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Abstract—Robotic control in a continuous action space has long 
been a challenging topic. This is especially true when controlling 
robots to solve compound tasks, as both basic skills and compound 
skills need to be learned. In this paper, we propose a hierarchical 
deep reinforcement learning algorithm to learn basic skills and 
compound skills simultaneously. In the proposed algorithm, 
compound skills and basic skills are learned by two levels of 
hierarchy. In the first level of hierarchy, each basic skill is handled 
by its own actor, overseen by a shared basic critic. Then in the 
second level of hierarchy, compound skills are learned by a meta 
critic by reusing basic skills. The proposed algorithm was 
evaluated on a Pioneer 3AT robot in three different navigation 
scenarios with fully observable tasks. The simulations were built 
in Gazebo 2 in a ROS Indigo environment. The results show that 
the proposed algorithm can learn both high performance basic 
skills and compound skills through the same learning process. The 
compound skills learned outperform those learned by a discrete 
action space deep reinforcement learning algorithm.  
 

Index Terms—Continuous control, deep learning, hierarchical 
learning, reinforcement learning 
 

I. INTRODUCTION 
EINFORCEMENT learning [1] is a kind of algorithm that 
permits an agent or robot to learn from trial-and-error and 

reward during interaction with its environment.  
Classical TD-learning [2] algorithms such as Q-learning [3], 

and SARSA [4] are well-known reinforcement learning 
algorithms that can learn by trial-and-error and even when the 
reward feedback is infrequent or delayed until the end of a 
learning episode. What is more, many works introduced linear 
function approximations to enhance the generalization ability 
of algorithms [5, 6] to handle more complex environments.  

Recently, deep learning [7] algorithms have achieved record-

breaking performance in several applications and research 
topics, such as computer vision [8, 9], semantic analysis [10, 
11] and others. With hundreds of thousands of auto-learned 
parameters in the model, deep neural networks have shown 
unprecedented feature extraction and generalization 
capabilities. Available choices for network architectures such 
as convolutional neural networks (CNN) [12] and long-short 
term memory (LSTM) networks [13] further help deep learning 
in applications with different requirements, such as applications 
that require considering past states to make decisions and 
applications that only have access to image data. These 
successes inspired interest in combining reinforcement learning 
with deep learning to further improve the performance of the 
agents.  

Although it is generally believed that non-linear 
approximations like deep neural networks are not suitable for 
reinforcement learning because of the correlations between data 
and the possible sparsity of supervision signals in reinforcement 
learning scenarios [14], recent advances in reinforcement 
learning have addressed these challenges and brought deep 
reinforcement learning great success. Some deep reinforcement 
learning agents have recently outperformed humans in playing 
Atari games [15] and Go games [16].  

However, unlike games or other decision making processes 
that contain only a limited number of legal actions, robotic 
control usually involves action choices in a continuous action 
space. Moreover, learning agents also need to consider many 
physical factors to keep the robot moving smoothly. The 
problem becomes even more difficult when trying to solve 
compound tasks where the agent needs to learn both basic skills 
and compound skills at the same time.  

In this paper, in order to address the challenges mentioned 
above, we propose a novel hierarchical deep reinforcement 
learning algorithm based on the Deep Deterministic Gradient 
Descent algorithm [17]. The proposed algorithm makes use of 
observations from both sensor data and a first-person view 
camera images to learn basic skills and compound skills 
simultaneously. We call this algorithm h-DDPG.  

The proposed algorithm comprises two levels of hierarchy. 
In the first level of hierarchy, multiple basic skills, each handled 
by its own actor, are learned simultaneously. This is achieved 
by adapting a multi-task deep reinforcement learning algorithm 
we developed in previous work [18]. Multi-layer perceptron 
convolutional (mlpconv) layers [19] are used in this hierarchy 
to reduce the number of parameters needed for learning 
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multiple skills. The second level of hierarchy is responsible for 
learning compound skills. These compound skills are made up 
of a series of basic skills learned in the first level of hierarchy.  

To test the proposed h-DDPG algorithm, we built three 
different scenarios in Gazebo 2 in a ROS Indigo environment. 
Each scenario has a different compound task that the robot will 
try to solve. Our simulations were conducted with a Pioneer 
3AT robot with range sensors and a camera set on the front of 
it. Results show that the proposed algorithm can successfully 
learn high performance basic skills and compound skills 
simultaneously. Results also show that its performance in 
solving compound tasks in the three scenarios outperform 
discrete action deep reinforcement learning algorithm.  

In summary, the main contribution of this paper is a 
hierarchical deep reinforcement learning algorithm that can:  

1)   Learn multiple basic skills at the same time, 
2)   Learn compound skills to solve compound tasks by 

reusing basic skills,  
3)   Handle the above two kinds of skill learning within the 

same process.  
The rest of the paper is organized as follows. A brief 

literature review and necessary background will first be 
presented in the next section. Then in Section III, we will 
describe the structure of the proposed h-DDPG algorithm in 
detail, followed by the details of its learning process in Section 
IV. Simulation settings and experimental results will be 
reported in Section V. Section VI is the conclusion.  

II. PRELIMINARIES 

A. Related Work 
Deep reinforcement learning has attracted considerable 

attention in recent years due to its potential to learn highly 
generalized representations in complex environments. A first 
breakthrough was the deep Q network (DQN) algorithm [14]. 
Many works [20-22] emerged after DQN’s success in achieving 
human level performance in playing Atari games.  

