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Variational Bayesian Learning for Dirichlet Process
Mixture of Inverted Dirichlet Distributions

Zhanyu Ma,Senior Member, IEEEYuping Lai, Member, IEEEW. Bastiaan Kleijn,Fellow, IEEE,

Yi-Zhe Song,Member, IEEE Liang Wang,

Abstract—In this work, we develop a novel variational
Bayesian learning method for the Dirichlet process (DP) mixture
of the inverted Dirichlet distributions, which has been shown
to be very flexible for modeling vectors with positive elements.
The recently proposed extended variational inference (EVI)
framework is adopted to derive an analytically tractable solution.
The convergency of the proposed algorithm is theoretically
guaranteed by introducing single lower bound approximation
to the original objective function in the EVI framework. In
principle, the proposed model can be viewed as an infinite
inverted Dirichelt mixture model (InIDMM) that allows the
automatic determination of the number of mixture components
from data. Therefore, the problem of pre-determining the optimal

Senior Member, IEEEand Jun Guo

pair matching [9], [10]. Both the ML and the Bayesian esti-
mation algorithms can be represented in analytically tractable
form [9].

Recent studies have shown that non-Gaussian statistical
models.e.g, the beta mixture model (BMM) [6], the Dirichlet
mixture model (DMM) [7], the Gamma mixture model (GaM-
M) [11], the von Mises-Fisher mixture model (vMM) [12],
can model the non-Gaussian distributed data more efficiently,
compared to the conventional GMM. For example, BMM has
been widely applied in modeling grey image pixel values [6]
and DNA methylation data [13]. In order to efficiently model

number of mixing components has been overcome. Moreover, proportional data [7], [14], DMM can be utilized to describe
the problems of over-fitting and under-fitting are avoided by the the underlying distribution. In generalizdd- (K¢) fading

Bayesian estimation approach. Comparing with several recently ;
proposed DP-related methods and conventional applied methods, channels, GaMM has been used to analyze the capacity and

the good performance and effectiveness of the proposed method€fTor probability [11]. The vMM has been widely used in
have been demonstrated with both synthesized data and real data modeling directional data, such as yeast gene expression [12]

evaluations. and topic detection [15]. The finite inverted Dirichlet mixture
Index Terms—Dirichlet process mixture, inverted Dirichlet ~model (IDMM), among others, has been demonstrated to be
distribution, Bayesian estimation, variational learning, computer an efficient tool for modeling data vector with positive ele-
vision ments [16], [17]. Moreover, the inverted Dirichlet distribution
also has connections with nonnegative matrix factorization
|. INTRODUCTION (NMF). In sparse NMF [18], thé,;-norm constraint is usually

Finite mixture modeling [1], [2] is a flexible and powerfulapplied to favor the sparseness. As the definition of the
probabilistic modeling tool for data that are assumed to raverted Dirichlet distribution is similar to the nonnegative
generated from heterogeneous populations. It has been widdigperties of the columns in the original matrix and the
applied to many areas, such as pattern recognition, machif@sis matrix, selecting proper prior distribution to describe
learning, data mining, computer vision [3]-[7]. Among alfhe underlying distribution of the aforementioned columns can
finite mixture models, the finite Gaussian mixture model (GMavor the sparse NMF.

M) has been the most popular method for modeling continuousAn essential problem in finite mixture modeling is how
data. Much of its popularity is due to the fact that an{P automatically decide the appropriate number of mixture
continuous distribution can be arbitrarily well approximateBomponents based on the data. The component number has
by a GMM with unlimited number of mixture componentsa strong effect on the modeling accuracy [19]. If the number
Moreover, the parameters in a GMM can be estimated &f mixture components is not properly chosen, the mixture
ficiently via maximum likelihood (ML) estimation with the model may over-fit or under-fit the observed data. To deal with
expectation maximum (EM) algorithm [8]. By assigning priofhis problem, many methods have been proposed. These can
distributions to the parameters in a GMM, Bayesian estimati®¢ categorized into two groups: deterministic approaches [20],

