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Variational Bayesian Learning for Dirichlet Process
Mixture of Inverted Dirichlet Distributions

Zhanyu Ma,Senior Member, IEEE,Yuping Lai, Member, IEEE,W. Bastiaan Kleijn,Fellow, IEEE,
Yi-Zhe Song,Member, IEEE,Liang Wang,Senior Member, IEEE,and Jun Guo

Abstract—In this work, we develop a novel variational
Bayesian learning method for the Dirichlet process (DP) mixture
of the inverted Dirichlet distributions, which has been shown
to be very flexible for modeling vectors with positive elements.
The recently proposed extended variational inference (EVI)
framework is adopted to derive an analytically tractable solution.
The convergency of the proposed algorithm is theoretically
guaranteed by introducing single lower bound approximation
to the original objective function in the EVI framework. In
principle, the proposed model can be viewed as an infinite
inverted Dirichelt mixture model (InIDMM) that allows the
automatic determination of the number of mixture components
from data. Therefore, the problem of pre-determining the optimal
number of mixing components has been overcome. Moreover,
the problems of over-fitting and under-fitting are avoided by the
Bayesian estimation approach. Comparing with several recently
proposed DP-related methods and conventional applied methods,
the good performance and effectiveness of the proposed method
have been demonstrated with both synthesized data and real data
evaluations.

Index Terms—Dirichlet process mixture, inverted Dirichlet
distribution, Bayesian estimation, variational learning, computer
vision

I. I NTRODUCTION

Finite mixture modeling [1], [2] is a flexible and powerful
probabilistic modeling tool for data that are assumed to be
generated from heterogeneous populations. It has been widely
applied to many areas, such as pattern recognition, machine
learning, data mining, computer vision [3]–[7]. Among all
finite mixture models, the finite Gaussian mixture model (GM-
M) has been the most popular method for modeling continuous
data. Much of its popularity is due to the fact that any
continuous distribution can be arbitrarily well approximated
by a GMM with unlimited number of mixture components.
Moreover, the parameters in a GMM can be estimated ef-
ficiently via maximum likelihood (ML) estimation with the
expectation maximum (EM) algorithm [8]. By assigning prior
distributions to the parameters in a GMM, Bayesian estimation
of GMM can be carried out with conjugate prior-posterior
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pair matching [9], [10]. Both the ML and the Bayesian esti-
mation algorithms can be represented in analytically tractable
form [9].

Recent studies have shown that non-Gaussian statistical
models,e.g., the beta mixture model (BMM) [6], the Dirichlet
mixture model (DMM) [7], the Gamma mixture model (GaM-
M) [11], the von Mises-Fisher mixture model (vMM) [12],
can model the non-Gaussian distributed data more efficiently,
compared to the conventional GMM. For example, BMM has
been widely applied in modeling grey image pixel values [6]
and DNA methylation data [13]. In order to efficiently model
proportional data [7], [14], DMM can be utilized to describe
the underlying distribution. In generalized-K (KG) fading
channels, GaMM has been used to analyze the capacity and
error probability [11]. The vMM has been widely used in
modeling directional data, such as yeast gene expression [12]
and topic detection [15]. The finite inverted Dirichlet mixture
model (IDMM), among others, has been demonstrated to be
an efficient tool for modeling data vector with positive ele-
ments [16], [17]. Moreover, the inverted Dirichlet distribution
also has connections with nonnegative matrix factorization
(NMF). In sparse NMF [18], thel1-norm constraint is usually
applied to favor the sparseness. As the definition of the
inverted Dirichlet distribution is similar to the nonnegative
properties of the columns in the original matrix and the
basis matrix, selecting proper prior distribution to describe
the underlying distribution of the aforementioned columns can
favor the sparse NMF.

An essential problem in finite mixture modeling is how
to automatically decide the appropriate number of mixture
components based on the data. The component number has
a strong effect on the modeling accuracy [19]. If the number
of mixture components is not properly chosen, the mixture
model may over-fit or under-fit the observed data. To deal with
this problem, many methods have been proposed. These can
be categorized into two groups: deterministic approaches [20],
[21] and Bayesian methods [22], [23]. Deterministic approach-
es are generally implemented by ML estimation under an
EM-based and require the integration of entropy measures or
some information theoretic criteria, such as the minimum mes-
sage length (MML) [21], the Bayesian information criterion
(BIC) [24], and the Akaike information criterion (AIC) [25],
to determine the number of components in the mixture model.
It is worth noting that, in general, the EM algorithm converges
to a local maximum or a saddle point and its solution is
highly dependent on its initialization. On the other hand, the
Bayesian methods, which are not sensitive to initialization
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by introducing proper prior distributions to the parameters in
the model, have been widely used to find a suitable number
of components in a finite mixture model. In this case, the
parameters of a finite mixture model (including the parameters
in a component and the weighting coefficients) are treated as
random variables under the Bayesian framework. The poste-
rior distributions of the parameters, rather than simple point
estimates, are computed [2]. The model truncation in Bayesian
estimation of finite mixture model is carried out by setting the
corresponding weights of the unimportant mixture components
to zero (or a small value close to zero) [2]. However, the
number of mixture components should be properly initialized,
as it can only decrease during the training process.

The increasing interest in mixture modeling has led to the
development of the model selection method1. Recent work has
shown that the non-parametric Bayesian approach [26]–[30]
can provide an elegant solution for automatically determining
the complexity of model. The basic idea behind this approach
is that it provides methods to adaptively select the optimal
number of mixing components, while also allows the number
of mixture components to remain unbounded. In other words,
this approach allows the number of components to increase
as new data arrives, which is the key difference from finite
mixture modeling. The most widely used Bayesian nonpara-
metric [31] model selection method is based on the Dirichlet
process (DP) mixture model [32], [33]. The DP mixture model
extends distributions over measures, which has the appealing
property that it does not need to set a prior on the number
of components. In essence, the DP mixture model can also
be viewed as an infinite mixture model with its complexity
increasing as the size of dataset grows. Recently, the DP mix-
ture model has been applied in many important applications.
For instance, the DP mixture model has been adopted to a
mixture of different types of non-Gaussian distributions, such
as the DP mixture of beta-Liouville distributions [34], the
DP mixture of student’s-t distributions [35], the DP mixture
of generalized Dirichlet distributions [36], the DP mixture of
student’s-t factors [37], and the DP mixture of hidden Markov
random field models [38].

