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Abstract—Though quite challenging, leveraging large-scale
unlabeled or partially labeled data in learning systems (e.g.,
model / classifier training) has attracted increasing attentions
due to its fundamental importance. To address this problem,
many active learning (AL) methods have been proposed that
employ up-to-date detectors to retrieve representative minor-
ity samples according to predefined confidence or uncertainty
thresholds. However, these AL methods cause the detectors to
ignore the remaining majority samples (i.e., those with low
uncertainty or high prediction confidence). In this work, by
developing a principled active sample mining (ASM) framework,
we demonstrate that cost-effectively mining samples from these
unlabeled majority data is key to training more powerful object
detectors while minimizing user effort. Specifically, our ASM
framework involves a switchable sample selection mechanism for
determining whether an unlabeled sample should be manually
annotated via AL or automatically pseudo-labeled via a novel
self-learning process. The proposed process can be compatible
with mini-batch based training (i.e., using a batch of unlabeled
or partially labeled data as a one-time input) for object detection.
In this process, the detector, such as a deep neural network, is
first applied to the unlabeled samples (i.e., object proposals) to
estimate their labels and output the corresponding prediction
confidences. Then, our ASM framework is used to select a
number of samples and assign pseudo-labels to them. These labels
are specific to each learning batch, based on the confidence levels
and additional constraints introduced by the AL process, and will
be discarded afterward. Then, these temporarily labeled samples
are employed for network fine-tuning. In addition, a few samples
with low-confidence predictions are selected and annotated via
AL. Notably, our method is suitable for object categories that
are not seen in the unlabeled data during the learning process.
Extensive experiments on two public benchmarks (i.e., the
PASCAL VOC 2007/2012 datasets) clearly demonstrate that our
ASM framework can achieve performance comparable to that of
alternative methods but with significantly fewer annotations.

Index Terms—Active Learning; Self-driven Learning; Semi-
supervised Learning; Large-scale Object Detection

This work was supported in part by National high level talents special sup-
port plan (Ten Thousand Talents Program), in part by Guangdong “Climbing
Program” Special Funds under Grant pdjhb0010, in part by National Natural
Science Foundation of China (NSFC) under Grant U1611461 and Grant
61702565, in part by Ministry of Public Security Science and Technology
Police Foundation Project of No. 2016GABJC48, in part by Science and
Technology Planning Project of Guangdong Province of No.2017B010116001,
in part by Hong Kong RGC General Research Fund (PolyU 152135/16E), and
in part by the Hong Kong Polytechnic Universitys Joint Supervision Scheme
with the Chinese Mainland, Taiwan and Macao Universities (Grant no. G-
SB20).

K. Wang, L. Lin, X. Yan, Z. Chen, and D. Zhang are with the School of Data
and Computer Science, Sun Yat-sen University, Guangzhou, China and the
Engineering Research Center for Advanced Computing Engineering Software
of Ministry of Education, China. The corresponding author is Liang Lin (e-
mail: kezewang@gmail.com; linliang@ieee.org; yanxp3@mail2.sysu.edu.cn;
zhangdy27@mail.sysu.edu.cn).

K. Wang and L. Zhang are with the Department of Comput-
ing, The Hong Kong Polytechnic University, Hong Kong. (e-mail:
cslzhang@comp.polyu.edu.hk)

I. INTRODUCTION

Benefiting from the state-of-the-art performance of deep
convolutional neural networks (CNNs) [1]–[3] obtained, re-
markable progress has been achieved in object detection,
which is one of the key objectives in computer vision.
Through generating the candidate region/proposal of objects
from the input image, object detection is converted into a
region classification task. Features are usually extracted from
candidate object regions via CNNs, e.g., R-CNN [4], and
conventional SVM / softmax classifiers are then used for final
detection. Recently, most efforts have involved the design of
powerful network architectures, e.g., ResNet [3] and SSD [5],
to improve feature learning and computation speed. However,
the question of how to incrementally leverage large-scale
unlabeled data to improve detection performance is also a quite
crucial and long-standing problem in the learning system built
by neural networks. To solve this problem, three remaining
technical issues regarding the use of training samples must be
overcome:

• Annotating the samples used to train object detectors is
usually a labor-intensive task. In contrast to other visual
recognition tasks (e.g., image classification or action
recognition), a satisfactory annotation should contain both
an object’s category label and its bounding box; thus,
annotating objects within a given image is extremely
time-consuming. Developing approaches for the auto-
matic annotation of unlabeled data is a critical step in
reducing the manual annotation burden.

• The training samples with the highest potential for im-
proving performance are rare and difficult to identify.
As reported in [6], existing detection benchmarks usually
contain an overwhelming number of “easy” examples and
a small number of “hard” ones (i.e., informative samples
with various illumination conditions, deformations, oc-
clusions and other intra-class variations) that contribute
to more effective and efficient training. As discussed
in [7], because the relative difficulty of training samples
follows a long-tailed distribution, “hard” examples are
uncommon. Therefore, finding such informative samples
is a sophisticated task.

• Certain training samples (e.g., outliers or noisy samples)
may negatively affect the final detection performance. As
reported with regard to SPP-net [8], FRCN [9], SSD [5],
and RFCN [10] on the PASCAL VOC benchmarks,
detection performance can be substantially improved after
the exclusion of the training samples marked as “difficult”
by annotators. The reason for this improvement may be
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inseparably linked to misleading or incorrectly annotated
samples. Although such filtering is quite challenging, a
sophisticated method is expected to be able to automati-
cally filter out these outliers/noisy samples or otherwise
alleviate the effect of using them to train object detectors.

To address the aforementioned issues, we focus on learning
object detectors in a cost-effective manner, which leverages
sample mining techniques to incrementally improve object
detection with minimal user effort. Recently, active learning
(AL) approaches [11] have been proposed to progressively
select and annotate the most informative unlabeled samples in
a dataset to facilitate model refinement through user interaction
when necessary. These approaches inspired us to attempt
to give the more labor- and computation-intensive tasks to
computers, while assigning the less labor-intensive tasks and
those that require intelligence to humans [12]. Therefore, the
sample selection criteria play an important role in conventional
AL pipelines, and are typically defined in accordance with the
classification uncertainty of samples. Specifically, the minority
of unlabeled samples with low prediction confidences (i.e.,
high uncertainties), together with other informative criteria
such as diversity and density, are generally treated as good
candidates for model retraining. Recently, several AL-based
approaches [13], [14] have been proposed for object detection
in a semi-supervised or weakly supervised manner. However,
these approaches usually ignore the fact that the remaining
majority samples (e.g., those with low uncertainty and high
confidence) are also valuable for improving the detection per-
formance. Moreover, manual annotations of unlabeled data are
often noisy due to ambiguities or misunderstandings among
different annotators, especially for the object detection task.
Adding samples with incorrectly annotated bounding boxes
may also reduce the detection performance. Therefore, both
reducing user effort by mining the remaining majority samples
and ensuring the appropriate treatment of outliers and noisy
samples should be considered to improve the accuracy and
robustness of object detectors.

Given sufficient unlabeled data, we attempt to overcome the
limitations of AL methods discussed above by investigating re-
cently proposed techniques. Curriculum learning (CL) [15] and
self-paced learning (SPL) [16], [17] are two learning regimes
that mimic human and animal learning processes, in which
training gradually progresses from easy to complex samples,
providing a natural and iterative way to exploit labeled data
for robust learning. In CL, a predefined learning constraint
(i.e., a curriculum or curricular constraint) is employed to
incrementally include additional labeled samples during train-
ing. In SPL, a weighted loss is introduced on all labeled
samples, which acts as a general regularizer over the sample
weights. By sequentially optimizing the model while gradually
controlling the learning pace via the SPL regularizer, labeled
samples can be incrementally added into the training process
in a self-paced manner. Inspired by these techniques, several
approaches [18], [19] have been developed to improve AL for
image classification by introducing a so-called pseudo-labeling
strategy, which is intended to automatically select unlabeled
samples with high prediction confidence and iteratively assign

pseudo-labels to them in a self-paced manner.
However, it is quite difficult to apply this pseudo-labeling

strategy directly in the object detection task for two reasons.
On one hand, since high-confidence samples are selected only
in accordance with an empirical pace parameter, the pseudo-
annotations generated by the imperfect classifiers usually con-
tain errors due to ignoring any feedback or guidance from the
AL algorithm. Furthermore, because object detection encom-
passes not only object classification but also accurate object
localization, retraining the model with these incorrect pseudo-
annotations may reduce the detection performance. On the
other hand, the pseudo-labeling strategy must calculate sample
weights for all training samples; thus, it is unsuitable for
mini-batch-based training, which is the predominant method
used in object detection pipelines. In addition, because the
publicly available object detection benchmarks contain only a
limited number of object categories, external image data will
usually contain some objects belonging to undefined categories
(i.e., third-party classes). During training, object detectors may
misclassify objects in these undefined categories. Hence, a
small number of user interactions are necessary to guide the
pseudo-labeling strategy and maintain the control of training.

