
Hierarchical Deep Reinforcement Learning for Continuous
Action Control

Author:
Yang, Z; Merrick, K; Abbass, H

Publication details:
IEEE Transactions on Neural Networks and Learning Systems
v. 29
Chapter No. 11
Medium: Print-Electronic
pp. 5174 - 5184
2162-237X (ISSN); 2162-2388 (ISSN)

Publication Date:
2018

Publisher DOI:
https://doi.org/10.1109/TNNLS.2018.2805379

License:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/unsworks_49011 in https://
unsworks.unsw.edu.au on 2024-04-23

http://dx.doi.org/https://doi.org/10.1109/TNNLS.2018.2805379
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/1959.4/unsworks_49011
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Robotic control in a continuous action space has long
been a challenging topic. This is especially true when controlling
robots to solve compound tasks, as both basic skills and compound
skills need to be learned. In this paper, we propose a hierarchical
deep reinforcement learning algorithm to learn basic skills and
compound skills simultaneously. In the proposed algorithm,
compound skills and basic skills are learned by two levels of
hierarchy. In the first level of hierarchy, each basic skill is handled
by its own actor, overseen by a shared basic critic. Then in the
second level of hierarchy, compound skills are learned by a meta
critic by reusing basic skills. The proposed algorithm was
evaluated on a Pioneer 3AT robot in three different navigation
scenarios with fully observable tasks. The simulations were built
in Gazebo 2 in a ROS Indigo environment. The results show that
the proposed algorithm can learn both high performance basic
skills and compound skills through the same learning process. The
compound skills learned outperform those learned by a discrete
action space deep reinforcement learning algorithm.

Index Terms—Continuous control, deep learning, hierarchical
learning, reinforcement learning

I. INTRODUCTION
EINFORCEMENT learning [1] is a kind of algorithm that
permits an agent or robot to learn from trial-and-error and

reward during interaction with its environment.
Classical TD-learning [2] algorithms such as Q-learning [3],

and SARSA [4] are well-known reinforcement learning
algorithms that can learn by trial-and-error and even when the
reward feedback is infrequent or delayed until the end of a
learning episode. What is more, many works introduced linear
function approximations to enhance the generalization ability
of algorithms [5, 6] to handle more complex environments.

Recently, deep learning [7] algorithms have achieved record-

breaking performance in several applications and research
topics, such as computer vision [8, 9], semantic analysis [10,
11] and others. With hundreds of thousands of auto-learned
parameters in the model, deep neural networks have shown
unprecedented feature extraction and generalization
capabilities. Available choices for network architectures such
as convolutional neural networks (CNN) [12] and long-short
term memory (LSTM) networks [13] further help deep learning
in applications with different requirements, such as applications
that require considering past states to make decisions and
applications that only have access to image data. These
successes inspired interest in combining reinforcement learning
with deep learning to further improve the performance of the
agents.

Although it is generally believed that non-linear
approximations like deep neural networks are not suitable for
reinforcement learning because of the correlations between data
and the possible sparsity of supervision signals in reinforcement
learning scenarios [14], recent advances in reinforcement
learning have addressed these challenges and brought deep
reinforcement learning great success. Some deep reinforcement
learning agents have recently outperformed humans in playing
Atari games [15] and Go games [16].

However, unlike games or other decision making processes
that contain only a limited number of legal actions, robotic
control usually involves action choices in a continuous action
space. Moreover, learning agents also need to consider many
physical factors to keep the robot moving smoothly. The
problem becomes even more difficult when trying to solve
compound tasks where the agent needs to learn both basic skills
and compound skills at the same time.

In this paper, in order to address the challenges mentioned
above, we propose a novel hierarchical deep reinforcement
learning algorithm based on the Deep Deterministic Gradient
Descent algorithm [17]. The proposed algorithm makes use of
observations from both sensor data and a first-person view
camera images to learn basic skills and compound skills
simultaneously. We call this algorithm h-DDPG.

The proposed algorithm comprises two levels of hierarchy.
In the first level of hierarchy, multiple basic skills, each handled
by its own actor, are learned simultaneously. This is achieved
by adapting a multi-task deep reinforcement learning algorithm
we developed in previous work [18]. Multi-layer perceptron
convolutional (mlpconv) layers [19] are used in this hierarchy
to reduce the number of parameters needed for learning

 Hierarchical Deep Reinforcement Learning for
Continuous Action Control

Zhaoyang Yang, Kathryn Merrick, Senior Member, IEEE, Hussein A. Abbass, Senior Member, IEEE,
and Lianwen Jin, Member, IEEE

R

Manuscript received for review on May 26, 2017. This work was supported

by the Australian Research Council under Grant DP160102037.
Z. Yang is with the School of Engineering and Information Technology,

University of New South Wales, Canberra, Australia, and also with the College
of Electronic and Information Engineering, South China University of
Technology, Guangzhou, China (e-mail: yangzhaoyang6@126.com).

K. Merrick and H. Abbass are with the School of Engineering and
Information Technology, University of New South Wales, Canberra, Australia
(e-mail: K.Merrick@adfa.edu.au and h.abbass@adfa.edu.au).

L.Jin is with the School of Electronic and Information Engineering, South
China University of Technology, Guangzhou, China (e-mail:
lianwen.jin@gmail.com).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

multiple skills. The second level of hierarchy is responsible for
learning compound skills. These compound skills are made up
of a series of basic skills learned in the first level of hierarchy.

To test the proposed h-DDPG algorithm, we built three
different scenarios in Gazebo 2 in a ROS Indigo environment.
Each scenario has a different compound task that the robot will
try to solve. Our simulations were conducted with a Pioneer
3AT robot with range sensors and a camera set on the front of
it. Results show that the proposed algorithm can successfully
learn high performance basic skills and compound skills
simultaneously. Results also show that its performance in
solving compound tasks in the three scenarios outperform
discrete action deep reinforcement learning algorithm.

In summary, the main contribution of this paper is a
hierarchical deep reinforcement learning algorithm that can:

1) Learn multiple basic skills at the same time,
2) Learn compound skills to solve compound tasks by

reusing basic skills,
3) Handle the above two kinds of skill learning within the

same process.
The rest of the paper is organized as follows. A brief

literature review and necessary background will first be
presented in the next section. Then in Section III, we will
describe the structure of the proposed h-DDPG algorithm in
detail, followed by the details of its learning process in Section
IV. Simulation settings and experimental results will be
reported in Section V. Section VI is the conclusion.

II. PRELIMINARIES

A. Related Work
Deep reinforcement learning has attracted considerable

attention in recent years due to its potential to learn highly
generalized representations in complex environments. A first
breakthrough was the deep Q network (DQN) algorithm [14].
Many works [20-22] emerged after DQN’s success in achieving
human level performance in playing Atari games.

