reconstruction error via a special

gradient descent method over the Grassmann manifold. Be-

sides, the authors further provide the performance guarantee

for OptSpace under moderate incoherence condition [39].

MaCBetH: Recently, Alaa et al. [43] propose MaCBetH

to improve OptSpace by replacing the first two steps with a

different spectral procedure that detects a rank and provides

a better initialization for the approximation minimization. In

MaCBetH, the rank is estimated as the number of negative

eigenvalues of the Bethe Hessian matrix, and the correspond-

ing eigenvectors are used as initial conditions for minimizing

the difference between the predicted matrix and the observed

entries [43].

GeomPursuit: Another state-of-the-art algorithm, Geom-

Pursuit [44], combines a greedy outer iteration that increases

the rank with a step-size l with a smooth Riemannian algorithm

LRGeomCG [47] that optimizes the cost function on a fixed-

rank manifold. In other words, LRGeomCG needs a fixed

rank as input while GeomPursuit can estimate the rank via

Greedy rank updates. Based on the empirical studies, however,

we found that GeomPursuit cannot obtain exact true ranks

though it improves the recovery performance of LRGeomCG.

Moreover, it is sensitive to the step-size l and becomes much

slower for larger matrices.

On the other hand, FBCP [61] is one of recent tensor

completion methods which can automatically determine the

rank of an incomplete tensor (a matrix is a second-order ten-

sor), where the authors formulate CANDECOMP/PARAFAC

(CP) decomposition [62], [63] using a hierarchical probabilis-

tic model and employ a fully Bayesian treatment for automatic

rank estimation. Our rank-one approximation model (10) (to be

presented in Section III) can be considered as the matrix case

of CP decomposition. Here we degenerate FBCP to matrix

case to compare with ours and other existing methods.

D. Existing Rank-One Matrix Completion Methods

Given a matrix Z ∈ R
I1×I2 , it can be written as a linear

combination of rank-one matrices by extending the atom

decomposition [64] to matrix case [48], [50], [52]:

Z = Y(θ) =
∑

i∈I

θiYi, (8)

where {Yi, i ∈ I} is the set of rank-one matrices

with ‖Yi‖F = 1, and θ is the weight vector: θ =
[θ1, · · · , θi, · · · , θ|I|]

⊤. Here, the weight vector θ includes

infinite number of weights [50].

Based on the model (8), Wang et al. [50], [51] reformulate

the matrix completion problem as (9), and propose rank-one

matrix pursuit (R1MP):

min
θ

‖PΩ(Y(θ)−M)‖2F s.t. ‖θ‖0 ≤ c, (9)

where c is an integer and ‖θ‖0 denotes the cardinality of

the number of nonzero elements of θ. R1MP alternatively

constructs rank-one basis matrices and learns weights of the

bases by orthogonal matching pursuit method. R1MP can

efficiently obtain better results given a rank higher than the

true rank of the original (complete) matrix. In other words,

R1MP cannot automatically estimate the rank of an incomplete

matrix and does not pursue a low-rank approximation.

III. PROPOSED METHODS

We can represent any matrix Z ∈ R
I1×I2 as the weighted

summation of R factorized rank-one matrices:

Z =

R
∑

r=1

wrurv
⊤
r = Udiag(w)V⊤

s.t. ‖ur‖2 = ‖vr‖2 = 1, for r = 1, · · · , R,

(10)

where the weight vector w = [w1, · · · , wr, · · · , wR]
⊤,U ∈

R
I1×R = {ur}

R
r=1,V ∈ R

I2×R = {vr}
R
r=1, and R (R <

min(I1, I2)) is the rank of Z.

Remark 1: This model (10) is different from the model

(8) used in [50], [52]: the number of weights (analogous to

singular values) of (10) is finite and should be small (low-

rank), and we represent each rank-one matrix in a factorization

form. Besides, our model (10) is similar to the SVD form (used

in OptSpace [46]) but the columns of the factor matrices U and
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V of our model are not enforced to be orthogonal. In addition,

our rank-one matrix decomposition can also be considered as

the matrix case of CP decomposition.

Next, we present R1MC and develop our methods L1MC

and L1MC-RF progressively.

A. Rank-One Matrix Completion (R1MC) Given True Rank

Based on the rank-one approximation model (10), given a

low-rank matrix M ∈ R
I1×I2 with partially observed entries

in Ω, i.e., PΩ(M), we reformulate the matrix completion

problem as:

min
X,Z

1

2
‖X− Z‖2F

s.t. Z =

R
∑

r=1

wrurv
⊤
r , PΩ(X) = PΩ(M),

‖ur‖2 = ‖vr‖2 =1, for r = 1, · · · , R,

(11)

where Z is the summation of R rank-one matrices. Here, we

assume the true rank R is known, and we can minimize the

reconstruction error via least squares to predict the missing

entries. We summarize this Rank-One Matrix Completion

method (R1MC) in Algorithm 1.

Remark 2: R1MC shares the same spirit as Iterative Hard

Thresholding (IHT) [54], [65] and Singular Value Projection

(SVP) [32], where the SVD of the target matrix is truncated

by keeping the top R singular values and associated singular

vectors. On the other hand, R1MC requires less parameter

tuning, e.g., no step-size parameter required in [32], [54],

[65], so it is simpler to implement and use. Different from the

convex completion methods such as [1] which relax the rank

function via nuclear norm using soft singular value thresh-

olding, R1MC is a non-convex method and obtains a low-

rank solution using hard singular value thresholding. Unlike

the methods in [27] which optimize the underlying matrix in

a bilateral factorization form, the matrix is represented as a

set of rank-one matrices in R1MC.

Remark 3: If M (with rank R) obeys the incoherence

property and observes enough randomly sampled entries [1],

R1MC can exactly recover the missing entries with high

probability. The theoretical guarantees of IHT (R1MC) is first

conjectured in [32], and recently [57] theoretically improves

the sampling bound for IHT (R1MC): R1MC converges to the

exact low-rank solution when the number of known entries is

more than O(NR2 log2(N)), N = max (I1, I2). Furthermore,

Wei et al. [57] demonstrate that this sampling complexity can

achieve the optimal one O(NR) empirically. In other words,

for an incomplete matrix X with enough observed entries from

M (i.e., PΩ(X) = PΩ(M)), the missing entries of M can be

exactly recovered. In R1MC, we predict the missing entries by

iteratively updating: PΩc(X) = PΩc(Z) and computing the

rank-R approximation of X by the truncated SVD of X, and

finally recover the matrix exactly under the above assumptions.

On the other hand, the unique optimal rank-R approximation

of M is given by the truncated SVD of M according to the

Eckart–Young–Mirsky theorem (Theorem 1).

In this way, assuming the true rank R is known, R1MC

can achieve the optimal solution for matrix completion under

Algorithm 1 Rank-One Matrix Completion (R1MC)

1: Input: Incomplete matrix PΩ(M), index matrix Ω, given

rank R, maximum iterations K, and stopping tolerance

tol.

2: Initialization: PΩ(X) = PΩ(M), PΩc(X) = 0, Z =
zeros(I1, I2).

3: for k = 1, ...,K do

4: Compute the rank-R approximation of X: [U0 Σ0 V0]=
svd(X), U0 = {ur}

R
r=1 ∈ R

I1×R,Σ0 ∈ R
R×R,V0 =

{vr}
R
r=1 ∈ R

I2×R.

5: Set Z = U0Σ0V
⊤
0 .

6: Update the missing entries by: PΩc(X) = PΩc(Z).
7: If ‖PΩ(X − Z)‖F /‖PΩ(X)‖F < tol or ‖Xk+1 −

X
k‖F /‖X

k+1‖F < tol, break; otherwise, continue.

8: end for

9: output: Z.

the appropriate conditions. If the input rank is higher (over-

estimate) or lower (under-estimate) than the true rank, it may

result in poor recovery performance. Therefore, it is important

to determine a good rank value (true rank) for low-rank matrix

decomposition for matrix completion [36].