Generally speaking, most parameter estimation algorithms
for both the deterministic and the Bayesian methods are time
consuming, because they have to numerically evaluate a given
model selection criterion [21]. This is especially true for the
fully Bayesian Markov chain Monte Carlo (MCMC) [27],
[39], which is one of the widely applied Bayesian approaches
with numerical simulations. The MCMC approach has its own
limitations, when high-dimensional data are involved in the
training stage [40]. This is due to the fact that its sampling-
based characteristics yield a heavy computational burden and it
is difficult to monitor the convergence in the high-dimensional
space. To overcome the aforementioned problems, variational
inference (VI), which can provide an analytically tractable
solution and good generalization performance, has been pro-
posed as an efficient alternative to the MCMC approach [41].
With an analytically tractable solution, the numerical sampling

1Here, model selection means selecting the best of a set of models of
different orders

during each iteration in the optimization stage can be avoided.
Hence, the VI-based solutions can lead to more efficient
estimation. They have been successfully applied in a variety of
applications including the estimation of mixture models [5]–
[7], [34], [42].

Motivated by the ability of the Bayesian non-parametric
approaches to solve the model selection problem and the
good performance recently obtained by the VI framework,
we focus on the variational learning of the DP mixture of
inverted Dirichlet distributions (a.k.a. the infinite inverted
Dirichlet mixture model (InIDMM)). Since InIDMM is a
typical non-Gaussian statistical model, it is not feasible to
apply the standard VI framework to obtain an analytically
tractable solution for the Bayesian estimation. As a variate
of VI, stochastic variational infernece (SVI) [43], [44] has
been proposed as an alternative solution to approximate the
posterior distributions. The algorithm under SVI framework is
scalable and suitable for massive data. However, when dealing
with non-Gaussian distributions, the expectations in the update
iterations (Fig.4, [43]) cannot be calculated explicitly and
some sampling methods are also required to approximate
the expectations. In order to derive an analytically tractable
solution for the variational learning of InIDMM, the recently
proposed extended variational inference (EVI) [6], [7], which
is particularly suitable for non-Gaussian statistical models, has
been adopted to provide an appropriatesingle lower bound
(SLB) approximationto the original object function. With
the auxiliary function, an analytically tractable solution for
Bayesian estimation of InIDMM is derived. The key contribu-
tions of our work are three-fold: 1) The finite inverted Dirichlet
mixture model (IDMM) has been extended to the infinite
inverted Dirichlet mixture model (InIDMM) under the stick-
breaking process framework [32], [45]. Thus, the difficulty in
automatically determining the number of mixture components
can be overcome. 2) An analytically solution is derived with
the EVI framework for InIDMM. Moreover, comparing with
the recently proposed algorithm for InIDMM [46], which is
based onmultiple lower bound (MLB) approximation, our
algorithm can not only theoretically guarantee convergence but
also provide better approximations. 3) The proposed method
has been applied in several important applications in computer
vision, such as image categorization and object detection. The
good performance has been illustrated with both synthesized
and real data evaluations.

The remaining part of this paper is organized as follow: Sec-
tion II provides a brief overview of the finite inverted Dirichlet
mixture and the DP mixture. The infinite inverted Dirichlet
mixture model is also proposed. In Section III, a Bayesian
learning algorithm with EVI is derived. The proposed algorith-
m has an analytically tractable form. The experimental results
with both synthesized and real data evaluations are reported in
Section IV. Finally, we draw conclusions and future research
directions in Section V.

II. T HE STATISTICAL MODEL

In this section, we first present a brief overview of the finite
inverted Dirichlet mixture model (IDMM). Then, the DP mix-
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ture model with stick-breaking representation is introduced.
Finally, we extend the IDMM to InIDMM.

A. Finite inverted Dirichlet mixture model

Given aD-dimensional vector~x = {x1, · · · , xD} generated
from an IDMM with M components, the probability density
function (PDF) of~x is denoted as [16]

IDMM (~x|~π,Λ) =

M∑

m=1

πmiDir(~x|~αm), (1)

where Λ = {~αm}Mm=1 and ~π = {πm}Mm=1 is the mixing
coefficient vector subject to the constraints0 ≤ πm ≤ 1 and∑M

m=1 πm = 1. Moreover, iDir(~x|~α) is an inverted Dirichlet
distribution with its (D + 1)-dimensional positive parameter
vector~α = {α1, · · · , αD+1} defined as

iDir(~x|~α) =
Γ(
∑D+1

d=1 αd)∏D+1
d=1 Γ(αd)

D∏

d=1

x
αd−1
d

(
1 +

D∑

d=1

xd

)−
∑D+1

d=1
αd

,

(2)
where xd > 0 for d = 1, · · · , D and Γ(·) is the Gamma
function defined asΓ(a) =

∫∞

0 ta−1e−tdt.

B. Dirichlet Process with Stick-Breaking

The Dirichlet process (DP) [32], [33] is a stochastic process
used for Bayesian nonparametric data analysis, particularly
in a DP mixture model (infinite mixture model). It is a
distribution over distributions rather than parameters,i.e., each
draw from a DP is a probability distribution itself, rather
than a parameter vector [47]. We adopt the DP to extend
the IDMM to the infinite case, such that the difficulty of the
automatic determination of the model complexity (i.e., the
number of mixture components) can be overcome. To this
end, the DP is constructed by the following stick-breaking
formulation [31], [48], [49], which is an intuitive and simple
constructive definition of the DP.

Assume thatH is a random distribution andϕ is a positive
real scalar. We consider two countably infinite collections
of independently generated stochastic variablesΩm ∼ H
and λm ∼ Beta(λm; 1, ϕ)2 for m = {1, · · · ,∞}, where
Beta(x; a, b) is the beta distribution defined as Beta(x; a, b) =
Γ(a+b)
Γ(a)Γ(b)x

a−1(1 − x)b−1. A distribution G is said to be DP
distributed with a concentration parameterϕ and a base
measure or base distributionH (denoted asG ∼ DP(ϕ,H)),
if the following conditions are satisfied:

G =

∞∑

m=1

πmδΩm , πm = λm

m−1∏

l=1

(1− λl), (3)

where{πm} is a set of stick-breaking weights with constraints∑∞
m=1 πm = 1, δΩm

is a delta function whose value is1 at
locationΩm and 0 otherwise. The generation of the mixing
coefficients{πm} can be considered as process of breaking
a unit length stick into an infinite number of pieces. The

2To avoid confusion, we usef (x; a) to denote the PDF ofx parameterized
by parametera. f (x|a) is used to denote the conditional PDF ofx given a,
where bothx and a are random variables. Bothf (x; a) and f (x|a) have
exactly the same mathematical expressions.