Various work has also been done on solving continuous
control tasks with deep reinforcement learning. The actor-critic
architecture [23] is generally chosen as a baseline to build deep
reinforcement learning algorithms with deterministic policy
gradients [17, 24] or stochastic policy gradients [25]. Moreover,
Trust Region Policy Optimization (TRPO) [26] achieved
continuous control in a similar way to natural policy gradient.
Some work has also been done to integrate model-based
methods to accelerate learning in continuous action spaces [27].
However, while all these works achieved very good
performance in learning basic locomotion skills, few of them
can solve compound tasks efficiently [28]. Although some
experiments show that algorithms can solve some compound
tasks [24], this is mainly owing to the use of a multi-threaded
parallel learning scheme that makes the exploration more
balanced and increases the chance of collecting rewards during
exploration. In this paper, we focus on the case where only one
robot is available.

Various work on hierarchical reinforcement learning exists

[29][30], including work considering deep architectures [31]
[32] . However, different from our work, work in [31] focuses
on discrete action spaces with embedded DQN structure. Work
in [32] is focuses on finding the best hierarchical structure of
the tasks with clustering methods, and is mainly concerned with
how to decompose tasks.

Most recent work on deep hierarchical reinforcement
learning can be found in [33] and [34]. Work in [33] extends
policy gradient methods to the option framework [35], which
allows auto-decomposition of tasks in the forms of options.
Work in [34] used feudal reinforcement learning methods to
further improve the performance of top level hierarchy (which
they called the Manager) in controlling lower level hierarchy
(which they called the Worker).

Different from our work, these two works can learn a
hierarchical agent without giving additional reward functions
for sub-goals and can fit in learning with different base deep
reinforcement learning algorithms. However, compared to our
work, these two works are learning in two time scales, which
means the low-level hierarchy should take control for a certain
period. This is different from our work as both levels of
hierarchy in our proposed algorithm learn in the same time
scale, which allows more instant control of low-level actors.
What is more, although our method needs explicitly defined
rewards for both levels of hierarchy, the basic tasks learned at
the lowest-level of hierarchy are general basic movement skills,
are non-task specific, and can potentially be transferred to any
other compound tasks.

Another related topic is intrinsically motivated learning
which also involves reuse of basic skills [36]. Some recent work
[37] has successfully achieved an intrinsically motivated agent
by replacing reward functions with a maximization of the
mutual information during learning.

B. Background
In this paper, we consider a standard reinforcement learning

setup, where the agent is interacting with the environment 𝑬𝑬 in
discrete timesteps. In each timestep 𝑡𝑡, the agent receives a state
𝑠𝑠𝑡𝑡 ∈ 𝑺𝑺 from the environment, and chooses and executes an
action 𝑎𝑎𝑡𝑡 ∈ 𝑨𝑨 according to the current policy 𝜋𝜋: 𝑺𝑺 → 𝑨𝑨. Then
the agent will receive a reward 𝑟𝑟𝑡𝑡 for taking 𝑎𝑎𝑡𝑡 and transition to
the next state 𝑠𝑠𝑡𝑡+1, where the process starts again.

The goal of reinforcement learning is to learn a policy 𝜋𝜋 that
can maximize reward. This can be achieved by maximizing the
expected future return for each timestep. The expected future
return is defined as:

 𝑅𝑅𝑡𝑡 = � 𝛾𝛾𝑡𝑡′−𝑡𝑡𝑟𝑟𝑡𝑡′
𝑇𝑇

𝑡𝑡′=𝑡𝑡
 (1)

where 𝑇𝑇 is the total number of timesteps taken and 𝛾𝛾 ∈ [0,1] is
the discounted factor that indicates to what extent future
rewards are being considered.
 Note that the policy 𝜋𝜋 may be stochastic in some cases.
However, we are considering deterministic policies, where
action 𝑎𝑎𝑡𝑡 only depends on 𝑠𝑠𝑡𝑡 and 𝜋𝜋(𝑠𝑠𝑡𝑡). Also, we assume that
all environments in this paper are fully observable, which

Kathryn
You can’t really say ‘more instant’ do you mean ‘finer’ control? Or perhaps ‘more reactive’ control?

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Fig. 1. An overview of h-DDPG architecture. The trapeziums represent fully connected layers. These fully connected layers are layers from meta critic, actors and
basic critic respectively from top to bottom. The square-dotted lines are connections with back-propagation while the dashed lines are not.

means 𝑠𝑠𝑡𝑡 can fully describe the current state.

The state-action values (also known as Q values) are central
to reinforcement learning algorithms. They are estimations of
the expected future returns for given state-action pairs:

 𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝐸𝐸[𝑅𝑅𝑡𝑡|𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡] (2)
Deep reinforcement learning algorithms aim to use deep

neural network (𝜃𝜃𝑄𝑄) to approximate this value function. This
was not achieved until two major techniques, replay memory
and target network (𝜃𝜃𝑄𝑄′), were applied in DQN [14].

In order to extend deep reinforcement learning to continuous
action spaces, an algorithm called DDPG [17] was proposed,
which has an actor-critic architecture. Unlike value function
based algorithms such as DQN, DDPG uses two separate
networks to approximate the critic (value) function (𝜃𝜃𝑄𝑄) and
actor (policy) function (𝜃𝜃𝜋𝜋) (Each network also has its own
target network 𝜃𝜃𝑄𝑄′ and 𝜃𝜃𝜋𝜋′). With the additional actor function,
DDPG can learn more sophisticated policies to handle
continuous action spaces. For the critic network, the parameters
are optimized by minimizing the loss:

 𝐿𝐿(𝜃𝜃𝑄𝑄) = (𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄) − 𝑦𝑦𝑡𝑡)2 (3)
where
 𝑦𝑦𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝜋𝜋(𝑠𝑠𝑡𝑡+1|𝜃𝜃𝜋𝜋′)|𝜃𝜃𝑄𝑄′) (4)
and the update equation is
 𝜃𝜃𝑄𝑄 ← 𝜃𝜃𝑄𝑄 − 𝜇𝜇𝑄𝑄 ∙ 𝛻𝛻𝜃𝜃𝑄𝑄𝐿𝐿(𝜃𝜃𝑄𝑄) (5)
where 𝜇𝜇𝑄𝑄 is the learning rate and the symbol 𝛻𝛻 donates a
gradient calculation.

After the critic network has been updated, the actor network
will be updated by inferring gradients from the critic network:

 𝜃𝜃𝜋𝜋 ← 𝜃𝜃𝜋𝜋 − 𝜇𝜇𝜋𝜋 ∙ 𝛻𝛻𝑎𝑎𝑄𝑄(𝑠𝑠𝑡𝑡 , ,𝜋𝜋(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋)|𝜃𝜃𝑄𝑄)
∙ 𝛻𝛻𝜃𝜃𝜋𝜋𝜋𝜋(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋) (6)

where 𝜇𝜇𝜋𝜋 is the learning rate. A full derivation of (6) can be
found in [38].