of GMM can be carried out with conjugate prior-posteriof21] and Bayesian methods [22], [23]. Deterministic approach-
es are generally implemented by ML estimation under an
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by introducing proper prior distributions to the parameters iuring each iteration in the optimization stage can be avoided.
the model, have been widely used to find a suitable numhbéence, the VI-based solutions can lead to more efficient
of components in a finite mixture model. In this case, thestimation. They have been successfully applied in a variety of
parameters of a finite mixture model (including the parameteaapplications including the estimation of mixture models [5]—
in a component and the weighting coefficients) are treated [@$, [34], [42].
random variables under the Bayesian framework. The posteMotivated by the ability of the Bayesian non-parametric
rior distributions of the parameters, rather than simple poiapproaches to solve the model selection problem and the
estimates, are computed [2]. The model truncation in Bayesigood performance recently obtained by the VI framework,
estimation of finite mixture model is carried out by setting theve focus on the variational learning of the DP mixture of
corresponding weights of the unimportant mixture componerniserted Dirichlet distributions g k.a. the infinite inverted
to zero (or a small value close to zero) [2]. However, thBirichlet mixture model (InNIDMM)). Since InIDMM is a
number of mixture components should be properly initializetypical non-Gaussian statistical model, it is not feasible to
as it can only decrease during the training process. apply the standard VI framework to obtain an analytically
The increasing interest in mixture modeling has led to theactable solution for the Bayesian estimation. As a variate
development of the model selection methd@ecent work has of VI, stochastic variational infernece (SVI) [43], [44] has
shown that the non-parametric Bayesian approach [26]-[388en proposed as an alternative solution to approximate the
can provide an elegant solution for automatically determiningpsterior distributions. The algorithm under SVI framework is
the complexity of model. The basic idea behind this approashalable and suitable for massive data. However, when dealing
is that it provides methods to adaptively select the optimaith non-Gaussian distributions, the expectations in the update
number of mixing components, while also allows the numbéerations (Fig.4, [43]) cannot be calculated explicitly and
of mixture components to remain unbounded. In other word®me sampling methods are also required to approximate
this approach allows the number of components to incredbe expectations. In order to derive an analytically tractable
as new data arrives, which is the key difference from finiteolution for the variational learning of InNIDMM, the recently
mixture modeling. The most widely used Bayesian nonparproposed extended variational inference (EVI) [6], [7], which
metric [31] model selection method is based on the Dirichlé particularly suitable for non-Gaussian statistical models, has
process (DP) mixture model [32], [33]. The DP mixture moddieen adopted to provide an appropriategle lower bound
extends distributions over measures, which has the appeal{8§B) approximationto the original object function. With
property that it does not need to set a prior on the numhse auxiliary function, an analytically tractable solution for
of components. In essence, the DP mixture model can aBayesian estimation of INNIDMM is derived. The key contribu-
be viewed as an infinite mixture model with its complexityions of our work are three-fold: 1) The finite inverted Dirichlet
increasing as the size of dataset grows. Recently, the DP miixixture model (IDMM) has been extended to the infinite
ture model has been applied in many important applicationgverted Dirichlet mixture model (INIDMM) under the stick-
For instance, the DP mixture model has been adopted tdrmeaking process framework [32], [45]. Thus, the difficulty in
mixture of different types of non-Gaussian distributions, suadutomatically determining the number of mixture components
as the DP mixture of beta-Liouville distributions [34], thecan be overcome. 2) An analytically solution is derived with
DP mixture of student’s-t distributions [35], the DP mixturéhe EVI framework for InNIDMM. Moreover, comparing with
of generalized Dirichlet distributions [36], the DP mixture ofhe recently proposed algorithm for InIDMM [46], which is
student’s-t factors [37], and the DP mixture of hidden Markolased onmultiple lower bound (MLB) approximatiorour
random field models [38]. algorithm can not only theoretically guarantee convergence but
Generally speaking, most parameter estimation algorithi@so provide better approximations. 3) The proposed method
for both the deterministic and the Bayesian methods are tifias been applied in several important applications in computer
consuming, because they have to numerically evaluate a giwé$ion, such as image categorization and object detection. The
model selection criterion [21]. This is especially true for thgood performance has been illustrated with both synthesized
fully Bayesian Markov chain Monte Carlo (MCMC) [27],and real data evaluations.
[39], which is one of the widely applied Bayesian approachesThe remaining part of this paper is organized as follow: Sec-
with numerical simulations. The MCMC approach has its owiion Il provides a brief overview of the finite inverted Dirichlet
limitations, when high-dimensional data are involved in theixture and the DP mixture. The infinite inverted Dirichlet
training stage [40]. This is due to the fact that its samplingnixture model is also proposed. In Section Ill, a Bayesian
based characteristics yield a heavy computational burden ankérning algorithm with EVI is derived. The proposed algorith-
is difficult to monitor the convergence in the high-dimensionah has an analytically tractable form. The experimental results
space. To overcome the aforementioned problems, variatiowdth both synthesized and real data evaluations are reported in
inference (VI), which can provide an analytically tractabl&ection IV. Finally, we draw conclusions and future research
solution and good generalization performance, has been pdiirections in Section V.
posed as an efficient alternative to the MCMC approach [41].

With an analytically tractable solution, the numerical sampling Il. THE STATISTICAL MODEL

IHere, model selection means selecting the best of a set of models. ol this S_e(_:tion! W_e first present a brief overview of the fi_nite
different orders inverted Dirichlet mixture model (IDMM). Then, the DP mix-
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ture model with stick-breaking representation is introduced. Zn @ @
Finally, we extend the IDMM to InIDMM. e 0
A. Finite inverted Dirichlet mixture model Z,
Given aD-dimensional vecto = {z1,--- ,xp} generated @
from an IDMM with M components, the probability density L N %o

function (PDF) ofZ is denoted as [16
( ) [16] Fig. 1: Graphical representation of the variables relationships

in the Bayesian inference of a InIDMM. All of the circles

in the graphical figure represent variables. Arrows show the
_ o relationships between variables. The variables in the box are
where A = {@m}y_; and 7 = {mm},_; is the mixing nejd. observations.

m=1
coefficient vector subject to the constraits =, < 1 and
>y ™m = L. Moreover, iDi(|@) is an inverted Dirichlet |ength of each piece),., which is proportional to the rest
distribution with its (D + 1)-dimensional positive parameterof the “stick” before the current breaking, is considered as an
vectord@ = {a1,- - ,ap41} defined as independent random variable generated from Betal, ¢).
bt b ™ _sbtig,, B(_ecause of_ its simplicity_ and natural gene_ralization_ability, the
iDir (7|d@) = PQ gy @a) 2% 11 4 Zxd stick-breaking construction has been a widely applied scheme
125 T(aq) ¢ > for the inference of DPs [34], [45], [50].

wherexzy; > 0 for d = 1,---,D andT'() is the Gamma o - )
function defined ag'(a) = [;° t*~Le~tdt. C. Infinite Inverted Dirichlet Mixture Model

M
IDMM (|7, A) = > _ mniDir (£|@m), 1)
m=1

Now we consider the problem of modeliagby an Infinite
B. Dirichlet Process with Stick-Breaking Inverted Dirichlet Mixture Model (InIDMM), which is actually

. : . an extended IDMM with an infinite number of components.
The Dirichlet process (DP) [32], [33] is a stochastic Process, arefore (1) can be reformulated as

used for Bayesian nonparametric data analysis, particularly
in a DP mixture model (infinite mixture model). It is a
distribution over distributions rather than parametees, each
draw from a DP is a probability distribution itself, rather ~ ~
than a parameter vector [47]. We adopt the DP to extefere 7 = {mmjn_; and A = {dn};_,. Then, the
the IDMM to the infinite case, such that the difficulty of thdikelihood function of the InNIDMM given the observed dataset

_ (2 N e i
automatic determination of the model complexiye{ the < = {Zn}n=1 is given by

INIDMM (&7, A) = Y _ 7D (Z]dm), (4)
m=1

number of mixture components) can be overcome. To this N (

end, the DP is constructed by the following stick-breaking INIDMM (X|7, A) = H { wmiDir(nt&m)}. %)
formulation [31], [48], [49], which is an intuitive and simple n=1 Am=1

constructive definition of the DP. In order to clearly illustrate the generation process of each

