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Abstract—We address the optimal control of level sets asso-
ciated with the solution of normal flow equations. The problem
consists in finding the normal velocity to the front described
by a certain level set in such a way to minimize a given cost
functional. First, the considered problem is shown to admit a
solution on a suitable space of functions. Then, since in general
it is difficult to solve it analytically, an approximation scheme that
relies on the extended Ritz method is proposed to find suboptimal
solutions. Specifically, the control law is forced to take on a neural
structure depending nonlinearly on a finite number of parameters
to be tuned, i.e., the neural weights. The selection of the optimal
weights is performed with two different approaches. The first one

employs classical line-search descent methods, while the second
one is based on a quasi-Newton optimization that can be regarded
as a neural learning based on the extended Kalman filter. If
compared to line-search methods, such an approach reveals to be
successful with a reduced computational effort and an increased
robustness with respect to the trapping into local minima, as
confirmed by simulations in both two and three dimensions.

Index Terms—level set methods, normal flow, optimal control,
extended Ritz method, adjoint equation, neural approximation,
extended Kalman filter.

I. INTRODUCTION

Level set (LS) methods are numerical algorithms used to

solve Hamilton-Jacobi equations, a particular class of first-

order hyperbolic partial differential equations (PDEs) [1]. They

are widely used to simulate the motion of fronts in two or three

dimensions in many different fields, such as computational

fluid dynamics, fluid-structure interaction, image processing,

detonation or deflagration waves, seismic analysis, and ma-

terials science [2]–[6]. The various LS methods depend on

the particular velocity field in the Hamilton-Jacobi equation.

Among them, the most known are the normal flow equation,

where the propagation speed is directed towards the normal

to the front, and the mean curvature flow equation, where the

speed is proportional to the curvature of the front in all the

points.

The LS of a function can be considered as a front or

an interface separating two regions, either a curve in two

dimensions or a surface in three dimensions [1], [7]. As novel

contribution w.r.t. the state of the art, in this paper we attack

the problem of optimally driving a moving front described by

the LSs of the solution of a normal flow equation. Based on
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the preliminary results of [8], [9], we propose an approach that

overcomes the computational difficulties that have prevented to

face this problem up to now. Such a breakthrough is achieved

by means of a quasi-Newton optimization technique, which

can be regarded as a learning powered by an extended Kalman

filter (EKF). The use of the EKF is motivated by its efficiency

in dealing with large amounts of data [10].

Moving interfaces are a fundamental modeling tool in var-

ious research fields. In fact, many problems are characterized

by a number of different regions interacting and depending

on various factors, such as physical laws and geometry. A

lot of examples exist in cross-disciplinary contexts, such

as fluid dynamics, materials science, computational biology,

biomedicine, land protection, marine and energy engineering.

Several techniques are available in the literature to study the

evolution of moving interfaces. They can be catalogued as

front tracking and front capturing methods. The former ones

are Lagrangian, i.e., the front is discretized using a mesh, while

the latter ones are Eulerian, i.e., the interface is represented

implicitly on a fixed grid. In Lagrangian methods, a given

number of points is positioned along the front and then moved

using a system of ordinary differential equations [11], [12].

Such methods are very efficient and accurate in the case of

interfaces characterized by small deformations, but they may

be quite difficult to be used with changes of topology, and re-

meshing may be needed in the presence of large deformations

of the boundary. Alternative approaches that makes it possible

to overcome these drawbacks are given by Eulerian methods,

and in particular LS methods, where the front is implicitly

represented at each time by a LS (for instance, the zero

level) of a multidimensional function [2]. They have various

advantages over Lagrangian approaches. First, they rely on

typical geometric quantities that can be easily computed, such

as the curvature or the normal to the front. Then, changes

of topology can be considered in an easy way. Lastly, the

extension to dimensions higher than two is straightforward.

LS methods are popular in topology optimization (see, e.g.,

[13]). In this case, the velocity field is given by the opposite

of the shape derivative, and the empty region of the domain is

replaced by a weak phase to avoid singularities and extend the

shape derivative to the whole domain. Unlike our approach,

where the aim is to control the front evolution dynamically,

shape optimization is purely static and any behavior over time

is not considered, i.e., the shape does not change with time.

A huge literature concerning the control of systems de-

scribed by PDEs exists, but very few contributions are avail-

able on the control of fronts described by LS methods. In

fact, most of the available studies focus only on simulating



and tracking the evolution of interfaces, while only few works

are available on the control of moving fronts. This may be

ascribed to the theoretical and numerical difficulties one may

encounter in attacking the problem, and the poor recognition

of the potential application, which only in very recent time

has emerged to some extent. Among the few available results,

[14] presents a prey-predator model based on biology. The

control of LSs resulting from the two-phase Stefan problem

is the topic addressed in [15] and [16], where the solution is

searched for numerically by using gradient-based methods.

As novel contribution w.r.t. the literature, in this paper we

address the optimal control of LSs generated by the normal

flow equation with the velocity field regarded as a control ac-

tion. First, a theoretical investigation of the properties of such

a problem is presented. Then, since it is almost impossible

to find an analytic solution, we focus on finite-dimensional

approximations based on the extended Ritz method (ERIM).

Such an approach was proposed in the past to solve optimal

control problems for nonlinear discrete-time systems [17]–

[21]. Its basic idea is to constrain the control policy to assume

a fixed, neural structure with a finite number of free parameters

to be properly tuned. The original functional optimization

problem is converted into a mathematical programming one

that requires the optimization of the parameters. The use of

the ERIM for controlling distributed parameter systems is

presented in [22], showing that it can be used for the optimal

control of generic PDE-based systems, as it lies in the middle

between the two typical paradigms “discretize-then-optimize”

and “optimize-then-discretize” [23].

