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Abstract—In this paper, a novel off-policy interleaved 

Q-learning algorithm is presented for solving optimal control 

problem of affine nonlinear discrete-time (DT) systems, using only 

the measured data along the system trajectories. Affine nonlinear 

feature of systems, unknown dynamics and off-policy learning 

approach pose tremendous challenges on  approximating optimal 

controllers. To this end, on-policy Q-learning method for optimal 

control of affine nonlinear DT systems is reviewed first, and its 

convergence is rigorously proven. The bias of solution to 

Q-function based Bellman equation caused by adding probing 

noises to systems for satisfying persistent excitation is also 

analyzed when using on-policy Q-learning approach. Then, a 

behavior control policy is introduced followed by proposing an 

off-policy Q-learning algorithm. Meanwhile, the convergence of 

algorithm and no bias of solution to optimal control problem 

when adding probing noise to systems are investigated. Third, 

three neural networks run by interleaved Q-learning approach in 

the actor-critic framework. Thus, a novel off-policy interleaved 

Q-learning algorithm is derived and its convergence is proven. 

Simulation results are given to verify the effectiveness of the 

proposed method. 

 

 
Index Terms—Q-learning, off-policy learning, affine nonlinear 

systems, interleaved learning, optimal control. 

 

I. INTRODUCTION 

  Reinforcement learning (RL), one of machine learning tools,  

has become a powerful  and practical tool for tackling optimal 

control problems [1]-[4]. Increasingly large scale, high 

complexity of systems as well as growing requirements of cost, 

efficiency, energy, quality of products, etc. for practical 

industries, such as process industry, smart grid, smart resident- 
____________________________________ 
  This work is partly supported by the NSFC Projects under Grants 61673280, 

61525302, 71602124, 61590922, 61503257, the Open Project of State Key 

Laboratory of Synthetical Automation for Process Industries under Grant 
PAL-N201603 and the Project of Liaoning Province under Grant LR2017006. 

  J. Li is with the School of Information and Control Engineering, Liaoning 

Shihua University, Liaoning 113001, P.R. China and also with the International 
Joint Research Laboratory of Integrated Automation, Northeastern University, 
Shenyang 110819, P.R. China. (lijinna_721@126.com) 

  T. Chai and Y. Jiang are with the State Key Laboratory of Synthetical 
Automation for Process Industries and the International Joint Research 

Laboratory of Integrated Automation, Northeastern University, Shenyang, 

110819, P.R. China. (Corresponding author: T. Chai; tychai@mail.neu.edu.cn; 
JY369 356904@163.com) 

  F. Lewis is with the UTA Research Institute, the University of Texas at 

Arlington, Texas 76118, USA. He is also a Qian Ren Consulting Professor, the 
State Key Laboratory of Synthetical Automation for Process Industries and 

with the International Joint Research Laboratory of Integrated Automation, 

Northeastern University, Shenyang 110819, P.R. China. (lewis@uta.edu) 
  Z. Ding is with the School of Electrical & Electronic Engineering, the 

University of Manchester, Manchester M13 9PL, UK. (zhengtao.ding@ manch 

ester.ac.uk) 

ial energy systems, make data-driven control very promising 

for achieving optimum of control processes [5-8]. Q-learning, 

also known as action-dependent heuristic dynamic 

programming (ADHDP), is one of RL schemes, which 

combines adaptive critics, RL technique with dynamic 

programming to solve optimal control problems [8-19]. One of 

the strengths of Q-learning is that it is able to evaluate utility 

and update control policy without requiring models of the 

environment to be known a priori [9, 10].  

  It is well known that Q-learning has been studied for several 

decades aiming at Markov decision processes (MDP) [2, 4, 

11-13], and the basic problem for which is to find a policy to 

minimize the expected cumulated costs (denoted by Q-function 

value) given state transition depending on only the present 

state-action pairs of the system, but not on its future and full 

past history. For the case of deterministic policy and 

deterministic state transition, increasing results using 

Q-learning to design an approximate optimal controller for the 

purpose of achieving optimum of control performance have 

been reported. For linear DT systems, [9, 10, 14, 15] solved H∞ 

control problem, optimal tracking control problem and optimal 

regulation problem using Q-learning. For linear continuous- 

time systems, [16-18] focused on the linear quadratic regulation 

problem and linear graphical game problem. Notice that the 

model-free optimal control for affine nonlinear systems using 

the Q-learning method has rarely been studied. This fact thus 

motivates this work for a better insight into how to design 

Q-learning algorithm to learn optimal controllers only using 

data for affine nonlinear systems. 

   Moreover, one can find that the above mentioned methods 

[8-10, 14-18] are implemented by using on-policy Q-learning 

approach. What kind of evaluating policy is called on-policy or 

off-policy? The essential difference between on-policy learning  

and off-policy learning lies on how to get data used for 

evaluating policy. If a target policy is evaluated using 

trajectories drawn from a behaviour policy not the target policy, 

then this learning method is referred to as off-policy learning. 