The mlpconv layer is a new network layer proposed in [19].
In traditional convolutional layers, feature maps are activated
with an activation function 𝐹𝐹(∙) as:

 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝐹𝐹(𝜔𝜔𝑘𝑘
𝑇𝑇𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑏𝑏𝑘𝑘) (7)

where (𝑖𝑖, 𝑗𝑗) indexes the feature pixels in channel 𝑘𝑘 and 𝜔𝜔𝑘𝑘 and
𝑏𝑏𝑘𝑘 are the weight and bias of the convolutional kernel of
channel 𝑘𝑘.

Generally, good abstractions are highly non-linear functions
of the input. While activation functions such as ReLU can add
some non-linearity to the network, the network may still not be
expressive enough. As a result, we need to make the network
deeper or wider. However, this may make the network hard to
train, both in a computational perspective and in a gradient
propagation perspective. Therefore, in order to enhance the
non-linearity of traditional convolutional layers, mlpconv layer
forms a recombination of features across different channels
with a multi-perceptron nature. Then the recombined feature
outputs of the mlpconv layer becomes:

 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑘𝑘𝑛𝑛
𝑛𝑛 = 𝐹𝐹�𝜔𝜔𝑘𝑘𝑛𝑛

𝑛𝑛 𝑇𝑇𝑓𝑓𝑖𝑖,𝑗𝑗𝑛𝑛−1 + 𝑏𝑏𝑘𝑘𝑛𝑛� (8)
Where 𝑛𝑛 is the number of perceptron layers used and 𝑓𝑓𝑖𝑖,𝑗𝑗0 = 𝑥𝑥𝑖𝑖,𝑗𝑗.
For both the original paper and this paper 𝑛𝑛 = 2.

For the classification problems discussed in [19], the final
output can be obtained by applying a global average pooling on
the output of the last mlpconv layer. This saves the parameters
needed for fully-connected layers in traditional CNN.

In the proposed h-DDPG algorithm, we will use a mlpconv
layer and global average pooling to generate abstractions from
image data to reduce the number of parameters needed for
multiple basic skills in the first hierarchy of the algorithm.

III. H-DDPG ARCHITECTURE
In this paper, we propose a novel hierarchical deep

reinforcement learning algorithm that can learn compound
skills by reusing basic skills it learns during the same process.
We define basic tasks to be tasks that can be achieved by
choosing actions in a single ‘pattern’ learned in response to a
basic reward function. Basic tasks are fundamentally non task-
specific and rather are tied to the physical capabilities of the
robot, such as rotating a wheel or bending a joint. Let 𝑃𝑃𝑔𝑔 be the
pattern (action set) of the basic task 𝑔𝑔. Then at any time t during
execution of a basic task:

 𝑎𝑎𝑡𝑡 ∈ 𝑃𝑃𝑔𝑔 (9)
Conversely, compound tasks are defined to be tasks that can
only be achieved by combining different patterns. So here, the
chosen actions can be an action from any pattern in a basic skill
set:

Meta critic
Rewards

Basic critic
Rewards

Actions

Image
Data Sensor

Data

Kathryn
Add the reference here

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

 𝑎𝑎𝑡𝑡 ∈ {𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝐺𝐺} (10)
where 𝐺𝐺 is the number of basic skills the agent has. These basic
skills are combined to achieve a compound task.

The proposed algorithm has two levels of hierarchy,
corresponding to compound and basic skills, which is achieved
with a duel-critic, multi-actor architecture. The duel-critic
comprises a basic critic in the first level of hierarchy, which is
responsible for training multiple actors that learn different basic
skills, and a meta critic in the second level of hierarchy that
learns to reuse actors to solve compound tasks. An overview of
the proposed h-DDPG algorithm is shown in Fig. 1. In the next
few sections, we will use subscript letters 𝑏𝑏 and 𝑚𝑚 to
distinguish basic critic components and meta critic components
in equations.

A. Basic Critic
In order to achieve a level of hierarchy that learns multiple

skills simultaneously, we need to expand the original actor-
critic architecture [17, 23] to a single critic, multi-actor
architecture in this level of hierarchy. We achieve this by
adapting a multi-task deep reinforcement learning algorithm we
developed in previous work [18]. Specifically, we kept the basic
concepts of the algorithm in [18] and made some changes on its
network architecture to fit it in the proposed h-DDPG
algorithm.

As a result, in this level of hierarchy, we will have a multi-
actor network, with each network learning a different skill. One
more benefit we can receive from adapting this multi-task
algorithm [18] is that it ensures that the update of different
actors are independent from each other. This ensures that the
learning of basic skills with different requirements and
movement patterns do not interfere each other. We also
demonstrate in Section V that this protects high performance
actors from being impacted by poor performing actors.

B. Meta Critic
Different from the basic critic, the meta critic focuses on

learning compound skills to solve compound tasks. The meta
critic can access a set of basic skills provided by actors in the
first level of hierarchy. The goal of the meta critic is to choose
a basic skill that will help it solve the attempted compound tasks
in each timestep. Therefore, similar to discrete action scenarios,
the meta critic will choose the basic skill with the highest value
from a given set of basic skills.

This can be achieved by bootstrapping estimation of Q values
of each basic skill. Thus, the meta critic will be a network with
𝐺𝐺 output neurons that give estimations of Q values of all
available actors. Then the network will be optimized by
minimizing the loss function:

 𝐿𝐿(𝜃𝜃𝑄𝑄𝑚𝑚) = (𝑄𝑄𝑚𝑚�𝑠𝑠𝑡𝑡 ,𝜋𝜋𝑔𝑔(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋𝑔𝑔)�𝜃𝜃𝑄𝑄𝑚𝑚� − 𝑦𝑦𝑚𝑚,𝑡𝑡)2 (11)
where the supervision signal is:

 𝑦𝑦𝑚𝑚,𝑡𝑡 = 𝑟𝑟𝑚𝑚,𝑡𝑡 + 𝛾𝛾𝑚𝑚 max
𝜋𝜋𝑔𝑔

𝑄𝑄𝑚𝑚�𝑠𝑠𝑡𝑡+1,𝜋𝜋𝑔𝑔(𝑠𝑠𝑡𝑡+1|𝜃𝜃𝜋𝜋𝑔𝑔)�𝜃𝜃𝑄𝑄𝑚𝑚′ � (12)
where 𝜋𝜋𝑔𝑔 is the policy of the basic skill 𝑔𝑔.

Note that 𝜋𝜋𝑔𝑔 is dynamic, as it will change as learning goes
on. Also note that as learning of the basic critic and actors
happens in the same process as the meta critic learns, there is

no guarantee that all actors have good performance at their
corresponding basic skills. However, the way that meta critic
understands the actors is to understand the transitions from 𝑠𝑠𝑡𝑡
to 𝑠𝑠𝑡𝑡+1 after a particular actor has been chosen. The meta critic
does not know what basic skills the actors are assigned to learn
prior to the training starting. So as training goes on, actors that
are providing poor actions to the compound task will rarely be
chosen by the meta critic.