To incorporate the pseudo-labeling strategy into the AL
process and overcome the limitations of both, we propose a
principled AL framework that performs active sample mining
(ASM) with switchable selection criteria 1 to incrementally
train robust object detectors over unlabeled or partially labeled
samples without being compromised by noisy samples and
outliers. Our ASM framework includes a novel self-learning
process to facilitate model fine-tuning in a reliable and robust
fashion. Specifically, given the prediction confidences, we pro-
pose to provisionally assign pseudo-labels to high-confidence
region proposals under additional constraints introduced by
the AL algorithm and then to retrain the detector using these
temporary pseudo-annotations. Considering that the current
state-of-the-art object detection pipelines (e.g., FRCN [9] and
RFCN [10]) are all fine-tuned via stochastic gradient descent,
the proposed self-learning process provides an effective and
efficient way to simultaneously perform both the pseudo-
labeling of high-confidence samples and the fine-tuning of
features within every mini-batch iteration. This ensures that the
high-confidence samples are pseudo-labeled with increasing
accuracy as the model performance improves during network
fine-tuning. Moreover, we impose a one-vs-rest strategy for
handling undefined object categories; i.e., they are predicted
negatively by all detectors, including the background detec-
tor, to suppress model drift when mining external unlabeled
data, which may include natural scenes with many previously
unseen object categories. In summary, the proposed self-
learning process benefits the AL in two ways: i) it significantly
reduces the number of user-annotated samples required to
improve the detection performance by virtue of its mini-batch
training and undefined category handling capabilities, and ii)
it effectively suppresses the misleading effects of samples that
are incorrectly annotated via AL, thanks to the compactness
and consistency of the high-confidence majority samples in

1The source code will be released at http://www.sysu-hcp.net/asm/

http://www.sysu-hcp.net/asm/
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Fig. 1. The proposed active sample mining (ASM) framework for object
detection. Given the region proposals generated by the object detectors, our
ASM framework includes modes for both the proposed automatically pseudo-
annotating and active labeling. The arrows represent the workflow; the solid
lines represent the data flow, and the dashed lines represent the fine-tuning
operations. This figure shows that our ASM framework provides a rational
approach for improving the detection of objects in unlabeled images by
automatically distinguishing between high-confidence region predictions—
which can be easily and faithfully recognized through simple-to-complex
mining by computers via a self-learning process—and low-confidence ones,
which can be discovered and labeled via complex-to-simple mining by
interactively requesting user annotation. In addition, feedback from the active
labeling process helps to guide the pseudo-labeling strategy via curricular
constraints, which represent rules for discarding ambiguous predictions.

the feature space for training.
Our ASM framework is formulated as a concise optimiza-

tion problem. Specifically, we impose two different sets of
sample mining scheme functions: one for the high-confidence
sample pseudo-labeling mode and the other for the low-
confidence sample annotation mode. A selector function is fur-
ther introduced to selectively and seamlessly determine which
mode should be executed to update the labels of the unla-
beled region proposals. In this way, the proposed self-learning
process and the AL process can jointly collaborate with each
other to perform sample mining. Moreover, our self-learning
process also considers the guidance and feedback from the AL
process, making it suitable for large-scale scenarios. In detail,
we define two curricula: a self-learning curriculum (SLC) and
an active learning curriculum (ALC). The SLC represents
a group of unlabeled region proposals with high potential
for accurately pseudo-labeling, whereas the ALC represents
difficult but informative region proposals suitable for active
user annotation. During the training phase, the SLC is used to
gradually incorporate pseudo-labeled samples, from simple ex-
amples to more complex ones, into the data used for retraining.
By contrast, the ALC is used to intermittently add annotated
samples into the training data in a complex-to-simple manner.
Thus, we regard SLC and ALC as dual curricula. As they
are updated via AL, these dual curricula effectively guide the
mining of the unlabeled data using two completely different
learning schemata. Fig. 1 illustrates the main components of
our ASM framework, including region proposal generation and
prediction, the pseudo-labeling of high-confidence samples via
the proposed self-learning process, and the annotation of low-
confidence samples via AL.

The main contributions of this work are threefold. First,
we present an active sample mining framework that can pro-

gressively boost the performance of object detectors by lever-
aging unlabeled or partially labeled data while minimizing
the need for user annotation in a cost-effective way. Second,
we develop an alternative optimization algorithm to facilitate
the process of active sample mining with switchable selection
criteria under the guidance of the proposed dual curricula. The
developed algorithm can be scaled up for application to large-
scale data by means of its ability to selectively and seamlessly
switch between our self-learning process and the AL process
for each unlabeled sample during mini-batch based training.
This is capable of effectively benefiting the application of
network-based learning systems. Third, our framework can
adapt to unseen object categories in the unlabeled data dur-
ing the progressive learning process. Extensive experiments
on publicly available benchmarks (i.e., the PASCAL VOC
2007/2012 datasets) demonstrate that our framework not only
can outperform the dominant state-of-the-art methods through
the active mining of additional unlabeled data but also can
achieve comparable performance with significantly fewer user
annotations.

The remainder of the paper is organized as follows. Sec-
tion II presents a brief review of related work. Section III pro-
vides an overview of the pipeline of our framework, followed
by a discussion of the model formulation and optimization.
Experimental results, comparisons and component analyses are
presented in Section IV, and Section V concludes the paper.

II. RELATED WORK

Active Learning: Previous work on AL has mainly focused
on the sample selection strategy (i.e., selecting the most infor-
mative unlabeled samples for user annotation). Certainty-based
selection [11], [20] is one of the most common strategies for
AL. The certainty for each new unlabeled sample is measured
according to the prediction confidence of the initial classifiers.
Several SVM-based methods [20] identify uncertain samples
on the basis of their distances to the decision boundary.
Recently, subspace learning [21], [22] and frobenius-norm
based representation [23] have also been applied to active
learning, and obtained many achievements. Specifically, He et
al. [21] proposed a novel active subspace learning algorithm
which selects the most informative data points and uses them
for learning an optimal subspace. Peng et al. [22] presented
a called principal coefficients embedding method to automat-
ically determine the optimal dimension of feature space and
obtain the low-dimensional representation of a given data set
under the unsupervised subspace learning scenario. Regarding
object detection via AL, Vijayanarasimhan et al. [13] proposed
to refine part-based object detectors by actively requesting
crowd-sourced annotations of images crawled from the Web.
Rhee et al. [14] presented a semi-supervised AL method
to improve object detection performance by leveraging the
concept of diversity adopted from the AL paradigm.

Deep Learning for Object Detection: Because they benefit
from learning feature representations directly from raw im-
ages, deep CNNs have achieved remarkable success in visual
recognition, object detection and many other computer vision
tasks [24], [25]. Recently, Krizhevsky et al. [1] designed
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a CNN that achieved a substantial improvement in image
classification accuracy. In this state-of-the-art object detection
method, R-CNN [4] is employed to extract features from
category-independent region proposals of the input image.
More recently, Shrivastava et al. [6] presented an online hard
example mining algorithm to train region-based ConvNet de-
tectors by eliminating several heuristics and hyperparameters.
To harness rich information from the vast amount of visual
data available, both semi-supervised and weakly supervised
approaches for object detection have been proposed. Hoffman
et al. [26] developed methods for training detectors that
exploit joint training over both weak (image-level) and strong
(bounding box) labels, and further transfer learned perceptual
representations from strongly labeled auxiliary tasks. Yan et
al. [27] presented an expectation-maximization-based method
for training object detectors on images with image-level labels
in combination with some object-level-annotated images.

Self-paced Learning: Inspired by the principles of hu-
man/animal cognition, CL [15] was the first machine learning
paradigm to adopt the concept of gradually adding samples to
the training data in a controlled and meaningful (e.g., from
easy to complex) sequential order called a curriculum. CL
has been widely used to address a variety of computer vision
problems, such as tracking [28] and object detection [29].
Conventional CL approaches usually employ predefined sam-
ple weights to generate the training order of the samples. To
jointly learn the sample weights and model parameters, Kumar
et al. [30] substantially advanced the learning philosophy of
CL by proposing a concise optimization paradigm named self-
paced learning (SPL) that includes a weighting scheme term
on all samples and a general regularizer term over the sample
weights. The weighting scheme enables training on easy to
complex samples by assigning higher weights to samples with
lower training losses. Recently, various other methods have
also been developed using CL/SPL-related strategies [17],
[31], [32]. Dong et al. [33] proposed an object detection frame-
work that uses only a few bounding box labels per category
by consistently alternating between detector amelioration and
reliable sample selection. Zhang et al. [34] proposed to bridge
saliency detection to weakly-supervised object detection via
the self-paced curriculum learning to gradually achieve faithful
knowledge of multi-class objects from easy to hard. Wang
et al. [35] proposed to incorporate low-, mid- and high-
level features into the the detection procedure via multiple-
instance learning to overcome the challenges of inability
and inconsistency for saliency detection. Wang et al. [36]
further proposed to detect salient objects based on selective
contrast, which intrinsically explores the most distinguishable
component information in color, texture and location.

Self-learning: In the literature, a few works [18], [19], [29],
[33], [37]–[39] have attempted to leverage samples with high
prediction confidence in the context of self-training. Chen et
al. [37] proposed the slow addition of both target features
and instances, among which the current model is the most
confident, to the training set for domain adaption. Tang et
al. [29] introduced a self-paced domain adaptation framework
to adapt object detectors trained on images for application in
videos. Wang et al. [18] proposed to employ a complementary

sample selection strategy to progressively select the most
informative samples and pseudo-label the samples with high
prediction confidence for training. Wang et al. [19] further
proposed an active SPL framework by incorporating the SPL
technique into an AL pipeline via a concise active SPL
optimization formulation.

III. ACTIVE SAMPLE MINING WITH SWITCHABLE
SELECTION CRITERIA

In the context of object detection, suppose that n object
region proposals have been generated, corresponding to m−1
object categories and a background category. The training set
X = {xi}ni=1 contains all of these proposals as samples.
Corresponding to the m categories (including background),
there are m probabilistic detectors φj(xi;W) for recognizing
the category of each sample/proposal using the one-vs-rest
strategy. Here, W denotes the shared parameter of our object
detector network for all m categories. Correspondingly, the
label set of the given sample xi is denoted by yi = {y(j)i }mj=1,
where y(j)i is the label of the sample xi for the j-th object
category (i.e., if xi is categorized as an instance of the j-
th object category, then y

(j)
i = 1; otherwise, y(j)i = −1).