B. L1-norm Regularized Rank-One Matrix Completion with

Automatic Rank Estimation (L1MC)

To address the important rank estimation issue, we impose

L1-norm regularization on the weight vector w and reformu-

late the R1MC model (11) as follows:

min
X,w,{ur,vr}R

r=1,R
µ‖w‖1+

1

2
‖X−

R
∑

r=1

wr urv
⊤
r ‖

2
F ,

s.t. PΩ(X) =PΩ(M),

‖ur‖2 = ‖vr‖2 = 1, for r = 1, · · · , R,

(12)

where µ is the regularization parameter and R is the rank to

be estimated. By simultaneously minimizing the L1-norm reg-

ularization and the reconstruction error, we can automatically

determine the rank of an incomplete matrix and simultaneously

predict the missing entries. We name this new L1-norm reg-

ularized rank-one Matrix Completion method with automatic

rank estimation as L1MC.

Remark 4: Note that the weights in model (11) are analo-

gous to the singular values. L1-norm regularization makes the

weight vector sparse and leads to a low-rank solution.

Derivation of L1MC via BCD: we employ the Block

Coordinate Descent (BCD) method [66] for optimiza-

tion. The BCD method is also known as the alternat-

ing minimization method or nonlinear (block) Gauss-Seidel

scheme. We divide the target variables into R+ 1 blocks:

{{w1,u1,v1}, · · · , {wr,ur,vr}, · · · , {wR,uR,vR},X}. We

optimize a group (block) of variables while fixing the other

groups (blocks), and update one variable while fixing the other

variables in each group. After finishing the update of these

R+ 1 blocks variables, we finally determine the rank.

The Lagrangian function with respect to the r-th block

{wr,ur,vr} is:
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Lwr,urvr
= µ|wr|+

1

2
‖Xr − wrurv

⊤
r ‖

2
F ,

s.t. Xr = X−

r−1
∑

q=1

wquqv
⊤
q ,

PΩ(X) = PΩ(M), ‖ur‖2 =‖vr‖2 = 1,

(13)

where Xr is the residual of the approximation.

1) Update ur,vr : The function (13) with respect to ur is,

Lur
=

1

2
‖Xr − wrurv

⊤
r ‖

2
F (14)

Then we set the partial derivative of Lur
with respect to ur

to zero, and get:

w2
rur − wrXrvr = 0 ⇒ ur

(k+1) =
X

k
rv

k
r

wk
r

. (15)

We normalize u
(k+1)
r =

u
(k+1)
r

‖u
(k+1)
r ‖2

. Note that we only update

the blocks with non-zero weights (e.g., wk
r 6= 0).

Similarly, we can update vr
(k+1) by,

vr
(k+1) =

X
⊤
r

k
ur

(k+1)

wk
r

, (16)

and normalize v
(k+1)
r =

v
(k+1)
r

‖v
(k+1)
r ‖2

.

2) Update wr : The function (13) with respect to wr is,

Lwr
= µ|wr|+

1

2
‖Xr − wr urv

⊤
r ‖

2
F . (17)

Then we set the partial derivative of Lwr
with respect to wr

to zero,

∂Lwr

∂wr

=
µ|wr|

∂wr

+
(

wr − trace(vru
⊤
r Xr)

)

=
µ|wr|

∂wr

+ wr − 〈Xr,vru
⊤
r 〉 = 0.

(18)

According to Eq. (18), we know wr = 〈Xr,vru
⊤
r 〉 − µ |wr|

∂wr
.

Based on the soft thresholding algorithm [67] for L1-norm

regularization, we update w
(k+1)
r by:

w(k+1)
r = shrinkµ(〈X

k
r , vr

(k+1)
u
⊤
r

(k+1)
〉), (19)

where shrink is the soft thresholding operator [18], [67]:

shrinkµ(a) =











a− µ (a > µ)

0 (|a| ≤ µ)

a+ µ (a < −µ)

. (20)

3) Update X: The function (12) with respect to X is,

min
X

1

2
‖X−

R
∑

r=1

wr urv
⊤
r ‖

2
F , (21)

s.t. PΩ(X) = PΩ(M), ‖ur‖2 = ‖vr‖2 = 1.

By deriving simply the Karush-Kuhn-Tucker (KKT) con-

ditions for Eq. (21) [68], we can update X
(k+1) by

X
(k+1) = PΩ(X) + PΩc(Z(k+1)), where Z

(k+1) =
∑R

r=1 w
(k+1)
r u

(k+1)
r v

⊤
r

(k+1)
.

Algorithm 2 L1-norm Regularized Rank-One Matrix

Completion with Automatic Rank Estimation (L1MC)

1: Input: Incomplete matrix PΩ(M), index matrix Ω, regu-

larization parameter µ, initial rank R̂, maximum iterations

K, and stopping tolerance tol.

2: Initialization: Initialize {w = {wr}
R̂
r=1, {ur ∈ R

I1 ,vr ∈

R
I2 , ‖ur‖2 = ‖vr‖2 = 1}R̂r=1} randomly (normal dis-

tribution); Set Z = zeros(I1, I2), PΩ(X) = PΩ(M),
PΩc(X) = 0.

3: for k = 1, ...,K do

4: Xr = X.

5: for r = 1, ..., R̂ do

6: if wr 6= 0 then

7: Update ur and vr by (15) and (16) respectively.

8: Update wr by (19).

9: Xr = Xr − wrurv
⊤
r .

10: end if

11: end for

12: Update X: Update Z = X−Xr and the missing entries

by: PΩc(X) = PΩc(Z).
13: If ‖PΩ(X − Z)‖F /‖PΩ(X)‖F < tol or ‖Xk+1 −

X
k‖F /‖X

k+1‖F < tol, break; otherwise, continue.

14: end for

15: Rank Estimation: Only keep the wr if wr > (10−3 ×
Sampling Ratio × sum(w)), and then R∗ = length(w),
and keep corresponding {ur}

R∗

r=1 and {vr}
R∗

r=1.

16: output: R∗,Z.

4) Estimate the Rank R : After iteratively updating all

the above variables till convergence or reaching the maximum

iterations, we finally determine a rank. By checking the weight

vector w, we only keep the weights larger than a threshold (we

set the threshold at 10−3 × Sampling Ratio × TotalWeight),
i.e., removing the zero and small weights which account for

a very small proportion of total weights. Finally, the number

of the remaining weights in w is the estimated rank and we

keep the corresponding factors.

We summarize this new matrix completion method with

automatic rank estimation, L1MC, in Algorithm 2. In ad-

dition, since we need a initial rank for optimizing our L1MC

objective function (12), we denote R̂ as the initial rank for

rank estimation.

Remark 5: In L1MC, we set the threshold in rank

estimation at 10−3 × Sampling Ratio × TotalWeight, i.e.,

removing small weights (analogous to singular values) less

than 0.01% to 0.09% of total weights for data with SR =
10%−90% observed entries, respectively. This setting follows

the similar idea in [69], where the low-rank matrix is truncated

by removing small singular values less than 1% of the L2-

norm of the vector of singular values. Furthermore, based

on empirical studies, this threshold can be loose to be an

ideal value 0 on the synthetic matrices (and real data with

SR > 30%). By only removing small singular values which

account for a very small proportion of total singular values,

we keep most information of the target matrix. This threshold

for rank estimation can be fixed with no need of tuning. It
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works well in all tested synthetic and real data although we

do not have theoretical guarantee for it yet.

Algorithm 3 L1MC with Refinement (L1MC-RF)

1: Input: Incomplete matrix PΩ(M), index matrix Ω, regu-

larization parameter µ, initial rank R̂, maximum iterations

K, and stopping tolerance tol.

2: Step 1: Obtain R∗ by Algorithm 2 L1MC.

3: Step 2: Feed the estimated rank R∗ into Algorithm 1

R1MC to further optimize factors and weights.

4: output: R∗,Z.