C. Hierarchies of Abstractions
In the proposed algorithm, we include sensor data after the

convolutional part of the networks and concatenate it with a
feature vector of the image data. In addition, we extract two
levels of image feature abstractions to keep the whole
hierarchical architecture consistent and concise.

Specifically, for the meta critic network that needs a
thorough understanding of the environment to infer proper
choice of basic skills to solve compound tasks, image features
are a long vector flattened from the feature maps of the last
convolutional layer. This vector is then fed into the rest of the
fully-connected layers. In this way, every pixel in the feature
maps of the last convolutional layer will contribute to the final
decision of the meta critic. Abstractions at this level of
hierarchy are intended to give a more detailed description of the
states so that the critic could learn and make decisions
according to full observations of the environment.

For the basic critic as well as the actors that focus on basic
skill learning, image features are a much shorter vector
rendered from a global max pooling. This is achieved by
applying mlpconv layer operations on the feature maps of the
last convolutional layer. Each reconstructed feature map from
the mlpconv layer will then be averaged globally to form an
element in the abstraction vector. Abstractions at this level of
hierarchy are intended to give a less detailed description of the
states so that the critic can learn basic skills more easily.

Fig. 2. Comparison of parameters needed with or without mlpconv layers.

Moreover, the implementation of mlpconv layer in the basic
critic helps reduce the number of parameters needed
significantly compared with using a traditional convolutional
layer. As shown in Fig. 2, the proposed critic architecture
reduces the number of parameters by 75% for a single actor.
The reduction will become more significant as the number of
actors increases.

0.154 0.198 0.286 0.374
0.649

0.868

1.306

1.744

0

0.5

1

1.5

2

1 Actor 2 Actors 4 Actors 6 Actors

Pa
ra

m
et

er
s (

m
ill

io
n)

Number of Actors

With Mlpconv
Without Mlpconv

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

IV. H-DDPG LEARNING
The whole learning process of the proposed h-DDPG

algorithm follows an ordering of hierarchy priority. In addition,
the co-existence of two levels of hierarchy in the same
architecture demands adjustments in several aspects of the
algorithm.

A. Rewards and Punishments
In this paper, we are considering scenarios where all reward

functions are pre-defined. Specifically, two kinds of rewards
are necessary: reward for the meta critic, which can only be
received when the final compound tasks are achieved, and
reward for the basic critic, which can be received as soon as the
action chosen by the actor is achieving its corresponding basic
skill, that is, satisfying (9). As the frequency of receiving these
two kinds of rewards is different, different values may be
chosen. Having suitable reward values for the meta critic is
especially important as it is much more sparse than the one for
the basic critic. We investigate this in Section V.

Note that learning with the multi-task learning architecture
[18] in the first level of hierarchy requires a reward vector in
which each element represents whether the action is what is
desired for the corresponding actor. This means that whichever
actor is providing the action, the action will always be evaluated
by reward functions of all available actors. As a result, for every
action taken, the agent will receive a reward for the meta critic
and a reward vector for the basic critic.

Similar to the rewards, two kinds of punishments, one for the
meta critic and one for the basic critic, are introduced in the
algorithm. Only the component that has caused undesired
actions will receive punishments. In our case, in order to make
the basic critic and actors focus on learning basic skills, we only
punish the basic critic when the robot turns over, as making the
robot move stably is a prerequisite of having good basic skills.
Note that actions that could cause the robot to turn over are
undesired actions for all actors, regardless of what basic skill
the actor is assigned to learn. Therefore, the punishment is
universal to all actors. The meta critic will receive a punishment
when the robot crashes into obstacles as avoiding collision is
considered as a part of the compound skills. What is more, we
punish the meta critic with a small value every step before the
episode terminates. This is mainly to push the meta critic to find
the shortest solution to the task. We use this reward and
punishment structure for all experiments in this paper.

B. Replay Memory and Batch Sampling
As a consolidated system, all levels of hierarchy in this

algorithm share a single replay memory. However, we stored a
label in each transition to record which actor made it. This is
because when sampling transitions from the replay memory, a
balance among transitions made by different actors is required.
Specifically, the final batch of transitions will always consist of
the same number of transitions from different actors. This
sampling strategy makes the sampling more controllable and
ensures that the critics can see transitions of different actors
evenly.

Note that as required by the multi-task learning architecture

[18] in the first level of hierarchy, when calculating supervision
signals for the basic critic, only one target actor network will be
used. In this work, we select target networks iteratively. This is
feasible owing to the actor-unspecific nature of the basic critic
during self-updating as explained in the original work [18].

C. Exploration
Exploration is a critical aspect of all reinforcement learning

algorithms. For deep reinforcement learning, exploration needs
to be balanced to prevent the agent getting stuck in a local
optimum.

In the proposed algorithm, the exploration of the meta critic
is governed by a 𝜖𝜖 − 𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑦𝑦 policy while the exploration of
the basic critic is governed by an Ornstein-Uhlenbeck process
[39]. What is more, the value of 𝜖𝜖 will be annealed throughout
the training process to allow more exploitation. Similarly, we
change the intensity of the Ornstein-Uhlenbeck process
according to the performance of actors’ intermediate training
according to:

 𝜎𝜎𝑔𝑔 ← max {𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛 , �1 − 𝑝𝑝𝑔𝑔�𝜎𝜎𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡} (13)
Where 𝜎𝜎 is the parameter that controls the intensity of the
process and subscript 𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 and 𝑚𝑚𝑖𝑖𝑛𝑛 denotes its initial and
minimum value respectively. 𝑝𝑝𝑔𝑔 is the latest measured
performance of actor 𝑔𝑔, which is measured as the reward per
action the actor can collect.

D. Learning Process
The learning process follows an ordering of hierarchy

priority. The component that has a higher level of hierarchy will
be updated prior to components with lower level of hierarchy.
Each training iteration will start right after an action has been
executed in a timestep of exploration. The whole algorithm is
summarized in Algorithm 1.