In this paper, two different approaches are investigated to

search for the optimal parameters of the control laws. The

first one relies on classical line-search descent methods. The

second one is based on an optimization derived from the

Newton method. In practice, the selection of the weights is

accomplished by means of an EKF learning procedure [24]–

[28]. Both approaches require to compute the gradient of the

cost w.r.t. the weights. Such a gradient is determined by using

adjoint methods [29], [30]. As regards the control of LSs,

in [9] it is shown that the use of the gradient computed by

solving the related adjoint equation enables to reduce the

overall simulation times as compared with its finite-difference

approximation. The combination of EKF-based optimization

and efficient computation of the gradient provide an increased

robustness w.r.t. the trapping into local minima, in line with

the preliminary results reported in [31].

This paper is structured as follows. The considered optimal

control problem of moving fronts is formulated in Section

II, where we define the functional space on which a solution

exists. In Section III, the approach based on the ERIM is

showcased, together with the adjoint equation for computing

the gradient of the cost, to find approximate solutions to

the optimal control problem that depend on weights to be

tuned. Section IV describes the proposed methods for the

optimization of the weights. Lastly, Section V presents the

simulation results, while conclusions are discussed in Section

VI.

We will adopt the following notation. For any column

vector x ∈ R
n, let |x| :=(x⊤x)1/2 denote its Euclidean norm.

Moreover, let (x, y) :=[x⊤, y⊤]⊤, where x ∈ R
n and y ∈ R

m.

Let X be a real linear normed space of functions with the

norm | · |X . The functional x 7→ G(x) : X → R is said to

be Fréchet differentiable in x ∈ X if there exists a functional

h 7→ G′(x)h : X → R such that

G(x+ h) = G(x) +G′(x)h + r(x, h)

where G′(x) is the Fréchet derivative of G(x) in x ∈ X , and

h 7→ r(x, h) is a remainder of order higher than one, i.e.,

lim
h→0

|r(x, h)|

|h|X
= 0 .

Given A ⊂ R
n, the quantities A, ∂A, and N(A) denote the

closure, the boundary, and a neighborhood of A, respectively.

For p ∈ [1,+∞), a function f : A→ R
n belongs to Lp(A) if

its Lp norm is bounded, i.e., |f |p :=(
∫

A
|f(x)|p dx)1/p <∞.

Moreover, f ∈ L∞(A) if |f |∞ := ess supx∈A |f(x)| <∞.

II. OPTIMAL CONTROL OF LEVEL SETS

Let us consider a set Ω ⊂ R
q open, bounded, and smooth

and the time t ∈ [0, T ], with T > 0. LS methods represent

a moving front or interface at each time t, i.e., a curve in

two dimensions or a surface in three dimensions separating

two regions, as the zero LS of a multidimensional function

φ : Ω× [0, T ]→ R. The interface x(t, s) is given at time t by

the points such that φ(x(t, s), t) = 0, where s is the arc-length

parameter of the initial curve x(0, s). Figure 1 displays fronts

at two different time instants t1 and t2. By differentiating w.r.t.

t, we obtain

φt(x, t) + v(x, t) · ∇φ(x, t) = 0 (1)

i.e., a Hamilton-Jacobi equation, where v(x, t) := d
dtx(t, s)

is the Lagrangian particle velocity giving the direction of

propagation of the interface at the point x(t, s), while∇φ(x, t)
is the Fréchet gradient of φ(x, t) w.r.t. the space. From now

on, we focus on the normal flow equation, which corresponds

to choose v(x, t) proportional to the normal to the front, i.e.,

v(x, t) = u
∇φ(x, t)

|∇φ(x, t)|
(2)

where u is the speed of propagation. By replacing (2) in (1),

we get

φt(x, t) + u(x, t) |∇φ(x, t)| = 0 (3)

where the speed function u : Ω × [0, T ] → R is regarded

as a control input. Equation (3) has proper initial conditions

φ0 : Ω → R, i.e., φ(x, 0) = φ0(x), x ∈ Ω. Usually, φ0 is

chosen as the signed distance to the initial front. Equation

(3) is a Hamilton-Jacobi equation, whose solution is defined

in the sense of viscosity solutions and it is based on the

notion of sub- and super-differentials [32]. The l LS of the

function φ is a set-valued mapping Γl : [0, T ] ⇒ C, where

Γl(t) := {x ∈ Ω : φ(x, t) = l}.
We deal with the problem of the optimal control of (3) for

some cost functional to be minimized that provides a perfor-

mance index depending on the propagating front associated

with a certain LS of φ(x, t). Let us denote by U the set

of admissible control functions (x, t) 7→ u(x, t) and by F
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Fig. 1. Fronts described by the zero LSs of a multidimensional function φ at two different time instants t1 and t2.

the space of functions (t, x) 7→ φ(x, t) where the problem is

formulated. In the following, we properly define U and F for

the optimal control problem

inf
u∈U , φ∈F : (3) holds

J(u, φ) (4)

where J : U × F → R is a smooth cost functional.

First of all, let A ⊂ R
n be open and define

[u]1 := sup
x, y∈A, x 6=y

|u(x)− u(y)|

|x− y|

where u : A→ R. We denote the class of continuous functions

and bounded continuous functions in A by C0(A) and C0
b (A),

respectively. Moreover, let

C0,1(A) :=
{

u ∈ C0
b (A) : [u]1 <∞

}

.