C. L1MC with Refinement (L1MC-RF)

L1MC can automatically estimate the rank and simulta-

neously predict the missing entries. However, the L1-norm

regularization of model (12) restricts L1MC to directly opti-

mize the factors and weights of rank-one approximation. To

improve the recovery performance, we propose a refinement

strategy. We refine the recovery results by directly minimizing

the reconstruction error without the L1-norm regularization

after rank estimation, i.e., we firstly determine the rank of an

incomplete matrix by L1MC, and then we remove the L1-

norm regularizer and further improve the recovery accuracy.

Thus, after the rank estimation step, we reformulate the L1MC

model (12) as:

min
X,{ur,wr,vr}R∗

r=1

1

2
‖X−

R∗

∑

r=1

wr urv
⊤
r ‖

2
F ,

s.t. PΩ(X) = PΩ(M),

‖ur‖2 =‖vr‖2 = 1, for r = 1, · · · , R∗.

(22)

The formulation (22) is equivalent to the R1MC model (11).

Therefore, we can directly optimize the factors and weights

by R1MC to further refine the recovery results. Note that we

also can further refine the recovery results of L1MC by other

fixed-rank completion methods such as SVP [32], IHT [54],

[65], LRGeomCG [47] and so forth, while R1MC is simpler

to implement and use. We denote this integrated-solution as

L1MC with Refinement, i.e., L1MC-RF, summarized in

Algorithm 3.

In the following section, we evaluate the rank estimation and

recovery accuracy of the proposed methods on the synthetic

matrices and real-world images.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed methods

from three aspects: i) parameter sensitivity and convergence;

ii) importance of estimating the true rank; iii) accuracy of

recovery and rank estimation over various sampling ratios

given incomplete matrices. We sample 10%−90% entries from

each matrix uniformly at random for training and use “SR”

for this Sampling Ratio (training ratio). We implemented our

methods in MATLAB and all experiments were performed on

a PC (Intel Xeon(R) 3.40GHz, 64GB memory).

(a) Original Lenna image.

Rank (Lenna image)
20 40 60 80 100 120 140 160 180 200

S
in

gu
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r 
V
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ue

×104
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1

2

3

4

5

6

7

(b) First 200 singular values of Lenna.

Figure 1. An example of low-rank image.

A. Experimental Settings

1) Data: Following [17], [19], [35], [43], we generate

the synthetic matrices: M ∈ R
I1×I2 with rank R from

two random matrices M1 ∈ R
I1×R and M2 ∈ R

I2×R

with i.i.d. standard Gaussian entries, i.e., M = M1M
⊤
2 . In

this paper, we report the results of five synthetic matrices:

{500×500 (R = 5), 1000×1000 (R = 25), 1000×1000 (R =
50), 2000× 2000 (R = 50), 2000× 2000 (R = 100)}.

Moreover, the minimum sampling ratios for guaranteeing

the exact recovery of these five matrices are (
O(NR log(N))

(I1×I2)
):

{O(6.21%), O(17.27%), O(34.54%), O(19%), O(38%)} re-

spectively using nuclear norm minimization-based methods

according to [13] (decomposition-based methods may need

more observations [27]).

Lenna Boat Baboon Peppers Man Airplane Airport

(a) Original images with approximate low-ranks.

(b) Truncated images with exact low-ranks.

Figure 2. Seven real images used for experiments.

Real data1: We also evaluate our methods on seven real-

world images: {Lenna (512×512), Boat (512×512), Baboon

(512 × 512), Peppers (512 × 512), Man (1024 × 1024),

Airplane (1024 × 1024), Airport (1024 × 1024)}. These

natural images are approximately low-rank by observing

their singular values, as shown in Fig. 1. Following [35]

where the authors truncated the SVD of the Boat image to

obtain the rank-40 image, we examined the singular value

of these images and truncated their SVD to get the images

with exact low-ranks: {29 (Lenna), 40 (Boat), 24 (Baboon),

30 (Peppers), 27 (Man), 23 (Airplane), 22 (Airport)}, as

shown in Fig. 2. Similarly, the minimum sampling ratios for

guaranteeing the exact recovery of these low-rank images are:

{O(35.33%), O(48.74%), O(29.24%), O(36.55%), O(18.28%),
O(15.57%), O(14.89%)} respectively using nuclear norm

minimization-based methods.

1Boat image is from http://lmafit.blogs.rice.edu/ and other images are
available at http://sipi.usc.edu/database/database.php?volume=misc&image.

http://lmafit.blogs.rice.edu/
http://sipi.usc.edu/database/database.php?volume=misc&image
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(c) 500× 500 (R = 5)
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(d) 1000× 1000 (R = 50)

Figure 3. Estimated ranks and RSE of recovering two synthetic matrices via L1MC-RF with (a) (c): µ ∈ [5 : 5 : 100] and (b) (d): µ ∈ [5 : 5 : 200],
respectively.
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(b) 1000× 1000 (R = 50)
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(d) 1000× 1000 (R = 50)

Figure 4. Estimated ranks and RSE of recovering two synthetic matrices via L1MC-RF with initial rank (a) (c): R̂ ∈ [5 : 10 : 245] and (b) (d):

R̂ ∈ [10 : 20 : 490], respectively.

2) Compared Methods: We compare the proposed methods

against ten state-of-the-art matrix completion methods:

• Four nuclear norm minimization-based methods: SVT2

[15], APGL3 [17], FPCA4 [19], and AIS-Impute5 [21].

• Three low-rank matrix decomposition-based meth-

ods with automatic rank estimation: LMaFit6 [35],

OptSpace7 [39], and MaCBetH8 [43]

• Two Riemannian descent methods: GeomPursuit [44]

and LRGeomCG9 [47]. GeomPursuit combines LRGe-

omCG with a rank-adaptive strategy.

• One tensor completion method with automatic rank

estimation: FBCP10 [61] degenerated to 2D.

We also tested R1MP [50], [51]. In this set of experiments,

however, R1MP performs poorly compared with these meth-

ods, so its results are not reported here.

3) Evaluation Metrics: Given an incomplete matrix

PΩ(X) = PΩ(M) (input), and the recovered matrix Z

(output), we measure the recovery performance with ground

truth M (with rank R) using following metrics:

• Relative Square Error (RSE) [70]: ‖M − Z‖F /‖M‖F ,

which refers to the reconstruction error. We use RSE to

measure the recovery accuracy and consider the matrix

M successfully recovered if RSE < 10−3 [1], [12], [19].

• Relative Square Error on Training (RSEtrain) [15], [35]:

‖PΩ(X − Z)‖F /‖PΩ(X)‖F , which is used for conver-

2http://www.math.ust.hk/∼jfcai/.
3http://www.math.nus.edu.sg/∼mattohkc/NNLS.html.
4http://www1.se.cuhk.edu.hk/∼sqma/softwares.html.
5https://github.com/quanmingyao/AIS-impute.
6http://lmafit.blogs.rice.edu/.
7http://web.engr.illinois.edu/∼swoh/software/optspace/.
8https://github.com/alaa-saade/macbeth matlab.
9http://www.unige.ch/math/vandereycken/matrix completion.html.
10http://www.bsp.brain.riken.jp/∼qibin/homepage/Software.html.

gence study and stopping criterion.

• Relative error of weight vector (Errw): ‖s − w‖2/‖s‖2,

where s is the vector that consists of all singular values

of the ground truth M.

• Estimated Rank (Est.R).

• Time cost.

4) Parameter Settings: In this paper, we set the maximum

iterations K = 500 for all methods based on our preliminary

studies, and set the regularization parameter µ = 50 and the

initial rank R̂ = round(1/8 ×min (I1, I2)) for L1MC-RF by

default (to be studied in Sec. IV. B). We use two stopping

criteria: RSEtrain and ‖Xk+1 −X
k‖F /‖X

k+1‖F [19], [71],

and terminate the proposed methods if one of stopping criteria

is met. Since we found that tol = 1e − 14 is small enough

to obtain very good recoverability and rank estimation, we

set the stopping tolerance tol = 1e − 14 for all methods.