Algorithm 1 H-DDPG
Input: maximum training episode E𝑚𝑚𝑎𝑎𝑚𝑚, maximum steps in each
episode S𝑚𝑚𝑎𝑎𝑚𝑚, mini-batch size M, replay memory P.
Initialization: randomly initialize networks
weights 𝜃𝜃𝑄𝑄𝑏𝑏, 𝜃𝜃𝑄𝑄𝑚𝑚, 𝜃𝜃𝜋𝜋1 , … … ,𝜃𝜃𝜋𝜋𝐺𝐺 and target networks
weights 𝜃𝜃𝑄𝑄𝑏𝑏

′
← 𝜃𝜃𝑄𝑄𝑏𝑏 , 𝜃𝜃𝑄𝑄𝑚𝑚′ ← 𝜃𝜃𝑄𝑄𝑚𝑚 ,𝜃𝜃𝜋𝜋𝑔𝑔′ ← 𝜃𝜃𝜋𝜋𝑔𝑔.

while episode < E𝑚𝑚𝑎𝑎𝑚𝑚
Initialize random noise N for exploration
Get initial state 𝑠𝑠1
while step <S𝑚𝑚𝑎𝑎𝑚𝑚 and episode not terminated

Get Q values of actors using meta critic
Select actor 𝑖𝑖 according to ϵ − greedy policy
Select action 𝑎𝑎𝑡𝑡 using selected actor and add N
Execute 𝑎𝑎𝑡𝑡 and get rewards 𝑟𝑟𝑏𝑏,𝑡𝑡, 𝑟𝑟𝑚𝑚,𝑡𝑡 and next state 𝑠𝑠𝑡𝑡+1
Store transition (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in P
Randomly sample 𝑀𝑀

𝐺𝐺
 transitions of each actor from P and

make up a mini-batch with M transitions
Update 𝜃𝜃𝑄𝑄𝑚𝑚 according to (11) and (12) and update 𝜃𝜃𝑄𝑄𝑚𝑚′
Update 𝜃𝜃𝑄𝑄𝑏𝑏 and 𝜃𝜃𝑄𝑄𝑏𝑏

′
 according to [18]

for g in G:
Update 𝜃𝜃𝜋𝜋𝑔𝑔 and 𝜃𝜃𝜋𝜋𝑔𝑔′ according to [18]

end
end

All target network updates in the algorithm follow a soft
update process. With a soft update factor 𝜑𝜑, the soft update
process can be expressed as:

 𝜃𝜃𝑡𝑡+1′ ← (1 − 𝜑𝜑)𝜃𝜃𝑡𝑡′ + 𝜑𝜑𝜃𝜃𝑡𝑡 (14)
Note that, we also applied a parameter-sharing scheme on

Kathryn
‘less frequent’ ?

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

convolutional layers across different networks. Specifically, all

Fig. 3. An introduction of the three simulation scenarios. They are, from top to bottom, the approaching object scenario (Scenario 1), the approaching specific
target scenario (Scenario 2) and the doorway scenario (Scenario 3). Pictures from left to right in each row are top-down views of scenarios, image captures of the
camera and the samples of solutions made by the agent. In the samples of solution, the yellow triangles indicate initial orientation, and stars indicate target objects.

traditional convolutional layers will be updated by the meta
critic and fixed when updating other networks. This is inspired
by previous work [40] that indicates that less complex tasks (in
our case, the basic tasks) can learn from abstractions extracted
by a more complex task (in our case, the compound tasks).
Particularly in our application, this can also make training more
efficient as the shared convolutional part will not be updated
too frequently. We also implement a similar schedule as the
annealing intensity of the Ornstein-Uhlenbeck process on the
base learning rate of the actor networks. We use Adam [41] with
𝑙𝑙2 regularization for updating networks.

V. EXPERIMENTS AND RESULTS

A. Experiment Setup
We tested the proposed algorithm in simulations conducted

in Gazebo 2 in a ROS Indigo environment. We built three
scenarios with different tasks in a walled space. We have tried
to make them as observable as possible when building them:
1) Approaching Object

The walled space is mostly obstacle-free with only a single
target object. The robot’s task in this scenario is to approach
the target object, starting from a random position and
orientation, without crashing into walls.

2) Approaching Specific Target
The walled space is filled with two different objects, one
target and one decoy. The robot’s task in this scenario is to
approach the target object, starting from a random position
and orientation, without confusing it with the decoy or
crashing into walls. To achieve this, the robot has to
distinguish between the objects and apply different
strategies to them, which makes this task more difficult than
the task in scenario 1.

3) Doorway Escape
The walled space is obstacle-free with four doorways one
on each side of the space. The robot’s task in this scenario
is to go through one of the doorways, starting from a random

position and orientation, without crashing into walls. This
task is even more difficult than tasks in scenario 1 and 2 as
the robot has to avoid collision with the sides of a door when
going through it.

Top-down screenshots of these three scenarios are shown in
Fig. 3. In all three scenarios, the agent has to learn the same four
basic skills by solving four basic tasks we assigned to it. The
patterns of these four basic tasks are wheel rotations for going
forward, going backward, turning left and turning right.

In each simulation, a single Pioneer 3AT robot is spawned in
the environment. The robot is equipped with a camera on the
front of it that will give it first-person vision of the environment.
Moreover, range sensors give distance readings in four
directions (front, back, left and right). We bundled the most
recent four frames of the camera as well as the sensor data in
the last frame to form a state. Frames captured by the camera
will be converted to 64×64 grey scale images before being fed
into networks. The action of the agent is to set the speed of the
wheels on both sides of the robot, which are real values in a
continuous space output by the actor networks. These actions
are executed in continuous time space, which means the length
of time an action will be executed depends on the processing
time needed before the next action has been decided.

As described in Section IV, we applied a parameter sharing
learning scheme among different networks in the algorithm.
The shared convolutional part consists of three layers. The first
layer has 32 kernels with size 8×8 and stride 4, followed by the
second layer which has 64 kernels with size 4×4 and stride 2.
The last convolutional layer has 64 kernels with size 3×3 and
stride 1. For the meta critic, the fully connected layer part
consists of two layers with 512 nodes and 256 nodes
respectively, while for the basic critic, the two fully connected
layers both consists of 300 nodes. Moreover, the basic critic
includes a mlpconv layer operation before the fully-connected
part and also includes the actions in its second fully-connected
layer. All fully-connected parts of the actor networks consist of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

two layers each, with 200 and 150 nodes respectively. In all

Fig. 4. The performance of each actor in the three scenarios. The pictures at the bottom-right of each curve are samples of moving trajectories of the actor. The
yellow triangles indicate the initial orientation.

Fig. 5. Performance of actors in Scenario 1 when training with an incompetent
actor.

Fig. 6. Performance comparison at 5,000 episode between training with
different meta critic reward values in Scenario 1.

networks, range sensor data is included before the first fully-
connected layer. All the networks were built and trained in
TensorFlow [42]. The value of other parameters introduced in
the paper can be found in the Appendix.

In each experiment, agents were trained for 10,000 episodes,
which consists of around 200,000 update iterations. We tested
the performance of both the meta critic and the basic critic at
several points during training. Each time we test the model, we
run 10 independent episodes and initialize the robot at a random
position and orientation. Then we calculated the success rate of
the agent on solving the task in these 10 episodes.

We conducted experiments to test the performance of the
basic and meta critic as well as to compare the proposed
algorithm with other algorithms. The results are discussed
below.