               

               

                

               

~zn

∞

∞

∞

λm ϕm

~αm

N

~xn

Fig. 1: Graphical representation of the variables relationships
in the Bayesian inference of a InIDMM. All of the circles
in the graphical figure represent variables. Arrows show the
relationships between variables. The variables in the box are
the i.i.d. observations.

length of each piece,λm, which is proportional to the rest
of the “stick” before the current breaking, is considered as an
independent random variable generated from Beta(λm; 1, ϕ).
Because of its simplicity and natural generalization ability, the
stick-breaking construction has been a widely applied scheme
for the inference of DPs [34], [45], [50].

C. Infinite Inverted Dirichlet Mixture Model

Now we consider the problem of modeling~x by an Infinite
Inverted Dirichlet Mixture Model (InIDMM), which is actually
an extended IDMM with an infinite number of components.
Therefore, (1) can be reformulated as

InIDMM (~x|~π,Λ) =
∞∑

m=1

πmiDir(~x|~αm), (4)

where ~π = {πm}∞m=1 and Λ = {~αm}∞m=1. Then, the
likelihood function of the InIDMM given the observed dataset
X = {~xn}

N
n=1 is given by

InIDMM (X|~π,Λ) =

N∏

n=1

{
∞∑

m=1

πmiDir(~xn|~αm)

}
. (5)

In order to clearly illustrate the generation process of each
observation~xn in the mixture model, we introduce a latent
indication vector variable~zn = {zn1, zn2, · · · }. ~z has only
one element equal to1 and the other elements in~z are0. For
example,znm = 1 indicates the sample~xn comes from the
mixture componentm. Therefore, the conditional distribution
of X given the parametersΛ and the latent variablesZ =
{znm} is

InIDMM (X|Z,Λ) =
N∏

n=1

∞∏

m=1

iDir(~xn|~αm)znm . (6)

Moreover, to exploit the advantages of the Bayesian frame-
work, conjugate prior distributions are introduced for all the
unknown parameters according to their distribution properties.
In this work, we place the conjugate priors over the unknown
stochastic variablesZ, Λ, and~λ = (λ1, λ2, · · · ) such that a
full Bayesian estimation model can be obtained.

In the aforementioned full Bayesian model, the prior distri-
bution ofZ given ~π is given by

p(Z|~π) =

N∏

n=1

∞∏

m=1

πznm
m . (7)
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As ~π is a function of ~λ according to the stick-breaking
construction of the DP as shown in (3), we rewrite (7) as

p(Z|~λ) =

N∏

n=1

∞∏

m=1

[
λm

m−1∏

l=1

(1− λl)

]znm

. (8)

As previously mentioned in Section II-B, the prior distribu-
tion of ~λ is

p(~λ|~ϕ) =
∞∏

m=1

Beta(λm; 1, ϕm) =
∞∏

m=1

ϕm(1− λm)ϕm−1, (9)

where ~ϕ = (ϕ1, ϕ2, · · · ). Based on (3), we can obtain the
expected value ofπm. In order to do this, the expected value
of λm will first be calculated as

〈λm〉 = 1/(1 + ϕm). (10)

Then, the expected value ofπm is denoted as

〈πm〉 = 〈λm〉

m−1∏

l=1

(1− 〈λl〉). (11)

It is worth to note that, when the value ofϕm is small,〈λm〉
will become large. Therefore, the expected of the mixing co-
efficientsπm are controlled by the parametersϕm, i.e., small
value ofϕm will yield small πm such that the distribution of
πm will be sparse.

Asϕm is positive, we assume~ϕ follows a product of gamma
prior distributions as

p(~ϕ;~s,~t) =
∞∏

m=1

Gam(ϕm; sm, tm) =
∞∏

m=1

tsmm
Γ(sm)

ϕsm−1
m e−tmϕm ,

(12)
where Gam(·) is the gamma distribution.~s = (s1, s2, · · · )
and~t = (t1, t2, · · · ) are the hyperparamters and subject to the
constraintssm > 0 and tm > 0.

Next, we introduce an approximating conjugate prior dis-
tribution to parameterΛ in InIDMM. The inverted Dirichlet
distribution belongs to the exponential family and its formal
conjugate prior can be derived with the Bayesian rule [2] as

p(~α|~µ0, v0) = C(~µ0, v0)

[
Γ(
∑D+1

d=1 αd)∏D+1
d=1 αd

]ν0
e−~µ0(~α

T −~ID+1), (13)

where~µ0 = [µ10 , · · ·µD+10 ] andν0 are the hyperparameters
in the prior distribution,C(~µ0, v0) is a normalization coeffi-
cient such that

∫
p(~α|~µ0, v0)d~α = 1. ~Id is a D-dimensional

vector with all elements equal to one. Then, we can write the
posterior distribution of~α as (withN i.i.d. observationsX )

f(~α|X ) =
iDir(X|~α)f(~α|~µ0, ν0)∫
iDir(X|~α)f(~α|~µ0, ν0)d~α

=C(~µN , νN)

[
Γ(
∑D+1

d=1 αd)∏D+1
d=1 Γ(αd)

]νN
e−~µN (~αT −~ID+1)

(14)

where the hyperparametersνN and~µN in the posterior distri-
bution are

νN = ν0 +N, ~µN = ~µ0 − [lnX+ − ~ID+1 ln(1 + ~ITD+1X
+)]~IN .

(15)
In (15), X+ is a (D + 1) × N matrix by connecting~ITD+1

to the bottom ofX . However, it is not applicable in our VI
framework due to the analytically intractable normalization
factor in (44). BecauseΛ is positive, we adopt gamma prior

Model estimation 

strategies for IDMM

Model estimation 

strategies for InIDMM

Fig. 2: Development progress of the model estimation strategies for
finite IDMM and infinite IDMM.

distributions to approximate conjugate prior forΛ as well. By
assuming the parameters of inverted Dirichlet distribution are
mutually independent, we have

p(Λ) = Gam(Λ;U, V ) =
∞∏

m=1

D+1∏

d=1

vumd

md

Γ(umd)
αumd−1
md e−vmdαmd ,

(16)
where all the hyperparametersU = {umd} andV = {vmd}
are positive.