Other parameters of the compared methods have followed the

original papers. We repeat the runs 10 times and report the

average results.

B. Parameter Sensitivity

Firstly, we examine the parameter sensitivity of our meth-

ods, including the regularization parameter µ and the initial

rank R̂ used for rank estimation.

1) Sensitivity of Regularization Parameter µ: We evaluate

L1MC-RF with parameter µ ∈ [5 : 5 : 100] and µ ∈ [5 :
5 : 200] on two synthetic matrices: 500 × 500 (R = 5) and

1000 × 1000 (R = 50), respectively. Here we set the initial

rank R̂ = {50, 100} for these two matrices, respectively.

As seen from Fig. 3, it is clear that L1MC-RF is not

sensitive to the values of parameter µ: with different values

of µ, L1MC-RF performs well on both rank estimation and

matrix completion on the whole. Specifically, there are two

special scenarios: 1) If we only observe very few entries (e.g.,

http://www.math.ust.hk/~jfcai/
http://www.math.nus.edu.sg/~mattohkc/NNLS.html
http://www1.se.cuhk.edu.hk/~sqma/softwares.html
https://github.com/quanmingyao/AIS-impute
http://lmafit.blogs.rice.edu/
http://web.engr.illinois.edu/~swoh/software/optspace/
 https://github.com/alaa-saade/macbeth_matlab
http://www.unige.ch/math/vandereycken/matrix_completion.html
http://www.bsp.brain.riken.jp/~qibin/homepage/Software.html
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Figure 5. Time costs of recovering two synthetic matrices via L1MC-RF with (a): µ ∈ [5 : 5 : 100] and (b): µ ∈ [5 : 5 : 200], respectively; via L1MC-RF

with initial rank (c): R̂ ∈ [5 : 10 : 245] and (d): R̂ ∈ [10 : 20 : 490], respectively.
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(b) RSEtrain for R1MC (Step 2 of L1MC-RF)
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(c) Rank estimation by L1MC

Figure 6. Convergence curves of recovering the synthetic matrix 1000× 1000 (R = 50) with 10%− 90% observations via L1MC-RF.

SR = 10%) from a smaller matrix with lower rank (e.g.,

500 × 500, R = 5), a larger µ (e.g., µ = 80) makes the

L1-norm regularization dominate the whole objective function

(12) and results in zero rank and failure of recovery, as

observed from Figs. 3(a) and 3(c); 2) Figs. 3(b) and 3(d) show

that we may need to choose a good µ for L1MC-RF to recover

a larger matrix with higher rank (e.g., 1000× 1000, R = 50)

only if the observations are much less than the sampling bound

(e.g., SR < 30%), where it is difficult to recover the matrix

exactly. On the other hand, a smaller µ (e.g., µ = 5) costs

L1MC-RF more time as shown in Figs. 5(a) and 5(b).

In short, we do not need to tune the parameter µ to estimate

a good rank and achieve a good recovery result. For simplicity,

we fix µ = 50 for the proposed methods by default.

2) Sensitivity of Parameter R̂ (Initial Rank): We test on two

synthetic matrices 500× 500 (R = 5) and 1000× 1000 (R =
50) via L1MC-RF with initial rank R̂ ∈ [5 : 10 : 245] and

R̂ ∈ [10 : 20 : 490], respectively.

As observed from Fig. 4, it is obvious that L1MC-RF is also

not sensitive to the values of the initial rank R̂: with different

values of R̂, L1MC-RF has good stable performance in rank

estimation and matrix completion almost in all cases. Besides,

a higher initial rank R̂ increases computational cost, as shown

in Figs. 5(c) and 5(d). We set the initial rank R̂ = round(1/8×
min (I1, I2)) by default under the low-rank assumption.

C. Convergence Study

We demonstrate the convergence of our methods in Fig.

6 for recovering the synthetic matrix 1000× 1000 (R = 50).
Here, we set tol = eps (machine precision) to allow L1MC-RF

to pursue the best result until reaching the maximum iterations.

Since L1MC-RF consists of L1MC (Step 1 of L1MC-RF) and

R1MC (Step 2 of L1MC-RF), we study their convergence

in terms of training error as shown in Figs. 6(a) and 6(b)

respectively.

L1MC converges within 50 iterations as observed from Fig.

6(a). Fig. 6(b) shows that R1MC converges within 200 itera-

tions for the easy problems (e.g., SR > 30%), while it needs

more iterations to achieve convergence if the problem is harder

(e.g., SR = 30%). For the two cases of SR = {10%, 20%},

since the sampling ratios are much less than the sampling

bound for this synthetic matrix, L1MC-RF (R1MC) fails to

find the solution within 1000 iterations.

Besides, Fig. 6(c) shows that L1MC successfully determines

the true rank within 50 iterations when observing enough

entries (SR ≥ 30%). In short, L1MC converges faster than

R1MC and we set the maximum iterations K = 500 for the

proposed methods by default.

D. Effects of Rank Value on Matrix Completion Performance

Here, we present studies that investigate the effects of rank

estimation accuracy on matrix completion performance of

four methods: R1MC, LMaFit, MaCBetH and LRGeomCG.

Besides, we also studied OptSpace: it can achieve good re-

covery results given true or higher-than-true ranks on synthetic

matrices while it fails to recover real-world image even given

true ranks. Here we dot not report its results for simplicity.

We compare their matrix completion performance with two

ways of rank determination: (i) setting the rank manually;

(ii) setting µ in L1MC to estimate the rank. We show the

results of recovering both synthetic and real matrices with SR

= {30%, 50%, 70%} in Figs. 7 and 8.

• As seen from Figs. 7(a) and 7(c), the recovery perfor-

mance (in RSE) of all four methods is highly sensitive to

the manually set rank value. Even a slight error in the rank

value can lead to serious performance degradation. Only

given the true ranks, all the four methods can achieve

their best completion results in all cases.

• In contrast, Figs. 7(b) and 7(d) show the corresponding

results with L1MC rank estimation by setting µ to a range
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Figure 7. RSE of recovering 500 × 500 (R = 5) and Lenna image (R = 29) via completion methods as given manually fixed rank in (a) and (c), and
estimated rank by L1MC with the different values of µ in (b) and (d).
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Figure 8. Time costs of recovering 500× 500 (R = 5) and Lenna image (R = 29) via completion methods as given manually fixed rank in (a) and (c),
and estimated rank by L1MC with the different values of µ in (b) and (d).
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Figure 9. Recovery results of the proposed L1MC, L1MC-RF and existing nine methods on Lenna (R = 29) and Boat (R = 40) image with 50%
observations (best viewed on screen).

of values. We can see a wide range of µ values lead to

their best performance of all methods. Such range of µ is

wider for data with a larger rank (or dimension) as seen

from Fig. 7(d) (also refers to Figs. 3(b) and 3(d)).

• Figs. 8(a) and 8(c) shows that these four methods cost

less time the given true ranks in most cases, compared

to the cases of given lower/higher-than-true-ranks. With

estimated ranks by L1MC with different values of µ, the

computational costs are stable with respect to different µ
on the whole, as observed from Figs. 8(b) and 8(d).

This study shows the advantage of L1MC in automatic

rank estimation, compared to manually fixing the rank. L1MC

greatly simplifies parameter tuning where a simple setting of µ
from a wide range of feasible values works for a wide range

of methods and data. This not only improves the recovery

performance but also reduces the time cost in parameter

tuning.

Moreover, these results demonstrate the importance of esti-

mating the true rank for matrix completion methods requiring

a rank a priori. In the following, we will compare the recovery

performance and rank estimation of our methods against the

competing algorithms in detail.

E. Completion Performance and Rank Estimation Comparison

We compare recovery accuracy (RSE), time cost (seconds),

and rank estimation of the proposed methods against the night

existing competing algorithms on the five synthetic matrices

and seven real-world images. We tested all the methods on

these matrices with 10% − 90% observed entries, and report

here the results of SR = {30%, 50%, 70%} (total 36 cases) in

Table I and II for simplicity. We use “**’ and “–” to indicate

that the method diverges (i.e., SVT) and does not terminate in

48 hours (i.e., FBCP) in some cases, respectively.