B. Basic Critic Performance
We first examined the performance of the basic critic by

testing the performance of the actors during training. Results
are shown in Fig. 4. We can see that all four actors achieved
very good performance after training for around 1500 episodes.
After the actors reached their best performance, the
performance remains stable until the end of training. Samples

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

of movement trajectories of each actor shown in Fig. 4 also demonstrate that all actors are achieving good basic skills that

Fig. 7. The performance of the meta critic. In each curve, the bars are success rate of finishing the task. The curves are average rewards in each test episode and
the shadows indicate the standard deviation.

TABLE I
COMPARISON BETWEEN BEST PERFORMANCES OF DIFFERENT ALGORITHMS

 Scenario 1 Scenario 2 Scenario 3
Average reward Success rate Average reward Success rate Average reward Success rate

DQN [15] 5.34 ± 5.17 80% 3.91 ± 5.78 70% 2.03 ± 5.38 50%
DDPG [17] -0.97 ± 6.21 30% -3.45 ± 4.05 10% -4.03 ± 3.80 10%

h-DDPG 9.88 ± 0.74 100% 8.86 ± 0.90 100% 7.73 ± 2.01 90%

the meta critic could rely on. High performance basic skills
provided by the basic critic and actors would help the meta
critic to understand the movement patterns of each actor better
and learn how to reuse them to achieve the final compound task.

In addition, we conducted a set of experiments in Scenario 1
to investigate the impact of an incompetent actor on the
performance of other actors. In order to do so, we included an
actor with a meaningless reward function. This actor received
rewards randomly, so it would never learn. The results of the
training are shown in Fig. 5. We can see that, the basic critic
can still learn several high performance actors even when one
of the actors has bad performance. This adds to the robustness
of the proposed algorithm as individual failed actors will not
interfere with the learning of other actors.

C. Meta Critic Performance
We first conducted a set of experiments in Scenario 1 to find

an appropriate value of the reward for the meta critic. We
compared the performance of the algorithm after 5000 episodes
of training. The results are shown in Fig. 6. We can see that the
performance is poor when the reward value for the meta critic
is close to the reward for the basic critic. The agent generally
failed to learn when the reward value was 1. The performance
improves when the value increases and tops when reward value
gets to 10, as the average steps in one episode becomes fewer
and success rate reached 100%.

After this, the performance remains high in a range of reward
values. However, it starts to drop when the value gets to 35.
The performance gets worse when the value gets higher. This
may be because of the unstable gradient updates caused by big
loss values. This also demonstrates that a reward value between
10 and 30 is most suitable for the meta critic in learning
compound skills in our scenarios. We then choose the reward
value to be 10 and fixed it for the rest of the experiments.

The results of the final performance of the proposed h-DDPG
algorithm in all three scenarios are shown in Fig. 7. We can see
that, the agent started to find solutions to the tasks after training
for around 2000 episodes. We can see from Fig. 4 that most

actors achieve stable basic skills at around 1500 episodes. This
means the meta critic actually learned better compound skills
for the tasks right after stable basic skills became available.
This also explains the instability of the performance before
2000 episodes as it would be hard for the meta critic to infer the
b a s i c s k i l l s o f u n s t a b l e a c t o r s .

For Scenario 1 and 2, the agent successfully achieved the final
goal in more than 90% of test cases with random initialization
conducted during training. This statistic is lower for Scenario 3,
which is at around 80%. We observed that most failures in
Scenario 3 were caused by collisions with the sides of a door
when the robot tried to go through it. This may be caused by the
fact that when the robot is near the door, it becomes harder to
infer the orientation and position as what it can sense from
camera and range sensors there is extremely similar (it is blank
outside of the door). Sometimes, we observed the robot tried to
solve the task by reversing out of the doors. This may be the
way the agent used to infer orientation and position near the
door.

In all three scenarios, the agent was able to solve the tasks
within around 18 action steps. Note that this is highly relevant
to the position and orientation of the random initialization,
which also partially causes the high deviation in Fig. 7. We can
see from samples of task solving trajectories given in Fig. 3 that
the agent was actually solving the tasks with near optimal
solutions from different initializations. The overall success rate
of the proposed algorithm in solving the tasks is 87.6%.

D. Comparisons with Other Algorithms
We compared the proposed algorithm with two well-known

deep reinforcement learning algorithms: DQN [15] and DDPG
[17]. Both algorithms are one-thread training based, so it is
suitable for comparison with the proposed h-DDPG algorithm.
The first one is a discrete action algorithm, so we fixed the
speed of the wheels in each basic skill so that the agent can get
access to the four basic skills we used in our algorithm with
quality equal to the best quality skills learned by our h-DDPG
actors. The speed values for each of the basic skills were chosen
via a grid search around the values frequently chosen by the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

corresponding actors. We used the network architecture
proposed in their original papers and did a grid search for hyper-
parameters such as learning rate and discount factor centred
around the values in the original papers. We finally fixed these
hyper-parameters at their original values as we found they
provide better performance. We also tuned the reward values
for more stable learning and unified them to the values chosen
for h-DDPG when reporting the results. We compared the best
performance averaged from 10 test episodes obtained by
learning with these three algorithms in all three scenarios in
TABLE I.

We can see that, the proposed h-DDPG outperformed DQN
and DDPG in solving tasks in all three scenarios. DDPG
frequently failed to solve the tasks, and the success rates are
very low. This implies it may be hard to learn compound skills
without knowing any basic skills.

Although DQN can solve all three tasks, it is less capable to
do so compared to h-DDPG as the success rates are lower.
Moreover, it took more action steps to solve the tasks compared
to h-DDPG. We observed that when using DQN, it took much
more effort to keep the robot moving smoothly. This is mainly
caused by the abrupt changes in speed when changing from one
skill to another, as actions are executed in continuous time
space and the length of time an action will be executed may
vary. This may have influenced the performance of DQN. In
contrast, when using h-DDPG, the robot was able to move more
smoothly owing to the actors that could adjust the speed when
performing basic skills to avoid sharp changes in speed. This is
also one of the advantages of h-DDPG for handling robot
control in a continuous action space.

These comparisons show that by introducing the hierarchical
architecture and decomposing compound and basic skill
learning, the proposed algorithm can not only learn better
compound skills compared to other continuous action control
algorithms, but also achieve smoother movement to support
more stable compound skill learning compared to discrete
action control algorithms.

VI. CONCLUSION
In this paper, we proposed a novel hierarchical deep

reinforcement learning algorithm called h-DDPG. The
proposed algorithm is made up of two levels of hierarchy. It can
learn both basic skills and compound skills in a continuous
action space simultaneously. The first level of hierarchy
comprises a single basic critic with multiple actors, each
handling a particular basic skill. This basic critic trains multiple
actors at the same time. The second level of hierarchy contains
a meta critic. This meta critic learns compound skills by reusing
basic skills in the first level of hierarchy to solve compound
tasks. The overall learning process of h-DDPG shares a single
replay memory and skills in both hierarchies are learned within
the same process.

