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Abstract—With explosive growth of data volume and ever-
increasing diversity of data modalities, cross-modal similarity
search, which conducts nearest neighbor search across different
modalities, has been attracting increasing interest. This paper
presents a deep compact code learning solution for efficient cross-
modal similarity search. Many recent studies have proven that
quantization based approaches perform generally better than
hashing based approaches on single-modal similarity search. In
this work, we propose a deep quantization approach, which is
among the early attempts of leveraging deep neural networks into
quantization based cross-modal similarity search. Our approach,
dubbed shared predictive deep quantization (SPDQ), explicitly
formulates a shared subspace across different modalities and two
private subspaces for individual modalities, representations in the
shared subspace and the private subspaces are learned simultane-
ously by embedding them to a reproducing kernel Hilbert space
where the mean embedding of different modality distributions
can be explicitly compared. Additionally, in the shared subspace,
a quantizer is learned to produce the semantics preserving
compact codes with the help of label alignment. Thanks to
this novel network architecture in cooperation with supervised
quantization training, SPDQ can preserve intra- and inter-modal
similarities as much as possible and greatly reduce quantization
error. Experiments on two popular benchmarks corroborate that
our approach outperforms state-of-the-art methods.

Index Terms—Multimodal, quantization, compact code, private
network, shared network, deep learning.

I. INTRODUCTION

S IMILARITY search is a fundamental subject in numerous
computer vision applications, such as image and video

retrieval [1]–[15], image classification [16], object recogni-
tion [17], etc. During the last decade, the amount of hetero-
geneous multimedia data continues to grow at an astonishing
speed, and multimedia data on the Internet usually exist in
different media types and come from different data sources,
e.g., video-tag pairs from YouTube, image-short text pairs
from Facebook, and text-image pairs from news website.
When we search a topic, it is expected to retrieve a ranked
list containing data in various media types, which can give us
a comprehensive description for the query topic. So, efficient
cross-modal similarity search becomes increasingly important
and has also been found far more challenging.
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Actually, cross-modal retrieval has been widely studied in
recent years [18]–[26]. In contrast to single-modal search
scenario, heterogeneous data in cross-modal retrieval usually
reside in different feature spaces, and how to exploit and
build the correlation between heterogeneous modalities to
preserve both intra- and inter-modal data similarities is a
crucial issue. In order to eliminate the diversity between
different modality features, recent studies are concentrated on
mapping heterogeneous data into a common latent subspace
so that the learned features in this subspace can be directly
compared. However, due to high storage cost and low query
efficiency, these methods can not deal with large-scale multi-
modal data.

To tackle the efficiency and storage challenges, we study
compact coding, a promising solution approaching cross-
modal similarity search, especially focusing on a common
real-world cross-modal search scenario: image-to-text search.
Compact coding methods transform high-dimensional data
points to indexable short binary codes, with which similarity
search can be executed very efficiently. Most research efforts
have been made on cross-modal similarity search with typical
solutions including hashing [27]–[44] and quantization [39],
[45], [46]. Hashing based methods are usually proposed by
mapping original heterogeneous high-dimensional data into a
common low-dimensional Hamming space and representing
the original data by using a set of compact binary codes.
Quantization based methods, rather than using binary codes,
usually approximate the original data by concatenating or
adding a set of learned quantizers. It has been proven that
quantization enjoys a more powerful representation ability
than hashing, thanks to the more accuracy distance approx-
imation [47]–[50]. However, previous cross-modal hashing or
quantization methods relying on shallow learning architectures
cannot effectively exploit the intrinsic relationships among
different modalities.

Recently, deep hashing methods for cross-modal
search [21], [51] emerge and yield attractive results on
a number of benchmarks. Performance of those methods
largely depends on whether those deep hashing models
can effectively capture nonlinear correlations between
different modalities. To further reduce quantization error,
deep quantization method [52] is proposed for cross-modal
similarity search, where a deep representation and a quantizer
for each modality are jointly learned with an end-to-end
architecture. Unfortunately, a common shortcoming of such
deep methods, whether hashing or quantization, is that they
individually construct two networks for different modalities
and then learn their corresponding deep representations,
which isolates the relationships among different modalities.
Moreover, current quantization strategies do not consider the
impact of semantic information (such as labels) on the quality
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of quantization and similarity preserving.
In this paper, we propose a novel quantization approach for

cross-modal similarity search, dubbed Shared Predictive Deep
Quantization (SPDQ), aiming at adequately exploiting the
intrinsic correlations among multiple modalities and learning
compact codes of higher quality in a joint deep network
architecture. Specifically, we first adopt deep neural networks
to construct a shared subspace and two private subspaces
respectively. The private subspaces are used to capture modal-
ity specific properties, while the shared subspace is used to
capture the representations shared by multiple modalities. Fig.
1 illustrates the difference between traditional common sub-
space learning methods and the proposed method. Compared
with traditional common subspace learning methods [53],
[54], by finding a shared subspace that is independent of the
private subspaces, our proposed model can capture intrinsic
semantic information shared between multi-modal data more
efficiently. Actually, representations in shared subspace and
private subspaces are learned simultaneously by embedding
them to a reproducing kernel Hilbert space where the mean
embedding of different modality distributions can be explic-
itly compared. Moreover, we quantize the representations to
produce compact codes in the shared subspace, where label
alignment is introduced to enforce semantic similarities. In
doing so, data points in the same class are encouraged to
have the same representation, therefore greatly reducing intra-
class dissimilarity, then both intra- and inter-modal similarities
are well preserved. Compared with existing works, main
contributions of the proposed SPDQ method are summarized
as follows:
• By explicitly learning a shared subspace and two private

subspaces, our method can extract the correlated infor-
mation between different modalities more efficiently.