Then,
(

C0,1(A), ‖ · ‖1
)

is complete, where ‖u‖1 := ‖u‖∞ +
[u]1. In other words, C0,1(A) endowed with the norm ‖ · ‖1
is a Banach space (see, e.g., [33]). Notice that, if [u]1 < ∞,

then [u]1 is the smallest constant L such that |u(x)− u(y)| ≤
L |x − y| for all x, y ∈ A, i.e., u is uniformly Lipschitz.

Moreover, since a Lipschitz function is uniformly continuous

and therefore continuously extendable to the boundary of its

domain, it follows that

C0,1(A) = C0,1(A) .

Based on the aforesaid, the following propositions hold [34].

Proposition 1: If A is bounded, the immersion C0,1(A) →֒
C0(A) is compact, i.e., if (un)n∈N is a sequence of functions

in C0,1(A), there exists a subsequence (unk
)k∈N of (un)n∈N

that converges uniformly in A. �

Proposition 2: Let (un)n∈N ∈ C
0,1(A) be a sequence that

converges uniformly to u and such that [un]1 < c for some

c > 0. Then u ∈ C0,1(A) and [u]1 < c. �

Let us now consider (3), which is rewritten in the form of

the more general Hamilton-Jacobi equation

φt(x, t) +H(x, t,∇φ(x, t)) = 0 in Ω× (0, T ) (5)

where H(x, t, p) = u(x, t) |p| is the Hamiltonian function.

Consider also initial conditions φ(x, 0) = φ0(x) in Ω. In the

following, we will focus on viscosity solutions “inside Ω” and

viscosity supersolutions in ∂Ω [35].

We need to assume the following.

Assumption 1: Let u ∈ C0(Ω× [0, T ]) such that u(x, t) > 0
for x ∈ N(∂Ω) and t ∈ [0, T ].1 �

Assumption 2: There exists L > 0 such that |u(x, t) −
u(y, t)| ≤ L |x− y| for all x, y ∈ Ω and t ∈ [0, T ].2 �

Assumption 3: There exists M > 0 such that |u(x, t1) −
u(x, t2)| ≤M |t1 − t2| for all x ∈ Ω and t1, t2 ∈ [0, T ].3 �

Theorem 1: If φ0 ∈ C
0(Ω), there exists a viscosity solution

φ ∈ C0(Ω× [0, T ]) for (5) such that φ(x, 0) = φ0(x) in Ω.

Proof. See [35, Theorem IV.2, p. 655] with all the required

assumptions satisfied since more restrictive conditions hold

owing to the specific choice of the Hamiltonian function.

Moreover, such a result states that φ is a viscosity supersolu-

tion on Ω× (0, T ). �

It is worth noting that the viscosity solution φ ∈ C0(Ω ×
[0, T ]) is not unique in general. However, it is the minimum

viscosity supersolution v(x, t) of (5) on Ω × [0, T ] such that

v(x, 0) ≥ φ0(x) on Ω. Moreover, such a solution is Lipschitz

w.r.t. x near ∂Ω, as it follows from the proof of [35, Theorem

IV.2, p. 655]. In fact, Assumption 1 holds and H(x, t, p) →
+∞ as |p| → +∞ uniformly for x ∈ N(∂Ω) and t ∈ [0, T ].

Let

F :=
{

φ ∈ C0(Ω× [0, T ]) : φ is Lipschitz on N(∂Ω)

and a solution of (5)
}

and, for some a > 0,

Ua :=
{

u ∈ C0,1(Ω× [0, T ]) such that u(x, t) ≥ a ,

x ∈ N(∂Ω), t ∈ [0, T ]
}

.

As it will be clearer from what follows, Ua is the set of the

admissible controls for a given cost functional that satisfies

the next assumption.

Assumption 4: Let J : Ua ×F → [0,∞) such that J(·, s) :
Ua → [0,∞) is lower semicontinuous for s ∈ R.

Therefore, let us recast problem (4) as follows:

inf
u∈Ua, φ∈F

J(u, φ) . (6)

1The positivity assumption in a neighborhood of ∂Ω allows one to rely on
the existence of supersolutions in Ω [35, Proposition II.2, p. 647].

2In principle, we may adopt a more general assumption, i.e., |u(x, t) −
u(y, t)| ≤ ω(|x − y|), where ω : [0,∞) → [0,∞) is a continuous,
nondecreasing, and subadditive function such that ω(0) = 0 (see [35,
Assumption (H2), p. 648]).

3Likewise in Assumption 2, we may relax such assumption (see [35, eq.
(36), p. 655]).



Theorem 2: There exists u∗ ∈ Ua such that

J(u∗, φ∗) = inf
u∈Ua, φ∈F

J(u, φ)

for some φ∗ ∈ F .

Proof. Since J is lower bounded, there exists a minimizing

sequence (uk)k∈N for J in Ua. For every k ∈ N, let Φk be a

viscosity solution of

∂

∂t
Φk(x, t) + uk(x, t) |∇Φk(x, t)| = 0 in Ω× (0, T ) (7)

such that Φk(x, 0) = φ0(x), where Φk ∈ C
0(Ω × [0, T ]) is

Lipschitz on N(∂Ω). Since uk belongs to Ua, from Propo-

sitions 1 and 2 it follows that there exists a subsequence

of (uk)k∈N that uniformly converges in Ω × [0, T ] to some

u∗ ∈ C0,1(Ω × [0, T ]). To reduce the notational overhead

and with a little abuse of notation, we will denote such a

subsequence by uk, and so it will be also for other sequences.