With the Bayesian rules and by combining (6) and (8)-(16)
together, we can represent the joint density of the observation
X with all the i.i.d. latent variablesΘ = (Z,Λ, ~λ, ~ϕ) as

p(X ,Θ) =p(X|Z,Λ)p(Z|~λ)p(~λ|~ϕ)p(~ϕ)p(Λ)

=
N∏

n=1

∞∏

m=1



λm

m−1∏

j=1

(1− λj)
Γ
(∑D+1

d=1 αmd

)

∏D+1
d=1 Γ(αmd)

×

D∏

d=1

x
αmd−1
nd

(
1 +

D∑

d=1

xnd

)−
∑D+1

d=1
αmd




znm

×

∞∏

m=1

[
ϕm(1− λm)ϕm−1 tsmm

Γ(sm)
ϕsm−1

m e−tmϕm

]

×
∞∏

m=1

D+1∏

d=1

v
umd

md

Γ(umd)
αumd−1
md e−vmdαmd .

(17)

The structure of the InIDMM can be represented in terms of
a graphical model in Fig. 1. The development progress for the
related models are shown in Fig. 2.

III. VARIATIONAL LEARNING FOR INIDMM

In this section, we develop a variational Bayesian inference
framework for learning the InIDMM. With the assistance
of recently proposed EVI [6], [7], an analytically tractable
algorithm, which prevents numerical sampling during each
iteration and facilitates a training procedure, is obtained. The
proposed solution is also able to overcome the problem of
overfitting and automatically decide the number of mixture
components.

A. Extended Variational Inference

The purpose of Bayesian analysis is to estimate the values
of the hyperparameters as well as the posterior probability
distribution of the latent variables. Within the conventional

Page 4 of 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

variational inference framework, the objective function that
needs to be maximized is

L(q) = Eq(Θ)[ln p(X ,Θ)]− Eq(Θ)[ln q(Θ)]. (18)

For most of the non-Gaussian mixture models (e.g., the beta
mixture model [7], the Dirichlet mixture model [6], the beta-
Liouville mixture model [34], the inverted Dirichlet mixture
model [17]), the term Eq(Θ)[ln p(X ,Θ)] is analytically in-
tractable such that the lower boundL(q) cannot be maximized
directly by a closed-form solution. Therefore, the EVI method
[6], [7], [41] was proposed to overcome the aforementioned
problem. With an auxiliary functioñp(X ,Θ) that satisfies

Eq(Θ)[ln p(X ,Θ)] ≥ Eq(Θ)[ln p̃(X ,Θ)] (19)

and substituting (19) into (18), we can still reach the maximum
value of L(q) at some given points by maximizing a lower
bound ofL̃(q)

L(q) ≥ L̃(q) = Eq(Θ)[ln p̃(X ,Θ)]− Eq(Θ)[ln q(Θ)]. (20)

If p̃(X ,Θ) is properly selected, an analytically tractable so-
lution can be obtained. In order to properly formulate the
variational posteriorq(Θ), we truncate the stick-breaking
representation for the InIDMM at a valueM as

λM = 1, πm = 0 whenm > M, and
M∑

m=1

πm = 1. (21)

Note that the model is still a full DP mixture. The truncation
level M is not a part of our prior infinite mixture model, it is
only a variational parameter for pursuing an approximation to
the posterior, which can be freely initialized and automatically
optimized without yielding overfitting during the learning
process. Additionally, we make use of the following factorized
variational distribution to approximatep(Θ|X ) as

q(Θ) =
M∏

m=1

q(λm)q(ϕm)
N∏

n=1

q(znm)
D+1∏

d=1

q(αmd), (22)

where the variables in the posterior distribution are assumed to
be mutually independent (as illustrated by the graphical model
in Fig. 1). This is the only assumption we introduced to the
posterior distribution. No other restrictions are imposed over
the mathematical forms of the individual factor distribution-
s [2].

Applying the full factorization formulation and the truncated
stick-breaking representation for the proposed model, we can
solve the variational learning by maximizing the lower bound
L̃(q) shown in (20). The optimal solution in this case is given
by

ln qs(Θs) = 〈ln p̃(X ,Θ)〉j 6=s + Con., (23)

where〈·〉j 6=s refers to the expectation with respect to all the
distributionsqj(Θj) except for variables. In addition, any term
that does not includeΘs are absorbed into the additive constant
“Con.” [2], [41]. In the variational inference, all factorsqs(Θs)
need to be suitably initiated, then each factor is updated in turn
with a revised value obtained by (23) using the current values
of all the other factors. Convergence is theoretically guaranteed
since the lower bound is a convex with respect to each factor
qs(Θs) [2], [6].

B. EVI for the Optimal Posterior Distributions

According to the principles of EVI, the expectation of the
logarithm of the joint distribution, given the joint posterior
distributions of the parameters, can be expressed as

〈ln p(X ,Θ)〉

=
N∑

n=1

M∑

m=1

〈znm〉

[
Rm+

D∑

d=1

(〈αmd〉 − 1) ln xnd

−

D+1∑

d=1

〈αmd〉(1 +

D∑

d=1

xnd) + 〈lnλm〉+

m−1∑

j=1

〈ln(1− λj)〉

]

+

M∑

m=1

[〈lnϕm〉+ (〈ϕm〉 − 1)〈ln(1− λm)〉]

+
M∑

m=1

D+1∑

d=1

[
(umd − 1)〈lnαmd〉 − vmd〈αmd〉

]

+
M∑

m=1

[(sm − 1)〈lnϕm〉 − tm〈ϕm〉] + Con.,

(24)

whereRm =
〈
ln

Γ(
∑D+1

d=1 αmd)∏D+1
d=1 Γ(αmd)

〉
.

With the mathematical expression in (24), an analytically
tractable solution is not feasible, which is due to the fact
that Rm cannot be explicitly calculated (although it can be
simulated by some numerical sampling methods). In order
to apply (23) to explicitly calculate the optimal posterior
distributions and with the principles of the EVI framework,
it is required to introduce an auxiliary functioñRm such that
Rm ≥ R̃m. According to [6, Eq. 25], we can select̃Rm as

R̃m = ln
Γ(
∑D+1

d=1 〈αmd〉)∏D+1
d=1 Γ(〈αmd〉)

+

D+1∑

d=1

[
Ψ(

D+1∑

k=1

〈αmd〉)−Ψ(〈αmd〉)

]

× [〈lnαmd〉 − ln 〈αmd〉] 〈αmd〉,
(25)

where Ψ(·) is the digamma function defined asΨ(a) =
∂ ln Γ(a)/∂a.