• Representations from different classes are transformed
and aligned using label information, which can greatly
reduce the intra-class diversity, and both intra-modal and
inter-modal semantic similarities are well preserved.

• By integrating shared and private subspace learning and
representation quantization in an end-to-end mechanism,
our method can jointly optimize each part and generate
more discriminative representations which are suitable for
quantization.

• Experimental results on two popular cross-modal datasets
show that our approach significantly outperforms state-of-
the-arts in terms of search accuracy and search efficiency.

The rest of this paper is organized as follows. We review
the relevant literature in Section II. We present our novel deep
quantization approach for cross-modal search in Section III.
Section V shows the experiments, followed by the concluding
remarks in Section VI.

II. RELATED WORK

A variety of compact coding approaches for cross-modal
similarity search have been developed over the last decade,
which include hashing based approaches, quantization based
approaches, and more recently deep learning based ap-
proaches. We briefly review some work related to our proposed
method in this paper.

Fig. 1: The difference between traditional common subspace
learning methods and the proposed SPDQ method: (a)
traditional common subspace learning methods, (b) the

proposed SPDQ method.

A. Cross-modal Hashing

Cross-modal hashing schemes [55] aim at conducting fast
similarity search across data from different modalities, which
are also similar to the link prediction [56]. In these meth-
ods, multi-modal data are usually embedded into a common
Hamming space so that hash codes of different modalities
can be directly compared using the Hamming distance. Such
an embedding can be considered as a hash function acting
on input data trying to preserve some underlying similarities.
The main challenge in cross-modal hashing lies in how to
exploit and build the intrinsic relationships between multiple
modalities.

Recently, various cross-modal hashing methods have been
proposed. Sensitive hashing (CMSSH) [27] aligns similarities
between points in a Hamming space shared across different
modalities, where the similarity between a pair of embedded
data points is expressed as a superposition of weak classi-
fier. Semantics preserving hashing (SePH) [42] transforms
the provided semantic affinities to a probability distribution
and approximates it with hash codes in a Hamming space.
Considering the learned hash codes as supervised information,
SePH learns the hash functions by kernel logistic regression.
Co-regularized hashing (CRH) [57] learns hash functions
by minimizing an intra-modality loss and an inter-modality
loss. Inter-media hashing (IMH) [58] and cross-view hashing
(CVH) [33] extend spectral hashing to multi-modal setting.
Meanwhile, some endeavors, such as multimodal similarity-
preserving hashing [51], sparse hashing [59], composite hash-
ing [38], and collective matrix factorization [60], have been
made to exploit similarity relationships to learn hash codes
accounting for different modalities.

B. Cross-modal Quantization

Quantization based methods try to approximate original
data using some quantizers. Recently, many kinds of quan-
tization techniques have been proposed including product
quantization [61], additive quantization [62] and composite
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quantization [47]. Product quantization splits the input vector
into distinct subvectors which are quantized separately using
distinct quantizers. Additive quantization approximates the
input vectors using sums of several codewords from differ-
ent codebooks. Composite quantization is similar to additive
quantization and introduces some extra constraints on the
inner product between codewords from different codebooks
to further improve the query efficiency.

Currently, based on these quantization techniques, some
approaches [45], [46], [63] were proposed for cross-modal
similarity search. Quantized correlation hashing [46] simul-
taneously learns hash functions and quantization of hash
codes by minimizing the inter-modality similarity disagree-
ment as well as the binary quantization over each modality.
Compositional correlation quantization (CCQ) [45] transforms
different modalities to an isomorphic latent space, and then
quantizes the isomorphic latent features into compact binary
codes by learning compositional quantizers. Collaborative
quantization [63] jointly learns quantizers for both modalities
through aligning the quantized representations for each pair
of image and text belonging to a document. Besides, to
make the representations in different modalities comparable,
collaborative quantization simultaneously learns the common
space for both modalities via matrix factorization, and then
conducts quantization to enable efficient and effective search
via the Euclidean distance in the common space.

C. Deep Learning Based Cross-modal Methods

Deep learning has revolutionized computer vision [64],
machine learning and other related areas, and has also demon-
strated its effectiveness in improving accuracy of cross-modal
hashing [20], [21] and cross-modal quantization [52]. Deep
cross-model hashing (DCMH) [21] exploits pair-wise labels
across different modalities to encourage semantic similar data
points to have similar hash codes and semantic dissimilar data
points to have dissimilar hash codes. Moreover, DCMH inte-
grates feature learning and hash code learning into an unified
deep framework. Deep visual-semantic hashing (DVSH) [20]
utilizes a convolution neural network for image modality and
a recurrent neural network for text modality. It first generates
unified compact hash codes by combining information from
images and sentences, and then tries to approximate these
learned hash codes by training a CNN for image modality
and a RNN for text modality. After training, hash codes for
instances from different modalities can be directly generated
from the corresponding network. Collective deep quantiza-
tion (CDQ) [52] solves the compact codes learning problem
by using a Bayesian learning framework, and learns deep
representations and quantizers for all modalities by jointly
optimizing these two parts.