Otherwise, it is known as on-policy learning [4, 14-26]. 

Off-policy learning offers some advantages over on-policy 

learning with desired properties: (a) it resolves the 

exploration-exploitation dilemma. In fact, the arbitrary 

behaviour policy is applied to the systems to guarantee full data 

exploration, whereas the optimal exploitation policy, or the 

target policy, is actually learned; (b) probing noises are 

generally needed to guarantee persistent excitation (PE) 

condition, so that the optimal policy can be precisely learned. 

However, in on-policy learning, adding probing noises results 

in biased solutions [19]. On the other hand, in off-policy 

learning, adding probing noises does not result in biased 

solutions; (c) using off-policy learning mechanism for real 

systems is safer and more practical than on-policy learning, 
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since there is potential risk, such as instability, high overshoot, 

etc., when the learned policies calculated by biased solutions in 

on-policy learning have to act at the systems.  

   Off-policy RL with the goal of finding the control policy for 

achieving optimal control of unknown dynamics has been 

attracted increasing attention in recent years. Included is for 

continuous-time (CT) systems [22-25], for DT systems [19-21, 

26]. Even though the property of nonlinearity poses the great 

challenge on off-policy based RL for finding the optimal 

control policy without knowing the dynamics of systems, it is 

promising and practical since practical physical systems 

generally are nonlinear [5-7, 27]. To the best of our knowledge, 

off-policy Q-learning for affine nonlinear DT systems has not 

been fully developed yet. In this paper, an off-policy 

interleaved Q-learning algorithm is presented to solve the 

optimal control of affine nonlinear DT systems.  

  The contributions of this paper are summarized below:  

  1. Propose an off-policy Q-learning algorithm to approximate 

the optimal control policy for affine nonlinear DT systems. As 

opposed to on-policy Q-learning [8-10, 14-18], the off-policy 

Q-learning is investigated in this paper to handle the optimal 

control of affine nonlinear DT systems. 

  2. Prove no bias of solution to the optimal control problem for 

the first time from the perspective of off-policy Q-learning for 

affine nonlinear DT systems, which is the extension of [19-21] 

where the off-policy RL for linear DT systems was concerned. 

There exist two differences from [26] where an off-policy 

critic-only Q-learning algorithm was presented and one neural 

network was employed for solving the model-free optimal 

tracking control of nonlinear DT systems. One is that we 

develop a novel off-policy Q-learning algorithm by utilizing 

the relationship between Q function and value function. The 

other is that we present a rigorously theoretical proof on the 

unbiasedness of solution to the Q-function based iterative 

Bellman equation even though probing noises are added into 

systems for satisfying PE condition. 

  3. Develop an interleaved Q-learning approach for achieving 

approximate optimal control policy by interleaving iteration of 

critic network and actor network, which is different from the 

traditional policy iteration and value iteration approaches. 

The rest of paper is given as follows. Section II devotes to 

on-policy Q-learning algorithm review and proving its 

convergence for optimal control of affine nonlinear DT systems. 

Section III presents an off-policy Q-learning algorithm and 

analyze its convergence and no bias of solution to the optimal 

control problem. In Section IV, an off-policy interleaved 

Q-learning algorithm is proposed by constructing three neural 

networks for implementing interleaved critic-actor iteration. 

Moreover, the rigorous proof of its convergence is presented. 

Section V verifies the effectiveness and no bias of solutions for 

the proposed method. Conclusions are stated in Section VI. 

  Notations: nR  denotes the n  dimensional Euclidean space. 

⊗  stands for the Kronecker product. tr( )A  means the trace of 

matrix A , and vec( )L  is used to turn any matrix L  into a 

single column vector 

II. PROBLEM STATEMENT 

  In this section, the optimal control problem of affine nonlinear 

DT systems is formulated and its standard solution by solving 

HJB equation is presented. 

  Consider the following affine nonlinear DT system 

1 ( ) ( )k k k kx f x g x u+ = +                             (1) 

where n

kx R∈  and m

ku R∈  are the state and control input, 

respectively, ( )
n

kf x R∈  and ( )
n m

kg x R
×∈ . Without loss of 

generality, suppose that (1) is drift free, i.e., (0) 0f =  and 

(0) 0g = ; (1) can be stabilized on a prescribed compact set 

nRΩ ∈ . 

  It is well known that it is the basic target for optimal control 

problem to find the control policy ( )k ku u x=  which minimizes 

the infinite-horizon performance index expressed as 

0

0

( ) ( , )k k

k

J x l x u
∞

=

=∑                              (2) 

where  ( , )k kl x u  is the utility function with ( , ) 0k kl x u ≥  for 

any kx  and ku . In general, the utility function is chosen as a 

quadratic form T T( , )k k k k k kl x u x Qx u Ru= + , where 0Q ≥  and 

0R >  are respectively positive semi-definite matrix and 

positive definite matrix.  