Substituting (25) into (24), a lower bound to〈ln p(X ,Θ)〉
can be obtained as

〈ln p̃(X ,Θ)〉

=
N∑

n=1

M∑

m=1

〈znm〉

[
R̃m+

D∑

d=1

(〈αmd〉 − 1) ln xnd

−
D+1∑

d=1

〈αmd〉(1 +
D∑

d=1

xnd) + 〈lnλm〉+
m−1∑

j=1

〈ln(1− λj)〉

]

+

M∑

m=1

[〈lnϕm〉+ (〈ϕm〉 − 1)〈ln(1− λm)〉]

+
M∑

m=1

D+1∑

d=1

[
(umd − 1)〈lnαmd〉 − vmd〈αmd〉

]

+
M∑

m=1

[(sm − 1)〈lnϕm〉 − tm〈ϕm〉] + Con..

(26)

With (23), we can get analytically tractable solutions for
optimally estimating the posterior distributions ofZ, ~λ, ~ϕ,
andΛ. We now consider each of these in more detail:1) The
posterior distribution ofq(Z)
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As any term that is independent ofznm can be absorbed
into the additive constant, we have

ln q∗(znm) = Con.+ znm

[
R̃m + 〈lnλm〉+

m−1∑

j=1

〈ln(1− λj)〉

+
D∑

d=1

(〈αmd〉 − 1) ln xnd +
D+1∑

d=1

〈αmd〉 ln(1 +
D∑

d=1

xnd)

]
,

(27)

which has same logarithmic form of the prior distribution (i.e.,
the categorial distribution). Therefore, we can writeln q∗(Z)
as

ln q∗(Z) =

N∑

n=1

M∑

m=1

znm ln ρnm + Con. (28)

with the definition that

ln ρnm = 〈lnλm〉+

m−1∑

j=1

〈ln(1− λj)〉+ R̃m

+
D∑

d=1

(〈αmd〉 − 1) lnxnd −

D+1∑

d=1

〈αmd〉(1 +

D∑

d=1

xnd).

(29)

Recalling thatznm ∈ (0, 1) and
∑M

m=1 znm = 1, we define

rnm =
ρnm∑M

m=1 ρnm

. (30)

Taking the exponential of both sides of (28), we have

q∗(Z) =
N∏

n=1

M∏

m=1

rznm
nm , (31)

which is the optimal posterior distribution ofZ.
The posterior mean〈znm〉 can be calculated as〈znm〉 =

rnm. Actually, the quantities{rnm} are playing a similar role
as the responsibilities in the conventional EM [51] algorithm.

In the following parts, we show only the optimal solutions
to ~λ, ~ϕ, and Λ, respectively. The derivation details can be
found in the appendix.

2) The posterior distribution ofq(~λ)
The optimal solution to the posterior distribution of~λ is

characterized as

q(~λ) =
M∏

m=1

Beta(λm; g∗m, h∗
m), (32)

where the hyperparameterss∗m andq∗m are

g∗m = 1 +

N∑

n=1

〈znm〉, h∗
m = 〈ϕm〉+

N∑

n=1

M∑

j=m+1

〈znj〉. (33)

3) The posterior distribution ofq(~ϕ)
The optimal solution to the posterior distribution of~ϕ is

q∗(~ϕ) =
M∏

m=1

Gam(ϕm; s∗m, t∗m), (34)

where the optimal solutions to the hyperparamterss∗m andt∗m
are

s∗m = 1 + s0m, t∗m = t0m − 〈ln(1− λm)〉, (35)

wheres0m andt0m denote the hyperparameters initialized in the
prior distribution, respectively.

4) The posterior distribution ofq(Λ)

The optimal approximation to the posterior distribution of
Λ is

q∗(Λ) =
M∏

m=1

D+1∏

d=1

Gam(αmd;u
∗
md, v

∗
md), (36)

where the optimal solutions to the hyperparametersu∗
md and

v∗md are given by

u∗
md = u0

md +
N∑

n=1

〈znm〉

[
Ψ(

K+1∑

k=1

〈αmk〉)−Ψ(〈αmd〉)

]
〈αmd〉

(37)
and

v∗md = v0md −
N∑

n=1

〈znm〉

[
ln xnd − ln(1 +

D∑

d=1

xnd)

]
. (38)

In the above equations,u0
md andv0md are the hyperparameters

in the prior distribution and we setxn,D+1 = 1. The following
expectations are needed to calculate the aforementioned update
equations:

〈ln(1− λm)〉 =Ψ(h∗
m)−Ψ(g∗m + h∗

m),

〈lnλm〉 =Ψ(g∗m)−Ψ(g∗m + t∗m),

〈lnαmd〉 =Ψ(u∗
md)− ln v∗md,

〈ϕm〉 =
s∗m
t∗m

, 〈αmd〉 =
u∗
md

v∗md

.

(39)

C. Full Variational Learning Algorithm

As can be observed from the above updating process, the
optimal solutions for the posterior distributions are dependent
on the moments evaluated with respect to the posterior dis-
tributions of the other variables. Thus, the variational update
equations are mutually coupled. In order to obtain optimal
posterior distributions for all the variables, iterative updates
are required until convergence. With the obtained posterior
distributions, it is straightforward to calculate the lower bound
L̃(q)

L̃(q) =

∫
q(Θ) ln

p̃(Θ,X )

q(Θ)
dΘ

=〈ln p̃(X ,Θ)〉 − 〈ln q(Θ)〉

=〈ln p̃(X ,Θ)〉 − 〈ln q(Z)〉 − 〈ln q(~λ)〉

− 〈ln q(~ϕ)〉 − 〈ln q(Λ)〉,

(40)

which is helpful in monitoring the convergence. In (40), each
term with expectation (i.e., 〈·〉) is evaluated with respect to all
the variables in its argument as

〈ln q(Z)〉 = rnm ln rnm, (41)

〈ln q(~λ)〉 =
M∑

m=1

[ln Γ(g∗m + h∗
m)− ln Γ(g∗m)− ln Γ(h∗

m)

+(g∗m − 1)〈lnλm〉+ (h∗
m − 1)〈ln(1− λm)〉] ,

(42)

〈ln q(~ϕ)〉 =

M∑

m=1

[s∗m ln t∗m − ln Γ(s∗m)

+(s∗m − 1)〈lnϕm〉 − t∗mϕ̄m] ,

(43)

and

〈ln q(~α)〉 =
M∑

m=1

D+1∑

d=1

[u∗
md ln v

∗
md − ln Γ(u∗

m)

+(u∗
m − 1)〈lnαmd〉 − v∗mdᾱmd] .

(44)
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(c) Model C
Fig. 3: Observations of the objective function’s oscillations during iterations. This non-convergence indicates that the MLB approximation-
based method cannot theoretically guarantee convergence. The model settings are the same as Tab. I.