1) Recovery Accuracy: We report the recovery accuracy

(RSE) and time cost in Table I, where we highlight the

best results (smallest RSE) in bold fonts and the second best

(second smallest RSE) results in underline in each row for easy

comparison. From Table I, we have the following observations:

In terms of recovery accuracy on the synthetic matrices

(total 15 cases), L1MC-RF consistently recovers these matrices

successfully (RSE < 10−3) and obtains very small reconstruc-

tion errors of order 10−14 in all 15 cases. In fact, L1MC-RF

can achieve better results with smaller reconstruction errors

of order 10−15 if we relax the tol = 1e − 15. In addition,

OptSpace and MaCBetH are among the top two recovery
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Table I
RECOVERY ACCURACY (RSE) AND TIME COST ( SECONDS) OF DIFFERENT COMPLETION METHODS ON SYNTHETIC AND REAL DATA (SR = SAMPLE

RATIO = 30%, 50%, 70% ). WE HIGHLIGHT THE BEST RESULTS IN BOLD FONTS AND SECOND BEST RESULTS IN UNDERLINE.

Problem SVT [15] APGL [17] FPCA [19] AIS-Impute [21] LMaFit [35] Optspace [39] MaCBetH [43] GeomPursuit [44] FBCP [61] L1MC L1MC-RF

Data SR (%) RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time RSE Time

Synthetic 30 1.59E-13 12.2 1.24E-04 3.0 8.00E-07 46.6 7.52E-07 0.77 1.06E-14 0.2 4.57E-15 6.0 4.31E-15 0.8 3.20E-06 20.9 7.21E-13 90.7 2.18E-01 1.5 1.84E-14 5.1

500×500 50 1.31E-13 13.8 1.15E-04 2.6 4.27E-08 49.9 4.24E-07 1.15 1.03E-14 0.4 3.35E-15 4.6 4.85E-15 1.1 1.67E-06 34.1 2.31E-13 100.1 1.26E-01 1.1 1.23E-14 3.0

R = 5 70 1.07E-13 15.8 1.11E-04 2.4 5.39E-06 1.0 2.95E-07 1.70 8.93E-15 0.3 2.89E-15 5.6 3.56E-15 1.6 2.88E-07 80.7 1.07E-13 83.5 8.83E-02 1.0 1.02E-14 1.8

Synthetic 30 3.55E-13 96.0 4.12E-02 27.2 4.73E-05 4.5 4.12E-07 12.79 1.39E-14 1.8 2.39E-15 802.1 4.41E-15 13.6 1.30E-06 1185.6 5.86E-13 1423.6 1.19E-01 31.8 2.21E-14 52.6

1000×1000 50 4.31E-13 93.5 1.45E-03 11.9 2.34E-06 4.6 2.17E-07 13.64 8.31E-15 1.4 1.90E-15 776.9 3.07E-15 16.9 3.20E-07 2278.6 1.79E-13 1408.3 6.45E-02 19.4 1.45E-14 29.3

R = 25 70 6.28E-13 124.0 1.26E-04 11.6 8.11E-06 5.4 1.47E-07 18.57 9.59E-15 1.9 1.85E-15 722.9 1.34E-15 19.4 9.93E-08 1755.5 8.56E-14 1356.7 4.40E-02 12.7 1.13E-14 17.3

Synthetic 30 3.91E-09 468.8 3.18E-02 149.1 1.00E-04 8.1 5.36E-07 74.75 2.00E-14 4.1 5.98E-15 32028.2 6.00E-15 102.0 9.11E-07 1796.4 1.80E-12 6851.8 1.45E-01 66.3 2.91E-14 119.9

1000×1000 50 5.14E-13 221.0 1.62E-04 49.0 9.57E-06 8.6 2.40E-07 53.94 1.37E-14 2.5 3.37E-15 46723.0 2.61E-15 112.7 3.68E-07 2250.5 4.43E-13 1539.7 7.06E-02 29.0 1.71E-14 46.3

R = 50 70 7.69E-13 175.2 3.76E-03 30.6 2.17E-05 8.7 1.54E-07 70.85 1.10E-14 2.9 2.63E-15 58715.9 2.13E-15 117.0 1.15E-07 3079.3 1.96E-13 1460.0 4.59E-02 19.3 1.30E-14 26.4

Synthetic 30 1.66E-04 482.9 2.91E-02 60.0 4.65E-02 225.3 4.64E-02 13.07 3.95E-02 50.3 4.64E-02 1046.6 4.64E-02 30.8 8.15E-09 17226.9 4.21E-10 67412.9 2.91E-02 380.5 2.09E-14 460.0

2000×2000 50 3.19E-05 671.0 1.52E-02 50.9 4.64E-02 222.1 4.64E-02 19.11 3.91E-02 61.1 4.64E-02 1218.6 4.64E-02 45.1 2.63E-09 26333.8 – – 1.75E-02 164.4 1.41E-14 207.4

R = 50 70 8.89E-06 852.2 7.31E-04 62.9 4.15E-02 229.3 4.64E-02 26.50 3.90E-02 71.7 4.64E-02 1470.8 4.64E-02 57.2 6.20E-10 35139.0 – – 1.23E-02 88.6 1.03E-14 106.6

Synthetic 30 7.15E-04 1800.7 3.21E-02 83.7 3.31E-02 200.5 3.30E-02 9.61 5.25E-02 42.3 3.30E-02 993.1 3.30E-02 33.0 7.07E-09 33362.0 – – 2.12E-02 750.3 2.93E-14 999.8

2000×2000 50 1.20E-04 1542.7 3.20E-02 109.7 3.31E-02 246.2 3.30E-02 24.17 3.02E-02 74.1 3.30E-02 1499.7 3.30E-02 43.7 1.58E-10 45820.5 – – 1.29E-02 267.0 1.69E-14 335.6

R = 100 70 2.80E-05 1367.1 3.19E-02 92.4 3.31E-02 218.0 3.30E-02 25.94 3.01E-02 64.6 3.30E-02 1452.6 3.30E-02 51.7 1.34E-10 58936.6 – – 8.90E-03 126.3 1.10E-14 155.5

Lenna 30 ** ** 1.11E-03 78.7 7.73E-02 240.1 2.70E-01 10.96 6.61E-02 3.7 2.46E-01 47.9 2.57E-01 1.5 1.74E-06 154.5 2.59E-02 918.9 1.68E-02 45.1 8.33E-07 62.9

(512×512) 50 6.63E-01 8102.3 6.74E-04 29.8 3.94E-02 249.2 2.69E-01 1.83 4.40E-02 4.8 2.28E-01 62.6 2.25E-01 2.4 5.92E-07 186.7 2.97E-06 1274.7 6.21E-03 11.2 2.83E-14 19.5

R = 40 70 9.27E-02 487.8 5.71E-04 9.0 2.77E-02 15.7 2.99E-01 1.27 3.91E-02 5.8 2.19E-01 80.1 2.25E-01 3.2 1.31E-07 237.0 8.67E-10 1709.0 3.78E-03 4.8 1.87E-14 7.9

Boat 30 ** ** 2.82E-03 143.2 9.74E-02 223.7 1.78E-01 35.32 6.31E-02 4.3 2.42E-01 59.4 2.36E-01 1.1 3.20E-06 294.2 9.43E-02 544.0 3.44E-02 103.2 1.47E-02 136.4

(512×512) 50 6.78E-01 8021.5 1.01E-03 47.9 6.71E-02 249.4 2.47E-01 1.12 4.39E-02 5.9 1.94E-01 64.9 2.17E-01 2.1 1.07E-06 211.6 5.47E-06 1881.7 8.82E-03 14.3 1.99E-09 36.1