Various work has also been done on solving continuous 
control tasks with deep reinforcement learning. The actor-critic 
architecture [23] is generally chosen as a baseline to build deep 
reinforcement learning algorithms with deterministic policy 
gradients [17, 24] or stochastic policy gradients [25]. Moreover, 
Trust Region Policy Optimization (TRPO) [26] achieved 
continuous control in a similar way to natural policy gradient. 
Some work has also been done to integrate model-based 
methods to accelerate learning in continuous action spaces [27]. 
However, while all these works achieved very good 
performance in learning basic locomotion skills, few of them 
can solve compound tasks efficiently [28]. Although some 
experiments show that algorithms  can solve some compound 
tasks [24], this is mainly owing to the use of a multi-threaded 
parallel learning scheme that makes the exploration more 
balanced and increases the chance of collecting rewards during 
exploration. In this paper, we focus on the case where only one 
robot is available.  

Various work on hierarchical reinforcement learning exists 

[29][30], including work considering deep architectures  [31] 
[32] . However, different from our work, work in [31] focuses 
on discrete action spaces with embedded DQN structure. Work 
in [32] is focuses on finding the best hierarchical structure of 
the tasks with clustering methods, and is mainly concerned with 
how to decompose tasks.  

Most recent work on deep hierarchical reinforcement 
learning can be found in [33] and [34]. Work in [33] extends 
policy gradient methods to the option framework [35], which 
allows auto-decomposition of tasks in the forms of options. 
Work in [34] used feudal reinforcement learning methods to 
further improve the performance of top level hierarchy (which 
they called the Manager) in controlling lower level hierarchy 
(which they called the Worker).  

Different from our work, these two works can learn a 
hierarchical agent without giving additional reward functions 
for sub-goals and can fit in learning with different base deep 
reinforcement learning algorithms. However, compared to our 
work, these two works are learning in two time scales, which 
means the low-level hierarchy should take control for a certain 
period. This is different from our work as both levels of 
hierarchy in our proposed algorithm learn in the same time 
scale, which allows more instant control of low-level actors. 
What is more, although our method needs explicitly defined 
rewards for both levels of hierarchy, the basic tasks learned at 
the lowest-level of hierarchy are general basic movement skills, 
are non-task specific, and can potentially be transferred to any 
other compound tasks.  

Another related topic is intrinsically motivated learning 
which also involves reuse of basic skills [36]. Some recent work 
[37] has successfully achieved an intrinsically motivated agent 
by replacing reward functions with a maximization of the 
mutual information during learning.  

B. Background 
In this paper, we consider a standard reinforcement learning 

setup, where the agent is interacting with the environment 𝑬𝑬 in 
discrete timesteps.  In each timestep 𝑡𝑡, the agent receives a state  
𝑠𝑠𝑡𝑡 ∈ 𝑺𝑺  from the environment, and chooses and executes an 
action 𝑎𝑎𝑡𝑡 ∈ 𝑨𝑨 according to the current policy 𝜋𝜋: 𝑺𝑺 → 𝑨𝑨. Then 
the agent will receive a reward 𝑟𝑟𝑡𝑡 for taking 𝑎𝑎𝑡𝑡 and transition to 
the next state 𝑠𝑠𝑡𝑡+1, where the process starts again.  

The goal of reinforcement learning is to learn a policy 𝜋𝜋 that 
can maximize reward. This can be achieved by maximizing the 
expected future return for each timestep. The expected future 
return is defined as:  

 𝑅𝑅𝑡𝑡 = � 𝛾𝛾𝑡𝑡′−𝑡𝑡𝑟𝑟𝑡𝑡′
𝑇𝑇

𝑡𝑡′=𝑡𝑡
 (1) 

where 𝑇𝑇 is the total number of timesteps taken and  𝛾𝛾 ∈ [0,1] is 
the discounted factor that indicates to what extent future 
rewards are being considered.  
 Note that the policy 𝜋𝜋  may be stochastic in some cases. 
However, we are considering deterministic policies, where 
action 𝑎𝑎𝑡𝑡 only depends on 𝑠𝑠𝑡𝑡 and 𝜋𝜋(𝑠𝑠𝑡𝑡). Also, we assume that 
all environments in this paper are fully observable, which
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Fig. 1.  An overview of h-DDPG architecture. The trapeziums represent fully connected layers. These fully connected layers are layers from meta critic, actors and 
basic critic respectively from top to bottom. The square-dotted lines are connections with back-propagation while the dashed lines are not.  
 
means 𝑠𝑠𝑡𝑡 can fully describe the current state.  

The state-action values (also known as Q values) are central 
to reinforcement learning algorithms. They are estimations of 
the expected future returns for given state-action pairs:  

 𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝐸𝐸[𝑅𝑅𝑡𝑡|𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡] (2) 
Deep reinforcement learning algorithms aim to use deep 

neural network (𝜃𝜃𝑄𝑄) to approximate this value function. This 
was not achieved until two major techniques, replay memory 
and target network (𝜃𝜃𝑄𝑄′), were applied in DQN [14].  