Unlike these existing deep cross-modal methods [20], [21],
[52], SPDQ is the first attempt to explicitly and jointly model
a private subspace for each modality and a shared subspace
between different modalities. Additionally, in the process of
quantization, we utilize label alignment to greatly improve the
quantization quality. Finally, we incorporate these two parts
into an end-to-end architecture.

III. FORMULATION

Suppose we have a database D with two modalities, D =
{(Xi,Xt),L}, where Xi = {xi1,xi2, ...,xiN} are data points
from image modality, Xt = {xt1,xt2, ...,xtN} are data points
from text modality, L = {l1, l2, ..., lN} are their corresponding
labels with ln ∈ {0, 1}K , N is the number of data points, and
K is the number of classes. Xi can also be formulated as
Xi = {X1

i ,X
2
i , ...,X

K
i }, where Xk

i = {xki1,xki2, ...,xkiNk
}

are image data points belonging to the k-th class, Nk is the
data point number belonging to the k-th class. Xk

t for text
modality is defined similarly.

Given an image (text) query xiq (xtq), the goal of cross-
modal similarity search is to retrieve the closest matches in
the text (image) database. In this paper, we first exploit con-
volutional neural networks (CNNs) to learn a shared subspace
across different modalities and a private subspace for each
modalities. Subsequently, in the shared subspace, we learn
common representations by using label alignment and adopt
additive quantization [62] to obtain the compact codes. The
resulting deep network model is depicted in Fig. 2.

A. Shared Predictive Representation Learning

In cross-modal similarity search, representations of two
related data points (e.g., an image and an associated text) from
different modalities should contain some shared components
since they describe the same object. Meanwhile, they should
also have private components since they come from different
modalities. To achieve accurate search results, the intuitive
way is to simply preserve shared components among these
representations as much as possible and ignore their private
components. However, private components are coupled with
shared components in the original representation. According
to the idea of subspace decomposition [65] [66] and com-
ponent analysis [67], explicitly modeling private components
can enhance the ability to capture shared components across
different modality, thus can achieve more accurate searching.
So, in this paper we explicitly model shared components and
private components simultaneously.

Concretely, we project the multi-modal data points into
a shared subspace and two private subspaces, where the
shared components and the private components are captured
separately. And we utilize multiple kernel maximum mean
discrepancy (MK-MMD) [68] as the distance metric in those
subspaces. MK-MMD is a kernel based distance function first
proposed for two sample test, and has been successfully used
in transfer learning [69] and domain adaptation [70]. In the
following, we first give a brief introduction to MK-MMD
distance and then elaborate the learning process of the shared
subspace and the private subspace.

Let x and y be random variables from distribution p and
q. The empirical estimate of the distance between p and q, as
defined by MK-MMD, is

d2k(p, q) = ‖Ex∼p[φ(x)]− Ey∼q[φ(y)]‖2Hk
, (1)

where Hk is a universal reproducing kernel Hilbert space
(RKHS) endowed with a characteristic kernel k, φ is the
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Fig. 2: Framework of the proposed method, where text private units and image private units exist in their corresponding
modality-specific subspaces and common units exist in the shared subspace.

mapping from original data points to Hk, and we have
k(x, y) = 〈φ(x), φ(y)〉. For MK-MMD, the characteristic
kernel k is a convex combination of m positive semi-definite
kernels ku

K :=

{
k =

m∑
u=1

βuku :

m∑
u=1

βu = 1, βu ≥ 0,∀u

}
, (2)

where the coefficients βu are constrained to guarantee the
derived multi-kernel k characteristic. Having a range of kernels
is beneficial since the distributions of the features change
during learning and different components of the multi-kernel
might be responsible at different times, so that we can get a
large distance when the distributions are not similar.

In this paper, we exploit MK-MMD as the distance function
for learning representations in the shared subspace and the
private subspace. As analyzed before, the shared subspace
captures common components between different modalities,
and the private subspace captures unique components for each
modality. So in the shared subspace, representations of data
points with the same class from different modalities should
be as similar as possible, and in the private subspace, the
representations from different modalities reflecting modality-
specific information should be as dissimilar as possible. Thus,
we can get the following loss function

L1 =

K∑
k=1

{
∥∥E[φ(ski )]− E[φ(skt )]

∥∥2
Hk

−
∥∥E[φ(rki )]− E[φ(rkt )]

∥∥2
Hk
},

(3)

where ski and skt are representations for xki and xkt in the
shared subspace, rki and rkt are the corresponding representa-
tions in their private subspaces.