Assume thatff is a random distribution ang is a positive observationz,, in the mixture model, we introduce a latent
real scalar. We consider two countably infinite collectiongdication vector variableZ, = {z,1,2n2, - }. Z has only
of independently generated stochastic varialflss ~ H one element equal tb and the other elements inare0. For
and \,, ~ Beta\,;1,9)? for m = {1,---,00}, where example,z,,, = 1 indicates the sampl&, comes from the
Beta(; a, b) is the beta distribution defined as Betaa,b) = mixture componentn. Therefore, the conditional distribution
FF(EZ‘;FE’ZZ) 22~ 1(1 — x)’~1. A distribution G is said to be DP of X given the parameters and the latent variable§ =
distributed with a concentration parameter and a base {z,,,} is
measure or base distributidth (denoted ag7 ~ DP(y, H)),

N o]
if the following conditions are satisfied: INIDMM (X|Z, A) = H H iDir (| @ )" (6)
o m—1 n=1m=1
G= Z Tm0Qp s Tm = Am H (1 =), ®) Moreover, to exploit the advantages of the Bayesian frame-
m=1 =1

work, conjugate prior distributions are introduced for all the
where{r,, } is a set of stick-breaking weights with constraintsinknown parameters according to their distribution properties.
Y1 Tm =1, dg,, is a delta function whose value isat |n this work, we place the conjugate priors over the unknown
location 2,,, and 0 otherwise. The generation of the mixingstochastic variable€, A, and \ = (A1, A2,---) such that a
coefficients{r,,} can be considered as process of breakirfgll Bayesian estimation model can be obtained.

a unit length stick into an infinite number of pieces. The |n the aforementioned full Bayesian model, the prior distri-

_ _ _ bution of Z given 7 is given by
2To avoid confusion, we usg (z; a) to denote the PDF of parameterized

by parameter. f (z|a) is used to denote the conditional PDFofjiven a, N oo

where bothz and a are random variables. Botfi(z;a) and f (z|a) have p(Z|7) = H H qEnm (7)

. . m
exactly the same mathematical expressions. i
n=1m=1
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As 7 is a function of X according to the stick-breaking
construction of the DP as shown in (3), we rewrite (7) as

p(Z|X) = HH[ H1,\l] . (8)

As previously mentioned in Section 1I-B, the prior distribu-
tion of \ is

oo

p(xkﬁ) = H Beta Am; 1, om) = H om (1 — Am)wm71: 9 Model estimation

Model estimation
m=1 m=1 strategies for IDMM strategies for INNDMM

5 . Fig. 2: Development progress of the model estimation strategies for
where g = (¢1,¢2,--+). Based on (3), we can obtain theﬂn?te IDMM an% mfunufe IgDMM 9

expected value of,,,. In order to do this, the expected value
of A, will first be calculated as distributions to approximate conjugate prior foras well. By
) = 1/(1 4 o). (10) assuming the parameters of inverted Dirichlet distribution are

. mutually independent, we have
Then, the expected value af,, is denoted as

oco D+1 Upnd
m—1 v Uppd—1 _ —VUmaa
P A) = Ga A; U, V) = md Ct":"d e md mrl,7
(m) = () TL (1= )): ay W =camaU V) = I 1] sl
=1 (16)

It is worth to note that, when the value of, is small,(),,) Where all the hyperparametet’s = {ua} andV = {vma}
will become large. Therefore, the expected of the mixing c@re positive.

efficientsr,, are controlled by the parameteps,, i.e., small With the Bayesian rules and by combining (6) and (8)-(16)
value of ¢,,, will yield small 7,,, such that the distribution of together, we can represent the joint density of the observation
T WIll be sparse. X with all thei.i.d. latent variable® = (Z, A, X, @) as

As ¢, is positive, we assumg follows a product of gamma o e
prior distributions as (X @) ( |Z,A)p(Z|>\)p(>\|g0)p(g0)p((A) )

0o o N m—1 Z Qmd

=@ — . tsm gm_l _fm‘Pm = Am (1 A )d—l

p(‘P757E> - ml_:[1 Gan’(wmﬂsmvtm 11 F B 71;[1711;[1 |: e HdD+1 F(amd)
(12) O
. . . . - D D d:l X d
where Gani) is the gamma distributions’ = (s1,s92,-+) a1
- , X H Toa I+ Z Tnd

andt¢ = (ty,to,- - - ) are the hyperparamters and subject to the et et
constraintss,,, > 0 andt,, > 0. - o

Next, we introduce an approximating conjugate prior dis- x H Om(1 = A ) ¥ FLgoi,;"*le*tm“’m}
tribution to parameteA in INIDMM. The inverted Dirichlet m=1 (5m)
distribution belongs to the exponential family and its formal 2op D+1 v o .
conjugate prior can be derived with the Bayesian rule [2] as X Ul 1 F(umd)amd e

v - 17)

L » (o) | i (

alfo,vo) = C(flo, v e Hote =ip+1) (13 .
P{&]fio, vo) (o O)[ Dtlag 43 The structure of the InIDMM can be represented in terms of

a graphical model in Fig. 1. The development progress for the

where iy = . andyy are the hyperparameters
fio = [, - ip41] ANArg yperp Srelated models are shown in Fig. 2.

in the prior distribution,C(fip, vo) is a normalization coeffi-
cient such that/ p(a@|iio, vo)da = 1. I is a D-dimensional
vector with all elements equal to one. Then, we can write the IIl. VARIATIONAL LEARNING FORINIDMM

posterior distribution of¥ as (withN i.i.d. observationst) In this section, we develop a variational Bayesian inference

£(@)%) = _iD_ir(XI@)f(@|ﬁo,uo) framework for learning the InIDMM. With the assistance
JiDir(X|@) f (&l fio, vo)dai of recently proposed EVI [6], [7], an analytically tractable
B (ZdDﬁl o) YN (& —Tpe) 14) algorithm, which prevents numerical sampling during each
=C(jin,vN) D+1F(a ) € - iteration and facilitates a training procedure, is obtained. The
=t ! proposed solution is also able to overcome the problem of
where the hyperparameters and/iy in the posterior distri- oyerfitting and automatically decide the number of mixture
bution are components.