In order to test the proposed algorithm, we built three
scenarios with different compound tasks in Gazebo 2 in a ROS
Indigo environment. A simulated Pioneer 3AT robot with front
view camera is used in these simulations. The tasks in these
three scenarios are designed to examine the agent capability in
observing and distinguishing objects and moving accurately.

The results show that the proposed algorithm successfully
learns both high performance basic skills and compound skills.
In total, it successfully solved the tasks with a rate of 87.6%
among all test cases with random position and orientation
initialization in different scenarios. Results also show that in
cases that some of the actors fail to learn, other actors can still
learn high performance basic skills. In comparison with other
algorithms, the proposed h-DDPG outperforms other one-
thread training based algorithms while also achieving
comparable performance against other discrete action based
algorithms in solving compound tasks.

However, the proposed algorithm also has three main
drawbacks. Firstly, we found that the agent needs sufficient free
space in the environment to explore the continuous action space
to find the movement patterns for basic skills. Secondly, the
algorithm is confined to solve tasks in fully observable
scenarios and may fail in partially observable tasks. Lastly, the
algorithm requires predefined reward functions for all levels of
hierarchy. Nonetheless, the capability of the proposed
algorithm at solving fully observable compound tasks and
providing smoother movement in a continuous action space
should still make it a competitive algorithm compared to other
deep reinforcement learning algorithms.

Future work could focus on three different aspects to improve
the proposed algorithm. Firstly, technical improvements on the
replay memory would help reduce the free space needed for
learning basic skills as transitions in the replay memory may
have different contribution to the learning, and those that are
beneficial should be highlighted. This may also help make the
whole learning process faster as compound skills are based on
the basic skills. Secondly, the introduction of new levels of
hierarchy can enable the algorithm to use multi-level hierarchy
to decompose complex tasks in a more detailed way, which may
give more potential to solve partially observable tasks. Thirdly,
a combination of intrinsic motivations with the proposed
algorithm could help eliminate the need of predefined reward
functions. This could further add to the generalization and
flexibility of the algorithm.

APPENDIX
TABLE II

VALUE OF HYPER-PARAMETERS
Description Symbol (if has) Value
Meta critic base learning rate 𝜇𝜇𝑄𝑄𝑚𝑚 0.0025
Meta critic discount factor 𝛾𝛾𝑚𝑚 0.99
Basic critic base learning rate 𝜇𝜇𝑄𝑄𝑏𝑏 0.001
Basic critic discount factor 𝛾𝛾𝑏𝑏 0.9
Basic critic reward 𝑟𝑟𝑏𝑏 1
Actors base learning rate 𝜇𝜇𝜋𝜋𝑔𝑔 0.0001
𝑙𝑙2 penalty / 0.01
Mini-batch size M 64
Initial actor noise intensity 𝜎𝜎𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 0.12
Minimum actor noise intensity 𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛 0.021
Initial 𝜖𝜖 / 1
Minimum 𝜖𝜖 / 0.1
Soft update factor 𝜑𝜑 0.001

Kathryn
references

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

REFERENCES

[1] R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction,"

vol. 1. Cambridge: MIT Press, 1998.
[2] R. S. Sutton, "Learning to Predict by the Methods of Temporal

Differences," Machine Learning, vol. 3, pp. 9-44, 1988.
[3] C. J. C. H. Watkins and P. Dayan, "Q-Learning," Machine Learning, vol.

8, pp. 279-292, 1992.
[4] G. A. Rummery and M. Niranjan, "On-line Q Learning using

Connectionist Systems." Cambridge, England: University of Cambridge,
Department of Engineering, 1994.

[5] M. Grounds and D. Kudenko, "Parallel reinforcement learning with
linear function approximation," vol. 4865. Berlin, Heidelberg: Springer,
2008.

[6] G. Konidaris, S. Osentoski, and P. Thomas, "Value Function
Approximation in Reinforcement Learning using the Fourier Basis," in
Proc. AAAI, 2011, pp. 380-385.

[7] Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," Nature, vol. 521,
pp. 436–444, 2015.

[8] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks," in Proc. Adv.
NIPS, 2015, pp. 91-99.

[9] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, "Deep Networks
with Stochastic Depth," in ECCV, 2016, pp. 646-661.

[10] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, et
al., "Ask Me Anything: Dynamic Memory Networks for Natural
Language Processing," in Proc. ICML, 2016, pp. 1378-1387.

[11] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang, "Semantic Image
Segmentation via Deep Parsing Network," in ICCV, 2015, pp. 1377-1385.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification
with Deep Convolutional Neural Network," in Proc. Adv. NIPS, 2012, pp.
1097-1105.

[13] A. Graves, A.-r. Mohamed, and G. Hinton, "Speech Recognition with
Deep Recurrent Neural Networks," in ICASSP, 2013, pp. 6645-6649.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, et al., "Playing Atari with Deep Reinforcement Learning,"
presented at the NIPS, 2013.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, et al., "Human-level Control through Deep reinforcement
Learning," Nature, vol. 518, pp. 529-533, 2015.

[16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. v. d. Driessche,
et al., "Mastering the Game of Go with Deep Neural Networks and
TreeSearch," Nature, vol. 529, pp. 484-489, 2016.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al.,
"Continuous Control with Deep Reinforcement Learning," in ICLR, 2016.

[18] Z. Yang, K. Merrick, H. Abbass, and L. Jin, "Multi-Task Deep
Reinforcement Learning for Continuous Action Control," in Proc. IJCAI,
2017, pp. 3301-3307.

[19] M. Lin, Q. Chen, and S. Yan. "Network in Network." arXiv preprint
arXiv:1312.4400, 2013.

[20] Z. Wang, T. Schaul, M. Hessel, H. v. Hasselt, M. Lanctot, and N. d.
Freitas, "Dueling Network Architectures for Deep Reinforcement
Learning," in Proc. ICML, 2016, pp. 1995-2003.

[21] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, "Prioritized Experience
Replay," in ICLR, 2016.

[22] G. Dulac-Arnold, R. Evans, H. v. Hasselt, P. Sunehag, T. Lillicrap, J.
Hunt, et al., "Deep Reinforcement Learning in Large Discrete Action
Spaces," presented at the ICML Abstraction in Reinforcement Learning
Workshop, 2016.

[23] J. Peters, S. Vijayakumar, and S. Schaal, "Natural Actor-Critic," in
ECML, 2005, pp. 280-291.

[24] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, et
al., "Asynchronous Methods for Deep Reinforcement Learning," in Proc.
ICML, 2016, pp. 1928-1937.

[25] N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, and T. Erez,
"Learning Continuous Control Policies by Stochastic Value Gradients,"
in Proc. Adv. NIPS, 2015.

[26] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, "Trust
Region Policy Optimization," in Proc. ICML, 2015, pp. 1889-1897.

[27] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, "Continuous Deep Q-
Learning with Model-based Acceleration," in Proc. ICML, 2016, pp.
2829-2838.