First of all, let us verify that u∗ belongs to Ua. Toward this

end, notice that u∗(x, t) ≥ a for x ∈ N(∂Ω) and t ∈ [0, T ].
Since for every ε > 0 there exists kε ∈ N such that, for k > kε,

it follows that u∗(x, t) > uk(x, t)−ε for (x, t) ∈ Ω× [0, T ], if

x ∈ N(∂Ω) we obtain u∗(x, t) > a−ε. From the arbitrariness

of ε it follows u∗(x, t) ≥ a for x ∈ N(∂Ω) and t ∈ [0, T ]
(from now on, we omit to recall the dependence on t for the

sake of brevity).

Then, let us focus on (7), where uk is the subsequence

converging to u∗ we considered before. Let us show that Φk ∈
C0(Ω× [0, T ]) converges to some φ∗ ∈ C0(Ω × [0, T ]) such

that

∂

∂t
φ∗(x, t) + u∗(x, t) |∇φ∗(x, t)| = 0 in Ω× (0, T ) (8)

with φ∗(x, 0) = φ0(x) by passing to a subsequence if neces-

sary. Owing to the structure of the Hamiltonian H(x, t, p) in

(5) (it is convex in p and such that H(x, t, p) tends to +∞ as

|p| → +∞ uniformly for x ∈ N(∂Ω)), there exist α > 0 and

β > 0 such that H(x, t, p) ≥ α|p| − β. From such inequality

and Assumption 3, it follows that ∇Φk is uniformly bounded

w.r.t. k in some N(∂Ω). Thus, using (8) we get that also Φk

is uniformly bounded, and hence there exists δ > 0 such that

‖Φk‖1 ≤ δ in some N(∂Ω). Using the arguments in [36,

Theorem 1, p. 385], it follows that an a-priori estimate of the

modulus of continuity of Φk near ∂Ω propagates in Ω. Thus,

Φk is bounded in C0,1(Ω× [0, T ]) and, thanks to Propositions

1 and 2, it admits a subsequence that uniformly converges to

some φ∗, which is Lipschitz in some N(∂Ω). By passing to

a further subsequence if necessary, for uk and Φk, using [37,

Theorem 1.4, p. 375], we obtain (8).

If Φk is a viscosity supersolution in Ω × (0, T ) and it is

Lipschitz in N(∂Ω), then uk is Lipschitz in Ω, Φk and uk
admit subsequences that uniformly converge to φ∗ and u∗, φ∗

is a viscosity supersolution in Ω×(0, T ) of (8). Therefore, we

finally obtain that φ∗ belongs to F and, using [38, Proposition

7.1.2, p. 206] with Assumption 4, we get

J(u∗, φ∗) ≤ lim inf
k→+∞

J(uk,Φk)

which concludes the proof. �

Remark 1: It is worth noting that, since Ω×[0, T ] is compact

and u∗ ∈ C0,1(Ω × [0, T ]), it follows that u∗ belongs to

L∞(Ω × [0, T ]) and, owing to the fact that the measure of

Ω× [0, T ] is finite, we obtain u∗ ∈ Lp(Ω × [0, T ]) for every

p ≥ 1.

Unfortunately, in general it is difficult to find an analytic

expression for the solution u∗. This motivates the use of

methods to search for approximate solutions, as detailed in

Section III.

III. SEARCH FOR APPROXIMATE SOLUTIONS

The optimal control problem of LSs (6) is of functional

optimization since the unknown is a function, i.e., the optimal

control law that drives the propagating front. For this kind

of problems, the idea of finding approximate solutions with

the ERIM has been applied in the past [17]–[20]. It consists

in searching for approximations of the optimal solution by

forcing the unknown control action to take on a parameterized

structure, and then tuning its parameters to minimize a given

index cost. In our case, the goal consists in approximating the

unknown mapping (x, t) 7→ u∗(x, t) that is the solution of

the optimization problem (6). Toward this end, we consider

linear combinations of parameterized basis functions as fixed

structures for the control law as in (9). It is known that such

structures guarantee a good compromise between approxima-

tion accuracy and computational effort required for the tuning

of the parameters (see, e.g., [39], [40]):

γ (·, w) =

n
∑

i=1

ciψ (·, κi) + b, ci ∈ R, b ∈ R, κi ∈ R
l (9)

where ψ is a parameterized basis function and the param-

eters (or weights) to be optimized are the components of

the vector w :=(c, b, κ) ∈ R
N(n), where c :=(c1, c2, . . . , cn),

κ :=(κ1, κ2, . . . , κl), and N(n) = n(1 + l) + 1. Most of ap-

proximating functions commonly used in the literature belongs

to the class (9), such as feedforward neural networks, radial-

basis-functions with adjustable centers and widths, free-node

splines, and trigonometric polynomials with free frequencies

and phases.

Generally speaking, the set of approximating functions in

(9) is required to be dense in the space of functions where we

search for the solution to our problem, for which a solution

in Lp is proved to exist, as pointed out in Remark 1. Another

important feature is the so-called “universal approximation

property,” which means that the unknown continuous mapping

can be approximated arbitrarily well for some choice of the

vector of parameters w [41]–[43]. Such a property is satisfied

by a large family of approximating functions, including the

above-introduced ones.

According to the ERIM paradigm, in order to solve (6) we

have to force

u(x, t) = γ(x, t, w) (10)



in the normal flow equation (3) and cost functional that, from

now on, we choose as follows:

J(u, φ) =

∫ T

0

∫

Ω

h(φ(x, t), u(x, t), t) dx dt

+

∫

Ω

h̄(φ(x, T )) dx (11)

where h : R × R × [0, T ] → R and h̄ : R → R is a final

penalty term. The evolution over time and space of a LS of

φ is shaped by using the performance index (11), which in

general may depend on the interior or the boundary of the

interface (see, e.g., [16]).

As a consequence of (10), both φ and u depends on the

choice of w. Hence, also J turns out to be a function of w.