VYN = 1o + N,ﬁN = ﬁo — [111X+ — fD+1 ln(l + [_g+1X+)]f(]\£5)
In (15), X is a (D + 1) x N matrix by connectingngrl
to the bottom ofX. However, it is not applicable in our VI  The purpose of Bayesian analysis is to estimate the values
framework due to the analytically intractable normalizationf the hyperparameters as well as the posterior probability
factor in (44). Becausd is positive, we adopt gamma priordistribution of the latent variables. Within the conventional

A. Extended Variational Inference
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variational inference framework, the objective function tha. EVI for the Optimal Posterior Distributions

needs to be maximized is According to the principles of EVI, the expectation of the
L(q) = Eye)[In p(X,0)] — Eyge)[In g(0)]. (18) Io_ga_rithr_n of the joint distribution, given the joint posterior
distributions of the parameters, can be expressed as

For most of the non-Gaussian mixture modelg( the beta
mixture model [7], the Dirichlet mixture model [6], the beta- <1np(X o)
Liouville mixture model [34], the inverted Dirichlet mixture
model [17]), the term Re)[lnp(X,0)] is analytically in- Zlmzl Znm) R"‘+Z Omd) = 1) I0nd
tractable such that the lower bouridq) cannot be maximized D1 m—
directly by a closed-form solution. Therefore, the EVI method — Z (Qma) (1 4+ and (In A, Z (In(1 = X))
[6], [7], [41] was proposed to overcome the aforementioned = j=1
problem. With an auxiliary functiop(X’, ©) that satisfies

+ 3 [{Inem) + ({pm) = D(In(l = Am))]

Ey(e)[Inp(X,©)] > Eye)[Inp(X, ©)] (19)
. . . . . M D+1
and substituting (19) into _(18), we can still regch t_he maximum Z Z [(tomd — 1) {10 Q) — vimaler,, )]
value of £(g) at some given points by maximizing a lower et
bound of L(q)
_ ~ + [($m — 1){(In um) — tm (m)] + Con,
L(q) = L(q) = Ege)[Inp(X, 0)] — Eye)[Inq(O)]. (20) Z

24
If p(X,0) is properly selected, an analytically tractable so- (&9

lution can be obtained. In order to properly formulate th@hereR. — (1n L(Cizt @ma)

e iy D(ama)

variational .posterlorq(G), we truncate the stick-breaking \yith the mathermatical expression in (24), an analytically
representation for the InIDMM at a valuel as tractable solution is not feasible, which is due to the fact
that R,,, cannot be explicitly calculated (although it can be
A =1, mn=0 whenm>M, and) mn =1 (21) simulated by some numerical sampling methods). In order
m=t to apply (23) to explicitly calculate the optimal posterior
Note that the model is still a full DP mixture. The truncatioriistributions and with the principles of the EVI framework,
level M is not a part of our prior infinite mixture model, it isjt is required to introduce an auxiliary functidR,,, such that

only a variational parameter for pursuing an approximation ® . > R,,,. According to [6, Eq. 25], we can sele®,, as
the posterior, which can be freely initialized and automatically

ontimi . . - . ) A I( D+1 (a >) D+1 D+1
ptimized without yielding overfitting during the learning _ |, d=1 \¥md Z Z (ama)) — T ({ama))
process. Additionally, we make use of the following factorized T T(ama) =
variational distribution to approximag©|X’) as X [{In @ma) — In {ama)] <amd>,
D41 (25)
0) = [[ arm)a(em) H q(2nm) H q(ama),  (22)  where ¥(.) is the digamma function defined aB(a) =
m=1 0InT(a)/0a.

where the variables in the posterior distribution are assumed t@ubstituting (25) into (24), a lower bound ttn p(X, ©))
be mutually independent (as illustrated by the graphical modgin be obtained as
in Fig. 1). This is the only assumption we introduced to the ;) 5.x, @))
posterior distribution. No other restrictions are imposed over , ,, D
the mathematical forms of the individual factor distribution- :Z Z (Znm) 7~2m+2(<amd> — 1) Inz,g
s [2]. n=1m=1 d=1
Applying the full factorization formulation and the truncated D+l
stick-breaking representation for the proposed model, we can — Z {@ma)(1+ Z“’nd {InAm) + Z (In(1 = Az))
solve the variational learning by maximizing the lower bound o =
L(q) shown in (20). The optimal solution in this case is given i Z [(In o) + ((om) — 1){In(1 = Am))]

by m=1
Ings(0s) = (Inp(X,O)),,, + Con, (23) M D1

where (-) ., refers to the expectation with respect to all the + mzl ; [(uma = 1)(Inama) = vmater,q)]
distributionsg; (O ;) except for variable. In addition, any term

that does notinclud®, are absorbed into the additive constant ~ + Z [(5m — 1){In @) — tm (@m)] + Con.

“Con.” [2], [41]. In the variational inference, all factogs (O ;)

need to be suitably initiated, then each factor is updated in turn (26)
with a revised value obtained by (23) using the current valu®éth (23), we can get analytically tractable solutions for
of all the other factors. Convergence is theoretically guaranteggtimally estimating the posterior distributions &f, X 7,
since the lower bound is a convex with respect to each factond A. We now consider each of these in more detBjlThe
qs(05s) [2], [6]. posterior distribution ofg(Z)
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As any term that is independent of,,,, can be absorbed The optimal approximation to the posterior distribution of

into the additive constant, we have

m—1
Inq" (znm) = CON.+ 2nm Rom + (In A, +Z (In(1 — X
Jj=1

D D+1
+Z (ma) — 1) lnxnd+z Qma) In(1 +Zm’nd},
d=1 - d=1
(27)

which has same logarithmic form of the prior distributide (
the categorial distribution). Therefore, we can wilite;* (2
as

N M
g (2)=>_ " zumIn pam + Con. (28)

n=1m=1

with the definition that

Z (In(1 — A + Rom
= D+1

3" ((ama) = DInzpg — > {oma)(1+ Y 2na).