Algorithm 1 Algorithm for EVI-based Bayesian InIDMM

1: Set the initial truncation levelM and the initial values for
hyperparameterss0m, t0m, u0

md, andv0md

2: Initialize the values ofrnm by K-means algorithm.
3: repeat
4: Calculate the expectations in (39).
5: Update the posterior distributions for each variable by

(33), (35), (37) and (38).
6: until Stop criterion is reached.
7: For all m, calculate〈λm〉 = s∗m/(s∗m + t∗m) and substi-

tute it back into (11) to get the estimated values of the
mixing coefficientŝπm.

8: Determine the optimum number of componentsM by
eliminating the components with mixing weights smaller
than10−5.3

9: Renormalize{π̂m} to have a unitl1 norm.
10: Calculateα̂md = u∗

md/v
∗
md for all m andd.

Additionally, 〈ln p̃(X ,Θ)〉 is given in (26) .
The algorithm of the proposed EVI-based Bayesian estima-

tion of InIDMM is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, both synthesized data and real data are
utilized to demonstrate the performance of the proposed al-
gorithm for InIDMM. In the initialization stage of all the
experiments, the truncation levelM is set to 15 and the
hyperparameters of the gamma prior distributions are chosen
as u0 = s0 = 1 and v0 = t0 = 0.005, which provide non-
informative prior distributions. Note that these specific choices
were based on our experiments and were found convenient and
effective in our case. We take the posterior means as point
estimates to the parameters in an InIDMM.

A. Synthesized Data Evaluation

As shown in the previous studies for EVI-based Bayesian
estimation [5], [6], the SLB approximation can guarantee the
convergence while the MLB approximation cannot. We use the

3When a mixing coefficient is small enough, it converges to0 faster. There-
fore, we can remove components with very small value (less than a threshold).
This choice (empirically choosing a threshold) is purely for the convenience
of easy implementation. Similar strategy is also widely used applied in many
other sticking-break process-based DP mixture models,e.g., [34], [46].

synthesized data evaluation to compare the Bayesian InIDMM
using the SLB approximation (proposed in this paper and
denoted as InIDMMSLB) with the Bayesian InIDMM using
the MLB approximation (proposed in [46] and denoted as
InIDMM MLB ). Three models (see Tab. I for details) were
selected to generate the synthesized datasets.

1) Model Selection:One advantage of DP process mix-
ture model is to decide the number of mixture components
automatically, based on the training data. Following the in-
structions in [52] and for a first check, we ran the proposed
EVI-based method for InIDMMSLB. The optimization pro-
cedure is carried out without component elimination (i.e., a
fixed number of components,M , is chosen and the mixing
coefficients are fixed during iteration. The initial value of the
mixing coefficients were obtained from plain EM estimation.)
Under this setting, the variational lower-bound can be treated
as a model selection score and the effect of the number of
the mixture components is demonstrated. With synthesized
data generated from the aforementioned three models, we
plotted the relation between the variaional lower-bounds and
the number of mixture components in Fig. 4.

2) Observations of Oscillations:We ran the InIDMMMLB

algorithm and monitored the value of the variational objective
function during each iteration. It can be observed that the
variational objective function was not always increasing in
Bayesian estimation with the InIDMMMLB . Figure 3 illustrates
the decreasing values during iterations. On the other hand, the
variational objective function obtained with the InIDMMSLB

algorithm was always increasing until convergence, as the
SLB approximation insures the convergency theoretically. The
observations of oscillations demonstrate that the convergence
with MLB approximation cannot be guaranteed. The original
variational object function was numerically calculated by
employing sampling method. In order to monitor the parameter
estimation process of InIDMMSLB, we show the value of the
variational objective function during iterations in Fig. 5. It can
be observe that the variational objective function obtained by
InIDMM SLB increases during iterations and in most cases it
increases very fast.

3) Quantitative Comparisons:Next, we compare the
InIDMM SLB with the InIDMMMLB quantitatively. With
a known IDMM, 2000 samples were generated. The
InIDMM SLB and the InIDMMMLB were applied to estimate
the posterior distributions of the model, respectively. In Tab. I,
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TABLE I: Comparisons of true and estimated models.