We present two important remarks on our problem setting:
i) Only a small number (approximately 10%) of the samples
are initially annotated to obtain adequate initial models. Most
of the sample labels Y = {yi}ni=1 are unknown and must be
determined in the subsequent learning phase. ii) The unlabeled
or partially labeled data {xi}ni=1 are fed into the model in
an incremental manner to continuously boost the detector
network.

A. Framework Formulation
Under the premises presented above, our ASM framework

is formulated as follows:
min

W,Y,V
max

U
E(U,V;L(X,Y;W), γ,λ)

=

n∑
i=1

m∑
j=1

max(ui, v
(j)
i )l

(j)
i + fSL(vi,λ) + fAL(ui, γ)

s.t. ∀ i, j, y(j)i = {−1, 1},U ∈ Ψγ ,V ∈ Ψλ.

(1)

where L(X,Y;W) = {Li}ni=1 = {{l(j)i }mj=1}ni=1 is the
empirical loss set, and each l(j)i is expressed as follows:

l
(j)
i =−

(1 + y
(j)
i

2
log φj(xi;W) +

1− y(j)i
2

log(1− φj(xi;W))
)
.

(2)
The objective function in Eqn. (1) can be elucidated as

follows. Here, fSL(·) and fAL(·) denote the sample mining
scheme functions for the pseudo-labeling of high-confidence
samples via our self-learning process (SL) and the anno-
tation of low-confidence samples via active learning (AL),
respectively. Each sample xi has a latent indicator variable
ui ∈ {0, 1} in the form of an annotation flag, and a la-
tent weight variable vi ∈ [0, 1)m in the form of an m-
dimensional weight vector. The first latent weight variable
set, U = {ui}ni=1, is employed to determine which samples
should be annotated by active users. The second latent weight
variable set, V = {vi}ni=1 = {{v(j)i }mj=1}ni=1, is calculated



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018. 5

from the class-specific loss of each sample according to
the current detectors. The selector function max(ui, v

(j)
i ) is

introduced to decide which mode will be executed to obtain
y
(j)
i . Specifically, because ui ∈ {0, 1} and v

(j)
i ∈ [0, 1),

when ui = 1, it holds that ui > max{v(j)i }mj=1; thus,
max(ui, v

(j)
i ) = ui = 1. This indicates that the sample xi has

been chosen by fAL(·) for human annotation. When ui = 0, it
holds that ui ≤ min{v(j)i }mj=1; thus, ∀j, the selector function
yields the weight max(ui, v

(j)
i ) = v

(j)
i of xi for the classifier

φj , with a class-specific threshold λ(j).
Dual Curricula: Due to the limited performance of the

initial model, it is unfeasible to directly calculate each latent
weight variable set U and V in its entirety for sample mining.
Therefore, we leverage two curricula, i.e., Ψγ and Ψλ, to
selectively add unlabeled samples into the training set by
constraining the optimization of U and V. Reflecting human
knowledge, these two curricula Ψγ and Ψλ can provide per-
fect information to guide the model training. Specifically, these
two curricula are initialized from {0, 1}X and {[0, 1)m}X ,
without the need for a predetermined learning order as [17],
[40]. Suppose that in the t-th iteration, we have a set At−1
of samples that have been annotated by active users and a set
Bt−1 of samples that have been discarded by active users (i.e.,
for being outside of the scope of the defined m categories).
The introduced curricula are then updated as shown below:

Ψγt = Uγt1 × · · · × U
γt
n , (3)

where ∀i ∈ [n], if xi ∈ At−1, then Ui = {1}; if xi ∈ Bt−1,
then Ui = {0}; and if xi ∈ X/(At−1

⋃
Bt−1), then Ui =

{0, 1}. Similarly,

Ψλt = V λt
1 × · · · × V λt

n , (4)

where ∀i ∈ [n], if xi ∈ At−1
⋃
Bt−1, then Vi = {0}m,

and if xi ∈ X/At−1
⋃
Bt−1, then Vi = [0, 1)m. As shown

in Eqn. (3), each dimension of Ψγt represents one of the
samples in X . The weights of the samples in At are all equal
to 1; they are selected to fine-tune the network parameters
based on the user annotations and to update At+1 for the
next iteration. Meanwhile, the ui values of the remaining
samples (i.e., X/At) are constrained to {0, 1}. Note that the
samples with ui = 0 are chosen by fSL(·) for pseudo-
labeling in accordance with the curriculum Ψλt expressed in
Eqn. (4). Each dimension of Ψλt can be viewed as a m-
dimensional vector that represents the scope of the weights
of the class-specific loss expressed in Eqn. (2). In summary,
Ψλt is used to progressively add pseudo-labeled samples,
from simple examples to more complex ones, into the training
data. By contrast, Ψγ is used to intermittently add annotated
samples into the training data in a complex-to-simple manner.
Therefore, we consider Ψλt and Ψγ as dual curricula.

Sample Mining Schemes: Based on the pre-knowledge
discussed above, we explain how sample mining is performed
using fSL(·) and fAL(·). Motivated by the SPL technique [17],

we adopt the following linear scheme function fSL(·):

fSL(vi,λ) =

m∑
j=1

1

2
λ(j)((v

(j)
i )2 − 2v

(j)
i )

s.t. ∀j, λ(j) > 0; v
(j)
i ∈ [0, 1) ∩ V λ

i ,

(5)

where the threshold parameters λ = {λ(j)}mj=1 are used to
define the high-confidence samples for each classifier j. Each
λ(j) is initially set to a small value, such that it is highly
sensitive to inaccurate pseudo-labels. During processing, the
values of the λ(j) are gradually increased to allow more
pseudo-labeled xi with larger losses for network fine-tuning.

For the minority of unlabeled proposals that are
hard/informative, the low-confidence sample selection is for-
mulated using the following scheme function fAL(·):

fAL(ui, γ) = −γui
s.t. γ > 0, ∀ui ∈ U, ui ∈ {0, 1} ∩ Uγ

i ,
(6)

where the parameter γ is a positive threshold that identifies
the most informative samples for user annotation. The scheme
function fAL(·) serves the opposite function to that of the self-
learning function fSL(·). Specifically, the objective of fAL(·)
tends to be maximized by choosing hard samples with high
uncertainty, thereby driving the framework to select the most
informative samples for user annotation. Then, active users
can annotate the samples that belong to the m known classes
and exclude those that lie outside this particular category set.
Notably, unlike λ, γ does not monotonically increase but
instead may change in various ways.

We note that the scheme function fSL(·) represents a greedy
self-learning strategy. It significantly reduces labor, but it is
incapable of preventing the network from being trained on
the semantic drift caused by accumulated prediction errors.
Moreover, fSL(·) also strongly depends on the initial param-
eter W. However, the scheme function fAL(·) allows us to
effectively overcome these weaknesses of fSL(·). Concretely,
fAL(·) selects samples for post-processing by active users. The
user annotations obtained from fAL(·) are considered reliable
and are successively accepted until the training is completed.
Counterintuitively, the pseudo-labels obtained from fSL(·) are
reliable only during their own training iteration and should
be adaptively changed to more robustly guide the learning
of the network parameters in each phase. Hence, just like
the relationship between the dual curricula Ψγ and Ψλ, the
scheme functions fAL(·) and fSL(·) also exert complementary
influences on sample mining.

B. Alternative Learning Strategy

In our ASM framework, an alternating learning strategy is
employed. Specifically, the algorithm iteratively alternates be-
tween optimizing the parameters {U,V,W,Y} in accordance
with the dual curricula {Ψγ , Ψλ} and updating these curricula
via AL in accordance with the dynamic γ and λ thresholds.
In the following, we introduce the details of this optimization.
The corresponding implementation of our ASM framework is
discussed in Sect. III-C.
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Fig. 2. The workflow of the proposed high-confidence sample pseudo-labeling mode. The solid arrows represent forward propagation, and the dashed arrows
represent backward propagation to fine-tune the network. Every mini-batch training iteration consists of three steps: i) region proposal generation and prediction
from incrementally input partially labeled or unlabeled images, ii) pseudo-labeling based on high-confidence sample mining, and iii) feature fine-tuning by
minimizing the loss between the predictions and training objectives (i.e., partial labels + pseudo-labels). Note that partial labels are absent when the images
in a batch are all unlabeled.

1) Initialization: The first step is to initialize the latent
weight variable sets V0 and U0, the provided initial labels Y0,
and the network parameter W0. Since our model starts from
an unsupervised setting and needs to infer the object proposal
categories, human-labeled samples serving as seeds are crucial
for ensuring good ultimate performance. We choose these
seeds randomly to populate A0 and B0. Following Eqn. (3)
and Eqn. (4), we obtain the initial dual curricula Ψγ1 and
Ψλ1 before training. These curricula constrain U0 and V0.
In practice, any initialization scheme for U0 ∈ Ψγ1 and
V0 ∈ Ψλ1 suffices. To obtain Y0, an active user annotates the
seeds; then, the remaining samples in X are pseudo-labeled as
{−1}mj=1, such that no category to which they might belong is
indicated during initialization. Finally, we choose a pre-trained
classification model parameter (pre-trained on, e.g., ImageNet)
and fine-tune it on the initial seed annotations to obtain W0.

2) Updating U and V: The purpose of this step is to
provide an increasing number of training samples for use in
each training iteration. Since the selector function in Eqn. (1)
acts on the loss weights stored in U and V to choose samples
for pseudo-labeling and manual annotation, the values of U
and V should be optimized appropriately.