In order to extend deep reinforcement learning to continuous 
action spaces, an algorithm called DDPG [17] was proposed, 
which has an actor-critic architecture. Unlike value function 
based algorithms such as DQN, DDPG uses two separate 
networks to approximate the critic (value) function (𝜃𝜃𝑄𝑄) and 
actor (policy) function (𝜃𝜃𝜋𝜋) (Each network also has its own 
target network 𝜃𝜃𝑄𝑄′ and 𝜃𝜃𝜋𝜋′). With the additional actor function, 
DDPG can learn more sophisticated policies to handle 
continuous action spaces. For the critic network, the parameters 
are optimized by minimizing the loss:  
 

 𝐿𝐿(𝜃𝜃𝑄𝑄) = (𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄) − 𝑦𝑦𝑡𝑡)2 (3) 
where 
 𝑦𝑦𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝜋𝜋(𝑠𝑠𝑡𝑡+1|𝜃𝜃𝜋𝜋′)|𝜃𝜃𝑄𝑄′) (4) 
and the update equation is 
 𝜃𝜃𝑄𝑄 ← 𝜃𝜃𝑄𝑄 − 𝜇𝜇𝑄𝑄 ∙ 𝛻𝛻𝜃𝜃𝑄𝑄𝐿𝐿(𝜃𝜃𝑄𝑄) (5) 
where 𝜇𝜇𝑄𝑄  is the learning rate and the symbol 𝛻𝛻  donates a 
gradient calculation.  

After the critic network has been updated, the actor network 
will be updated by inferring gradients from the critic network: 

 𝜃𝜃𝜋𝜋 ← 𝜃𝜃𝜋𝜋 − 𝜇𝜇𝜋𝜋 ∙ 𝛻𝛻𝑎𝑎𝑄𝑄(𝑠𝑠𝑡𝑡 , ,𝜋𝜋(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋)|𝜃𝜃𝑄𝑄)
∙ 𝛻𝛻𝜃𝜃𝜋𝜋𝜋𝜋(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋) (6) 

where 𝜇𝜇𝜋𝜋 is the learning rate. A full derivation of (6) can be 
found in [38].  

The mlpconv layer is a new network layer proposed in [19]. 
In traditional convolutional layers, feature maps are activated 
with an activation function 𝐹𝐹(∙) as:  

 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝐹𝐹(𝜔𝜔𝑘𝑘
𝑇𝑇𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑏𝑏𝑘𝑘) (7) 

where (𝑖𝑖, 𝑗𝑗) indexes the feature pixels in channel 𝑘𝑘 and 𝜔𝜔𝑘𝑘 and 
𝑏𝑏𝑘𝑘  are the weight and bias of the convolutional kernel of 
channel 𝑘𝑘.  

Generally, good abstractions are highly non-linear functions 
of the input. While activation functions such as ReLU can add 
some non-linearity to the network, the network may still not be 
expressive enough. As a result, we need to make the network 
deeper or wider. However, this may make the network hard to 
train, both in a computational perspective and in a gradient 
propagation perspective. Therefore, in order to enhance the 
non-linearity of traditional convolutional layers, mlpconv layer 
forms a recombination of features across different channels 
with a multi-perceptron nature. Then the recombined feature 
outputs of the mlpconv layer becomes: 

 𝑓𝑓𝑖𝑖,𝑗𝑗,𝑘𝑘𝑛𝑛
𝑛𝑛 = 𝐹𝐹�𝜔𝜔𝑘𝑘𝑛𝑛

𝑛𝑛 𝑇𝑇𝑓𝑓𝑖𝑖,𝑗𝑗𝑛𝑛−1 + 𝑏𝑏𝑘𝑘𝑛𝑛� (8) 
Where 𝑛𝑛 is the number of perceptron layers used and 𝑓𝑓𝑖𝑖,𝑗𝑗0 = 𝑥𝑥𝑖𝑖,𝑗𝑗. 
For both the original paper and this paper 𝑛𝑛 = 2.  

For the classification problems discussed in [19], the final 
output can be obtained by applying a global average pooling on 
the output of the last mlpconv layer. This saves the parameters 
needed for fully-connected layers in traditional CNN.  

In the proposed h-DDPG algorithm, we will use a mlpconv 
layer and global average pooling to generate abstractions from 
image data to reduce the number of parameters needed for 
multiple basic skills in the first hierarchy of the algorithm.   
  

III. H-DDPG ARCHITECTURE 
In this paper, we propose a novel hierarchical deep 

reinforcement learning algorithm that can learn compound 
skills by reusing basic skills it learns during the same process. 
We define basic tasks to be tasks that can be achieved by 
choosing actions in a single ‘pattern’ learned in response to a 
basic reward function. Basic tasks are fundamentally non task-
specific and rather are tied to the physical capabilities of the 
robot, such as rotating a wheel or bending a joint. Let 𝑃𝑃𝑔𝑔 be the 
pattern (action set) of the basic task 𝑔𝑔. Then at any time t during 
execution of a basic task: 

 𝑎𝑎𝑡𝑡 ∈ 𝑃𝑃𝑔𝑔 (9) 
Conversely, compound tasks are defined to be tasks that can 
only be achieved by combining different patterns. So here, the 
chosen actions can be an action from any pattern in a basic skill 
set:  

Meta critic 
Rewards 

Basic critic 
Rewards 

Actions 

Image 
Data Sensor 

Data 
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 𝑎𝑎𝑡𝑡 ∈ {𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝐺𝐺} (10) 
where 𝐺𝐺 is the number of basic skills the agent has. These basic 
skills are combined to achieve a compound task.  

The proposed algorithm has two levels of hierarchy, 
corresponding to compound and basic skills, which is achieved 
with a duel-critic, multi-actor architecture. The duel-critic 
comprises a basic critic in the first level of hierarchy, which is 
responsible for training multiple actors that learn different basic 
skills, and a meta critic in the second level of hierarchy that 
learns to reuse actors to solve compound tasks. An overview of 
the proposed h-DDPG algorithm is shown in Fig. 1. In the next 
few sections, we will use subscript letters 𝑏𝑏  and 𝑚𝑚  to 
distinguish basic critic components and meta critic components 
in equations.  