To ensure that the modality-specific representations are use-
ful (avoiding trivial solutions) and enhance the discriminative

ability of representations in both private subspace and shared
subspace, for each modality we concatenate the representations
learned from shared subspace and private subspace into a
complete representation as hi = [si, ri] and ht = [st, rt].
Then, we introduce a classification loss for these complete
representations as

L2 = Lc(hi, l) + Lc(ht, l), (4)

where Lc is the sigmoid cross-entropy loss, l is the corre-
sponding label vector.

Combine (3) and (4), we can formulate the overall objective
function for shared predictive representation learning as

Ol = L1 + αL2, (5)

where α is the weight to balance these two parts.
For each modality, we design a neural network to learn the

shared and private representations as depicted in Fig. 2, which
will be elaborated in Section V. By utilizing the designed
networks and optimizing the objective function Ol, we can
explicitly map data points from different modalities into a
shared subspace and their modality-specific private subspaces.
The networks for the shared subspace learning can be used
to predict shared representations for data points from different
modalities. Since shared representations contain all the corre-
lated information across different modalities which are crucial
for cross-modal retrieval and private components contain only
modality-specific information which are inapplicable to cross-
modal retrieval, so for the following quantization procedure,
we only use the representations in the shared subspace.

B. Quantization with Label Alignment

If multi-modal data points sharing the same semantic mean-
ing (belong to same categories), it is natural to assume that
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they share some common structures which are correlated with
their labels. Therefore, to preserve the semantic similarity and
reduce the intra-class diversity, we assume that representations
in shared subspace are composed of category-specific struc-
tures which reflect the shared characteristics inside heteroge-
neous data points, and we use label information to discover
and preserve these category-specific structures. The objective
function can be defined as

L3 =‖CiSi − ZL‖2F + ‖CtSt − ZL‖2F
s.t. CiC

T
i = I,CtC

T
t = I,

(6)

where Si = [si1, si1, ..., siN ] are the representations for image
data points in the shared subspace, St = [st1, st1, ..., stN ] are
the representations for text data points in the shared subspace,
and Ci and Ct are the transformation matrixes that align
Si and St in the label space. In addition, the constraints
CiC

T
i = I,CtC

T
t = I are used to make Ci and Ct

be orthogonal projections. We construct an auxiliary matrix
Z = [z1, z2, ...zK ] to reflect the category-specific structures,
where zi is the representation for i-th class in the label space.
Since all data points sharing the same labels have the same
ZL, by optimizing L3 we can explicitly reduce the intra-class
diversity, and ZL can be regarded as the surrogate of CiSi
and CtSt in the label space.

Based on the surrogate representations ZL, we adopt ad-
ditive quantization [62] to learn the final compact codes.
Additive quantization aims to approximate representations as
the sum of M elements selected from M dictionaries. We can
approximate ZL by minimizing

L4 = ‖ZL−DB‖2F . (7)

Here D = [D1,D2, ...DM ] corresponds to M dictionaries,
Dm = [dm1,dm2, ...,dmK ] corresponds to the m-th dic-
tionary with K elements, and B = [B1,B2, ...,BN ] with
Bn = [bn1,bn2, ...,bnM ] is the indicator matrix, where each
bnm is a 1-of-K binary vector indicating which one (and only
one) of the K dictionary elements is selected to approximate
the data points.

Combine (6) and (7), we obtain the overall objective func-
tion for quantization as

Oq = L3 + βL4

= ‖CiSi − ZL‖2F + ‖CtSt − ZL‖2F
+ β‖ZL−DB‖2F
s.t. CiC

T
i = I,CtC

T
t = I,

(8)

where β are weights to balance the two parts.

C. Overall Objective Function

When merging (5) and (8) together, the overall objective
function for learning shared predictive representations and
quantizing these representations into compact codes with label
alignment can be expressed as

O = Ol + λOq
s.t. CiC

T
i = I,CtC

T
t = I,

(9)

where λ is the weight to balance the representation learning
and quantization parts. By minimizing (9), we can jointly
optimize these two parts which will help to learn more suitable
representations for quantization and generate more effectively
compact codes.

D. Search Process
Approximate nearest neighbor (ANN) search based on inner

product distance is a powerful technique for quantization meth-
ods. Given an image query xiq , we first compute its common
representation siq using the trained image modality network,
and obtain its corresponding representation in the label space
denoted as Cisiq . Similarly to [52], we use Asymmetric
Quantizer Distance (AQD) to calculate the distance between
the query xiq and text point xtd in database as

AQD(xiq,xtd) = Cisiq
> · (

M∑
m=1

Dmbdm) (10)

where DBd =
∑M
m=1 Dmbdm is the quantized representation

for text database point xti. Given a query, the inner products
for all M dictionaries and all K possible values of bim can
be pre-computed and stored in a M ×K lookup table, which
is used to compute AQD between the query and all database
points. Each AQD calculation entails M table lookups and M
additions, and is slightly more costly than Hamming distance.

IV. OPTIMIZATION

We optimize the proposed problem by alternatively solving
two sub-problems: updating network parameters with quanti-
zation parameters fixed, and updating quantization parameters
with the network parameters fixed.