To this end, a max-min optimization of the latent weight
variable sets U and V is performed, where U represents the
utility of the samples based on uncertainty and V represents
the reliability of the pseudo-labeling of the samples. Specifi-
cally, given {X,W,Y, γ,λ}, the latent weight variable sets
V and U are obtained by simplifying our ASM formulation
in Eqn. (1) as follows:

min
V

max
U

E(U,V;L(X,Y;W), γ,λ)

=

n∑
i=1

m∑
j=1

max(ui,v
(j)
i )l

(j)
i + fSL(vi,λ) + fAL(ui, γ),

U ∈ Ψγ , V ∈ Ψλ,

(7)

where L(X,Y;W) denotes that L(X,Y;W) is fixed during
the updating process. Next, we introduce two propositions to
demonstrate how to optimize Eqn. (7); the proofs can be found
in Appendix A and Appendix B, respectively.

Proposition 1. Given a training sample xi, assume that
E(ui,vi;Li, γ,λ)

=
m∑
j=1

max(ui, v
(j)
i )l

(j)
i + fSL(vi,λ) + fAL(ui, γ).

(8)

Thus, we obtain {U∗,V∗} =
n⋃
i=1

{u∗i ,v∗i }, where {U∗,V∗}

is the optimal solution to Eqn. (7) and {u∗i ,v∗i } is the optimal
solution to max

ui
min
vi

E(ui,vi;Li, γ,λ).

This proposition claims that Eqn. (7) can be decom-
posed to solve the instance-level min-max sub-problem
max
ui

min
vi

E(ui,vi;Li, γ,λ) for each sample xi in X:

max
ui

min
vi

E(ui,vi;Li, γ,λ)

=

m∑
j=1

max(ui, v
(j)
i )l

(j)
i − γui +

1

2

m∑
j=1

λ(j)((v
(j)
i )2 − 2v

(j)
i )

s.t. γ > 0, ui ∈ {0, 1} ∩ Ui,
λ(j) > 0; vi = {v(j)i }

m
j=1 ∈ [0, ε]m ∩ Vi ⊂ [0, 1)m.

(9)

Note that we introduce an adaptive threshold ε =

maxxi∈X{1−
l
(j)
i

λ(j) } to constrain the value of v(j)i . We leverage
this threshold to create a marginal gap between the AL and
SL processes to ensure more reliable sample selection results
between the two complementary strategies. The behavior of
this threshold is explained in detail below. When certain
conditions are satisfied, the solution to Eqn. (9) can take
the form of a threshold-based closed-form solution. More
specifically, we provide a theoretical solution to the initial
problem.

Proposition 2. Given a sample xi ∈ X , assume that we have
a random initialization for u(0)i ∈ {0, 1} and v

(0)
i ∈ [0, 1)m

and specific settings for {γ,λ,Li}. Given ε ∈ (0, 1), under
the condition

∑m
j=1 l

(j)
i ∈ (0, γ)∪ ( γ

1−ε ,∞), the optimization
of Eqn. (9) converges to the following closed-form solution:

u∗i = 1, (v
(j)
i )∗ = ε

m∑
j=1

l
(j)
i >

γ

1− ε ,

u∗i = 0, (v
(j)
i )∗ = 0

m∑
j=1

l
(j)
i < γ, l

(j)
i > λj ,

u∗i = 0, (v
(j)
i )∗ = 1− l

(j)
i

λ(j)

m∑
j=1

l
(j)
i < γ, λj(1− ε) ≤ l(j)i ≤ λj ,

u∗i = 0, (v
(j)
i )∗ = ε

m∑
j=1

l
(j)
i < γ, l

(j)
i < λj(1− ε).

(10)

In brief, this proposition claims that in the first iteration,
AL will be triggered when

∑m
j=1 l

(j)
i > γ

1−ε , whereas



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018. 7

∑m
j=1 l

(j)
i < γ will lead to the SL process; these con-

ditions depend on γ, ε and λ. Obviously, the proposition
cannot provide the values of (u, v) when sample i satis-
fies γ ≤

∑m
j=1 l

(j)
i ≤ γ

1−ε . The samples that lie within
this margin will always show some level of class confusion
in visualization, and they are not sufficiently important to
deserve active annotation. Hence, we discard these training
samples to achieve both more economical active selection
and more robust pseudo-labeling. After the first iteration,
an active user interacts with our model to augment At and
Bt. Then, we further update Ψγ and Ψλ via Eqn. (3) and
Eqn. (4), respectively. According to the definitions of Ψγ

and Ψλ and the above analysis, when xi ∈ At−1, we have
∀t′ > t, (u(t

′)∗
i ,v

(t′)∗
i ) = {1, {0}m}. When xi ∈ Bt−1, we

have ∀t′ > t, (u
(t′)∗
i ,v

(t′)∗
i ) = {0, {0}m}. Finally, when

xi ∈ X/At−1 ∪ Bt−1, we have {0, 1} ∩ Ui = {0, 1} and
[0, ε]m ∩Vi. Thus, {u, v} can be obtained via Proposition (2).

3) Updating Y: Holding U and V fixed as calculated
above (denoted by U and V), we update Y for the unlabeled
region proposals. In our framework, the minority of these
region proposals will be manually annotated by active users,
whereas the majority will be pseudo-labeled via our SL
process. To complete this task, we develop the following two
execution modes: a high-confidence sample pseudo-labeling
mode and a low-confidence sample annotation mode.

High-confidence Sample Pseudo-labeling Mode: From the
proposal set, we select and pseudo-label the high-confidence
proposals for further model fine-tuning. As shown in Fig. 2,
in this mode, there are three steps in each training itera-
tion: i) generating region proposals for prediction from the
incrementally input data, ii) predicting classification results
for the generated proposals and generating pseudo-labels for
use in fine-tuning via high-confidence sample mining, and
iii) fine-tuning the network by minimizing the loss between
the predictions and training objectives (i.e., partial labels
+ pseudo-labels). Because step i) is straightforward in ex-
isting region-based object detection pipelines, we focus on
explaining steps ii) and iii), which include assigning pseudo-
labels to temporarily update Y and the network parameter
W. Specifically, we perform high-confidence sample pseudo-
labeling by optimizing Y:

min
Y

E(U,V;L(X,Y;W), γ,λ)

=
∑
xi∈X
v
(j)
i ≥ui

m∑
j=1

max(ui, v
(j)
i )l

(j)
i

s.t. y
(j)
i = {−1, 1},

m∑
j=1

|y(j)i + 1| ≤ 2,

(11)

where v(j)i is fixed and can be treated as constant. We assign
pseudo-labels only to xi that have a high probability of belong-
ing to a certain object region (i.e., Eqn. (11) always has a clear
solution). As indicated by the constraint

∑m
j=1 |y

(j)
i +1| ≤ 2,

our ASM framework largely excludes all samples for pseudo-
labeling except under two conditions: i) when y(j)i is predicted
to be positive by one classifier but all other classifiers produce
negative predictions, or ii) when all classifiers predict y(j)i to

be negative (i.e., xi is rejected by all classifiers and identified
as belonging to an undefined object category). These are
the rational cases for practical object detection in large-scale
scenarios. Note that we optimize Y by exhaustively attempting
to assign -1 or 1 to each sample for all m categories to
minimize the loss function. The computational cost of this
process is acceptable because we need to make only m+1
attempts under the constraint

∑m
j=1 |y

(j)
i + 1| ≤ 2.

Support for an Undefined Object Category: In this work,
the problem of undefined object categories within external
unlabeled data is considered by including an undefined sample
set Bt. Inspired by the one-vs-rest strategy, we handle all
samples with undefined object categories (those recognized
as -1 by all classifiers including the background classifier,
i.e.,

∑
j |y

(j)
i + 1| = 0, where y

(j)
i takes values in {-1,

1}) as belonging to a single undefined object category. This
plays a crucial role in suppressing model drift when mining
external unlabeled data, which may include many unseen
object categories (e.g., the COCO benchmark has 60 more
categories than the VOC 2007/2012 benchmark).

Low-confidence Sample Annotation Mode: After pseudo-
labeling the high-confidence object proposals via the self-
learning process, we employ data screening criteria using
an uncertainty-based strategy [11], [20]. The intent of using
fSL(·) is to flag most low-confidence unlabeled region pro-
posals in U and then to have an active user annotate them in
a category-by-category fashion as either positive or negative.
Specifically, we utilize the current detector-based classifiers
to predict the labels of the generated region proposals. In
practice, as the detectors become better trained and more
reliable, the samples with two or more labels predicted to be
positive (i.e., recognized as belonging to more than one object
category) will tend to be samples with weak illumination, large
deformations, strong occlusions or other intra-class variations,
i.e., the samples that cause ambiguity in the current classifiers.
We thus consider these to be “low-confidence” samples and
require an active user to manually annotate them to boost the
model performance. Other low-confidence criteria could also
be utilized; however, we employ this simple strategy due to
its intuitive rationality and efficiency.

We require an active user to annotate the selected low-
confidence samples in the t-th iteration of the AL process.
After annotation, these samples are divided into two groups.
One group contains samples that are outside the scope of the
defined object categories (i.e., the undefined object category);
these will be added to update Bt. The other group contains
informative/hard samples and will be added to the training
set to update At. We then employ the updated At and Bt to
update the curriculum constraints Ψγ and Ψλ via Eqn. (3)
and Eqn. (4) by supplementing them with more information
based on human knowledge.

4) Updating W: The network parameter W is updated
based on {X,V,U,Y,Ψγ ,Ψλ}, where our ASM formula-
tion given in Eqn. (1) degenerates to solving the following
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objective:

min
W

E(U,V;L(X,Y;W), γ,λ)

=

n∑
i=1

m∑
j=1

max(ui, v
(j)
i )l

(j)
i

=
∑
xi∈At

m∑
j=1

l
(j)
i +

∑
xi∈X/Bt
v
(j)
i ≥ui

m∑
j=1

v
(j)
i l

(j)
i .

(12)

In a deep learning scenario, this objective is decoupled into a
set of mini-batches that can be readily solved by efficient off-
the-shelf solvers using the stochastic gradient descent (SGD)
approach. In our experiments, we employ the widely used
standard SGD solver. We directly employ the annotated region
proposals in At for network fine-tuning, and we assign tem-
porary pseudo-labels to the high-confidence region proposals
(i.e., v(j)i ≥ ui) with sample weights of v(j)i for training.