R = 29 70 1.13E-01 491.3 7.36E-04 14.4 7.80E-02 15.0 2.47E-01 1.34 3.76E-02 7.1 1.93E-01 71.8 1.93E-01 3.1 4.03E-07 240.1 4.41E-06 2337.3 4.65E-03 5.3 3.05E-14 12.8

Baboon 30 ** ** 8.52E-04 40.2 7.63E-02 162.0 1.57E-01 14.17 5.30E-02 3.7 1.72E-01 41.5 1.77E-01 0.8 7.45E-07 131.6 7.53E-07 675.4 1.25E-02 28.2 3.92E-11 41.2

(512×512) 50 6.39E-01 6332.8 5.92E-04 13.7 2.27E-07 83.0 2.24E-01 1.46 4.41E-02 5.3 1.51E-01 62.3 1.76E-01 1.1 4.38E-07 166.1 2.94E-07 789.0 5.27E-03 7.8 2.23E-14 12.8

R = 24 70 7.86E-02 408.0 5.21E-04 6.0 4.52E-05 9.8 2.24E-01 1.73 3.59E-02 6.6 1.33E-01 93.0 1.76E-01 1.3 1.17E-07 209.3 1.34E-07 1412.6 3.33E-03 3.6 1.64E-14 5.5

Peppers 30 ** ** 1.14E-03 109.2 7.95E-02 310.8 7.47E-02 106.76 7.41E-02 3.6 2.89E-01 62.6 2.45E-01 2.2 1.31E-06 113.8 1.10E-02 1135.7 1.82E-02 61.6 4.82E-07 29.0

(512×512) 50 6.65E-01 9098.9 6.75E-04 37.0 3.73E-02 297.6 1.84E-01 5.99 5.48E-02 5.1 1.96E-01 134.0 2.13E-01 3.4 4.76E-07 125.0 5.05E-06 1938.7 6.45E-03 15.7 3.06E-14 28.2

R = 30 70 9.31E-02 657.9 5.67E-04 12.9 3.17E-02 20.7 3.67E-01 2.06 4.46E-02 6.6 1.90E-01 178.4 2.04E-01 5.1 2.53E-07 155.8 3.64E-07 2151.7 3.89E-03 6.6 1.96E-14 11.0

Man 30 ** ** 6.01E-04 26.7 1.84E-04 48.0 2.27E-01 12.71 7.77E-02 13.0 2.74E-01 327.5 2.29E-01 15.4 6.70E-07 981.8 2.59E-06 4458.9 6.45E-03 271.3 3.06E-14 304.5

(1024 ×1024 ) 50 1.36E-01 103689.7 5.14E-04 19.1 3.97E-05 56.0 4.08E-01 7.14 7.25E-02 19.0 2.76E-01 472.5 1.86E-01 34.1 2.51E-07 1563.1 1.20E-12 9937.5 3.25E-03 84.3 1.73E-14 96.9

R = 27 70 1.45E-12 456.4 4.84E-04 17.3 4.19E-05 56.7 4.53E-01 5.63 6.71E-02 23.3 2.55E-01 765.8 1.85E-01 42.0 8.23E-08 2128.4 1.96E-13 8360.5 2.17E-03 34.2 1.10E-14 39.3

Airplane 30 4.16E-01 13056.8 2.46E-03 53.6 3.17E-04 38.1 5.33E-08 18.96 6.10E-02 10.3 2.74E-01 233.5 2.34E-01 13.4 2.22E-06 1282.3 1.77E-05 10311.3 1.57E-02 238.3 1.06E-10 283.4

(1024 ×1024 ) 50 1.03E-11 270.7 2.83E-03 24.6 4.51E-05 37.1 2.31E-01 13.45 1.04E-02 11.7 2.48E-01 386.9 2.23E-01 21.2 5.69E-07 2425.0 6.03E-05 5855.4 7.83E-03 107.0 2.00E-14 122.4

R = 23 70 2.36E-12 112.9 4.47E-04 12.1 4.59E-05 44.8 3.24E-01 14.03 1.01E-14 9.7 2.47E-01 431.5 2.12E-01 33.2 1.42E-07 2904.4 3.56E-07 3957.7 5.17E-03 54.9 1.50E-14 62.1

Airport 30 ** ** 5.69E-04 24.2 1.86E-04 38.7 2.75E-01 2.37 2.82E-02 33.6 2.14E-01 243.4 2.24E-01 7.9 6.81E-07 745.9 4.16E-12 2996.8 6.61E-03 215.7 2.59E-14 245.5

(1024 ×1024 ) 50 5.65E-04 27994.4 4.95E-04 13.0 3.05E-05 38.9 2.74E-01 4.29 2.71E-02 42.0 1.96E-01 381.6 2.04E-01 14.3 3.49E-07 1152.2 6.46E-13 7525.8 3.44E-03 78.8 1.56E-14 90.5

R = 22 70 6.86E-13 148.6 4.69E-04 13.1 4.02E-05 47.3 2.74E-01 6.26 3.32E-03 38.8 1.77E-01 601.2 1.77E-01 25.0 1.64E-07 1571.7 1.53E-13 6303.0 2.32E-03 37.9 1.14E-14 42.9

results on three small synthetic matrices (500 × 500 with

R = 5, 1000 × 1000 with R = 25, and 1000 × 1000 with

R = 50), though L1MC-RF gives results of one order lower

only. LMaFit obtains similar results as L1MC-RF on these

smaller matrices. However, LMaFit, OptSpace and MaCBetH

do not keep their good performance on the larger matrices

(2000 × 2000, R = {50, 100}), where L1MC-RF is still the

winner and outperforms the second best (GeomPursuit and

FBCP) by several orders of magnitude. Moreover, on these

large matrices, GeomPursuit costs more than 10 hours in a

few cases and FBCP fails to recover them within 48 hours in

most cases.

On the real-world images (total 21 cases), only L1MC-RF

consistently achieves the top two results in all cases except one

(Boat image with SR = 30%) where GeomPursuit obtains the

best result. GeomPursuit and FBCP achieve the second best

results following L1MC-RF in 16 out of 21 cases, while they

are more time consuming (about 10 and 45 times slower than

L1MC-RF on average respectively). Moreover, FBCP needs

more memory. OptSpace and MaCBetH fail to recover these

real-world images and estimate wrong ranks (as shown in

Table II). LMaFit also does not work well in the 21 cases

except one (Airplane image with 70% observations) where it

achieves the smallest reconstruction error. In addition, SVT,

APGL and AIS-Impute take the second place in a few cases

while SVT often fails to converge if the observed entries are

fewer (e.g., SR≤ 30%).

In a nutshell, L1MC-RF has shown good recoverability: it

outperforms the three decomposition-based methods as well as

GeomPursuit and FBCP on average, and also achieves smaller

reconstruction errors than the four nuclear norm minimization-

based methods in all cases. For illustration, we show two

examples of recovering the Boat and Lenna images with 50%
observations in Fig. 9.

2) Time Cost: In terms of computational cost, L1MC-RF

is not the fastest while our focus here is accuracy and our

implementation is not optimized for efficiency. It is worth

noting that AIS-Impute is the fastest algorithm due to its
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Table II
ESTIMATED RANK (EST.R) AND RELATIVE ERROR OF SINGULAR VALUES OF DIFFERENT METHODS ON SYNTHETIC AND REAL DATA. WE HIGHLIGHT

THE Correct Estimated Rank IN BOLD AND italic FONTS, SMALLEST ERRw RESULTS IN BOLD FONTS AND SECOND SMALLEST ERRw IN UNDERLINE.