From now on, according to the context and with a little abuse

of notation, we will highlight the dependence of J on either φ
and u or simply w. Thus, the original functional optimization

problem (6) is converted into a mathematical programming

one that consists in the search for the optimal weights wo

minimizing the cost J , i.e.,

wo ∈ argmin
w∈RN(n)

J(w). (12)

In Section IV, we propose two techniques to find a solution

of problem (12). Both methods require to compute the gradient

of J w.r.t. the parameters w of the approximating function γ
in (9). Hence, in the following we compute the exact, analytic

expression for this gradient. Toward this end, we need to

assume the following.

Assumption 5: The functions h : R × R × [0, T ] → R and

h̄ : R→ R are continuously differentiable. �

Based on the aforesaid, we can state the following.

Proposition 3: The gradient w.r.t. the weights of the cost

functional is

∇wJ(u, φ) =

∫ T

0

∫

Ω

(

hu(φ, γ) + µ |∇φ|
)

∇wγ dx dt (13)

where the mapping µ : Ω × [0, T ] → R satisfies the adjoint

equation

−µt = (µγF1)x + (µγF2)y − hφ(φ, γ) in Ω× (0, T ) (14)

where µ(x, T ) = −h̄φ(φ(x, T )) in Ω.

Proof. To reduce the notational burden, from now on we will

drop the dependence on x and t and write explicitly the

dependence on w. Let φ̃(w, w̃) :=φ(w + w̃) − φ(w) ∈ F ,

where w̃ ∈ R
N(n). Of course, if w̃→ 0 also φ̃ tends to zero.

Using the Fréchet derivative of the cost along the direction

(φ̃, w̃), from (3) it follows that

φt(w + w̃) + γ(w + w̃) |∇φ(w + w̃)| = 0 (15a)

φt(w) + γ(w) |∇φ(w)| = 0. (15b)

After replacing γ(w+ w̃) with a Taylor expansion of the first

order centered in w and using the same approximation for the

norm of the gradient of φ, i.e.,

|∇φ(w + w̃)| = |∇φ(w)| +
∇φ(w)

|∇φ(w)|
(φ̃x, φ̃y) + r0

where w̃ 7→ r0(w, w̃) is a remainder of order higher than one,

from (15) it follows that

φ̃t + |∇φ| ∇wγ w̃ + γ F · Φ̃ + r1 = 0 (16)

where, adopting the same notation of [29], we let F :=(F1, F2)
with F1 :=φx/|∇φ|, F2 :=φy/|∇φ|, Φ̃ :=(φ̃x, φ̃y), and w̃ 7→
r1(w, w̃) accounts for all the remainders of order higher than

one.

In order to compute the derivative of J in (w, φ) along the

direction (w̃, φ̃), we apply a Taylor expansion of the terms

inside the integrals, i.e., we get

J(w + w̃, φ+ φ̃)− J(w, φ) =

∫ T

0

∫

Ω

hφ(φ, γ) φ̃ dx dt

+

∫ T

0

∫

Ω

hu(φ, γ)∇wγ w̃ dx dt+

∫

Ω

h̄φ(φ) φ̃ dx+ r2 (17)

where we have highlighted the dependence of u on w, and

w̃ 7→ r2(w, w̃) is a remainder of order higher than one. The

goal is to find the first-order necessary condition of optimality

by using the first variation with (16) as a constraint. First of all,

we introduce (x, t) 7→ µ(x, t) as Lagrange multiplier. Then,

we add the product between µ(x, t) and (16) to the right hand

side of (17). If we integrate on Ω× [0, T ], we can write

J(w + w̃, φ+ φ̃)− J(w, φ) =

∫ T

0

∫

Ω

hφ(φ, γ) φ̃ dx dt

+

∫ T

0

∫

Ω

hu(φ, γ)∇wγ w̃ dx dt+

∫

Ω

h̄φ(φ) φ̃ dx

+

∫ T

0

∫

Ω

µ
(

φ̃t + |∇φ| ∇wγ w̃ + γ F · Φ̃
)

dx dt + r3 (18)

where the remainder r3 accounts for both r1 and r2. From

µ φ̃t =
(

µ φ̃
)

t
− µtφ̃

it follows that

∫ T

0

∫

Ω

µ φ̃t dx dt =

∫ T

0

∫

Ω

(

µ φ̃
)

t
− µtφ̃ dx dt

=

∫

Ω

µ(x, T ) φ̃(x, T )− µ(x, 0) φ̃(x, 0) dx

−

∫ T

0

∫

Ω

µtφ̃ dx dt (19)

after a change of the order of integration in the first term.

Using the Green identity and imposing a null φ̃ on the

boundary of Ω, we have

∫ T

0

∫

Ω

µ γ F · Φ̃ dx dt =

∫ T

0

∫

Ω

(µ γ F1)φ̃x

+ (µ γ F2) φ̃y dx dt =

∫ T

0

∫

∂Ω

(

µ γ F1 + µ γ F2

)

φ̃ dx dt

−

∫ T

0

∫

Ω

(µ γ F1)xφ̃+ (µ γ F2)yφ̃ dx dt

= −

∫ T

0

∫

Ω

(µ γ F1)xφ̃+ (µ γ F2)yφ̃ dx dt . (20)



After replacing (19) and (20) in (18), we obtain

J(w + w̃, φ+ φ̃)− J(w, φ) =

∫ T

0

∫

Ω

(hφ(φ, γ)

− µt − (µ γ F1)x − (µ γ F2)y) φ̃ dx dt

+

∫ T

0

∫

Ω

(

hu(φ, γ)∇wγ + µ |∇φ| ∇wγ
)

w̃ dx dt

+

∫

Ω

(

h̄φ(φ(x, T )) φ̃(x, T ) + µ(x, T ) φ̃(x, T )

− µ(x, 0) φ̃(x, 0)
)

dx+ r3 .