C. Implementation Details

We initialize the model with the pre-trained feature rep-
resentations from all region proposals {xi}ni=1 and specify
an initial set of m threshold parameters for the classifiers,
λ = {λ(j)}mj=1. Next, we initialize the dual curricula Ψγ and
Ψλ using the current user-annotated samples At and Bt and
the corresponding Y, V and U. In all our experiments, we
empirically set λ = {λ(j)0 }mj=1 = {λ0}mj=1 = {− log 0.9}mj=1

for each individual classifier, and we utilize a heuristic strategy
for parameter updating. Specifically, for the q-th iteration, we
compute the threshold parameters for Eqn. (1) as follows:

λ(j)
q =

λ
(j)

(q−1) + α ∗ η(j)q , 1 ≤ q ≤ τ,

λ
(j)

(q−1), q > τ,
(13)

where η
(j)
q is the negative logarithmic value of the average

accuracy for the j-th classifier in the current iteration on
the validation set and α is a parameter that controls the
rate at which the threshold increases. Note that the threshold
parameter λ should be eliminated after several updates to
ensure the inclusion of a large number of unlabeled samples.
Thus, we introduce an empirical threshold τ such that λ is
updated only when q ≤ τ . Meanwhile, we empirically set a
threshold parameter value of γ = 0.5m for each unlabeled
sample, where m is the number of defined object categories.

The entire algorithm is summarized in Algorithm 1. It can
be easily seen that this algorithm closely follows the pipeline
of our ASM framework as depicted in Fig. 1. Our ASM frame-
work includes latent weight variable inference and unlabeled
sample category handling; hence, it is impossible to explicitly
provide a theoretical guarantee of convergence. However, it
is clear that the convergence behavior is determined by two
major factors: the capacity of our network and the training
samples selected in the last stage, where λ and γ define how
many samples are ultimately incorporated into the data used
for model training. Moreover, we have further imposed an
adaptive threshold ε to create a marginal gap between the
samples selected for the AL and SL processes. This marginal
gap contains those unlabeled samples that are not selected for

Algorithm 1 Active Sample Mining with Switchable Selection
Criteria
Input: Input dataset {xi}ni=1

Output: Output model parameters {W}
1: Initialize {xi}ni=1 with a pre-trained CNN, the curricula

Ψλ and Ψγ , {yi}ni=1, the latent weight variable sets
V and U, and the threshold parameters γ and λ =

{λ(j)0 }mj=1.
2: while true do
3: for all mini-batches t = 1, ..., T do
4: Update W via network fine-tuning using Eqn. (12);

5: Update V and U using Eqn. (10);
6: Update {yi}vi≥ui in a self-learning manner using

Eqn. (11);
7: end for
8: Update the low-confidence sample sets At and Bt;
9: if At ∪Bt is not empty do

10: Update {yi}i∈At via AL;
11: Update Ψλ and Ψγ using Eqn. (3) and Eqn. (4);
12: else
13: break;
14: end if
15: Every β iterations, update λ using Eqn. (13);
16: end while
17: return {W};

either the AL process or the SL process. Thus, our model
can converge to a local optimum when all unlabeled samples
are located within this marginal gap. In practice, our model
does not require all unlabeled samples for training, and we can
obtain a reasonably stable and reliable object detector within
a certain maximum number of training iterations.

IV. EXPERIMENTS

A. Experimental Setup

Datasets and Parameter Settings: To validate our ASM
framework, we conducted experiments on the public PASCAL
VOC 2007/2012 benchmarks [41], whose data are typically di-
vided into the categories “train”, “val” and “test”. To evaluate
the performance on these benchmarks under the cost-effective
object detection scenario, we define the following evaluation
protocol: we used the data from the VOC 2007 train and val
sets as the initial annotated samples, whereas the VOC 2012
train and val sets were treated as unlabeled data. The active
user annotation process consisted of fetching the annotations
from the VOC 2012 train and val sets. Moreover, we used the
object detection dataset COCO [42] as ‘secondary’ unlabeled
data. In other words, we performed sample mining on COCO
only when all VOC 2012 train/val annotations had been used.
For evaluation, we adopted the PASCAL challenge protocol:
a correct detection should share more than 0.5 IoU with the
ground-truth bounding box. The performances were evaluated
using the mean average precision (mAP) metric.

In all experiments, we trained 20 object and background
detectors on the VOC 2007/2012 benchmarks and set the
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Fig. 3. Quantitative comparison of detection performance (mAP) on the VOC
2007 test set.

parameters {β, k, τ , α} to {10000, 50, 5, 0.08}, respectively.
The training strategy was the same as that described in [9]
and [10]. Specifically, the fine-tuning of the model, including
the region proposal network (RPN), was performed using 4
GPUs (mini-batch size = 4) and a learning rate of 0.001
with a weight decay of 0.0005 and a momentum of 0.9. We
employed multi-scale training in all the experiments. After
shuffling labeled and unlabeled images at the beginning, our
model randomly selects 4 images and employs the RPN to
generate 300 unlabeled region proposals from each selected
image. Then, our model adaptively decides to automatically
pseudo-label or request active users to manually identify these
proposals. Finally, the pseudo-labeled proposals and manual
annotations are combined together to fine-tune our model
(including RPN). In the testing phase, we follow the methods
described in [8], [10] to perform multi-scale inference. Note
that the main difference in our training setting is that we
treated the COCO train and val sets as unlabeled data for
mining instead of pre-training the network.

Compared Approaches: To validate the proposed ASM
framework, we compared it with the CEAL [18] and
K-EM [27] approaches using the FRCN pipeline with
AlexNet [1] (well pre-trained on ImageNet). Note that because
the CEAL approach is designed for image classification (i.e, it
is not mini-batch friendly), we extended it for object detection
by alternately performing sample selection (i.e., informative
sample annotation via the least confidence criterion and high-
confidence sample pseudo-labeling) and CNN fine-tuning. We
directly used the results of K-EM [27] as reported in [27]. We
use the abbreviations “FRCN+ASM”, “FRCN+CEAL”, and
“FRCN+K-EM”, respectively, to denote these methods. We
also included a baseline method “FRCN+RAND”, in which
region proposals are randomly selected for user annotations.
To demonstrate that our ASM approach can be generalized to
different network architectures and object recognition frame-
works, we also incorporated our ASM method into the FRCN
pipeline [9] with VGGNet [43] (well pre-trained on ImageNet)
and the new state-of-the-art RFCN pipeline [10] with ResNet-
101 [3] (well pre-trained on ImageNet). We use the ab-
breviations “FRCN+ASM” and “RFCN+ASM”, respectively,
to denote these variants of our ASM method. For a fair
comparison, these methods all share the same training and
testing settings. Moreover, other recently proposed methods

TABLE I
TEST SET MAP RESULTS FOR VOC 2007/2012 OBTAINED USING THE

RFCN [10] PIPELINE. ANNOTATION KEY: ‘INITIAL‘ DENOTES THE INITIAL
ANNOTATIONS, WHERE ‘07’ REPRESENTS THE ANNOTATIONS FROM THE
VOC 2007 TRAIN/VAL SETS AND ‘07+’ REPRESENTS THE ANNOTATIONS

FROM THE VOC 2007 TRAIN/VAL/TEST SETS; ‘ANNOTATED’ DENOTES
THE PERCENTAGE OF APPENDED OBJECT ANNOTATIONS FROM THE VOC

2012 TRAIN/VAL SETS RELATIVE TO THE NUMBER OF INITIAL
ANNOTATIONS, WHILE ‘PSEUDO’ DENOTES THE PERCENTAGE OF

PSEUDO-LABELED OBJECT PROPOSALS FROM THE VOC 2012 TRAIN/VAL
SETS RELATIVE TO THE NUMBER OF INITIAL ANNOTATIONS.

Method initial test annotated mAP

(a)

Faster RCNN 07 07 100% 76.4
SSD513 07 07 100% 80.6
RFCN 07 07 0% 73.9

RFCN+RAND 07 07 20% 74.8
RFCN+RAND 07 07 60% 76.5
RFCN+RAND 07 07 100% 77.4
RFCN+RAND 07 07 200% 79.8

RFCN+AL 07 07 20% 77.6
RFCN+AL 07 07 60% 78.4
RFCN+AL 07 07 100% 78.8

RFCN+ASM 07 07 20% 78.1
RFCN+ASM 07 07 60% 79.3
RFCN+ASM 07 07 100% 79.6
RFCN+ASM 07 07 200% 81.8

(b)

RFCN 07+ 12 0% 69.1
RFCN+RAND 07+ 12 10% 70.5
RFCN+RAND 07+ 12 30% 73.0
RFCN+RAND 07+ 12 50% 75.8
RFCN+RAND 07+ 12 100% 77.4

RFCN+AL 07+ 12 10% 73.8
RFCN+AL 07+ 12 30% 75.9
RFCN+AL 07+ 12 50% 76.2

RFCN+ASM 07+ 12 10% 75.4
RFCN+ASM 07+ 12 30% 76.4
RFCN+ASM 07+ 12 50% 77.2
RFCN+ASM 07+ 12 100% 78.3

Method initial test pseudo mAP

(c)

RFCN 07 07 0% 73.9
RFCN+SL 07 07 340% 77.5

RFCN+SL+AL 07 07 460% 77.8
RFCN+AL+SL 07 07 500% 78.2
RFCN+ASM 07 07 340% 78.1
RFCN+ASM 07 07 400% 79.3

RFCN 07+ 12 0% 69.1
RFCN+SL 07+ 12 130% 75.1

RFCN+SL+AL 07+ 12 230% 76.1
RFCN+AL+SL 07+ 12 300% 76.7
RFCN+ASM 07+ 12 130% 75.4
RFCN+ASM 07+ 12 190% 77.2

(i.e., Faster RCNN [44] and SSD513 [5]) with the same
ResNet architecture were also considered for comparison.