1) Fix quantization parameters Ci, Ct, Z, D and B, update
network parameters. In this paper, we adopt the unbiased
estimate of MK-MMD [68]. Specifically,

d2k (p, q) =
2

N

N/2∑
n=1

η (un) , (11)

where, for shared representations, quad-tuple un ,
(si(2n−1), si(2n), st(2n−1), st(2n−1)), N is the number of
points in a mini-batch, and

η(un) = k(si(2n−1), si(2n))− k(si(2n−1), st(2n))
+ k(st(2n−1), st(2n))− k(st(2n−1), si(2n)).

(12)

The distance between private representations is similar to
the shared representations. When we optimize the network
parameters by mini-batch SGD, we only need to consider
the gradients of (9) with respect to each data point. Actually
we only need to compute the gradients of η(un) for the
quad-tuple un = (si(2n−1), si(2n), st(2n−1), st(2n−1)). Given
kernel k as the convex combination of m Gaussian kernels
{ka(xi,xj) = e−‖xi−xj‖2/τa}, since:

∂k(si(2n−1), si(2n))

∂si(2n)
=−

∑m

a=1

2βa
τa

ka(si(2n−1), si(2n))

× (si(2n−1) − si(2n))
(13)
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Combine (1) and (3), the gradient ∂L1

∂si·
and ∂L1

∂ri·
can be

readily computed. Since we adopt sigmoid cross-entropy loss
for the classification loss in (4), the gradient ∂L2

∂sin
and ∂L2

∂rin
can also be readily computed. Then we can get

∂O
∂rin

=
∂L1

∂rin
+ α

∂L2

∂rin
,

∂O
∂rtn

=
∂L1

∂rtn
+ α

∂L2

∂rtn
.

(14)

Fix Ci, Ct and Z, we can get

∂Oq
∂sin

= 2Ci
T (Cisin − Zln),

∂Oq
∂stn

= 2Ct
T (Ctstn − Zln).

(15)

Thus we can compute the gradient of the overall objective
function O with regard to si and st as

∂O
∂sin

= (
∂L1

∂sin
+ α

∂L2

∂sin
) + λ(

∂Oq
∂sin

),

∂O
∂stn

= (
∂L1

∂stn
+ α

∂L2

∂stn
) + λ(

∂Oq
∂stn

).

(16)

Then using (14) and (16), we can update the parameters of
image modality network and text modality network with chain
rule.

2) Fix parameters of image modality network and text
modality network, Ci, Z, when Si are known, we update the
transform matrix Ci by

minCi‖CiSi − ZL‖2F ,
s.t. CiC

T
i = I.

(17)

(17) can be considered as the Orthogonal Procrustes problem
and is solved by SVD algorithms. Specifically, we perform
SVD as (ZL)Si

T = UiYiW
T
i , and then we can update Ci

by:
Ci = UiW

T
i . (18)

3) Fix parameters of image modality network and text
modality network, Ct and Z. Similarly to Ci, Given
(ZL)St

T = UtYtW
T
t , We can update the transform matrix

Ct by
Ct = UtW

T
t . (19)

4) Fix Ci, Ct, D and B, let the derivation of O with regard
to Z equals to zero, we can get

Z = [(CiSi +CtSt) + βDB]L
T
((2 + β)(LLT ))

−1
, (20)

5) Fix Z and B, and neglect the irrelevant items, we can
update the dictionary D by optimizing

minD‖DB− ZL‖2F . (21)

Eq. (21) is an unconstrained quadratic problem with analytic
solution, so we can update D by

D = [ZLBT ][BBT ]
−1
. (22)

Algorithm 1: Shared predictive Deep quantization

Training Stage

Input: Image Xi text Xt, semantic labels L, code length
k, parameters α, β, and λ.

Output: Parameters for image network and text network,
parameters for quantization learning Ci, Ct, Z, D and
compact codes B.

Procedure:
1. Initialize parameters for image network and text

network, initialize Ci, Ct, Z, D and B by random
matrices, Mini-batch size Ni = Nt = 128.

repeat
2.1 Randomly sample Ni points for Xi and Nt

points from Xt to construct a mini-batch.
2.2 Calculate the outputs si, st, ri and rt.
2.3 Update parameters of image network by (14)

and (16).
2.4 Update parameters of text network by (14)

and (16).
2.5 Update Ci by (18).
2.6 Update Ct by (19).
2.7 Update Z by (20).
2.8 Update D by (22).
2.9 Update B by the ICM algorithm.

until Until convergency;

Testing Stage

Input: Image query xi or text query xt, parameters for
image network and text network, Ci, Ct, D and B.

Output: Ranked neighbor list for query
Procedure:
1. Calculate the shared representation si or st by forward

the image network or text network.
2. Calculate the distance between query point and the
database by (10).

6) Fix D and Z, since each bn is independent on
bn′

(
n
′ 6= n

)
, the optimization problem for B is decomposed

to N subproblems,

minbn

∥∥∥∥Zln −∑M

m=1
Dmbnm

∥∥∥∥2
s.t.‖bnm‖0 = 1,bnm ∈ {0, 1}K .