A. Basic Critic 
In order to achieve a level of hierarchy that learns multiple 

skills simultaneously, we need to expand the original actor-
critic architecture [17, 23] to a single critic, multi-actor 
architecture in this level of hierarchy. We achieve this by 
adapting a multi-task deep reinforcement learning algorithm we 
developed in previous work [18]. Specifically, we kept the basic 
concepts of the algorithm in [18] and made some changes on its 
network architecture to fit it in the proposed h-DDPG 
algorithm.  

As a result, in this level of hierarchy, we will have a multi-
actor network, with each network learning a different skill. One 
more benefit we can receive from adapting this multi-task 
algorithm [18] is that it ensures that the update of different 
actors are independent from each other. This ensures that the 
learning of basic skills with different requirements and 
movement patterns do not interfere each other. We also 
demonstrate in Section V that this protects high performance 
actors from being impacted by poor performing actors.  

B. Meta Critic 
Different from the basic critic, the meta critic focuses on 

learning compound skills to solve compound tasks. The meta 
critic can access a set of basic skills provided by actors in the 
first level of hierarchy. The goal of the meta critic is to choose 
a basic skill that will help it solve the attempted compound tasks 
in each timestep. Therefore, similar to discrete action scenarios, 
the meta critic will choose the basic skill with the highest value 
from a given set of basic skills.  

This can be achieved by bootstrapping estimation of Q values 
of each basic skill. Thus, the meta critic will be a network with 
𝐺𝐺  output neurons that give estimations of Q values of all 
available actors. Then the network will be optimized by 
minimizing the loss function: 

 𝐿𝐿(𝜃𝜃𝑄𝑄𝑚𝑚) = (𝑄𝑄𝑚𝑚�𝑠𝑠𝑡𝑡 ,𝜋𝜋𝑔𝑔(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋𝑔𝑔)�𝜃𝜃𝑄𝑄𝑚𝑚� − 𝑦𝑦𝑚𝑚,𝑡𝑡)2 (11) 
where the supervision signal is: 

 𝑦𝑦𝑚𝑚,𝑡𝑡 = 𝑟𝑟𝑚𝑚,𝑡𝑡 + 𝛾𝛾𝑚𝑚 max
𝜋𝜋𝑔𝑔

𝑄𝑄𝑚𝑚�𝑠𝑠𝑡𝑡+1,𝜋𝜋𝑔𝑔(𝑠𝑠𝑡𝑡+1|𝜃𝜃𝜋𝜋𝑔𝑔)�𝜃𝜃𝑄𝑄𝑚𝑚′ � (12) 
where 𝜋𝜋𝑔𝑔 is the policy of the basic skill 𝑔𝑔.  

Note that 𝜋𝜋𝑔𝑔 is dynamic, as it will change as learning goes 
on. Also note that as learning of the basic critic and actors 
happens in the same process as the meta critic learns, there is 

no guarantee that all actors have good performance at their 
corresponding basic skills. However, the way that meta critic 
understands the actors is to understand the transitions from 𝑠𝑠𝑡𝑡 
to 𝑠𝑠𝑡𝑡+1 after a particular actor has been chosen. The meta critic 
does not know what basic skills the actors are assigned to learn 
prior to the training starting. So as training goes on, actors that 
are providing poor actions to the compound task will rarely be 
chosen by the meta critic.  

C. Hierarchies of Abstractions 
In the proposed algorithm, we include sensor data after the 

convolutional part of the networks and concatenate it with a 
feature vector of the image data. In addition, we extract two 
levels of image feature abstractions to keep the whole 
hierarchical architecture consistent and concise.  

Specifically, for the meta critic network that needs a 
thorough understanding of the environment to infer proper 
choice of basic skills to solve compound tasks, image features 
are a long vector flattened from the feature maps of the last 
convolutional layer. This vector is then fed into the rest of the 
fully-connected layers. In this way, every pixel in the feature 
maps of the last convolutional layer will contribute to the final 
decision of the meta critic. Abstractions at this level of 
hierarchy are intended to give a more detailed description of the 
states so that the critic could learn and make decisions 
according to full observations of the environment.  

For the basic critic as well as the actors that focus on basic 
skill learning, image features are a much shorter vector 
rendered from a global max pooling. This is achieved by 
applying mlpconv layer operations on the feature maps of the 
last convolutional layer. Each reconstructed feature map from 
the mlpconv layer will then be averaged globally to form an 
element in the abstraction vector. Abstractions at this level of 
hierarchy are intended to give a less detailed description of the 
states so that the critic can learn basic skills more easily.  

 
Fig. 2.  Comparison of parameters needed with or without mlpconv layers.  

Moreover, the implementation of mlpconv layer in the basic 
critic helps reduce the number of parameters needed 
significantly compared with using a traditional convolutional 
layer. As shown in Fig. 2, the proposed critic architecture 
reduces the number of parameters by 75% for a single actor. 
The reduction will become more significant as the number of 
actors increases.  
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IV. H-DDPG LEARNING 
The whole learning process of the proposed h-DDPG 

algorithm follows an ordering of hierarchy priority. In addition, 
the co-existence of two levels of hierarchy in the same 
architecture demands adjustments in several aspects of the 
algorithm.  