If we choose φ̃(x, 0) = 0 on Ω and solve the adjoint equation

(14), then the gradient w.r.t. the weights of the cost J is given

by (13). �

The solution of the optimization problem (12) requires the

use of efficient numerical techniques to solve both the forward

normal flow equation (3) and the backward adjoint equation

(14). It is worth noting that the numerical schemes for the

two equations cannot be the same, as the structure of the

adjoint equation is very different from the forward one. It is

known in the literature that the use of adjoint equations for

the control of PDEs drastically reduces the computational time

[9], [29]. The price to pay is a considerable increase in the

effort to correctly discretize the adjoint equation, also in term

of storage capacity, as the solution of the forward equation

has to be saved for a large number of time steps. In our case,

the normal flow equation (3) and the adjoint equation (14) are

both of hyperbolic type. As a consequence, we have to use

high-order finite-difference schemes for hyperbolic PDEs, as it

will be detailed in Section V. Moreover, imposing the correct

boundary conditions in hyperbolic equations is a nontrivial

task in general. This is true also for the adjoint equation (14),

as the source term hφ(φ, γ(w)) may have a large variability

for values of w far from the global optimum, which can create

spurious and non-physical reflections at the boundary.

IV. SELECTION OF THE OPTIMAL WEIGHTS

In this section, we present two optimization methods to

find a solution to problem (12), i.e., train the approximating

structure γ in (9). Both methods exploit the computation of

the gradient of J using (13) and (14). The first one is based

on line-search descent methods, whereas the second one relies

on an approach based on the Newton method [44]. Simulation

results will be shown in Section V to evaluate the robustness

of such methods w.r.t. local minima trapping.

A. Line-search Descent Optimization

Generally speaking, descent methods are given by recursive

algorithms having the following structure:

wk+1 = wk + αkdk , k = 0, 1, . . .

where αk > 0 is the descent step and dk ∈ R
N(n) is the

descent direction. Specifically, they are referred to as line-

search descent methods if, at each iteration k, the step αk is

chosen via a line search. The descent direction dk is usually

selected by using the information on the gradient of the

cost to be minimized. The specific choices depend on the

particular descent method adopted. Without loss of generality,

let us consider the classic steepest-descent algorithm [44].

In this case, the descent direction is equal to the opposite

of the gradient (13), i.e., dk = −∇wJ(wk). The step αk

is chosen through a line search that consists in minimizing

J(wk − αk∇wJ(wk)) w.r.t. αk.

B. Newton-based Optimization

The standard Newton method does not require line search

since it consists in iterating

wk+1 = wk + (∇2J(wk))
−1∇J(wk) , k = 0, 1, . . .

where ∇2J(wk) is the Hessian of J(wk). To reduce the

computational effort, the idea behind quasi-Newton methods

is that of avoiding the computation of the Hessian by using

some local approximation around the point of optimum [44].

Toward this end, the Gauss-Newton method is a quasi-Newton

approach for least squares problems that allows one to treat

a large amount of data in an efficient way [10]. Under

linear assumptions, the least squares problem can be solved

recursively by an iterative algorithm that coincides with a

Kalman filter [45]. In the nonlinear case, one can resort to the

EKF, and hence regard the optimization as an EKF learning

task [31]. It is worth noting that the convergence properties

of the EKF are still quite unknown at present. Only results on

the boundedness of the expected quadratic error are reported

in the literature [46]. In spite of its poor theoretical foundation,

a number of successful results concerning the application of

the EKF to neural network training are available [24]–[28].

Finally, it is worth noting that, in our context and likewise for

line-search descent methods, the Newton and quasi-Newton

methods are not ensured to converge to a global optimum

since the optimization problem we have to solve is not convex.

Thus, there exists the need of dealing with local minima.

From now on, we will refer to Gauss-Newton-based techniques

as EKF optimization methods according to the parlance of

the community working in the area of neural networks and

learning systems.

C. Evaluation of Robustness w.r.t. Local Mimima Trapping

As said, the performances of both line-search descent and

EKF-based methods may be undermined by local minima that

prevent from converging to a global optimum. To evaluate

how such techniques are able to avoid local minima, we adopt

a multistart procedure that consists in randomly choosing

L different initial weights and apply the same optimization

method for each value of the initial weights in order to obtain

a performance index as low as possible. Such a technique is

shown in Procedure 1. The stopping criteria consist in finding a

“small” norm of either the gradient of the cost or the difference

between the estimated parameters in two consecutive itera-

tions, together with a maximum number of iterations. Let J (l)∗

and w(l)∗ denote the optimal cost and parameters correspond-

ing to the l-th initial guess, respectively. Furthermore, let T
(l)

be the time needed to find the optimal weights starting from



Procedure 1 (Multistart Simulation Optimization)

1: for l from 1 to L do

2: generate a random initial choice of w
(l)
0

3: k ← 0
4: Reset execution time

5: while (stopping criteria are not satisfied) do

6: u(x, t)← γ(x, t, w
(l)
k )

7: solve the normal flow equation (3)

8: solve the adjoint equation (14)

9: compute the gradient (13)

10: w
(l)
k+1 ← line-search descent (or EKF-based)

step starting from w
(l)
k

11: k ← k + 1
12: end while

13: T
(l)
← execution time of the while loop

14: w(l)∗ ← w
(l)
k

15: J (l)∗ ← J(w
(l)
k )

16: end for

17: J∗ ← minl=1,...,L(J
(l)∗)

18: w∗ ← argminl=1,...,L(J
(l)∗)

the l-th initial choice. Then, the parameters corresponding

to the lower value of the cost are selected as the optimal

ones. In other words, w∗ := argminl=1,...,L(J
(l)∗) denotes

the best parameter vector and J∗ := minl=1,...,L(J
(l)∗) is the

corresponding optimal cost.