[28] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
"Benchmarking Deep Reinforcement Learning for Continuous Control,"
in Proc. ICML, 2016, pp. 1329-1338.

[29] A. G. Barto and S. Mahadevan, "Recent Advances in Hierarchical
Reinforcement Learning," Discrete Event Dynamic Systems, vol. 13, pp.
341-379, 2003.

[30] N. Dethlefs and H. Cuayahuitl, "Hierarchical Reinforcement Learning for
Situated Natural Language Generation," Natural Language Engineering,
vol. 21, pp. 391-435, 2015.

[31] T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum,
"Hierarchical Deep Reinforcement Learning Integrating Temporal
Abstraction and Intrinsic Motivation," in Proc. Adv. NIPS, 2016, pp.
3675-3683.

[32] R. Krishnamurthy, A. Lakshminarayanan, P. Kumar, and B. Ravindran,
"Hierarchical Reinforcement Learning using Spatio-Temporal
Abstractions and Deep Neural Networks," presented at the ICML
Abstraction in Reinforcement Learning Workshop, 2016.

[33] P. L. Bacon, J. Harb, and D. Precup, "The Option-Critic Architecture," in
Proc. AAAI, 2017, pp. 1726-1734.

[34] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D.
Silver, et al. "FeUdal Networks for Hierarchical Reinforcement
Learning." arXiv preprint arXiv:1703.01161, 2017.

[35] R. S. Sutton, D. Precup, and S. Singh, "Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning,"
Artificial intelligence, vol. 112, pp. 181-211, 1999.

[36] G. Baldassarre and M. Mirolli, "Intrinsically Motivated Learning in
Natural and Artificial Systems." Berlin, Heidelberg: Springer, 2013.

[37] S. Mohamed and D. J. Rezende, "Variational Information Maximisation
for Intrinsically Motivated Reinforcement Learning," in Proc. Adv. NIPS,
2015, pp. 2125-2133.

[38] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
"Deterministic Policy Gradient Algorithms," in Proc. ICML, 2014, pp.
387-395.

[39] G. E. Uhlenbeck and L. S. Ornstein, "On the Theory of the Brownian
Motion," Physical Review, vol. 36, p. 823, 1930.

[40] Z. Feng, Z. Yang, L. Jin, S. Huang, and J. Sun, "Robust Shared Feature
Learning for Script and Handwritten/Machine-Printed Identification,"
Pattern Recognition Letters, vol. 100, pp. 6-13, 2017.

[41] D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic
Optimization," presented at the ICLR, 2015.

[42] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al.
"TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems." arXiv preprint arXiv:1603.04467, 2016.

Zhaoyang Yang received a bachelor of
engineering degree at School of Electronic
and Information Engineering at South
China University of Technology (SCUT),
Guangzhou, China, in 2015. He is currently
pursuing the master degree at SCUT, while
also doing a duel master degree program at
University of New South Wales, Canberra,

Australia. His current research interests include deep learning,
computer vision, and robotics.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Kathryn Merrick has a bachelor of
Computer Science and Technology
(Advanced, Honours I, University Medal),
University of Sydney, NSW, Australia,
2002; PhD (computer science), National
ICT Australia and University of Sydney,
NSW, Australia, 2007. She is an Associate
Professor in information technology at the

University of New South Wales, Canberra, ACT. Her research
lies in the areas of autonomous mental development and
computational motivation, with applications in virtual
characters, developmental robotics and intelligent
environments. Her research is principally concerned with the
development of algorithms for self-motivated learning agents.
She is co-author of two books and over seventy refereed
conference and journal papers. She is an associate editor of the
IEEE Trans. on Cognitive and Developmental Systems, Chair
of the IEEE Technical Committee on Cognitive and
Developmental Systems (2017) and Chair of the ACT Chapter
of the IEEE Computational Intelligence Society (2017).

Hussein Abbass is a Professor of
Information Technology at the University
of New South Wales at the Australian
Defence Force Academy (UNSW@
ADFA) in Canberra, Australia. He is a
fellow of the Australian Computer Society
(FACS), a fellow of the Operational
Research Society (FORS, UK); a fellow of
the Australian Institute of Management

(AFAIM), and the Vice-president for Technical Activities
(2016-2017) for the IEEE Computational Intelligence Society.
He is an associate Editor of the IEEE Trans. On Evolutionary
Computation, IEEE Trans. on Cybernetics, IEEE Trans. on
Cognitive and Developmental Systems, IEEE Computational
Intelligence Magazine, and four other journals. His current
research contributes to trusted autonomy with an aim to design
next generation trusted artificial intelligence systems that
seamlessly integrate humans and machines. His work fuses
artificial intelligence, big data, cognitive science, operations
research, and robotics.

Lianwen Jin received the B.S. degree
from the University of Science and
Technology of China, Anhui, China, and
the Ph.D. degree from the South China
University of Technology, Guangzhou,
China, in 1991 and 1996, respectively. He
is currently a Professor with the School of
Electronic and Information Engineering,

South China University of Technology. He is the author of more
than 150 scientific papers. Dr. Jin was a recipient of the award
of New Century Excellent Talent Program of MOE in 2006 and
the Guangdong Pearl River Distinguished Professor Award in
2011. His research interests include image processing, machine
learning, document analysis and recognition, computer vision
and intelligent systems. He is member of the IEEE Computer
Society, IEEE Signal Processing Society, IEEE System Man

and Cybernetics Society, and IEEE Computational Intelligence
Society.

Copyright IEEE DOI 10.1109/tnnls.2018.2805379

	I. INTRODUCTION
	1) Learn multiple basic skills at the same time,
	2) Learn compound skills to solve compound tasks by reusing basic skills,
	3) Handle the above two kinds of skill learning within the same process.

	II. Preliminaries
	A. Related Work
	B. Background

	III. H-DDPG Architecture
	A. Basic Critic
	B. Meta Critic
	C. Hierarchies of Abstractions

	IV. H-DDPG Learning
	A. Rewards and Punishments
	B. Replay Memory and Batch Sampling
	C. Exploration
	D. Learning Process

	V. Experiments and Results
	A. Experiment Setup
	1) Approaching Object
	The walled space is mostly obstacle-free with only a single target object. The robot’s task in this scenario is to approach the target object, starting from a random position and orientation, without crashing into walls.
	2) Approaching Specific Target
	The walled space is filled with two different objects, one target and one decoy. The robot’s task in this scenario is to approach the target object, starting from a random position and orientation, without confusing it with the decoy or crashing into...
	3) Doorway Escape
	The walled space is obstacle-free with four doorways one on each side of the space. The robot’s task in this scenario is to go through one of the doorways, starting from a random position and orientation, without crashing into walls. This task is eve...

	B. Basic Critic Performance
	C. Meta Critic Performance
	D. Comparisons with Other Algorithms

	VI. Conclusion
	Appendix
	References