B. Comparison Results

Fig. 3 illustrates the detection performance achieved using
the FRCN pipeline with AlexNet [1] on the VOC 2007 test
set. For a fair comparison, we initialize all the methods
by providing only 5% annotations, and allow FRCN+Ours,
FRCN+CEAL and FRCN+ASPL to mine unlabeled samples
only from the VOC 2007 train/val set. To fairly compare with
FRCN+K-EM, we perform training and testing under a single
image scale for the other methods.

As shown, given a gradually increasing number of user
annotations, our ASM method consistently performs better
than the CEAL and K-EM approaches by clear margins.
Specifically, our FRCN+ASM method can achieve a perfor-
mance equivalent to that of a fully supervised method (i.e.,
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FRCN with 100% user annotations) with only approximately
30% of the user annotations, whereas FRCN+CEAL and
FRCN+K-EM require nearly 70% user annotations. These
results demonstrate the superior performance of our ASM.

To demonstrate the feasibility and great potential of our
ASM approach for use on large-scale detection benchmarks,
we conducted experiments on fine-tuning the RFCN model
with ResNet-101 [3] on the VOC 2007/2012 benchmark using
our ASM approach and compared the results with those of
the baseline RFCN with randomly selected annotations. The
results obtained on the VOC 2007 and 2012 test sets are
summarized in Tab. I (a)(b), respectively. By controlling the
number of training iterations, the performance of RFCN+ASM
could be tested with different numbers of annotations (e.g.,
20%, 60% and 100% on the VOC 2007 test set). Note that
the annotation percentages reported in these tables represent
the additional annotations fetched from the VOC 2012 train/val
sets for fine-tuning, in addition to the initial annotations (i.e.,
those from the VOC 2007 train/val sets), whereas in later
tables, ‘pseudo’ denotes the percentage of pseudo-labeled
object proposals from VOC 2012 and COCO train/val images.

As the number of annotations increases, both RFCN+RAND
and RFCN+ASM gradually achieve higher detection accuracy.
However, as shown in Tab. I (a)(b), our ASM approach
consistently outperforms the baseline RFCN+RAND method
under all annotation conditions by clear margins on both the
VOC 2007 and 2012 benchmarks. These findings confirm the
effectiveness of our ASM framework. Some examples of the
selected high-confidence and low-confidence region proposals
are depicted in Fig. 4.

C. Ablative Analysis

To perform a component analysis of the proposed ASM
framework, we considered variants using only the pseudo-
labeling of high-confidence samples via the SL process
and only the annotation of low-confidence samples via
the AL process, denoted by “FRCN+SL”/“RFCN+SL” and
“FRCN+AL”/“RFCN+AL”, respectively. The only difference
between these methods lies in how they treat the unlabeled
object proposals. Taking the RFCN framework as an example,
RFCN+SL learns in a purely self-learning fashion in accor-
dance with Eqn. (11) until training ends, whereas RFCN+AL
selectively collects low-confidence proposals, requests anno-
tations, and stops when the annotation threshold is reached.
Note that in this setting, the AL process cannot be used to
guide the SL process because they are not jointly optimized.

Tab. I (c) lists the mAP scores of the baseline RFCN method
and RFCN+SL. As shown, given the same number of annota-
tions during initialization, RFCN+SL performs significantly
better than RFCN on both the VOC 2007 and VOC 2012
test sets. Specifically, RFCN+SL achieves a 3.6% performance
improvement (77.5% vs. 73.9%) by pseudo-labeling approx-
imately 340% of the high-confidence region proposals for
training on the VOC 2007 benchmark, whereas a consistent
performance gain of approximately 6% (75.1% vs. 69.1%)
is obtained on the VOC 2012 test set by pseudo-labeling
high-confidence region proposals at a rate of approximately

TABLE II
TEST SET MAP RESULTS FOR VOC 2007 OBTAINED USING THE

RFCN [10] PIPELINE. ANNOTATION KEY: ‘ANNOTATED’ DENOTES THE
PERCENTAGE OF MANUAL ANNOTATIONS USED FROM THE VOC 2007

TRAIN/VAL SETS FOR INITIALIZATION.

Method annotated mAP
RFCN+MSPLD 10% 61.6
RFCN+MSPLD 30% 68.2
RFCN+MSPLD 50% 71.3

RFCN+SL 10% 64.6
RFCN+SL 30% 70.0
RFCN+SL 50% 73.3

RFCN 100% 73.9

130%. These results validate the significant contribution of the
proposed SL process. Meanwhile, with the inclusion of the
annotation of low-confidence samples via AL, RFCN+ASM
performs slightly better than RFCN+SL on both the VOC 2007
and VOC 2012 test sets.

Moreover, we also compared our RFCN+SL method with
a new state-of-the-art method, namely, RFCN+MSPLD [33],
under a few-shot object learning setting. For a fair comparison,
the same percentage of manual annotations was used for
model initialization in both our RFCN+SL method and the
competing RFCN+MSPLD method. Then, the pseudo-labeling
mechanism of each method was applied to fine-tune their
models. The results for RFCN+MSPLD were obtained from
the authors of [33]. The results are compared in Tab. II.
As shown in this table, RFCN+SL consistently outperforms
RFCN+MSPLD by clear margins at all annotation percentages
for model initialization. These findings further demonstrate the
superiority of the proposed SL process.

To clarify the contribution of the proposed AL process,
we conducted further experiments to compare the detec-
tion performances of RFCN+RAND and RFCN+AL un-
der several different annotation-appending settings on the
VOC 2007/2012 benchmarks. As shown by the results in
Tab. I (a)(b), RFCN+AL consistently outperforms the base-
line RFCN+RAND, albeit by a small margin. Although the
improvements are minor, the AL process is still beneficial in
enhancing object detection. This slight improvement occurs
because the informative samples with the greatest potential
for improving performance lie in the long tail of the sample
distribution, as reported in [7]. Therefore, it is necessary
either to obtain abundant training samples by asking active
users to provide labels or to find other assistance. Fortunately,
the pseudo-labeling of high-confidence samples via our SL
process is an effective way to address this issue.

To prove that our ASM framework is critical and non-
trivial, we also compared it with four simple and straight-
forward baselines, i.e., “FRCN+AL+SL”, “RFCN+AL+SL”,
“FRCN+SL+AL” and “RFCN+SL+AL”, by implementing the
SL and AL processes in a simple sequential manner; e.g.,
RFCN+AL+SL first performs low-confidence sample annota-
tion via AL and then runs using the SL process until training
ends, whereas RFCN+SL+AL first learns using the same SL
process as RFCN+SL and then continues in the same AL
fashion as RFCN+AL. Therefore, these four methods combine
the AL and SL processes in a straightforward fashion rather
than fusing them adaptively. By contrast, under the control
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Fig. 4. Selected examples from the COCO dataset. The first row shows high-confidence region proposals with pseudo-labels in red; the bottom row shows
low-confidence region proposals in yellow, which required annotations from active users.

of the selector function, our RFCN+ASM method selectively
switches between recognizing high-confidence proposals via
the SL process and discovering low-confidence proposals
under the proposed dual curricula for the next user annotation
phase. The results, being listed in Tab. I (c) and Tab. III, show
that the proposed RFCN+ASM and FRCN+ASM methods
outperform both of their corresponding baselines by clear
margins. These findings validate the effectiveness of the AL
and SL fusion design in our ASM framework.

D. Ablation Study Without Network Fine-tuning

To permit clear observation of the effect of our ASM frame-
work on sample mining in a fixed feature space, approaches
without network fine-tuning were compared. Specifically, we
pre-trained FRCN [9] with VGGNet [43] on the VOC 2012
train/val sets to obtain a good feature representation. Note that
to avoid overusing the annotations from the VOC 2012 bench-
mark, we discarded the parameters of the softmax classifier
layer from VGGNet and then used the results of employing
30% and 57% of the VOC 2007 train/val annotations to train
the softmax classifier as a reference. We initialized all methods
with the same 30% of the annotations from the VOC 2007
train/val sets and then allowed them to incrementally exploit
the “unlabeled” samples (i.e., for which the annotations were
not given). For all methods, the training was terminated when
no low-confidence samples could be found (i.e., all unlabeled
samples had been clearly classified).

As shown in Tab. III, our FRCN+ASM method achieves
the highest mAP. Specifically, FRCN+ASM obtains a mAP
result that is 6.5% and 4.3% higher than those of FRCN
when using 30% and 57% of the annotations, respectively.
The FRCN+AL result demonstrates that AL can improve the
detection mAP by using an additional 27% of the annotations.
The performance gain of FRCN+SL is marginal because some
of the category classifiers are heavily degraded (such as the
bottle, person and plant category classifiers). This degradation
occurs because certain classifiers are easily misled by outliers
without active user intervention. Similar degradation also oc-
curs in FRCN+SL+AL. Our FRCN+ASM method outperforms
FRCN+SL by a clear margin using only an additional 5% of
the annotations, and it performs 2% better than FRCN+AL

TABLE III
TEST SET MAP RESULTS FOR VOC 2007 OBTAINED USING THE

FRCN [44] PIPELINE WITH VGGNET. ANNOTATION KEY: ‘APPEND’
DENOTES THE NUMBER OF APPENDED ANNOTATIONS REQUESTED VIA AL

AS A PERCENTAGE OF ALL ANNOTATIONS FROM THE VOC 2007
TRAIN/VAL SETS. FOR ALL METHODS, 30% OF THE ANNOTATIONS FROM

THE VOC 2007 TRAIN/VAL SETS WERE USED FOR INITIALIZATION.
Method append mAP
FRCN 0% 62.0

FRCN+RAND 27% 64.2
FRCN+SL 0% 62.5
FRCN+AL 27% 66.3

FRCN+SL+AL 12% 65.4
FRCN+AL+SL 27% 67.7
FRCN+ASM 5% 68.5

Percentage of outliers per object category
0 0.1 0.3 0.5

m
A

P

0.6

0.65

0.7

ASM
SPL

Fig. 5. The accuracy-outlier curves obtained on the VOC 2007 test set by
adding outliers to the training samples.

using 12% fewer annotations. In summary, our FRCN+ASM
method achieves a higher mAP score while requiring fewer
annotations, thereby demonstrating its superior performance.