Problem SVT [15] APGL [17] FPCA [19] AIS-Impute [21] LMaFit [35] Optspace [39] MaCBetH [43] GeomPursuit [44] FBCP [61] L1MC L1MC-RF

Data SR(%) Est.R Errw Est.R Errw Est.R Errw Est.R Errw Est.R Errw Est.R Errw Est.R Errw Est.R Errw Est.R Errw Est.R Errw Est.R Errw

Synthetic 30 5 2.41E-15 5 1.19E-04 5 4.62E-07 5 7.23E-07 5 5.77E-16 5 1.65E-16 5 1.03E-16 7 5.77E-08 5 7.01E-13 5 2.11E-01 5 5.36E-16

500×500 50 5 2.53E-15 5 1.13E-04 5 2.10E-08 5 4.17E-07 5 6.80E-16 5 1.85E-16 5 1.03E-16 7 2.78E-08 5 2.27E-13 5 1.24E-01 5 3.71E-16

R = 5 70 5 3.21E-15 5 1.10E-04 5 8.62E-07 5 2.93E-07 5 5.36E-16 5 1.65E-16 5 1.44E-16 7 4.88E-09 5 1.05E-13 5 8.76E-02 5 3.50E-16

Synthetic 30 25 1.64E-15 95 1.83E-03 25 1.91E-05 25 3.79E-07 25 7.03E-16 25 3.79E-16 25 1.44E-16 27 8.09E-09 25 5.46E-13 25 1.10E-01 25 8.48E-16

1000×1000 50 25 1.44E-15 25 1.59E-04 25 4.91E-07 25 2.09E-07 25 6.13E-16 25 4.87E-16 25 1.98E-16 27 3.06E-09 25 1.72E-13 25 6.23E-02 25 5.23E-16

R = 25 70 25 1.73E-15 25 1.24E-04 25 2.45E-06 25 1.44E-07 25 5.41E-16 25 3.43E-16 25 2.34E-16 27 6.34E-10 25 8.29E-14 25 4.31E-02 25 3.97E-16

Synthetic 30 69 4.44E-10 125 2.98E-03 50 2.36E-05 50 4.46E-07 50 6.41E-16 50 3.97E-16 50 7.69E-17 60 3.55E-09 50 1.53E-12 50 1.24E-01 50 7.18E-16

1000×1000 50 50 1.18E-15 50 1.49E-04 50 1.35E-06 50 2.22E-07 50 5.13E-16 50 3.46E-16 50 8.97E-17 52 1.85E-09 50 4.05E-13 50 6.55E-02 50 5.00E-16

R = 50 70 50 1.14E-15 51 1.60E-04 50 1.76E-06 50 1.48E-07 50 6.03E-16 50 2.95E-16 50 6.41E-17 52 2.25E-10 50 1.84E-13 50 4.41E-02 50 2.56E-16

Synthetic 30 50 1.21E-05 28 7.54E-04 1 1.08E-03 1 1.07E-03 12 7.32E-04 1 1.07E-03 1 1.07E-03 52 2.04E-11 50 2.31E-13 50 5.07E-03 50 1.40E-15

2000×2000 50 50 1.71E-06 39 4.87E-04 1 1.09E-03 1 1.09E-03 12 7.56E-04 1 1.09E-03 1 1.09E-03 52 9.99E-12 – – 50 3.12E-03 50 1.27E-15

R = 50 70 50 3.57E-07 50 1.35E-04 12 5.37E-04 1 1.07E-03 12 7.49E-04 1 1.07E-03 1 1.07E-03 52 9.68E-13 – – 50 2.21E-03 50 1.30E-15

Synthetic 30 100 8.28E-05 5 6.12E-04 1 5.55E-04 1 5.52E-04 12 1.29E-04 1 5.52E-04 1 5.52E-04 102 1.20E-11 – – 100 2.66E-03 100 2.18E-15

2000×2000 50 100 9.73E-06 5 6.05E-04 1 5.45E-04 1 5.43E-04 12 4.42E-04 1 5.43E-04 1 5.43E-04 102 1.72E-13 – – 100 1.62E-03 100 1.41E-15

R = 100 70 100 1.66E-06 5 6.06E-04 1 5.41E-04 1 5.41E-04 12 4.46E-04 1 5.41E-04 1 5.41E-04 102 1.77E-13 – – 100 1.14E-03 100 1.49E-15

Lenna 30 ** ** 29 3.25E-04 19 2.21E-03 18 4.11E-02 21 9.37E-04 2 3.00E-02 2 3.26E-02 31 1.00E-08 27 5.64E-04 29 5.02E-03 29 6.69E-09

(512×512) 50 142 6.40E-01 29 2.47E-04 26 7.71E-04 4 4.09E-02 24 7.82E-04 3 2.60E-02 3 2.52E-02 31 3.82E-09 37 3.29E-09 29 2.28E-03 29 1.31E-15

R = 29 70 401 4.29E-02 29 2.25E-04 28 9.85E-05 1 4.55E-02 25 6.87E-04 3 2.41E-02 3 2.53E-02 31 7.83E-10 29 1.17E-12 29 1.49E-03 29 5.36E-16

Boat 30 ** ** 40 4.87E-04 19 3.25E-03 58 2.20E-02 32 3.61E-04 1 2.92E-02 1 2.78E-02 42 2.20E-08 18 4.19E-03 64 6.99E-03 64 1.21E-03

(512×512) 50 145 6.61E-01 40 2.76E-04 27 2.22E-03 1 3.08E-02 33 5.19E-04 3 1.85E-02 2 2.36E-02 42 3.88E-09 52 3.30E-09 40 2.41E-03 40 1.37E-11

R = 40 70 404 5.14E-02 40 2.35E-04 31 1.82E-04 1 3.10E-02 34 5.57E-04 3 1.85E-02 3 1.85E-02 42 1.56E-09 54 7.05E-09 40 1.48E-03 40 6.83E-16

Baboon 30 ** ** 24 2.48E-04 16 2.22E-03 54 1.75E-02 20 5.01E-04 2 1.45E-02 2 1.53E-02 26 5.18E-09 25 1.52E-09 24 3.68E-03 24 1.80E-13

(512×512) 50 142 6.24E-01 24 2.04E-04 24 1.80E-08 1 2.52E-02 21 7.33E-04 3 1.12E-02 2 1.54E-02 26 3.78E-09 24 1.87E-10 24 1.82E-03 24 1.01E-15

R = 24 70 402 3.71E-02 24 1.90E-04 24 1.96E-07 1 2.53E-02 22 5.96E-04 4 8.83E-03 2 1.54E-02 26 5.86E-10 24 1.07E-10 24 1.21E-03 24 9.09E-16

Peppers 30 ** ** 30 3.57E-04 21 2.40E-03 140 1.38E-02 21 1.25E-03 3 4.14E-02 4 2.86E-02 32 9.40E-09 29 3.62E-04 30 5.82E-03 30 2.02E-07

(512×512) 50 143 6.43E-01 30 2.66E-04 27 7.41E-04 16 3.51E-02 23 1.19E-03 6 1.87E-02 5 2.23E-02 32 3.07E-09 42 3.20E-09 30 2.55E-03 30 9.53E-16

R = 30 70 402 4.30E-02 30 2.41E-04 29 1.91E-04 1 6.94E-02 25 8.44E-04 6 1.79E-02 5 2.06E-02 32 9.19E-10 32 8.70E-10 30 1.65E-03 30 1.10E-15

Man 30 ** ** 27 2.90E-04 27 1.41E-06 14 5.39E-02 22 2.21E-03 5 3.62E-02 8 2.43E-02 29 1.34E-09 30 2.04E-09 27 3.10E-03 27 8.96E-16

(1024 ×1024) 50 180 1.24E-01 27 2.65E-04 27 1.27E-07 4 9.73E-02 22 2.35E-03 5 3.82E-02 10 1.67E-02 29 9.21E-10 27 1.72E-13 27 1.67E-03 27 4.89E-16

R = 27 70 27 1.91E-15 27 2.55E-04 27 1.96E-07 1 1.08E-01 23 2.24E-03 6 3.36E-02 10 1.69E-02 29 3.83E-10 27 4.80E-14 27 1.15E-03 27 7.06E-16

Airplane 30 28 2.64E-01 34 4.77E-04 23 2.75E-06 23 2.54E-08 21 1.23E-03 4 3.62E-02 6 2.57E-02 25 8.33E-09 58 3.57E-08 23 7.53E-03 23 9.70E-13