(23)

This optimization problem in (23) is generally NP-hard. We
approximately solve this problem by the Iterated Conditional
Modes (ICM) algorithm. Fixing {bnm′}m′ 6=m, bnm is up-
dated by exhaustively checking all the elements in Dm, finding
the element such that the objective function is minimized, and
setting the corresponding entry of bnm to be 1 and all the
others to be 0. This algorithm is guaranteed to converge and
can be terminated if maximum iterations are reached.

Altogether, SPDQ is summarized in Algorithm 1.
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TABLE I: Comparison with baselines with hand-crafted features in terms of MAP. The best accuracy is shown in boldface.

Task method FLICKR25K NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image Query
v.s.

Text Database

CMSSH 0.6500 0.6052 0.6106 0.6667 0.7223 0.7354 0.7483 0.7532
SCM 0.6976 0.6875 0.7089 0.7186 0.6976 0.6854 0.7089 0.7186
CVH 0.5922 0.5900 0.5913 0.6369 0.6095 0.5917 0.5987 0.6211
SePH 0.6214 0.6416 0.6433 0.6469 0.6225 0.6296 0.6377 0.6288

DCMH 0.7576 0.7985 0.8152 0.8369 0.7353 0.7628 0.7805 0.7912
CDQ 0.9047 0.9094 0.9109 0.8587 0.7917 0.7978 0.8102 0.8214
Ours 0.9443 0.9476 0.9482 0.8725 0.9276 0.9344 0.9251 0.9299

Text Query
v.s.

Image Database

CMSSH 0.5014 0.4988 0.5002 0.5015 0.6250 0.6315 0.6445 0.6616
SCM 0.5693 0.5710 0.5918 0.6028 0.5549 0.5914 0.5991 0.6007
CVH 0.5352 0.5254 0.5011 0.4705 0.5601 0.5439 0.5160 0.4821
SePH 0.5506 0.5686 0.5750 0.5837 0.5943 0.5835 0.6119 0.6320

DCMH 0.7013 0.7288 0.7458 0.7698 0.6898 0.7102 0.7358 0.7557
CDQ 0.8848 0.8768 0.8841 0.8736 0.8227 0.8184 0.8283 0.8201
Ours 0.9278 0.9318 0.9313 0.9109 0.8914 0.8983 0.8959 0.8900

TABLE II: Comparison with baselines with CNN features in terms of MAP. The best accuracy is shown in boldface.

Task method FLICKR25K NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image Query
v.s.

Text Database

CMSSH 0.6484 0.6484 0.6784 0.5967 0.7074 0.7346 0.7353 0.7450
SCM 0.7749 0.7868 0.8012 0.8024 0.7885 0.7970 0.8131 0.8209
CVH 0.7100 0.6776 0.6438 0.6154 0.7157 0.6988 0.6573 0.5993
SePH 0.7991 0.8199 0.8435 0.8480 0.7893 0.8052 0.8198 0.8333

DCMH 0.7576 0.7985 0.8152 0.8369 0.7353 0.7628 0.7805 0.7912
CDQ 0.9047 0.9094 0.9109 0.8587 0.7917 0.7978 0.8102 0.8214
Ours 0.9443 0.9476 0.9482 0.8725 0.9276 0.9344 0.9251 0.9299

Text Query
v.s.

Image Database

CMSSH 0.5890 0.5752 0.5795 0.5714 0.6556 0.6749 0.7065 0.7230
SCM 0.6624 0.6663 0.6837 0.6880 0.6922 0.6854 0.7140 0.7244
CVH 0.7220 0.6522 0.5972 0.5784 0.7085 0.7383 0.7553 0.7475
SePH 0.7454 0.7421 0.7614 0.7893 0.6947 0.7062 0.7235 0.7251

DCMH 0.7013 0.7288 0.7458 0.7698 0.6898 0.7102 0.7358 0.7557
CDQ 0.8848 0.8768 0.8841 0.8736 0.8227 0.8184 0.8283 0.8201
Ours 0.9278 0.9318 0.9313 0.9109 0.8914 0.8983 0.8959 0.8900
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Fig. 3: Precision values at various numbers of top retrieved data points on FLICKR25K with code length 16.
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Fig. 4: Precision values at various numbers of top retrieved data points on FLICKR25K with code length 32.

V. EXPERIMENTS

A. Setup
Datasets. We evaluate our method on two popular bench-

mark datasets, FLICKR25K and NUS-WIDE. All the data
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Fig. 5: Precision values at various numbers of top retrieved data points on NUS-WIDE with code length 16.
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Fig. 6: Precision values at various numbers of top retrieved data points on NUS-WIDE with code length 32.

sets have two modalities, i.e. image and text. Some statistics
of them are introduced below.

FLICKR25K originally contains 25,000 images collected
from the Flickr website. Each image associates with several
textual tags and is manually annotated with at least one of 24
provided unique labels. In our experiment, we only keep those
textual tags appearing at least 20 times and remove image-tag
pairs without manually annotated labels. Then we get 20,015
image-tag pairs for experiment. The text for each point is
represented as a 1,386-dimensional bag-of-words vector. The
hand-crafted feature for each image is represented by a 512-
dimensional GIST feature vector.