Recalling thatz,,,, € (0,1) and Zﬁf:l Znm = 1, we define

In prm = (In Amm
(29)

Pnm
Tnm = — (30)
> et Prm

Taking the exponential of both sides of (28), we have

N M
= II IT s (31)

n=1m=1

which is the optimal posterior distribution .
The posterior meariz,,,) can be calculated a&,.,) =

Ais

M D+1

=TI 1 Gamams; una, vna), (36)

m=1 d=1
where the optimal solutions to the hyperparametgfs and
vy, are given by

N K41
Ut = g+ 5 o) | U(S {mi)) — \v<<amd>>} (ma)
n—1 k=1 37)
and
N D
Vg = Vg — Z (2nm) [ln Tng — In(1 + Z :cnd):| . (38)
n=1 d=1

In the above equations , andv? , are the hyperparameters

in the prior distribution and we set, p+; = 1. The following
expectations are needed to calculate the aforementioned update
equations:

(In(1 = X)) =Y (hn) — ¥(gm + hm),
(InAm) =V (gym) — ¥(gm + tm),
(In ama) =¥ (Unmq) — Invpg, (39)
_ S_:n — u:nd
() = 32, (o) = 22

C. Full Variational Learning Algorithm

As can be observed from the above updating process, the
optimal solutions for the posterior distributions are dependent
on the moments evaluated with respect to the posterior dis-
tributions of the other variables. Thus, the variational update
equations are mutually coupled. In order to obtain optimal

rnm. Actually, the quantitie§r,,,,} are playing a similar role posterior distributions for all the variables, iterative updates
as the responsibilities in the conventional EM [51] algorithnare required until convergence. With the obtained posterior

In the following parts, we show only the optimal solutionslistributions, it is straightforward to calculate the lower bound
to X, @, and A, respectively. The derivation details can be&(q)

found in the appendix.
2) The posterior distribution of;(X)
The optimal solution to the posterior distribution afis
characterized as
M

X) = ] Betehus g, 1) (32)

m=1

where the hyperparametess, andg;, are

(em)+ > > (zny).  (33)

n=1j=m+1

N
g:n =1+ Z <an>7 h:n =
n=1

3) The posterior distribution ofy(g)
The optimal solution to the posterior distribution @fis

M
5) = H Gam(@um; s o) (34)

where the optimal solutions to the hyperparamtgrsand¢;,
are

s:n =1+ Sgny t:n = t?n - <1n(1 - >"m)>7 (35)

wheres? andt?,
prior distribution, respectively.

4) The posterior distribution of;(A)

denote the hyperparameters initialized in the

L(q) :/q(@)ln;’%d@
=(Inp(x,0)) — (Ing(®)) (40)
=(Inp(X,0)) — (Ing(2)) — (Ing(}))
— (Ing()) — (Inq(A)),
which is helpful in monitoring the convergence. In (40), each

term with expectationife, (-)) is evaluated with respect to all
the variables in its argument as

<IHQ(Z)> = Tnm INTHm, (41)
M
(g = 3 T+ 1) ~mEgo) =T
+(gm — DI Am) + (hyn — D{In(1 — Am))]
M
(ma(@) = 3 loh Ints, ~ T 3
+(sm = D){Inom) — 7. Pm],
and
M D+1

<1nq(52)> mZ:l Z [umd In Umd lnr(um) (44)

+(ur, — D){In atma) — v @mal -
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Fig. 3: Observations of the objective function’s oscillations during iterations. This non-convergence indicates that the MLB approximatior
based method cannot theoretically guarantee convergence. The model settings are the same as Tab. I.

Algorithm 1 Algorithm for EVI-based Bayesian INIDMM  synthesized data evaluation to compare the Bayesian InIDMM
1: Set the initial truncation leveM and the initial values for using the SLB approximation (proposed in this paper and

hyperparameters) , t2 , 2 ., andv? , denoted as InIDMM.g) with the Bayesian InIDMM using
2: Initialize the values of,,, by K-means algorithm. the MLB approximation (proposed in [46] and denoted as
3: repeat INIDMM y.8). Three models (see Tab. | for details) were
4. Calculate the expectations in (39). selected to generate the synthesized datasets.
5. Update the posterior distributions for each variable by 1) Model Selection:One advantage of DP process mix-
(33), (35), (37) and (38). ture model is to decide the number of mixture components
6: until Stop criterion is reached. automatically, based on the training data. Following the in-

7: For all m, calculate(\,,,) = s;,/(sy, +t5,,) and substi- structions in [52] and for a first check, we ran the proposed
tute it back into (11) to get the estimated values of thev|-based method for InNIDMM_g. The optimization pro-
mixing coefficientsr,, . cedure is carried out without component eliminatide.( a

8: Determine the optimum number of components by fixed number of componentsy/, is chosen and the mixing
eliminating the components with mixing weights smallegoefficients are fixed during iteration. The initial value of the

than 10‘5._3 . mixing coefficients were obtained from plain EM estimation.)
9: Renormalize{7,,} to have a unit; norm. Under this setting, the variational lower-bound can be treated
10: Calculated,ng = uy,,4/v;,4 for all m andd. as a model selection score and the effect of the number of

the mixture components is demonstrated. With synthesized
data generated from the aforementioned three models, we

Additionally, (In (X, ©)) is given in (26) . plotted the relation between the variaional lower-bounds and
The algorithm of the proposed EVI-based Bayesian estimtie number of mixture components in Fig. 4.
tion of INIDMM is summarized in Algorithm 1. 2) Observations of OscillationsWe ran the InNIDMMy.g
algorithm and monitored the value of the variational objective
IV. EXPERIMENTAL RESULTS AND DISCUSSIONS function during each iteration. It can be observed that the

In this section, both synthesized data and real data a@iational objective function was not always increasing in
utilized to demonstrate the performance of the proposed Blayesian estimation with the InNIDMMg . Figure 3 illustrates
gorithm for InNIDMM. In the initialization stage of all the the decreasing values during iterations. On the other hand, the
experiments, the truncation levél/ is set to 15 and the variational objective function obtained with the InIDMig
hyperparameters of the gamma prior distributions are chogdgorithm was always increasing until convergence, as the
asug = so = 1 andvy = to = 0.005, which provide non- SLB approximation insures the convergency theoretically. The
informative prior distributions. Note that these specific choic&@bservations of oscillations demonstrate that the convergence
were based on our experiments and were found convenient &ith MLB approximation cannot be guaranteed. The original
effective in our case. We take the posterior means as powariational object function was numerically calculated by
estimates to the parameters in an InIDMM. employing sampling method. In order to monitor the parameter

estimation process of InIDMM g, we show the value of the
A. Synthesized Data Evaluation variational objective function during iterations in Fig. 5. It can
be observe that the variational objective function obtained by

A_S shown in the previous studue; for EVI-based Bayesigh pvm sLg increases during iterations and in most cases it
estimation [5], [6], the SLB approximation can guarantee tnﬁcreases very fast

convergence while the MLB approximation cannot. We use the e _
3) Quantitative Comparisons:Next, we compare the

3When a mixing coefficient is small enough, it converges faster. There- INIDMM g g with the InIDMMy g quantitatively. With

fore, we can remove components with very small value (less than a threshol§). known IDMM. 2000 samples were generated. The
This choice (empirically choosing a threshold) is purely for the convenien .

e h .
of easy implementation. Similar strategy is also widely used applied in mai@lDMM SLB an_d t_he _InIDMMﬂLB were applied _to estimate
other sticking-break process-based DP mixture modets, [34], [46]. the posterior distributions of the model, respectively. In Tab. I,
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TABLE I: Comparisons of true and estimated models.