E. Robustness Analysis

To further demonstrate the potential of our ASM framework
to suppress the influence of outliers/noisy samples (includ-
ing samples belonging to undefined object categories), we
measured the robustness of our method against outliers. We
employed the accuracy-outlier curve (AOC) to evaluate the ro-
bustness of our method and the SPL baseline method reported
in [17]. The AOC plots the accuracy w.r.t the percentage of
outliers per object category. In this analysis, we considered
three sources of outliers: i) a number of samples with manual
annotations were randomly selected and assigned uncorrected
category labels with respect to the ground-truth annotations to
generate noisy samples/outliers, ii) incorrectly annotated sam-
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Fig. 6. Sensitivity analysis of the hyperparameters (a) λ0 and (c) γ. As shown, a larger λ0 represents a higher threshold for defining high-confidence samples,
whereas a larger γ represents a higher threshold for selecting low-confidence samples. Meanwhile, (b) illustrates the detection accuracy corresponding to (a)
under different percentages of pseudo-labels, and (d) illustrates the detection accuracy corresponding to (c) under different percentages of used annotations.

TABLE IV
TEST SET MAP RESULTS FOR VOC 2007 OBTAINED USING THE

RFCN [10] PIPELINE. ANNOTATION KEY: ‘ANNOTATED’ DENOTES THE
PERCENTAGE OF MANUAL ANNOTATIONS USED FROM THE VOC 2007

TRAIN/VAL AND VOC 2012 TRAIN/VAL SETS; ‘PSEUDO’ DENOTES THE
PERCENTAGE OF PSEUDO-LABELED REGION PROPOSALS RELATIVE TO THE

NUMBER OF VOC 2007 TRAIN/VAL ANNOTATIONS.
Method annotated pseudo mAP Training Time Testing Time

(seconds/image) (seconds/image)
RFCN 100% 0% 79.8 0.42 0.12

RFCN+ASM 30% 400% 79.3 0.44 0.12
RFCN+ASM 50% 500% 79.9 0.46 0.12
RFCN+ASM 50% 600% 80.9 0.49 0.12
RFCN+ASM 100% 1000% 81.8 0.63 0.12

ples among the manual annotations were treated as outliers,
and iii) automatically pseudo-labeled samples belonging to the
undefined object category were also considered to be outliers.
To ensure a reasonable evaluation, we initialized both our
ASM and SPL methods using the same network parameters
under the FRCN pipeline. Then, we allowed the parameters
of our ASM and SPL models to be trained in their own ways
with different percentages of outliers per object category. As
illustrated in Fig. 5, our ASM method is much more robust
than the SPL method under different outlier percentages per
object category. By incorporating AL-based guidance for the
SL process, our ASM framework achieves stable results when
faced with outliers and noisy samples.

F. Time Efficiency Analysis
We also compared the efficiency of our ASM framework

and the original RFCN model in both the training and testing
phases. The results of this comparison are presented in Tab. IV,
which shows that due to sharing the same object detection
pipeline, our RFCN+ASM and the original RFCN have iden-
tical average time costs for testing a given image under a

TABLE V
TEST SET MAP RESULTS FOR VOC 2007 OBTAINED USING THE

RFCN [10] PIPELINE. ANNOTATION KEY: ‘M’ DENOTES THE NUMBER OF
DEFINED OBJECT CATEGORIES; ‘ANNOTATED’ DENOTES THE PERCENTAGE
OF MANUAL ANNOTATIONS USED FROM THE VOC 2007 TRAIN/VAL SETS.

Method m unseen annotated mAP
RFCN+CEAL 15 5 30% 70.1
RFCN+ASPL 15 5 30% 75.5
RFCN+ASM 15 5 30% 78.7

RFCN 15 0 100% 79.7
RFCN+CEAL 20 5 30% 73.5
RFCN+ASPL 20 5 30% 76.0
RFCN+ASM 20 5 30% 78.1

RFCN 20 0 100% 79.3

single image scale without flipping. It is obvious that our
RFCN+ASM (30% used annotations + 400% pseudo-labels)
and the original RFCN also have approximately the same time
cost for training. These findings confirm that the additional
time complexity introduced by our model can be ignored,
thanks to our proposed closed-form solution for updating the
latent weight variables U and V.

However, as the threshold parameters λ increase, more high-
confidence region proposals from each unlabeled or partially
labeled image will be pseudo-labeled for network fine-tuning.
This will result in a higher computational cost for network
fine-tuning. Nevertheless, our model requires only a 50%
increase in time cost (0.63 vs. 0.42 second/image) to reach
the 1000% pseudo-annotation objective, which offers a sig-
nificant performance gain (approximately 2% mAP) against
the original RFCN. Therefore, the additional time complexity
introduced by our model is moderate and acceptable.
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G. Unseen Object Category Support

To confirm the effectiveness of our model in supporting
unseen object categories, we conducted two further evaluations
on the VOC 2007 benchmark, which contains 20 object
categories. In the first evaluation, we treated only 15 of these
object categories as valid categories for detection, and the
remaining 5 categories were treated as unseen ones. In the
second evaluation, we additionally added several samples in
5 new categories from the Microsoft COCO dataset into the
training set as unseen noisy samples.

To demonstrate the superior performance of our ASM
framework, we compared RFCN+ASM with the closely re-
lated methods “RFCN+CEAL” and “RFCN+ASPL”. To ensure
a fair comparison, all methods were initialized with the same
annotations (i.e., 10%) and allowed to fetch the same number
of additional annotations (i.e., 20%) during the AL process.
Thus, the remaining 70% samples were treated as unlabeled.
The only difference among these methods is how they select
and assign pseudo-labels to these unlabeled samples. The
results of these evaluations are compared in Tab. V.

In contrast to the upper-bound baseline “RFCN (ALL)”,
in which all VOC 2007 and VOC 2012 train/val annotations
(without unseen categories) were used for training, all meth-
ods tested here employed only 30% of the annotations and
assigned pseudo-labels to the remaining unlabeled samples
for fine-tuning of the network. As shown in Tab. V, the
performance of our proposed method is inferior to that of
RFCN (ALL) by approximately 1% and consistently superior
to that of RFCN+CEAL and RFCN+ASPL by clear margins in
both evaluation settings. These findings confirm the superior
ability of our method to overcome the misleading influence of
samples that belong to unseen object categories.

H. Hyperparameter Sensitivity

We further analyzed the sensitivity of hyperparameters λ0
and γ. Specifically, we trained our model with λ0 values
ranging from -log 0.9 to -log 0.5 with γ fixed and with γ values
ranging from 0.1×m to 0.5×m with λ0 fixed to perform the
sensitivity analyses. The results of the sensitivity analysis for
λ0 are shown in Fig. 6 (a) and Fig. 6 (b), whereas those
for γ are shown in Fig. 6 (c) and Fig. 6 (d). λ0 serves
as the threshold for defining high-confidence samples during
model initialization and thus controls the percentage of region
proposals that are assigned pseudo-labels. As shown in Fig. 6
(a), far more pseudo-labeled proposals are obtained as λ0
increases. Fig. 6 (b) demonstrates that the detection accuracy
continuously increases as the percentage of pseudo-labeled
proposals grows. Note that although more pseudo-labeled
proposals can substantially improve the model performance,
the standard deviation of the detection accuracy is still high
due to the misleading influence of incorrectly pseudo-labeled
proposals. Meanwhile, γ serves as the threshold for the selec-
tion of low-confidence samples during model initialization and
thus is relates to the percentage of annotations used. As shown
in Fig. 6 (c), a smaller γ value results in requests for more
manual annotations. Fig. 6 (d) illustrates that more annotations

can lead to a higher detection accuracy with a lower stan-
dard deviation. To ensure the effectiveness of automatically
pseudo-labeling and the cost-effective manual annotation of
the representative minority samples, we empirically set {λ0,
γ}={− log 0.9, 0.5m}.

V. CONCLUSIONS

In this paper, we have introduced a principled active sam-
ple mining framework and demonstrated its effectiveness in
mining the majority of unlabeled or partially labeled data to
boost object detection. In our ASM framework, a self-learning
process, integrated into the AL pipeline with a concise formu-
lation, is employed for retraining the object detectors using
accurately pseudo-labeled object proposals. Meanwhile, the
remaining samples with low prediction confidence (i.e., high
uncertainty) by the current detectors can be annotated through
the AL process, which contributes to generating reliable and
diverse samples and gradually revising the self-learning pro-
cess. By means of the proposed alternating optimization mech-
anism, our framework selectively and seamlessly switches
between our self-learning process and the AL process for each
unlabeled or partially labeled sample. Moreover, two curricula
are introduced to guide the pseudo-labeling and annotation
processes from dual perspectives. Thus, our ASM framework
can be used to build effective CNN detectors that require fewer
labeled training instances while achieving promising results.
In the future, we plan to extend our framework to achieve
improvements in other specific types of visual detection using
unlabeled videos under the large-scale application scenarios.