(1024 ×1024) 50 23 8.05E-13 36 3.70E-04 23 1.99E-07 12 5.66E-02 23 2.50E-04 5 3.05E-02 6 2.44E-02 25 3.63E-09 28 7.56E-08 23 4.05E-03 23 1.60E-15

R = 23 70 23 3.57E-15 23 2.39E-04 23 2.59E-07 8 7.91E-02 23 9.76E-16 5 3.05E-02 7 2.23E-02 25 4.77E-10 28 5.50E-10 23 2.76E-03 23 1.20E-15

Airport 30 ** ** 22 2.33E-04 22 1.68E-06 1 3.82E-02 21 3.91E-04 4 2.27E-02 3 2.47E-02 24 3.22E-09 22 8.71E-13 22 2.70E-03 22 9.19E-16

(1024 ×1024) 50 105 5.00E-05 22 2.15E-04 22 1.41E-07 1 3.83E-02 21 3.96E-04 5 1.92E-02 4 2.07E-02 24 1.73E-09 22 1.35E-13 22 1.49E-03 22 8.87E-16

R = 22 70 22 1.61E-15 22 2.08E-04 22 2.42E-07 1 3.83E-02 22 5.02E-05 6 1.56E-02 6 1.56E-02 24 6.72E-10 22 3.26E-14 22 1.03E-03 22 7.90E-16

C-mex programming. LMaFit and MaCBetH are faster than

L1MC-RF since they use an efficient nonlinear successive

over-relaxation scheme and employ the minFunc software for

acceleration, respectively. On the other hand, FBCP is the

slowest among these completion methods. GeomPursuit is

much slower than L1MC-RF in each case although it takes

the most second best results, i.e., L1MC-RF is more than 89

times and 10 times faster than GeomPursuit on average on the

synthetic and real matrices, respectively. Moreover, SVT and

OptSpace are also slower than L1MC-RF especially in some

cases (e.g., on 1000× 1000 with R = 50), which is probably

due to their heavy SVD computation.

3) Rank Estimation: We also report the corresponding

estimated rank (Est.R) and relative error of singular values

(Errw) in Table II, where we highlighted the correct estimated

rank in bold and italic fonts, smallest Errw in bold fonts

and second smallest Errw in underline in each row. For the

methods without the rank estimation step, we compute the

estimated ranks by SVD of the recovered matrices.

From Table II, we observe that: L1MC-RF (L1MC) success-

fully determines the true ranks of the given incomplete images

in all 36 cases excepting one (Boat image with SR = 30%),

where L1MC does not have enough observations. GeomPursuit

performs best with the smallest Errw in this case, which results

in the best recovery result. L1MC can determine the true rank,

while its weight vector (singular values) is far from the ground

truth (Errw > 10−3), resulting in poor recovery performance.

This demonstrates the significance of our refinement strategy

in L1MC-RF: with the refinement strategy, L1MC-RF further

refines the factors and weights via R1MC to pursue an optimal

solution for matrix completion. In other words, L1MC-RF not

only can automatically estimate the true rank exactly but also

obtain the true singular values. On the other hand, though

GeomPursuit cannot obtain exact true ranks, it consistently

learns the singular values with small errors (Errw of order

less than 10−7), which leads to good recovery performance.

Moreover, FBCP does not always successfully determine the

true rank but it also obtains the singular values with very small
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errors, which helps it achieve the second best recovery results

in 7 out of 36 cases.

4) Limitation on Matrices with Exponentially Decaying

Singular Values: Although L1MC-RF can outperform others

in results presented so far, it has limitation on matrices with

exponentially decaying singular values, which can be found in

certain real world applications [72]. Such singular value dis-

tribution makes truncation in L1MC-RF more difficult while

GeomPursuit performs much better by design. We generated

three types of such matrices with slow, moderate, and fast

exponentially decaying singular values following the setting

in [44]. The rank was fixed at 20. Table III shows that

GeomPursuit gives much better results than L1MC-RF on the

moderate exponentially decaying scenario. The experiments on

the other two (slow and fast) scenarios show similar results.

An interesting future work could be to extend L1MC-RF to

handle such cases better, e.g., with more adaptive thresholding

or ideas in GeomPursuit.

F. Summary of Experimental Results

• The proposed L1MC-RF is simple to implement and not

sensitive to its parameters (the regularization parameter

µ and the initial rank R̂). It has fast convergence in rank

estimation and good efficiency.

• Estimating the true rank is important for matrix

completion methods requiring a pre-specified rank to

achieve good results. L1MC-RF has good stable perfor-

mance in both matrix completion and rank estimation.

L1MC-RF consistently recovers all the synthetic matrices

exactly with very small reconstruction errors and effi-

ciently achieves the top two results almost in all cases on

the real-world images.

• The four nuclear norm minimization-based methods

(SVT, APGL, FPCA and AIS-Impute) successfully re-

cover the matrices (RSE < 10−3) in about half of the total

cases but obtain much lower accuracies than L1MC-RF

on average.

• The three low-rank matrix decomposition-based methods

(LMaFit, OptSpace and MaCBetH) have shown their

good recoverability on most synthetic matrices while fail

to estimate the true ranks and predict the missing entries

on the real-world images overall. Moreover, Optspace is

the slowest among the compared decomposition-based

methods (including L1MC-RF) due to its SVD computa-

tion, which also makes SVT slower than L1MC-RF.

• GeomPursuit consistently recovers the matrices success-

fully and take the most second places (15 cases). It even

achieves the best result in one case where Boat image

with 70% missing entries. However, GeomPursuit cannot

estimate the exact true ranks. Besides, GeomPursuit is

also very time consuming: it is more than 57 times slower

than L1MC-RF on the whole.

• FBCP obtains true ranks correctly in half of the total

cases and achieves the second best recovery results in 7

cases. However, it is the slowest among the compared

methods: it is more than 64 times slower than L1MC-RF

on average and even costs more than 48 hours on large

matrices (e.g., 2000× 2000, R = 100) in most cases.

• Although our methods can outperform the competing

methods on the whole, it cannot obtain good results on

the matrices with exponentially decaying singular values.

In this special scenario, GeomPursuit works much better.

Table III
COMPARISON RESULTS OF RECOVERING SYNTHETIC MATRIX

(R = 20) WITH MODERATE EXPONENTIALLY DECAYING

SINGULAR VALUES VIA GEOMPURSUIT AND L1MC-RF.

Problem GeomPursuit [44] L1MC-RF

Data SR (%) RSE Est.R RSE Est.R

Synthetic Matrix 30 6.86E-15 20 3.62E-03 5

With Moderate Exponentially 50 1.41E-15 20 3.35E-03 5

Decaying Singular Values 70 1.40E-15 20 8.38E-04 6

V. CONCLUSION

In this paper, we have proposed a novel low-rank matrix

completion method with automatic rank estimation, based

on rank-one approximation. We have first presented R1MC

that minimizes the reconstruction error given a fixed rank to

predict the missing entries. Here, if the given rank is the true

rank of the target incomplete matrix, R1MC can achieve the

optimal solution for the matrix completion problems under

moderate conditions. We then solved the challenging rank

estimation problem by developing L1MC method that simul-

taneously minimizes the L1-norm of weight vector and the

reconstruction error. Once the rank is automatically estimated

by L1MC, we have further proposed a refinement strategy: we

remove the L1-norm regularization and then obtain the refined

results by directly optimizing the rank-one approximation

model (e.g., using R1MC). This whole process is named

as L1MC-RF. With the experiments on synthetic and real-

world data, we have demonstrated that the proposed L1MC-

RF is easy to implement and not sensitive to its parameters.

More importantly, L1MC-RF can efficiently estimate the true

rank and recover the incomplete matrix exactly under certain

conditions, which outperforms the competing methods on the

whole. Nonetheless, our methods cannot work well on the

special matrices with exponentially decaying singular values,

which will be an interesting future work.
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