True Model
Model A

π1 = 0.5 , ~α1 = [16 8 6 2]T

π2 = 0.5 , ~α2 = [8 12 15 18]T

Model B
π1 = 0.25 , ~α1 = [12 36 14 18 55 16]T

π2 = 0.25 , ~α2 = [32 48 25 12 36 48]T

π3 = 0.25 , ~α3 = [25 10 18 10 36 48]T

π4 = 0.25 , ~α4 = [6 28 16 32 12 24]T

InIDMM SLB
π̂1 = 0.502 , ~̂α1 = [16.96 8.58 6.39 12.49]T

π̂2 = 0.498 , ~̂α2 = [8.20 12.16 15.49 18.34]T

π̂1 = 0.251 , ~̂α1 = [12.26 36.59 14.30 18.19 56.36 16.25]T

π̂2 = 0.249 , ~̂α2 = [33.37 49.92 25.85 12.80 37.00 49.79]T

π̂3 = 0.252 , ~̂α3 = [25.72 10.32 18.09 10.09 37.27 49.58]T

π̂4 = 0.248 , ~̂α4 = [6.14 28.94 16.72 33.46 12.32 25.20]T

InIDMM MLB
π̂1 = 0.508 , ~̂α1 = [15.20 7.71 5.90 11.64]T

π̂2 = 0.492 , ~̂α2 = [9.21 13.76 17.13 21.10]T

π̂1 = 0.249 , ~̂α1 = [12.18 37.82 14.56 18.85 57.32 16.44]T

π̂2 = 0.249 , ~̂α2 = [33.71 51.10 26.92 12.89 38.66 51.73]T

π̂3 = 0.250 , ~̂α3 = [24.94 9.90 18.07 10.04 36.10 48.25]T

π̂4 = 0.252 , ~̂α4 = [5.82 27.43 15.77 31.14 11.82 23.58]T

True Model

Model C
π1 = 0.2 , ~α1 = [12 21 36 18 32 65 76]T

π2 = 0.2 , ~α2 = [28 42 21 8 54 21 48]T

π3 = 0.2 , ~α3 = [32 12 7 35 13 32 18]T

π4 = 0.2 , ~α4 = [62 44 31 65 72 15 44]T

π5 = 0.2 , ~α5 = [53 12 18 44 65 33 52]T

InIDMM SLB

π̂1 = 0.201 , ~̂α1 = [12.08 20.89 36.25 18.28 32.69 65.72 76.70]T

π̂2 = 0.199 , ~̂α2 = [29.12 43.43 21.41 8.33 56.11 21.74 49.20]T

π̂3 = 0.200 , ~̂α3 = [31.57 11.89 6.99 34.70 12.90 31.85 17.89]T

π̂4 = 0.201 , ~̂α4 = [59.83 42.55 29.89 61.98 67.68 14.11 42.46]T

π̂5 = 0.199 , ~̂α5 = [58.00 12.8 20.02 47.70 71.08 36.57 57.66]T

InIDMM MLB

π̂1 = 0.200 , ~̂α1 = [12.56 21.50 37.69 19.00 33.06 68.04 79.64]T

π̂2 = 0.200 , ~̂α2 = [28.26 43.02 20.85 8.14 55.36 21.21 49.17]T

π̂3 = 0.199 , ~̂α3 = [32.17 12.19 7.13 35.66 13.01 32.54 17.84]T

π̂4 = 0.199 , ~̂α4 = [63.61 45.48 32.00 66.63 74.31 15.21 45.45]T

π̂5 = 0.202 , ~̂α5 = [52.12 11.83 18.34 43.77 64.80 32.53 51.48]T
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Fig. 4: Effect of the number of mixture components.

TABLE II: Comparisons of objective function values and runtime for InIDMM with SLB and MLB.

Model & Method Model A Model B Model C
InIDMM SLB InIDMM MLB InIDMM SLB InIDMM MLB InIDMM SLB InIDMM MLB

Obj. Func. Val. −1.86× 10
3 −1.90× 103 0.42× 10

3 0.32 × 103 3.05× 10
3 2.99 × 103

p-values 0.046 6.48× 10−4 0.016

KL(p(X|Θ)‖p(X|Θ̂)) 3.35× 10
−3 6.97× 10−3

2.80× 10
−3 8.07 × 10−3

2.93× 10
−3 6.24 × 10−3

p-values 1.46× 10−11 6.93× 10−15 2.08× 10−7

Runtime (ins)† 2.06 2.26 3.06 3.61 2.84 3.07
† On a ThinkCentrer computer with Intelr CoreTM i5− 4590 CPU 8G.

we list the estimated parameters by taking the posterior
means. It can be observed that, both the InIDMMSLB and the
InIDMM MLB can carry out the estimation properly. However,
with 20 repeats of the aforementioned “data generation-model
estimation” procedure and calculating the variational objec-
tive function with sampling method, superior performance
of the InIDMMSLB over the InIDMMMLB can be observed
from Tab. II. The mean values of the objective function
obtained by InIDMMSLB are larger than those obtained by
the InIDMMSLB while the computational cost (measured in

seconds) required by the InIDMMSLB are smaller than those
required by the InIDMMMLB . Moreover, smaller KL diver-
gences4 of the estimated models from the corresponding true
models also verify that the InIDMMSLB yields better estimates
than the InIDMMMLB . In order to examine if the differences
between the InIDMMSLB and the InIDMMMLB are statistically
significant, we conducted the student’s t-test with the null-

4Here, the KL divergence is calculated as KL(p(X|Θ)‖p(X|Θ̂)) by
sampling method.̂Θ denotes the point estimate of the parameters from the
posterior distribution.
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Fig. 5: Illustration of the variational objective function’s values obtained by SLB against the number of iterations.
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Fig. 6: Boxplots for comparisons of the objective function values’ distributions obtained by SLB and MLB with different models. The
model settings are the same as those in Tab. I. The central mark is the median, the edges of the box are the25th and75th percentiles. The
outliers are marked individually.

TABLE III: Comparisons of image categorization accuracies (in%)
obtained with different models. The standard deviations are in the
brackets. Thep-values of the student’s t-test with the null-hypothesis
that InIDMMSLB and the referring method have equal means but
unknown variances are listed.

InIDMM SLB IDMM SLB InIDMM MCMC InGMM SVM

Caltech-4
93.49 89.27 90.21 83.92 92.72
(1.05) (0.84) (0.73) (0.72) (0.82)

p-value N/A 1.01 × 10−8 1.91 × 10−7 4.55 × 10−15 0.085

ETH-80
75.49 72.88 73.05 68.88 72.47
(0.75) (1.46) (0.78) (0.74) (0.70)

p-value N/A 8.69 × 10−5 1.17 × 10−6 1.60 × 10−13 2.49 × 10−8

hypothesis that the results obtained by these two methods
have equal means and equal but unknown variances. All the
p-values of in Tab. II are smaller than the significant level0.1,
which indicates that the superiority of the InIDMMSLB over
the InIDMMMLB is statistically significant. The distributions
of the objective function values are shown by the boxplots in
Fig. 6.

B. Real Data Evaluation

In the real data evaluations, the proposed InIDMMSLB

has been applied for the task of image categorization and
object detection. The referred methods for comparisons are the
IDMM SLB [53], the Markov Chain Monte Carlo-based numer-
ical model estimation (InIDMMMCMC, numerical simulation of
the posterior distributions) [54], the Dirichlet process Gaussian
mixture model (InGMM, another commonly used statistical
model) [55], and the support vector machine (SVM)-based
classifier (discriminant method, implemented with LIBSVM
toolbox [56]).

(a) Airplane (b) Motorbike (c) Face (d) Car (e) Background

Fig. 7: Sample images from the Caltech-4 dataset.

1) Datasets: The evaluations were conducted based on
two well-known datasets. The first dataset is the Caltech-4
dataset5. It is a composite of four different categories. They
are1074 images of airplanes from the side,526 images of cars
from the rear,826 images of motorbikes from the side, and450
frontal face images from about27 unique persons. Example
images from these four categories are shown in Fig. 7(a)-7(d).
The second dataset is the ETH-80 dataset6 that consists of
eight categories: apple, car, cup, dog, pear, tomato, horse, and
cow. Each category has410 images which are cropped, so
that they contain only the object in the center. Examples of
images from each category in the ETH-80 dataset are shown
in Fig. 9. Our experiments were evaluated on the these two
commonly used public datasets for the purpose of validating
the effectiveness of the proposed method.

2) Descriptor Extraction: In recent years, many excellent
global and local descriptors have been proposed for the
purpose of image categorization and object detection. For

5http://www.vision.caltech.edu/archive.html
6http://www.d2.mpi-inf.mpg.de/Datasets/ETH80
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 9: Sample images from ETH-80 dataset. (a) Apple. (b) Car. (c) Cow. (d) Cup. (e) Dog. (f) Horse. (g) Pear. (h) Tomato.
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Fig. 8: Boxplots for comparisons of the categorization accuracies’
distributions for the Caltech-4 and the ETH-80 datasets. The central
mark is the median, the edges of the box are the25th and 75th

percentiles. The outliers are marked individually.

example, the scale-invariant feature transform (SIFT) [57]
descriptor, the local binary pattern (LBP) descriptor [58], and
the Histogram of Oriented Gradient (HOG) descriptor [59].
The HOG descriptor, among others, has been one of the most
popular and effective one for image categorization or detec-
tion [60], [61]. In this paper, we employ the rectangular HOG
(R-HOG) descriptor [62], an variant and improved version of
HOG. With the principles of R-HOG and by considering seven
windows and nine histogram bins, each image is represented
by a 441-dimensional positive feature vector.