V. SIMULATION RESULTS

In this section, we present the simulation results obtained

in two different numerical examples concerning the tracking

of a reference curve in both two and three dimensions.

In particular, our aim is to determine a control function

u(x, t) that drives the zero LS Γ0(t) of the solution φ(x, t) of

the normal flow equation (3) in order to match the zero LS

Γref
0 (t) of a given reference function φref(x, t). The reference

Γref
0 (t) can be interpreted as a desired shape in Ω that changes

over time depending on φref(x, t). Without loss of generality,

we focused on a tracking performance index computing the

difference between the reference and approximate LSs as

follows:

J =

∫ T

0

η
(

Γ0(t) ∆ Γref
0 (t)

)2
dt (21)

where ∆ is the symmetric difference operator, i.e., A ∆ B =
(A ∪ B) \ (A ∩ B), and η corresponds to an outer measure

on R
q . Figure 2 shows a sketch of the area to minimize at

a generic time instant in two dimensions. However, notice

that the proposed approach is valid also for other performance

indexes of the same kind of (11) that do not require Γref
0 (t)

or φref(x, t).

Since in general computing the symmetric difference is a

difficult task [3], we minimize the following cost instead of

(21):

J =

∫ T

0

∫

Ω

(

Ĥ(φ(x, t))−Ĥ(φref(x, t))
)2

dx dt (22)

Ω

Γref
0 (t)

Γ0(t)

area to minimize
Γ0(t) ∆ Γref

0 (t)

Fig. 2. Front tracking problem at a generic time instant t in two dimensions.

where Ĥ(·) is an approximation of the Heaviside step function

given by

Ĥ(ξ) :=
1

2
+

1

2
tanh

(

ξ

τ

)

.

The coefficient τ tunes the smoothness of the approximation.

Specifically, we fixed τ equal to 10−2. Notice that (22) is a

particular version of (11) with null final cost.

As regards the 2D example, for the numerical solution

of (3) we chose a space domain Ω = (−0.75,+0.75) ×
(−0.5,+0.5) discretized by using a regular grid of 75 × 50
points and a time interval equal to [0, 1.5] with sampling time

∆t = 0.03. Concerning the 3D case, we adopted a domain

Ω = (−1.5, 1.5)× (−1.0, 1.0) × (−1.0, 1.0) sampled with a

grid made of 90 × 60 × 60 nodes. The time interval of the

simulation was [0, 1.5] sampled with a time step ∆t = 0.05,

i.e., we needed 30 time steps to perform the simulation.

We chose one-hidden-layer feedforward neural networks with

sigmoidal activation functions as parameterized structures γ in

(9). In particular, we tested various numbers of basis functions,

i.e., we considered n = 5, 10, and 15 neurons to ensure a

sufficient accuracy with quite simple approximating structures.

Both the line-search and EKF-based optimization methods

were compared by applying Procedure 1 with L = 50 different

initial weights. The tolerance for the stopping criteria and the

maximum number of iterations were chosen equal to 10−9 and

1000, respectively.

The simulations were carried out on a personal computer

with a 2.6 GHz Intel Xeon CPU with 64 GB of RAM. The

line-search minimizations were executed through the fmincon

function contained in the Matlab Optimization Toolbox, which

implements both the interior-point and sequential quadratic

programming algorithms. Concerning the EKF-based algo-

rithm, an experimental tuning was performed to select the

covariance matrices in order to obtain the fastest convergence

to the optimal cost [31].

The normal flow equation (3) and the corresponding adjoint

equation (14) for the computation of the gradient of the

cost were solved numerically by using the Matlab toolbox

implemented by Mitchell [47], which includes various solvers

of Hamilton-Jacobi equations. More specifically, for the dis-

cretization of the normal flow equation we employed an up-

wind second-order essentially non-oscillatory scheme [6, chap.

3] w.r.t. space. Concerning the time approximation, we used

a total variation diminishing Runge-Kutta scheme of second

order. Notice that the convective flux terms in the adjoint

equation (14) depend explicitly on x. Unfortunately, Mitchell’s

toolbox does not take into account such a dependency, and
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Fig. 3. Front tracking snapshots obtained with the EKF-based optimization in the 2D example with n = 10 basis functions.
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Fig. 4. Front tracking snapshots obtained with the EKF-based optimization in the 3D example with n = 10 basis functions.

therefore we modified the numerical scheme by deriving the

flux and adding a source term.

Figures 3 and 4 show the results of the tracking in the 2D

and 3D cases, respectively, using the EKF-based optimization

algorithm. The number n of basis functions is equal to 10
in all the cases. Similar results could be displayed for the

line-search optimization method and for the other considered

numbers of neurons, but they are not reported here for the

sake of compactness. In particular, the reference and simulated

fronts (red and blue plots, respectively) at certain time steps

are shown. In both the 2D and 3D cases, the reference and

simulated fronts match with a great accuracy. Notice that a

change of topology occurs in the 2D example, as two ellipses

join into a unique curve.

Table I shows a summary of the simulation results. More

specifically, it showcases the means of the optimal costs J (l)∗

and of the times T
(l)

, l = 1, . . . , L, obtained by applying

Procedure 1 for the line-search descent and EKF-based opti-

mizations. Figure 5 displays the boxplots of the costs J (l)∗

and of the times T
(l)

obtained with 10 neurons.