)l — Eq(e)[Inq(©)]

@ -1500

2000

(&) [Inp(X,

22500

E,

Model B
Model A m =0.25 ,&; = [12 36 14 18 55 16]"
True Model m =05 ,8 =[16862]" 7o = 0.25 ,da = [32 48 25 12 36 48]"
Mo = 0.5 ,ds = [812 15 18]" 73 = 0.25 ,d3 = [25 10 18 10 36 48]"
w4 =0.25 ,d4 = [628 163212 24]"
71 =0.251 ,&; = [12.26 36.59 14.30 18.19 56.36 16.25]"
INIDMM g5 71 = 0.502 ,A&n = [16.96 8.58 6.39 12.49]" To = 0.249 @2 = [33.37 49.92 25.85 12.80 37.00 49.79]"
To = 0.498 ,d> = [8.20 12.16 15.49 18.34]" 7y = 0.252 , a3 = [25.72 10.32 18.09 10.09 37.27 49.58]"
Ry =0.248 , &4 = [6.14 28.94 16.72 33.46 12.32 25.20]"
71 =0.249 ,&; = [12.18 37.82 14.56 18.85 57.32 16.44]"
INIDMM y.s 71 = 0.508 ,Evl = [15.20 7.71 5.90 11.64]" 7o = 0.249 222 =[33.71 51.10 26.92 12.89 38.66 51.73]"
To = 0.492 | d> = [9.21 13.76 17.13 21.10]" 7z = 0.250 , a3 = [24.94 9.90 18.07 10.04 36.10 48.25]"
R4 =0.252 , &4 = [5.82 27.43 15.77 31.14 11.82 23.58]"
Model C
m =02 ,d; = [1221 36 18 32 65 76]TT
7o = 0.2 ,ds = [28 42 21 8 54 21 48
True Model 75 =02 ,ds = %32 12 7 35 13 32 IS%T
my =0.2 , &4 = [62 44 31 65 72 15 44]T
ms = 0.2 ,d&s = [53 12 18 44 65 33 52]7
71 =0.201 ,&; = [12.08 20.89 36.25 18.28 32.69 65.72 76.70] "
Fo=0.199 ,ds = [29.12 43.43 21.41 8.33 56.11 21.74 49.20] T
INIDMM g5 73 = 0.200 , &3 = [31.57 11.89 6.99 34.70 12.90 31.85 17.89]"
74 =0.201 , &, = [59.83 42.55 29.89 61.98 67.68 14.11 42.46]T
75 = 0.199 , &5 = [58.00 12.8 20.02 47.70 71.08 36.57 57.66]T
71 = 0.200 ,a; = [12.56 21.50 37.69 19.00 33.06 68.04 79.64]"
7y =0.200 ,d = [28.26 43.02 20.85 8.14 55.36 21.21 49.17]T
INIDMM w18 F3 = 0.199 , &g = [32.17 12.19 7.13 35.66 13.01 32.54 17.84]T
74 =0.199 , &, = [63.61 45.48 32.00 66.63 74.31 15.21 45.45]T
75 = 0.202 , a5 = [52.12 11.83 18.34 43.77 64.80 32.53 51.48] T
- — émoo““““““‘wwéaooo
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Fig. 4: Effect of the number of mixture components.
TABLE II: Comparisons of objective function values and runtime for INNDMM with SLB and MLB.

Model A Model B Model C
Model & Method MIDMM 5.5 TAIDMM wis MIDMM 5.5 NIDMM wig MIDMM 5.5 NIDMM wig
Obj. Func. Val. —1.86 x 103 —1.90 x 10° 0.42 x 103 0.32 x 103 3.05 x 103 2.99 x 103
p-values 0.046 6.48 x 10~7 0.016
KL(p(X|9)|p(X|©))| 3.835x10~3  6.97 x 103 2.80x 1073  8.07 x 1073 2.93 x 103 6.24 x 1073
p-values 1.46 x 10~ T 6.93 x 10~ 1° 2.08 x 10~7
Runtime (ins)T || 2.06 2.26 | 3.06 3.61 | 2.84 3.07

T On a ThinkCentr® computer with IntéP Core™ i5 — 4590 CPU 8G.

we list the estimated parameters by taking the posteriseconds) required by the InNIDMdyls are smaller than those
means. It can be observed that, both the InIDypand the required by the InIDMM, g. Moreover, smaller KL diver-
INIDMM w5 can carry out the estimation properly. Howevegence$ of the estimated models from the corresponding true
with 20 repeats of the aforementioned “data generation-modebdels also verify that the INNIDMM| g yields better estimates
estimation” procedure and calculating the variational objethan the InIDMM,.g. In order to examine if the differences
tive function with sampling method, superior performanceetween the InNIDMM, g and the INNDMM,_g are statistically

of the InIDMMg g over the INIDMMy.g can be observed significant, we conducted the student’s t-test with the null-
from Tab. Il. The mean values of the objective function
obtained by InNIDMMs g are larger than those obtained by “Here, the KL divergence is calculated as (£LX|©)[|p(X|©)) by
the InNIDMMs.g while the computational cost (measured isampling method® denotes the point estimate of the parameters from the