A. Rewards and Punishments 
In this paper, we are considering scenarios where all reward 

functions are pre-defined. Specifically, two kinds of rewards 
are necessary: reward for the meta critic, which can only be 
received when the final compound tasks are achieved, and 
reward for the basic critic, which can be received as soon as the 
action chosen by the actor is achieving its corresponding basic 
skill, that is, satisfying (9). As the frequency of receiving these 
two kinds of rewards is different, different values may be 
chosen. Having suitable reward values for the meta critic is 
especially important as it is much more sparse than the one for 
the basic critic. We investigate this in Section V.  

Note that learning with the multi-task learning architecture 
[18] in the first level of hierarchy requires a reward vector in 
which each element represents whether the action is what is 
desired for the corresponding actor. This means that whichever 
actor is providing the action, the action will always be evaluated 
by reward functions of all available actors. As a result, for every 
action taken, the agent will receive a reward for the meta critic 
and a reward vector for the basic critic.  

Similar to the rewards, two kinds of punishments, one for the 
meta critic and one for the basic critic, are introduced in the 
algorithm. Only the component that has caused undesired 
actions will receive punishments. In our case, in order to make 
the basic critic and actors focus on learning basic skills, we only 
punish the basic critic when the robot turns over, as making the 
robot move stably is a prerequisite of having good basic skills. 
Note that actions that could cause the robot to turn over are 
undesired actions for all actors, regardless of what basic skill 
the actor is assigned to learn. Therefore, the punishment is 
universal to all actors. The meta critic will receive a punishment 
when the robot crashes into obstacles as avoiding collision is 
considered as a part of the compound skills. What is more, we 
punish the meta critic with a small value every step before the 
episode terminates. This is mainly to push the meta critic to find 
the shortest solution to the task. We use this reward and 
punishment structure for all experiments in this paper.  

B. Replay Memory and Batch Sampling 
As a consolidated system, all levels of hierarchy in this 

algorithm share a single replay memory. However, we stored a 
label in each transition to record which actor made it. This is 
because when sampling transitions from the replay memory, a 
balance among transitions made by different actors is required. 
Specifically, the final batch of transitions will always consist of 
the same number of transitions from different actors. This 
sampling strategy makes the sampling more controllable and 
ensures that the critics can see transitions of different actors 
evenly.  

Note that as required by the multi-task learning architecture 

[18] in the first level of hierarchy, when calculating supervision 
signals for the basic critic, only one target actor network will be 
used. In this work, we select target networks iteratively. This is 
feasible owing to the actor-unspecific nature of the basic critic 
during self-updating as explained in the original work [18].  

C. Exploration 
Exploration is a critical aspect of all reinforcement learning 

algorithms. For deep reinforcement learning, exploration needs 
to be balanced to prevent the agent getting stuck in a local 
optimum.  

In the proposed algorithm, the exploration of the meta critic 
is governed by a 𝜖𝜖 − 𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑦𝑦 policy while the exploration of 
the basic critic is governed by an Ornstein-Uhlenbeck process 
[39]. What is more, the value of  𝜖𝜖 will be annealed throughout 
the training process to allow more exploitation. Similarly, we 
change the intensity of the Ornstein-Uhlenbeck process 
according to the performance of actors’ intermediate training 
according to: 

 𝜎𝜎𝑔𝑔 ← max {𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛 , �1 − 𝑝𝑝𝑔𝑔�𝜎𝜎𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡} (13) 
Where 𝜎𝜎  is the parameter that controls the intensity of the 
process and subscript 𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡  and 𝑚𝑚𝑖𝑖𝑛𝑛  denotes its initial and 
minimum value respectively. 𝑝𝑝𝑔𝑔  is the latest measured 
performance of actor 𝑔𝑔, which is measured as the reward per 
action the actor can collect.  

D. Learning Process 
The learning process follows an ordering of hierarchy 

priority. The component that has a higher level of hierarchy will 
be updated prior to components with lower level of hierarchy. 
Each training iteration will start right after an action has been 
executed in a timestep of exploration. The whole algorithm is 
summarized in Algorithm 1.   

Algorithm 1   H-DDPG 
Input: maximum training episode E𝑚𝑚𝑎𝑎𝑚𝑚, maximum steps in each 
episode S𝑚𝑚𝑎𝑎𝑚𝑚, mini-batch size M, replay memory P.  
Initialization: randomly initialize networks 
weights 𝜃𝜃𝑄𝑄𝑏𝑏, 𝜃𝜃𝑄𝑄𝑚𝑚, 𝜃𝜃𝜋𝜋1 , … … ,𝜃𝜃𝜋𝜋𝐺𝐺 and target networks 
weights 𝜃𝜃𝑄𝑄𝑏𝑏

′
← 𝜃𝜃𝑄𝑄𝑏𝑏 ,  𝜃𝜃𝑄𝑄𝑚𝑚′ ← 𝜃𝜃𝑄𝑄𝑚𝑚 ,𝜃𝜃𝜋𝜋𝑔𝑔′ ← 𝜃𝜃𝜋𝜋𝑔𝑔.  

while episode < E𝑚𝑚𝑎𝑎𝑚𝑚 
Initialize random noise N for exploration 
Get initial state 𝑠𝑠1 
while step <S𝑚𝑚𝑎𝑎𝑚𝑚 and episode not terminated 

Get Q values of actors using meta critic 
Select actor 𝑖𝑖 according to ϵ − greedy policy 
Select action 𝑎𝑎𝑡𝑡 using selected actor and add N 
Execute 𝑎𝑎𝑡𝑡 and get rewards 𝑟𝑟𝑏𝑏,𝑡𝑡, 𝑟𝑟𝑚𝑚,𝑡𝑡 and next state 𝑠𝑠𝑡𝑡+1 
Store transition (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in P 
Randomly sample 𝑀𝑀