NUS-WIDE contains 269,648 images with associated tags,
where each pair is annotated with multiple labels among 81
concepts. Following prior works [57], [60], we use the subset
of 186,577 image-text pairs that belong to 10 most popular
concepts. The text for each point is represented as a 1,000-
dimensional bag-of-words vector. The hand-crafted feature for
each image is a 500-dimensional bag-of-visual words (BOVW)
vector.

For our proposed approach and deep learning based com-
pared methods, we directly use raw pixels as the image
modality inputs. For traditional shallow methods, besides
the shallow features introduced above, we extract 4096-
dimensional feature vectors from the last fully connected layer
by using AlexNet architecture [71] pre-trained on ImageNet
dataset. So, we compared our method with traditional shallow
methods with hand-crafted features as well as deep features.
For FLICKR25K, we randomly select 2,000 instances as a
test set, the rest are used as a validation set, from which we
randomly select 10,000 instances as a training set. For NUS-
WIDE, following [72], we randomly select 1866 of the dataset
as a test set, the rest are used as a validation set, from which

we randomly select 10,000 instances as a training set.
Evaluation. Two evaluation criteria are adopted to evaluate

the performance of the proposed method, namely mean of av-
erage precision (MAP) and topN-precision. These two criteria
are based on Hamming ranking which ranks all the data points
based on the Hamming distances to the query.

MAP is one of the most widely-used criteria to evaluate
retrieval accuracy. Given a query and a list of R ranked
retrieval results, the average precision (AP) for this query is
defined as

AP =
1

N

R∑
r=1

P (r)δ(r), (24)

where N in the number of ground-truth relevant instances in
the database for the query, and P (r) presents the precision for
the top r retrieved instances. δ(r) = 1 when the r-th retrieval
instance is relevant to the query, otherwise δ(r) = 0. MAP is
defined as the average of APs for all the queries. R is set to
50 in our experiments. The ground-truth relevant instances for
a query are defined as those sharing at least one label with
it. TopN-precision shows the precision at different numbers of
retrieved instances.

Compared methods. We compare the proposed approach
with various state-of-the-art cross-modal similarity search
methods. Specifically, we take six supervised methods: SCM
[73], SePH [42], CMSSH [27], CVH [33], DCMH [21],
CDQ [52], as baselines, where DCMH is deep hashing cross-
modal method, and CDQ is deep quantization cross-modal
method. Source codes of all baseline methods are kindly pro-
vided by the authors. Since, SePH is a kernel-based method,
we use RBF kernel and take 500 randomly selected points
as kernel bases by following its authors’ suggestion. The
parameters for all the above methods are set according to the
original papers.
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Implementation details. As shown in Fig. 2, the hybrid
deep architecture constitutes an image network and a text
network. For the image network, we adopt the AlexNet
architecture [71], and replace the last fully connected layer
by a shared layer and a private layer. We set the shared
layer with 256 units and the private layer with 48 units and
use the hyperbolic tangent (tanh) function as the activation
functions. Parameters for the shared layers and the private
layers are learned from scratch, and all parameters for the
preceding layers are fine-tuned from the model pre-trained
on ImageNet dataset. For text modality, we use a three-layer
MLP, where the first and the second fully connected layers
both have 4,096 units, and the last fully connected layer is
replaced by a shared layer and a private layer, which have
the same number units as in the image network. All of the
parameters for the text network are learned from scratch. We
employ the standard stochastic gradient descent algorithm for
optimization with 0.9 momentum, fix min-batch size to 128,
and the learning rate is chosen from 10−6 to 10−1 with a
validation set. All experiments are run for five times, and the
average performance is reported. Similarly to [45], we set the
number of elements in each dictionary as K = 256, so for
each data point, the binary code length M = Clog2D = 8C
bits. We can set C =M/8 when M is known.

B. Results and Discussions

For all the datasets, we first present MAP values of all
the methods for various code lengths to providing a global
evaluation. Then we report the topN-precision curves with
code length 16 and 32 to make a comprehensive contrastive
study.

The MAP results for SPDQ, DCMH, CDQ and other base-
lines with hand-crafted features on FLICKR25K and NUS-
WIDE datasets are reported in Table I. Here, “I → T ”
represents the case where the query is image and the database
is text, and “T → I” represents the case where the queries are
texts and the database are images. We can find that DCMH,
CDQ and SPDQ which are both deep learning based methods
outperform all the other shallow baselines with hand-crafted
features by a large margin. There may be two possible reasons.
The first is that since all these deep learning based methods are
build upon some existing deep architectures, and the features
extracted from these deep architectures have shown to achieve
far superior performance than traditional hand-crafted features
in various tasks, so the better performance obtained by these
deep learning based methods may be from superior features.
The second reason may be that by designing more suitable loss
functions or architectures and jointly optimizing the feature
extraction and hash code learning, these methods can better
capture the semantic information than other methods.