posterior distribution.
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31 Fig. 6: Boxplots for comparisons of the objective function values’ distributions obtained by SLB and MLB with different models. The
model settings are the same as those in Tab. I. The central mark is the median, the edges of the ba¥%Hreitlar5'" percentiles. The
gg outliers are marked individually. _— - -
34 TABLE Ill: Comparisons of image categorization accuracie${jn
35 obtained with different models. The standard deviations are in t
36 brackets. The-values of the student’s t-test with the null-hypothesi
37 that InIDMMs g and the referring method have equal means b
38 unknown variances are listed. 5
39 [[NDMMge IDMMsig INIDMMucuc  INGMM SVM (a) Airplane  (b) Motorbike (c) Face (d) car (e) Background
Caltecha|] 93-49 89.27 90.21 83.92 92.72 i )
40 altec (1.05)  (0.84) (0.73) (0.72) (0.82) Fig. 7: Sample images from the Caltedhdataset.
41 p-value N/A  1.01 x 107 1.91 x 1077 4.55 x 107'°  0.085
75.49 72.88 73.05 68.88 7247
42 ETH8O\ (0750 (1.46) _(078)  (0.74)  (0.70)
43 pvalue|| N/A  8.69 x 10" 1.17 x 10_° 1.60 x 10_'* 2.49 x 10~* 1) Datasets: The evaluations were conducted based on
44 _ _ i ) . i
45 hypothesis that the results obtained by these two meth& % W%" I|<tn_own dataset_i,. T?? fwsé_fcfjatas:et 'f the_ Cal?ehch
46 have equal means and equal but unknown variances. All { @?3(;4'_ IS a C(f)m.p0|5| € Of ourthl e_ren6 ca egorlefs. &y
47 p-values of in Tab. Il are smaller than the significant levé), ?re th |mage256(_) arp amfas r(t)mb'ke S]'cda tlrr]nag_zs 0 cal rs
48 which indicates that the superiority of the InIDMjs over fromt Itfarear_s |ma?eso T;Oa??r IKes from the si eé |
P the INIDMMy.s is statistically significant. The distributions' O"'& ?Ce ”t?]agesf rom ":‘ ot “”'q”ehpers‘?”sF'. X;‘"‘F’?e g
of the objective function values are shown by the boxplots Lﬂ:ages rom these four calegories are stown in Fg. (2)-7(d).
50 Fig. 6 e second dataset is the ERd-dataset® that consists of
51 T eight categories: apple, car, cup, dog, pear, tomato, horse, and
52 . cow. Each category hasl0 images which are cropped, so
53 B. Real Data Evaluation _ that they contain only the object in the center. Examples of
54 In the real data evaluations, the proposed InIDYM images from each category in the ERd-dataset are shown
55 has been applied for the task of image categorization apfFig. 9. Our experiments were evaluated on the these two
56 object detection. The referred methods for comparisons are gignmonly used public datasets for the purpose of validating
57 IDMM SLB [53], the Markov Chain Monte C-arIO't-)ased-nUmerme eﬂectiveness Of the proposed method_
58 ical model estimation (In[DMMcwc, numerical simulation of - ) pescriptor Extraction: In recent years, many excellent
60 mixture model (INGMM, another commonly used statisticg}rpose of image categorization and object detection. For

model) [55], and the support vector machine (SVM)-based
classifier (discriminant method, implemented with LIBSVM Shttp://www.vision.caltech.edu/archive.html
toolbox [56]). Shttp://www.d2.mpi-inf.mpg.de/Datasets/ETH80
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(b) (d) (©) (M)

Fig. 9: Sample images from ETI40 dataset. (a) Apple. (b) Car. (c) Cow. (d) Cup. (e) Dog. (f) Horse. (g) Pear. (h) Tomato.

96

94 | Q 1 TABLE IV: Comparisons of object detections accuracies/gnon
Q Caltech4 dataset. The standard deviations are in the bracketspThe
T values of the student’s t-test with the null-hypothesis that InIDdyiv
g and the referring method have equal means but unknown variances

T 4
ﬁ are listed.
L i

1
|| INIDMM g g IDMMgg INIDMM ycvme INGMM SVM
97.78 96.41 96.62 93.22 93.69
(0.78) (0.74) (0.75) (0.80) (0.79)
- p-value N/A 771 x10”%  0.0031 1.48 x 107197.57 x 10710
Q 1 Faces 94.92 03.37 03.62 89.42 89.60
€ (0.56) (1.97) (0.98) (1.70) 0.65
‘ : : : : p-value N/A 0.028 0.002  1.46 x 1078 1.37 x 10713
nbMMg g IDMMsig IIDMMycyc  InGMM svM Cars 99.26 97.85 97.97 94.68 97.25
(a) Caltech4 (0.64) (1.13) (0.82) » (0.73)711 (0.68) »
‘ p-value N/A 0.0029 9.57 x 107%1.28 x 10711 2.31 x 10
94.31 93.03 03.24 90.24 89.29

76 | g - 1 Motorbikeyy 4 53) (0.89) 0.77) (0.64) (0.83)
|
| ]
|

i,

)
S
T

Accuracy (in%)

Airplanes|

3
o
T

@
R
T

p-value N/A 0.0017 0.0033 2.63 x 10" '19.88 x 10712

~
&

Q and computer vision is mainly because its large potential in
| web image research, video retrieval, image database anno-
tation, and medical image mining. Although human usually
perform well on the task of image categorization, it remains
difficult for computers to achieve similar performance. This is
due to the various poses, different scales, multiple viewpoints.

NDMMg g IDMM s g MDMMycpe  nGMM. Sum Our experiments for image categorization were implement-
(b) ETH-80 ed as follows. First, R-HOG descriptors were extracted from

Fig. 8: Boxplots for comparisons of the categorization accuraciegaCh image. Each image in the datasets was then represented

distributions for the Caltech-and the ETHS0 datasets. The central By @ 441-dimensional positive vector. Second, the vectors
mark is the median, the edges of the box are & and 75'* from one category are assumed to be generated from an

percentiles. The outliers are marked individually. InIDMM. Each category has been randomly divided into equal

example, the scale-invariant feature transform (SIFT) [5#Rining and test sets. For each category, one InIDMM was
descriptor, the local binary pattern (LBP) descriptor [58], ani#@ined based on the training set. Third, the proposed Bayesian
the Histogram of Oriented Gradient (HOG) descriptor [59]n/DMM was employed as a classifier to categorize objects by
The HOG descriptor, among others, has been one of the mdg$igning the test image to a given class that has the highest
popuiar and effective one for image Categorization or detdéosterior probablllty Table Il lists the average Categorization
tion [60], [61]. In this paper, we employ the rectangular Ho@ccuracies. It can be observed that the proposed InligMM
(R-HOG) descriptor [62], an variant and improved version d% superior to all the other referred methods. In order to
HOG. With the principles of R-HOG and by considering sevei¢move the randomness effect in the results, we conduéted
windows and nine histogram binS, each image is represenfeunds of simulations and the mean values with the standard
by a 441-dimensional positive feature vector. deviations are reported. The accuracy distributions are shown
3) Image Categorization:Object categorization refers toin Fig. 8.
classifying a given image into a specific category, such as car4) Object Detection:Object detection is another essential
face, motorbike, and airplane. It can also be considered @®blem in computer vision and has been commonly applied
an image categorization problem [63], which is an importairt various applications like content-based image retrieval,
and challenging problem in a wide range of application areaselligent traffic management, driver assistance system, and
such as multimedia retrieval, pattern recognition and computédeo surveillance [69], [70]. The main goal of object detection
vision. Image categorization and its related applications haigeto find instances of real-world objects such as car, face, or
attracted considerable attention during the past few years [64]eycle in an images or a video clip. Typical object detec-
[68]. The reason that image categorization has emerged as toe algorithms apply the extracted features and employ the