3) Image Categorization:Object categorization refers to
classifying a given image into a specific category, such as car,
face, motorbike, and airplane. It can also be considered as
an image categorization problem [63], which is an important
and challenging problem in a wide range of application areas
such as multimedia retrieval, pattern recognition and computer
vision. Image categorization and its related applications have
attracted considerable attention during the past few years [64]–
[68]. The reason that image categorization has emerged as one

TABLE IV: Comparisons of object detections accuracies (in%) on
Caltech-4 dataset. The standard deviations are in the brackets. Thep-
values of the student’s t-test with the null-hypothesis that InIDMMSLB

and the referring method have equal means but unknown variances
are listed.

InIDMM SLB IDMM SLB InIDMM MCMC InGMM SVM

Airplanes
97.78 96.41 96.62 93.22 93.69
(0.78) (0.74) (0.75) (0.80) (0.79)

p-value N/A 7.71 × 10−4 0.0031 1.48 × 10−107.57 × 10−10

Faces
94.92 93.37 93.62 89.42 89.60
(0.56) (1.97) (0.98) (1.70) 0.65

p-value N/A 0.028 0.002 1.46 × 10−8 1.37 × 10−13

Cars
99.26 97.85 97.97 94.68 97.25
(0.64) (1.13) (0.82) (0.73) (0.68)

p-value N/A 0.0029 9.57 × 10−4 1.28 × 10−11 2.31 × 10−6

Motorbikes
94.31 93.03 93.24 90.24 89.29
(0.63) (0.89) (0.77) (0.64) (0.83)

p-value N/A 0.0017 0.0033 2.63 × 10−119.88 × 10−12

of the most active areas in the fields of image understanding
and computer vision is mainly because its large potential in
web image research, video retrieval, image database anno-
tation, and medical image mining. Although human usually
perform well on the task of image categorization, it remains
difficult for computers to achieve similar performance. This is
due to the various poses, different scales, multiple viewpoints.

Our experiments for image categorization were implement-
ed as follows. First, R-HOG descriptors were extracted from
each image. Each image in the datasets was then represented
by a 441-dimensional positive vector. Second, the vectors
from one category are assumed to be generated from an
InIDMM. Each category has been randomly divided into equal
training and test sets. For each category, one InIDMM was
trained based on the training set. Third, the proposed Bayesian
InIDMM was employed as a classifier to categorize objects by
assigning the test image to a given class that has the highest
posterior probability. Table III lists the average categorization
accuracies. It can be observed that the proposed InIDMMSLB

is superior to all the other referred methods. In order to
remove the randomness effect in the results, we conducted10
rounds of simulations and the mean values with the standard
deviations are reported. The accuracy distributions are shown
in Fig. 8.

4) Object Detection:Object detection is another essential
problem in computer vision and has been commonly applied
in various applications like content-based image retrieval,
intelligent traffic management, driver assistance system, and
video surveillance [69], [70]. The main goal of object detection
is to find instances of real-world objects such as car, face, or
bicycle in an images or a video clip. Typical object detec-
tion algorithms apply the extracted features and employ the
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Fig. 10:Boxplots for comparisons of the detection accuracies’ distributions for the Caltech-4. The central mark is the median, the edges of
the box are the25th and75th percentiles. The outliers are marked individually.

learning algorithms to recognize the instances from an object
class. Here, we apply the proposed InIDMM as a classifier
and study its performance in object detection. Similar as
image categorization, we also applied the R-HOG descriptor to
represent an image. Each image in the dataset was represented
by a 441-dimensional positive feature vector.

For the experiments on the Caltech-4 dataset, we evaluated
the detection performance on the four sub-datasets mentioned
in Sec. IV-B3. In addition these four datasets, we used the
Caltech background sub-dataset (451 images) as the non-
object sub-dataset for these four object sub-classes. Samples
images from each of these four object classes and the Caltech
background dataset are shown in Fig 7.

The proposed InIDMM is utilized as a classifier to detect the
objects through assigning the testing image to a given group
(object or non-object). Table IV summarizes the detection
accuracies. It can be observed from these results that the
InIDMM provides the best detection accuracies compared
to the other methods. During the evaluations, each of the
aforementioned sub-datasets were randomly into two separate
halves, one for training and the other one for test. Ten rounds
of simulations were conducted and the mean values with
the standard deviations are reported. Figure 10 illustrates the
distributions of the detection accuracies.

5) Computational efficiency:As emphasized at the intro-
duction section of this paper, one motivation of applying the
EVI framework to derive analytically tractable solution for
InIDMM such that the computational cost can be reduced,
compared with numerical solution. In Tab. V, we compare
the required runtime for InIDMMSLB and InIDMMMCMC.
Ten rounds of simulations were conducted and the mean

values are reported. Thep-values of the student’s t-test with
the null-hypothesis that the runtimes of InIDMMSLB and
InIDMM MCMC have equal means but unknown variances are
listed.It can be concluded that the proposed InIDMMSLB has
statistically significantly superior performance in terms of
runtime.

V. CONCLUSIONS

The inverted Dirichlet distribution has been widely applied
in modeling the positive vector (vector that contains only
positive elements). The Dirichlet processing mixture of the
inverted Dirichlet mixture model (InIDMM) can provide good
modeling performance to the positive vectors. Compared to the
conventional finite inverted Dirichlet mixture model (IDMM),
the InIDMM has more flexible model complexity as the
number of mixture components can be automatically deter-
mined. Moreover, the over-fitting and under-fitting problem is
avoided by the Bayesian estimation of InIDMM. To obtain an
analytically tractable solution for Bayesian estimation of InID-
MM, we utilized the recently proposed extended variational
inference (EVI) framework. With single lower bound (SLB)
approximation, the convergence of the proposed analytically
tractable solution is guaranteed, while the solution obtained
via multiple lower bound (MLB) approximations may result
in oscillations of the objective function. Extensive synthesized
data evaluations and real data evaluations demonstrated the
superior performance of the proposed method.
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