To further verify the effectiveness of our SPDQ, for image
modality, we extract CNN features from AlexNet pre-trained
on ImageNet dataset, which is the same as the initial CNN
for image modality in SPDQ. Then, all the shallow baselines
are trained based on these CNN features. Table II shows the
MAP values for all the methods with code length varying from
16-bit to 128-bit. Compared Table I and Table II, we can see
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Fig. 7: MAP versus the size of training set.

that most of the shallow methods obtain an increase in MAP
values in all code lengths, which demonstrates that features
extracted from existing deep architectures can usually preserve
more semantic information and achieve better performance
than traditional hand-crafted features. Despite that, SPDQ
and CDQ usually outperform other baseline methods, and
DCMH achieves comparable results in many cases. One of
the reasons may be that by incorporating feature learning
and hash code learning in an end-to-end architecture, these
methods can jointly optimize these two parts thus causing
better results. Besides, as shown in Table II, the proposed
SPDQ outperforms all shallow baselines using CNN features
with different code lengths on all retrieval tasks, and also
outperforms DCMH, the state-of-the-art deep cross-modal
hashing method, as well as CDQ the state-of-the-art deep
cross-modal quantization method, which well demonstrates the
superiority of the proposed method.

TopN-precision curves on FLICKR25K and NUS-WIDE are
showed in Fig. 3, Fig. 4, Fig. 5, and Fig. 6, where Fig. 3 and
Fig. 4 show the result with code length 16, and Fig. 5 and
Fig. 6 show the results with code length 32. For each figure,
the first two sub-figures are based on hand-crafted features and
the last two sub-figures are based on CNN features for shallow
baseline methods. It can be seen that the proposed approach
outperforms all the baseline methods for both hand-crafted
features and CNN features. Our SPDQ can also achieve the
best performance on other cases with different code lengths,
such as 64 and 128. Those results are omitted due to space
limitation. The result of TopN-precision curves are consistent
with the mAP evaluation. In retrieval system, since the users
always focus on the front returned results, the relevance of
the top returned instances with the query is usually more
important. From the topN-precision curves, we can find that
the proposed approach usually outperforms other methods by
a large margin when the number of the returned instances are
relatively small.

C. Effect of Training Size

In this subsection, we analyze the effects of training set
size on the performance of SPDQ on FLICKR25K and NUS-
WIDE dataset. Specifically, we fix the hash code length at 32
bits, and vary the training set size from 1,000 to 15,000. Then
we measure MAP values of SPDQ and show the results in
Fig. 7. MAP values with training set size 10,000 are chosen
as the baseline values. It is easy to see that SPDQ usually
obtain better retrieval performance with larger training set
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Fig. 8: MAP versus parameter α.
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Fig. 9: MAP versus parameter β.

size. The increasing trend is particularly apparent for NUS-
WIDE dataset, which may be because that NUS-WIDE dataset
contains far more data points than FLICKR25K and have
more diversities, thus needs more training data to capture the
relationships of the whole dataset.

D. Parameter Sensitivity Analysis

In this part, we evaluate the effects of the parameters of
SPDQ. MAP values on the query dataset are reported to study
the performance variation with respect to different parameter
values. In this experiments, hash code length is fixed as 32
bits, and we conduct the analysis for one parameter by varying
its value while fixing the other parameters. The MAP values
of SPDQ with α = 1, β = 1, λ = 0.01 are selected as the
baseline values.

The parameter α controls the importance of the classifi-
cation loss. We vary its value from 0.1 to 10. As shown in
Fig. 8, it can be found that the MAP values on both tasks
increase with α increasing from 0.1 to 1, which may prove that
adding the classification loss can enhance the discriminative
ability of the learned features. But when α is too large, the
classification loss will dominate the training process and effect
the quantization learning. In our experiments, we choose α as
1.

The parameter β leverages the importance of label align-
ment and quantization. When β is large, quantization error will
be small and approximate error in label alignment part will
be large, and vice versa. To measure the concrete influence
of β, we fix other parameters and report the MAP values
by varying the value of β between the range of [0.1, 10]. As
shown in Fig. 9, we can observe that the performance usually
is improved with the increase of β from 0.1 to 1. When β
is larger than 1, the performance of SPDQ will decrease with
the increase of β. So, in our experiments, we set β to 1.

The parameter γ reflects the importance of the shared
feature learning part and the label alignment quantization part.
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Fig. 10: MAP versus parameter γ.

A proper value of γ will enable SPDQ to learn shared features
more suitable for quantization. To decide the optimal value of
γ, we fix the hash code length as 32, and calculate the MAP
values on FLICKR25K and NUS-WIDE dataset by varying γ
from 10−5 to 1. The results are reported in Fig. 10. It can be
observed that the performance on both datasets are relatively
stable when γ is small than 0.005, and will decrease apparently
when γ is larger than 0.005. Actually, we can select γ from
the range of [10−5, 5× 10−3].

VI. CONCLUSIONS

In this paper, we proposed a novel quantization approach,
namely shared predictive deep quantization (SPDQ), for ef-
ficient cross-modal similarity search. The superiority of the
proposed approach lies in: 1) firstly exploiting a deep neural
network to construct the shared subspace across different
modalities and the private subspace for each modality, in
which the correlations between multiple modalities can be well
discovered and the specific characteristics of each modality
can also be maintained; 2) introducing label alignment to the
quantization training procedure, thus preserving the semantic
similarities of image-text pairs and greatly improving the
search accuracy. The experimental results on two benchmark
multi-modal datasets demonstrate that the proposed approach
surpasses the existing methods.
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