𝐺𝐺
  transitions of each actor from P and 

make up a mini-batch with M transitions 
Update 𝜃𝜃𝑄𝑄𝑚𝑚 according to (11) and (12) and update 𝜃𝜃𝑄𝑄𝑚𝑚′  
Update 𝜃𝜃𝑄𝑄𝑏𝑏 and 𝜃𝜃𝑄𝑄𝑏𝑏

′
 according to [18] 

for g in G: 
Update 𝜃𝜃𝜋𝜋𝑔𝑔 and 𝜃𝜃𝜋𝜋𝑔𝑔′  according to [18] 

end 
end 

All target network updates in the algorithm follow a soft 
update process. With a soft update factor 𝜑𝜑, the soft update 
process can be expressed as: 

 𝜃𝜃𝑡𝑡+1′ ← (1 − 𝜑𝜑)𝜃𝜃𝑡𝑡′ + 𝜑𝜑𝜃𝜃𝑡𝑡 (14) 
Note that, we also applied a parameter-sharing scheme on 
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convolutional layers across different networks. Specifically, all

 
Fig. 3.  An introduction of the three simulation scenarios. They are, from top to bottom, the approaching object scenario (Scenario 1), the approaching specific 
target scenario (Scenario 2) and the doorway scenario (Scenario 3). Pictures from left to right in each row are top-down views of scenarios, image captures of the 
camera and the samples of solutions made by the agent. In the samples of solution, the yellow triangles indicate initial orientation, and stars indicate target objects.  
 
traditional convolutional layers will be updated by the meta 
critic and fixed when updating other networks. This is inspired 
by previous work [40] that indicates that less complex tasks (in 
our case, the basic tasks) can learn from abstractions extracted 
by a more complex task (in our case, the compound tasks). 
Particularly in our application, this can also make training more 
efficient as the shared convolutional part will not be updated 
too frequently. We also implement a similar schedule as the 
annealing intensity of the Ornstein-Uhlenbeck process on the 
base learning rate of the actor networks. We use Adam [41] with 
𝑙𝑙2 regularization for updating networks.  

V. EXPERIMENTS AND RESULTS 

A. Experiment Setup 
We tested the proposed algorithm in simulations conducted 

in Gazebo 2 in a ROS Indigo environment. We built three 
scenarios with different tasks in a walled space. We have tried 
to make them as observable as possible when building them:  
1)   Approaching Object 

The walled space is mostly obstacle-free with only a single 
target object. The robot’s task  in this scenario is to approach 
the target object, starting from a random position and 
orientation, without crashing into walls.  

2)   Approaching Specific Target 
The walled space is filled with two different objects, one 
target and one decoy. The robot’s task  in this scenario is to 
approach the target object, starting from a random position 
and orientation, without confusing it with the decoy or 
crashing into walls. To achieve this, the robot has to 
distinguish between the objects and apply different 
strategies to them, which makes this task more difficult than 
the task in scenario 1.  

3)   Doorway Escape 
The walled space is obstacle-free with four doorways one 
on each side of the space. The robot’s task  in this scenario 
is to go through one of the doorways, starting from a random 

position and orientation, without crashing into walls. This 
task is even more difficult than tasks in scenario 1 and 2 as 
the robot has to avoid collision with the sides of a door when 
going through it.  

Top-down screenshots of these three scenarios are shown in 
Fig. 3. In all three scenarios, the agent has to learn the same four 
basic skills by solving four basic tasks we assigned to it. The 
patterns of these four basic tasks are wheel rotations for going 
forward, going backward, turning left and turning right.  

In each simulation, a single Pioneer 3AT robot is spawned in 
the environment. The robot is equipped with a camera on the 
front of it that will give it first-person vision of the environment. 
Moreover, range sensors give distance readings in four 
directions (front, back, left and right). We bundled the most 
recent four frames of the camera as well as the sensor data in 
the last frame to form a state. Frames captured by the camera 
will be converted to 64×64 grey scale images before being fed 
into networks. The action of the agent is to set the speed of the 
wheels on both sides of the robot, which are real values in a 
continuous space output by the actor networks. These actions 
are executed in continuous time space, which means the length 
of time an action will be executed depends on the processing 
time needed before the next action has been decided.  

As described in Section IV, we applied a parameter sharing 
learning scheme among different networks in the algorithm. 
The shared convolutional part consists of three layers. The first 
layer has 32 kernels with size 8×8 and stride 4, followed by the 
second layer which has 64 kernels with size 4×4 and stride 2. 
The last convolutional layer has 64 kernels with size 3×3 and 
stride 1. For the meta critic, the fully connected layer part 
consists of two layers with 512 nodes and 256 nodes 
respectively, while for the basic critic, the two fully connected 
layers both consists of 300 nodes. Moreover, the basic critic 
includes a mlpconv layer operation before the fully-connected 
part and also includes the actions in its second fully-connected 
layer. All fully-connected parts of the actor networks consist of 
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two layers each, with 200 and 150 nodes respectively. In all 

 
Fig. 4.  The performance of each actor in the three scenarios. The pictures at the bottom-right of each curve are samples of moving trajectories of the actor. The 
yellow triangles indicate the initial orientation.   

 
Fig. 5.  Performance of actors in Scenario 1 when training with an incompetent 
actor.  

 
Fig. 6.  Performance comparison at 5,000 episode between training with 
different meta critic reward values in Scenario 1. 

networks, range sensor data is included before the first fully-
connected layer. All the networks were built and trained in 
TensorFlow [42]. The value of other parameters introduced in 
the paper can be found in the Appendix.  