74 - T
I g Q - | of the most active areas in the fields of image understanding
1

~
N
T

Accuracy (in%)

o ~
© =3
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30 Fig. 10: Boxplots for comparisons of the detection accuracies’ distributions for the Caltéthe central mark is the median, the edges of
31 the box are the5'" and 75" percentiles. The outliers are marked individually.
32 learning algorithms to recognize the instances from an objeetlues are reported. Thevalues of the student’s t-test with
33 class. Here, we apply the proposed INIDMM as a classifigre null-hypothesis that the runtimes of InIDMM and
34 and study its performance in object detection. Similar asIDMM ycmc have equal means but unknown variances are
35 image categorization, we also applied the R-HOG descriptorlisted.It can be concluded that the proposed InIDyMhas
36 represent an image. Each image in the dataset was represesiiktically significantly superior performance in terms of
37 by a 441-dimensional positive feature vector. runtime.
gg For the experiments on the Calte¢ldataset, we evaluated
40 Fhe detection performa_lr_lce on the four sub-datasets mentioned V. CONCLUSIONS
41 in Sec. IV-B3. In addition these four datasets, we used thepg jnverted Dirichlet distribution has been widely applied
42 Caltech background sub-dataseb images) as the non-j, mageling the positive vector (vector that contains only
43 object sub-dataset for these four object sub-classes. SamplgSiive elements). The Dirichlet processing mixture of the
44 images from each of these four object classes and the CaltGghed Dirichlet mixture model (INIDMM) can provide good
45 background dataset are shown in Fig 7. modeling performance to the positive vectors. Compared to the
46 The proposed InIDMM is utilized as a classifier to detect theonventional finite inverted Dirichlet mixture model (IDMM),
47 objects through assigning the testing image to a given grogiz InIDMM has more flexible model complexity as the
48 (object or non-object). Table IV summarizes the detectigfumber of mixture components can be automatically deter-
49 accuracies. It can be observed from these results that fmed. Moreover, the over-fitting and under-fitting problem is
50 InNIDMM provides the best detection accuracies compareggoided by the Bayesian estimation of InIDMM. To obtain an
51 to the other methods. During the evaluations, each of th@alytically tractable solution for Bayesian estimation of InID-
52 aforementioned sub-datasets were randomly into two separngt@, we utilized the recently proposed extended variational
53 halvgs, one for training and the other one for test. Ten rouqﬁ},qserence (EVI) framework. With single lower bound (SLB)
54 of simulations were conducted and the mean values widipproximation, the convergence of the proposed analytically
55 the standard deviations are reported. Figure 10 illustrates figctable solution is guaranteed, while the solution obtained
56 distributions of the detection accuracies. via multiple lower bound (MLB) approximations may result
57 5) Computational efficiencyAs emphasized at the intro-in oscillations of the objective function. Extensive synthesized
58 duction section of this paper, one motivation of applying theéata evaluations and real data evaluations demonstrated the
59 EVI framework to derive analytically tractable solution forsuperior performance of the proposed method.
60 INIDMM such that the computational cost can be reduced,

compared with numerical solution. In Tab. V, we compare REFERENCES

the required runtime f_or INIDMMg and INIDMMyicme:  [1] B, Everitt and D. HandFinite Mixture Distributions Chapman and
Ten rounds of simulations were conducted and the mean Hall, London, UK, 1981.
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(3]
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(5]
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(7]

(8]
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[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
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TABLE V: Comparisons of runtime (i)' for INIDMM s s and InIDMMycwc.

Image categorization Object detection
ETH Caltech4 Airplanes Faces Cars Motorbikes
INIDMM g 8 192.02 115.95 41.56 36.97 42.30 46.53
INIDMM pmeme 342.41 118.11 66.75 54.20 59.43 66.03
p-value 1.23x 1077 553 x 1077 [[ 1.99 x 1072 246 x 107° 4.29x 10°% 121 x 10~ %

T On a ThinkCentr® computer with IntéP Core™ i5 — 4590 CPU 8G.

C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics) Springer-Verlag New York, Inc., 2006.

N. Bouguila, D. Ziou, and J. Vaillancourt, “Unsupervised learnind22]
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Dear Editor in Chief,
Thank you for your effort in organizing the review of our manuscript.

In our previous work, we have applied the extended variational inference (EVI)
framework to several non-Gaussian statistical models and demonstrated the
good performance. The EVI framework, especially when applying to
non-Gaussian statistical models, shows advantages over the conventional ML
estimation based methods and draws more and more attentions.

In this manuscript, based on the EVI framework, we derived an analytically
tractable solution for variational Bayesian learning for Dirichlet process mixture
of inverted Dirichlet mixture model and demonstrated the advantages of the
proposed method.

The key contributions of our work are three-fold:

1) The finite inverted Dirichlet mixture model (IDMM) has been extended to the
infinite inverted Dirichlet mixture model (InIDMM) under the stick-breaking
framework [1], [2]. Thus, the difficulty in automatically learning the number of
mixture components can be overcome;

2) An analytically solution is derived with the EVI framework for InNIDMM.,
based on single lower bound approximation. Moreover, comparing with the
recently proposed algorithm for InNIDMM [3], which is based on multiple lower
bound approximation, our algorithm can not only theoretically guarantee
convergence but also provide better approximations;

3) The proposed method has been applied in several important applications, such
as image categorization and object detection. The good performance has been
illustrated with both synthesized and real data evaluations.

We recommend Prof. Siliang Sun to be the AE to handle the review process of
our submission, as his expertise area is in Bayesian nonparametric learning,
which is related to our research such that he will be familiar and provide fair
judgement to this work.

Thanks again!
Best regards,

Zhanyu Ma on behalf of all the authors
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