TABLE I
SUMMARY OF THE SIMULATION RESULTS.

n mean of J(l)∗ mean of T
(l)

(seconds)
line-search opt EKF opt line-search opt EKF opt

5 2.46·10−3 1.00·10−4 3.20·102 1.00·103

2D 10 3.30·10−3 4.66·10−6 5.82·102 1.14·103

15 1.07·10−3 1.47·10−6 9.28·102 1.53·103

5 8.86·10−4 5.23·10−4 4.40·103 3.49·104

3D 10 8.63·10−4 1.85·10−4 4.10·103 3.42·104

15 8.32·10−4 1.81·10−4 3.96·103 3.43·104

The simulations confirm that the two proposed approaches

to select the optimal weights are both valid, as the minimum

values of the costs obtained starting from the considered 50

initial guesses are similar. The most important difference is

that the line-search optimization presents a larger dispersion

around the medians compared to the EKF-based algorithm.

The reason of this behavior is due to the fact that the former

optimization may end up in local minima more frequently

depending on the initial guess. On the contrary, the EKF



optimization does not suffer from such an issue, as it provides

almost the same values of the cost starting from all the

different initial weights. Thus, the results suggest that starting

from many different initial parameters is actually useless for

the EKF optimization since always almost the same optimal

costs are obtained.

In general, the times T
(l)

of the EKF are larger than those

of the line-search optimization. This may be ascribed to the

fact that the stopping criteria of the latter are easily satisfied if

the minimization procedure is trapped into a local minimum.

However, owing to the above-discussed robustness w.r.t. local

minima trapping of the EKF approach, a reduction of the

overall computational time needed to approximate the optimal

control law can be achieved using this method. In fact, without

loss of generality, consider the case of n = 10 neurons in the

2D example. The overall time required to find the optimal

weights with the line-search optimization starting from 50
different initial guesses is equal to 5.82 ·102× 50 ≃ 2.91 ·104

seconds on the average. Instead, the same time for the EKF

starting from a single initial guess is equal to 1.14·103 seconds,

with a saving of about the 95% of the computational time.

For both the considered optimization approaches, the opti-

mal costs do not sensibly vary with the number n of basis

functions, a part from the case of n = 5 for the EKF

optimization in the 2D example, even if a slight reduction

of the costs is experienced with an increase of the number of

neurons. This suggests that all the considered values for n are

enough to obtain satisfactory approximations.

Summarizing, the EKF-based algorithm appears to be more

robust to avoid local minima trapping w.r.t. the line-search one

in both the 2D and 3D cases, which makes it more well-suited

to being used in the presence of large local variations of the

cost.

A. Performances of the Controller Under Model Uncertainties

The performances of the approximate controllers obtained

using either the line-search or the EKF optimization in the 2D

and 3D examples were evaluated also in the presence of un-

certainties in the normal flow equation (3). More specifically,

we applied the control law obtained with both optimization

methods to the following equation instead of (3):

φt(x, t) + u |∇φ(x, t)| = ξ(x, t) (23)

where ξ : Ω× [0, T ]→ R is a disturbance acting as the source

term of the equation. Without loss of generality, we assumed

that this noise has a Gaussian probability distribution with zero

mean and fixed variance for all t ∈ [0, T ]. In particular, we

evaluated the effect of the uncertainty for increasing values

of the variance, i.e., we varied it from 10−5 up to 10−1. To

give statistical significance to the results, we considered all

the L = 50 vectors of weights obtained in correspondence to

the different initial guesses.

Figure 6 contains the boxplots of the optimal costs in the

case of n = 10 basis functions. For the sake of comparison,

in the figure the boxplots of the cost obtained in the absence

of uncertainty are also reported, and denoted by var(ξ) = 0.

It turns out that the approximate controllers obtained in

the noise-free case guarantee good performances also in the

presence of uncertainties in the source term of the equation up

to values of the variance equal to 10−2. In fact, the optimal

costs are near to those obtained in the absence of noises.

For greater variances, a large increase of the costs can be

observed. The superiority of the EKF optimization approach

w.r.t. the line-search one is preserved also in the presence of

disturbances. In fact, notice that in all the cases the boxplots of

the former method are characterized by a lower median and a

reduced dispersion around the median w.r.t. those of the latter.

This is quite a satisfactory result, as it indicates that it is

possible to train the approximating networks in the noise-free

case and then use the optimal weights also in the presence

of uncertainties without significant decays of performances,

provided the uncertainty is not too large.

VI. CONCLUSIONS

In this paper, we have investigated an approach based on

the ERIM to find approximate solutions to the optimal control

problem of propagating fronts associated with the level sets

of the normal flow equation. The optimization of the cost

functional related to the performance of the control policy

has been performed subject to the dynamics of such equation

as a constraint. Two different techniques have been presented

to select the parameters of the approximate control policy,

both exploiting the gradient of the cost w.r.t. the weights of

the control action, computed by solving the related adjoint

equation backwards in time. The first algorithm is based on

line-search methods, whereas the second technique is a quasi-

Newton method that can be regarded as an EKF learning in

the wide research field of neural networks. The EKF-based

optimization has turned out to be more robust w.r.t. the trap-

ping into local minima, as shown via numerical simulations

in two and three dimensional examples.

Future works will be devoted to apply the proposed ap-

proaches to control the LS dynamics over an infinite horizon

by studying the stability of the resulting controllers. Lastly,

we will investigate the application of the techniques presented

in this paper to real-world systems involving the control of

moving fronts with a cascade of PDEs, describing the physical

phenomenon together with the LS one.
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