In each experiment, agents were trained for 10,000 episodes, 
which consists of around 200,000 update iterations. We tested 
the performance of both the meta critic and the basic critic at 
several points during training. Each time we test the model, we 
run 10 independent episodes and initialize the robot at a random 
position and orientation. Then we calculated the success rate of 
the agent on solving the task in these 10 episodes.  

We conducted experiments to test the performance of the 
basic and meta critic as well as to compare the proposed 
algorithm with other algorithms. The results are discussed 
below.  

B. Basic Critic Performance 
We first examined the performance of the basic critic by 

testing the performance of the actors during training. Results 
are shown in Fig. 4. We can see that all four actors achieved 
very good performance after training for around 1500 episodes. 
After the actors reached their best performance, the 
performance remains stable until the end of training. Samples 
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of movement trajectories of each actor shown in Fig. 4 also demonstrate that all actors are achieving good basic skills that

 
Fig. 7.  The performance of the meta critic. In each curve, the bars are success rate of finishing the task. The curves are average rewards in each test episode and 
the shadows indicate the standard deviation.  

TABLE I 
COMPARISON BETWEEN BEST PERFORMANCES OF DIFFERENT ALGORITHMS 

 Scenario 1 Scenario 2 Scenario 3 
Average reward Success rate Average reward Success rate Average reward Success rate 

DQN [15] 5.34 ± 5.17 80% 3.91 ± 5.78 70% 2.03 ± 5.38 50% 
DDPG [17] -0.97 ± 6.21 30% -3.45 ± 4.05 10% -4.03 ± 3.80 10% 

h-DDPG 9.88 ± 0.74 100% 8.86 ± 0.90 100% 7.73 ± 2.01 90% 
 
the meta critic could rely on. High performance basic skills 
provided by the basic critic and actors would help the meta 
critic to understand the movement patterns of each actor better 
and learn how to reuse them to achieve the final compound task.  

In addition, we conducted a set of experiments in Scenario 1 
to investigate the impact of an incompetent actor on the 
performance of other actors. In order to do so, we included an 
actor with a meaningless reward function. This actor received 
rewards randomly, so it would never learn. The results of the 
training are shown in Fig. 5. We can see that, the basic critic 
can still learn several high performance actors even when one 
of the actors has bad performance. This adds to the robustness 
of the proposed algorithm as individual failed actors will not 
interfere with the learning of other actors. 

C. Meta Critic Performance 
We first conducted a set of experiments in Scenario 1 to find 

an appropriate value of the reward for the meta critic. We 
compared the performance of the algorithm after 5000 episodes 
of training. The results are shown in Fig. 6. We can see that the 
performance is poor when the reward value for the meta critic 
is close to the reward for the basic critic. The agent generally 
failed to learn when the reward value was 1. The performance 
improves when the value increases and tops when reward value 
gets to 10, as the average steps in one episode becomes fewer 
and success rate reached 100%.  

After this, the performance remains high in a range of reward 
values. However, it starts to drop when the value gets to 35. 
The performance gets worse when the value gets higher. This 
may be because of the unstable gradient updates caused by big 
loss values. This also demonstrates that a reward value between 
10 and 30 is most suitable for the meta critic in learning 
compound skills in our scenarios. We then choose the reward 
value to be 10 and fixed it for the rest of the experiments.  

The results of the final performance of the proposed h-DDPG 
algorithm in all three scenarios are shown in Fig. 7. We can see 
that, the agent started to find solutions to the tasks after training 
for around 2000 episodes. We can see from Fig. 4 that most 

actors achieve stable basic skills at around 1500 episodes. This 
means the meta critic actually learned better compound skills 
for the tasks right after stable basic skills became available. 
This also explains the instability of the performance before 
2000 episodes as it would be hard for the meta critic to infer the 
b a s i c  s k i l l s  o f  u n s t a b l e  a c t o r s .  

For Scenario 1 and 2, the agent successfully achieved the final 
goal in more than 90% of test cases with random initialization 
conducted during training. This statistic is lower for Scenario 3, 
which is at around 80%. We observed that most failures in 
Scenario 3 were caused by collisions with the sides of a door 
when the robot tried to go through it. This may be caused by the 
fact that when the robot is near the door, it becomes harder to 
infer the orientation and position as what it can sense from 
camera and range sensors there is extremely similar (it is blank 
outside of the door). Sometimes, we observed the robot tried to 
solve the task by reversing out of the doors. This may be the 
way the agent used to infer orientation and position near the 
door.  

In all three scenarios, the agent was able to solve the tasks 
within around 18 action steps. Note that this is highly relevant 
to the position and orientation of the random initialization, 
which also partially causes the high deviation in Fig. 7. We can 
see from samples of task solving trajectories given in Fig. 3 that 
the agent was actually solving the tasks with near optimal 
solutions from different initializations. The overall success rate 
of the proposed algorithm in solving the tasks is 87.6%. 

D. Comparisons with Other Algorithms 
We compared the proposed algorithm with two well-known 

deep reinforcement learning algorithms: DQN [15] and DDPG 
[17]. Both algorithms are one-thread training based, so it is 
suitable for comparison with the proposed h-DDPG algorithm. 
The first one is a discrete action algorithm, so we fixed the 
speed of the wheels in each basic skill so that the agent can get 
access to the four basic skills we used in our algorithm with 
quality equal to the best quality skills learned by our h-DDPG 
actors. The speed values for each of the basic skills were chosen 
via a grid search around the values frequently chosen by the 
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corresponding actors. We used the network architecture 
proposed in their original papers and did a grid search for hyper-
parameters such as learning rate and discount factor centred 
around the values in the original papers. We finally fixed these 
hyper-parameters at their original values as we found they 
provide better performance. We also tuned the reward values 
for more stable learning and unified them to the values chosen 
for h-DDPG when reporting the results. We compared the best 
performance averaged from 10 test episodes obtained by 
learning with these three algorithms in all three scenarios in 
TABLE I.  