APPENDIX A
PROOF OF PROPOSITION 1

E(U,V;L(X,Y;W), γ,λ) can be decoupled
as

∑n
i=1E(ui,vi;Li, γ,λ). Since ∀ ii 6= i2,

E(ui1 , vi1 ;Li1 , γ,λ) and E(ui2 , vi2 ;Li2 , γ,λ) are
independent, we can have

min
V∈Ψλ

E(U,V;L(X,Y;W), γ,λ) =

n∑
i=1

min
vi∈V λ

i

E(ui,vi;Li, γ,λ)

=

n∑
i=1

E(ui,v
∗
i ;Li, γ,λ).

Furthermore, V and U are also independent of each other.
Thus, we can similarly obtain

max
U∈Ψγ

E(U,V∗;L(X,Y;W), γ,λ) =
n∑
i=1

max
ui∈U

γ
i

E(ui,v
∗
i ;Li, γ,λ).

Hence, we have max
U∈Ψγ

min
V∈Ψλ

E(U,V;L(X,Y;W), γ,λ)

= max
U∈Ψγ

n∑
i=1

E(ui,v
∗
i ;Li, γ,λ)

=

n∑
i=1

max
ui∈U

γ
i

min
vi∈V λ

i

E(ui,vi;Li, γ,λ).

Therefore, optimizing Eqn. (1) is equivalent to performing
max
ui∈Uγi

min
vi∈V λ

i

E(ui,vi;Li, γ, λ) on each sample xi in X .
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APPENDIX B
PROOF OF PROPOSITION 2

Based on Proposition 1, we consider xi in X . Thus, the
min-max problem expressed in Eqn. (7) is transformed as:

max
ui

min
vi

E(ui,vi;Li, γ,λ)

=

m∑
j=1

max(ui, v
(j)
i )l

(j)
i − γui +

1

2

m∑
j=1

λ(j)((v
(j)
i )2 − 2v

(j)
i )

s.t. γ > 0, ui ∈{0, 1} ∩ Uγi ,
λ(j) > 0; vi = {v(j)i }

m
j=1 ∈ [0, ε]m ∩ V λ

i ⊂ [0, 1)m.

(14)

∀xi ∈ At−1 ∪ Bt−1, the {ui,vi} are constant. If xi ∈
X/(At−1 ∪Bt−1), then {0, 1} ∩Uγi = {0, 1}, [0, ε]m ∩ V λ

i =
[0, ε]m. Hence, we can solve for the (ui,vi) via Proposition
2.

When ui = 1 > max{v(j)i }mj=1, Eqn. (8) yields

Ei = ui

m∑
j=1

l
(j)
i −γui +

1

2

m∑
j=1

λ(j)((v
(j)
i )2 − 2v

(j)
i ), (15)

and
∂Ei

∂v
(j)
i

= λ(v
(j)
i − 1). (16)

When ui = 0 ≤ min{v(j)i }mj=1, Eqn. (8) yields

Ei =

m∑
j=1

v
(j)
i l

(j)
i +

1

2

m∑
j=1

λ(j)((v
(j)
i )2 − 2v

(j)
i ), (17)

and
∂Ei

∂v
(j)
i

= l
(j)
i + λ(v

(j)
i − 1). (18)

Lemma B.1. Given Eqn. (17), with respect to v, the solution
is

v
(j)
i =


0 l

(j)
i > λ(j);

1− l
(j)
i

λ(j)
λ(j)(1− ε) ≤ l(j)i ≤ λ

(j);

ε l
(j)
i < λ(j)(1− ε).

(19)

Proof. When l(j)i > λ(j),

∂Ei

∂v
(j)
i

= l
(j)
i + λ(j)(v

(j)
i − 1) > λ(j) + λ(j)(v

(j)
i − 1) ≥ 0,

which leads to arg min
v∈[0,ε]

Ei = 0. When l(j)i ≤ λ(j)(1− ε),

∂Ei

∂v
(j)
i

= l
(j)
i + λ(v

(j)
i − 1) < λ(j)(1− ε) + λ(j)(v

(j)
i − 1)

≤ λ(j)(v
(j)
i − ε) ≤ 0,

which leads to arg min
v∈[0,ε]

Ei = ε. When λ(j)(1 − ε) ≤ l
(j)
i ≤

λ(j), from ∂Ei
∂v

(j)
i

= 0, we have arg min
v∈[0,ε]

Ei = 1− l
(j)
i

λ(j) ∈ [0, ε].

This concludes the proof.

Lemma B.2. Given any iteration t, for the sample xi,
suppose that uti ∈ {0, 1} and vti ∈ [0, ε]m ⊂ [0, 1)m.
Then,

∑m
j=1 l

(j)
i > γ

1−ε leads to ut+1
i = ut+2

i = 1, and∑m
j=1 l

(j)
i < γ leads to ut+1

i = ut+2
i = 0.

Proof. Both cases are discussed below.
1).

∑m
j=1 l

(j)
i > γ

1−ε : Consider uti = 1. Since ∂Ei
∂v

(j)
i

< 0, we

have ∀j, v(j)(t+1)
i = ε < 1. From vt+1

i to ut+1
i , we consider

Eqn. (8) with respect to ui as follows:

E(ut+1
i ,vt+1

i ;Li, γ,λ)

=


ε

m∑
j=1

l
(j)
i + fSL(v

(t+1)
i ,λ) ut+1

i = 0;

m∑
j=1

l
(j)
i − γ + fSL(v

(t+1)
i ,λ) ut+1

i = 1.

(20)

E
ut+1
i =1

− E
ut+1
i =0

=

m∑
j=1

l
(j)
i − γ − ε

m∑
j=1

l
(j)
i

= (1− ε)
m∑
j=1

l
(j)
i − γ > (1− ε) γ

1− ε − γ = 0,

which leads to ut+1
i = 1 and ut+2

i = 1. Consider uti = 0. From
Lemma B.1, it holds that ∀j, v(j)(t+1)

i ≥ uti, and Eqn. (8) with
respect to ui is presented as follows:

E(ut+1
i ,vt+1

i ;Li, γ,λ)

=



m∑
j=1

v
(j)(t+1)
i l

(j)
i + fSL(v

(t+1)
i ,λ) ut+1

i = 0;

m∑
j=1

l
(j)
i − γ + fSL(v

(t+1)
i ,λ) ut+1

i = 1.

(21)

E
ut+1
i =1

− E
ut+1
i =0

=

m∑
j=1

l
(j)
i − γ −

m∑
j=1

v
(j)(t+1)
i l

(j)
i ≥

m∑
j=1

l
(j)
i − γ − ε

m∑
j=1

l
(j)
i

= (1− ε)
m∑
j=1

l
(j)
i − γ > (1− ε) γ

1− ε − γ = 0,

which leads to ut+1
i = 1 and ut+2

i = 1.
2).

∑m
j=1 l

(j)
i < γ: Consider uti = 0. Then, Eqn. (14)

transforms into Eqn. (17). With respect to vi, we follow the
solution given in Eqn. (19) and consider ut+1

i in Eqn. (21).

E
ut+1
i =1

− E
ut+1
i =0

=

m∑
j=1

l
(j)
i − γ −

m∑
j=1

v
(j)(t+1)
i l

(j)
i

≤
m∑
j=1

l
(j)
i − γ < 0,

which leads to ut+1
i = 0 and ut+2

i = 0. Consider uti = 1; then,
we similarly obtain vt+1

i = {ε}m. According to Eqn. (20),
Eut+1

i =1 − Eut+1
i =0 =

∑m
j=1 l

(j)
i − γ − ε

∑m
j=1 l

(j)
i ≤∑m

j=1 l
(j)
i −γ < 0; thus, it holds that ut+1

i = 0 and ut+2
i = 0.

The analyses of 1) and 2) together conclude the proof.

Based on Lemmas B.1 and B.2, we present the proof of
Proposition 2 as follows.

Proof. Let u0 and v0 denote the initializations of ui and
vi, respectively. Following Lemma B.2, when ∀ t ≥ 2, the
following conclusion holds:

u∗i = lim
t→+∞

uti =


1

m∑
j=1

l
(j)
i >

γ

1− ε ;

0

m∑
j=1

l
(j)
i < γ.

(22)
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Here, we consider v∗. When
∑m
j=1 l

(j)
i > γ

1−ε , it holds that
uti = ut+1

i = 1. Then, ∀j, consider v(j)ti as follows:

min
vti

E(uti,v
t
i ;Li, γ,λ)

= min
{v(j)ti }mj=1

m∑
j=1

max(uti, v
(j)t
i )lji + fAL(u

t
i, γ) + fSL(v

t
i ,λ)

=

m∑
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min
v
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(
1

2
λ(j)((v

(j)t
i )2 − 2vi

(j)t)) + uti

m∑
j=1

l
(j)
i + fAL(u

t
i, γ).

Then, ∀j, we solve min
v
(j)t
i

1
2λ

(j)((v
(j)
i )2 − 2v

(j)
i ) and obtain

v
(j)t
i = ε. The same result is found for v(j)(t+1)

i , leading to

v∗i = lim
t→+∞

vti = ε. (23)

When
∑m
j=1 l

(j)
i < γ, it holds that uti = ut+1

i = 0. Thus,
∀j ∈ [m], we consider v(j)ti as below:

min
vti

E(uti,v
t
i ;Li, γ,λ)

= min
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t
i, γ)

=

m∑
j=1

min
v
(j)t
i

(v
(j)t
i l

(j)
i +

1

2
λ(j)((vi

(j)t)2 − 2v
(j)t
i )) + fAL(u

t
i, γ).

Then, ∀j, we optimize min
v
(j)t
i

(v
(j)t
i l

(j)
i + 1

2λ
(j)((v

(j)t
i )2−2v(j)ti )).

The solution is given by Lemma B.1, which also holds ∀t′ > t.
We conclude that the proposition is justified by Eqns. (22)–
(23) and Lemma B.1.
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