We can see that, the proposed h-DDPG outperformed DQN 
and DDPG in solving tasks in all three scenarios. DDPG 
frequently failed to solve the tasks, and the success rates are 
very low. This implies it may be hard to learn compound skills 
without knowing any basic skills.  

Although DQN can solve all three tasks, it is less capable to 
do so compared to h-DDPG as the success rates are lower. 
Moreover, it took more action steps to solve the tasks compared 
to h-DDPG. We observed that when using DQN, it took much 
more effort to keep the robot moving smoothly. This is mainly 
caused by the abrupt changes in speed when changing from one 
skill to another, as actions are executed in continuous time 
space and the length of time an action will be executed may 
vary. This may have influenced the performance of DQN. In 
contrast, when using h-DDPG, the robot was able to move more 
smoothly owing to the actors that could adjust the speed when 
performing basic skills to avoid sharp changes in speed. This is 
also one of the advantages of h-DDPG for handling robot 
control in a continuous action space.  

These comparisons show that by introducing the hierarchical 
architecture and decomposing compound and basic skill 
learning, the proposed algorithm can not only learn better 
compound skills compared to other continuous action control 
algorithms, but also achieve smoother movement to support 
more stable compound skill learning compared to discrete 
action control algorithms.     

VI. CONCLUSION 
In this paper, we proposed a novel hierarchical deep 

reinforcement learning algorithm called h-DDPG. The 
proposed algorithm is made up of two levels of hierarchy. It can 
learn both basic skills and compound skills in a continuous 
action space simultaneously. The first level of hierarchy 
comprises a single basic critic with multiple actors, each 
handling a particular basic skill. This basic critic trains multiple 
actors at the same time. The second level of hierarchy contains 
a meta critic. This meta critic learns compound skills by reusing 
basic skills in the first level of hierarchy to solve compound 
tasks. The overall learning process of h-DDPG shares a single 
replay memory and skills in both hierarchies are learned within 
the same process.  

In order to test the proposed algorithm, we built three 
scenarios with different compound tasks in Gazebo 2 in a ROS 
Indigo environment. A simulated Pioneer 3AT robot with front 
view camera is used in these simulations. The tasks in these 
three scenarios are designed to examine the agent capability in 
observing and distinguishing objects and moving accurately.  

The results show that the proposed algorithm successfully 
learns both high performance basic skills and compound skills. 
In total, it successfully solved the tasks with a rate of 87.6% 
among all test cases with random position and orientation 
initialization in different scenarios. Results also show that in 
cases that some of the actors fail to learn, other actors can still 
learn high performance basic skills. In comparison with other 
algorithms, the proposed h-DDPG outperforms other one-
thread training based algorithms while also achieving 
comparable performance against other discrete action based 
algorithms in solving compound tasks.  

However, the proposed algorithm also has three main 
drawbacks. Firstly, we found that the agent needs sufficient free 
space in the environment to explore the continuous action space 
to find the movement patterns for basic skills. Secondly, the 
algorithm is confined to solve tasks in fully observable 
scenarios and may fail in partially observable tasks. Lastly, the 
algorithm requires predefined reward functions for all levels of 
hierarchy. Nonetheless, the capability of the proposed 
algorithm at solving fully observable compound tasks and 
providing smoother movement in a continuous action space 
should still make it a competitive algorithm compared to other 
deep reinforcement learning algorithms.  

Future work could focus on three different aspects to improve 
the proposed algorithm. Firstly, technical improvements on the 
replay memory would help reduce the free space needed for 
learning basic skills as transitions in the replay memory may 
have different contribution to the learning, and those that are 
beneficial should be highlighted. This may also help make the 
whole learning process faster as compound skills are based on 
the basic skills. Secondly, the introduction of new levels of 
hierarchy can enable the algorithm to use multi-level hierarchy 
to decompose complex tasks in a more detailed way, which may 
give more potential to solve partially observable tasks. Thirdly, 
a combination of intrinsic motivations with the proposed 
algorithm could help eliminate the need of predefined reward 
functions. This could further add to the generalization and 
flexibility of the algorithm. 

 

APPENDIX 
TABLE II 

VALUE OF HYPER-PARAMETERS 
Description Symbol (if has) Value 
Meta critic base learning rate 𝜇𝜇𝑄𝑄𝑚𝑚 0.0025 
Meta critic discount factor 𝛾𝛾𝑚𝑚 0.99 
Basic critic base learning rate 𝜇𝜇𝑄𝑄𝑏𝑏 0.001 
Basic critic discount factor 𝛾𝛾𝑏𝑏 0.9 
Basic critic reward 𝑟𝑟𝑏𝑏 1 
Actors base learning rate 𝜇𝜇𝜋𝜋𝑔𝑔 0.0001 
𝑙𝑙2 penalty / 0.01 
Mini-batch size M 64 
Initial actor noise intensity 𝜎𝜎𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡 0.12 
Minimum actor noise intensity 𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛 0.021 
Initial 𝜖𝜖 / 1 
Minimum 𝜖𝜖 / 0.1 
Soft update factor 𝜑𝜑 0.001 
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