  According to dynamic programming theory [26], the optimal 

value function should satisfy the DT HJB equation 
*

1

T *T) min )( (( )
k

k k kk kk
u

x QxV x V xu Ru += + +           (3)  

From (3), solving the optimal control policy by minimizing the 

right-hand side of (3) yields the optimal value function *
)( kV x . 

Based on the necessary condition for optimality, *

ku  can be 

obtained by taking the derivative of the right-hand side of  (3) 

with respect to 
ku . Thus, one has 

*

* 1 T 1

1

( )1
( )

2

k

k k

k

V x
u R g x

x

− +

+

∂
= −

∂                      (4)
 

Substituting (4) into (3) yields DT HJB equation as 
*T

T 11

1

*

T

*

*1

1

1

( )1
) ( )

4

( )
((

(

) )

k

k k k

k

k

k

kk

k

V x
x Qx g x R

x

V x

x

xg x
x

V

V

−+

+

+

+
+

∂
= +

∂

∂
⋅ +

∂           (5) 

Note that (5) is backward in time, and it is impossible to obtain 

1kx +  at the current time instant k . Especially for the affine 

nonlinear characteristics of (1), DT HJB equation (5) cannot be 

solved exactly. To overcome these challenging difficulties,  

various RL methods including heuristic dynamic programming 

(HDP), action-dependent HDP (Q-learning), dual heuristic 

dynamic programming (DHP), action-dependent DHP, 

globalized DHP have been reported for approximating the 

optimal solution of DT HJB equation instead of solving the 

analytical optimal solution [28-32]. The followings introduce 

the Q-learning algorithm to approximately solve DT HJB 

equation (5). 

III. ON-POLICY Q-LEARNING FORMULATION 

  This section focuses on three aspects: (a) review the on-policy 

Q-learning algorithm for finding the approximation value of the 

optimal control policy; (b) present a novel proof of 
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convergence of on-policy Q-learning algorithm; (c) show the 

bias of solution to DT HJB equation (5) if probing noises are 

added into the systems for enriching data. 

A. Derivation of Q-learning algorithm  

  Define the optimal action-dependent Q-function as  
* T T *

1( , ) ( )k k k k k k kQ x u x Qx u VRu x += + +          (6) 
Then, one has 

 *

* *

*

) min ( , )

( , )

(
k

k k k
u

k k

x Q x u

Q x u

V =

=                     (7) 

Combining with (3) yields the Q-function based DT HJB 

equation 
* * T * T * * *

1 1( , ) ( ) ( , )k k k k k k k kQ x u x Qx u Ru Q x u+ ++= +     (8)               

and the optimal control policy 

 

* *

* 1 T 1 1

1

( , )1
( )

2

− + +

+

∂
= −

∂
k k

k k

k

Q x u
u R g x

x                 (9)
 

  Referring to value iteration algorithms [8, 30, 33], Algorithm 

1 is given to learn the optimal control policy. 

Algorithm 1: On-policy Q-learning  

1: Initialize the optimal Q-function 0
( ) 0Q ⋅ = , and set the 

iteration index 0i = ; 

2: Calculate the initial control 0

ku  by 

0 T T 0
arg min )(( )

k
k k k k k

u
u x Qx u R Qu+ + ⋅=         (10) 

3: Update the iterative Q-function 
1 0 T 0 T 0 0

T 0 T 0

( , ) ( ) ( )

( )

k k k k k k

k k k k

Q x u x Qx u Ru Q

x Qx u Ru

= + ⋅

= +

+
       (11) 

4: Update the sequence of action policies 
T 1

1 1

T

1

1

1

1

1 1

arg min( ))

arg min ( , )

)1
( )

2

( ,

( ,

k

k

i

k k k k k
u

i

k k
u

T

k

i i

k k

i i

k k

k

u x Qx u Ru

Q

Q x u

Q

x u

R g x
x

x u

−
+ +

−
+− +

+

+

= + +

=

∂
= −

∂
      (12) 

and a sequence of Q-functions 

 

1 T T

1

1 1 1

( , ) ( )

( ))( ,

i i i i

k k k k k k

i

k k

i

k

Q x u x Qx u R

Q u

u

x x

+

−
+ + +

= +

+
                   (13) 

with 
1 ( ) ( ) i

k k k kx f x g x u+ = + . 

5: If 1 1( , ) ( , )i i i i

k k k kQ x u Q x u ε+ −− ≤ ( 0)ε > , stop and obtain 

the approximate optimal control policy i

ku ; Otherwise, set 

1i i= +  and go back to step 4. 

B. Convergence analysis of the on-policy Q-learning 

algorithm   

  The following two lemmas are given to use for the proof of 

convergence of Algorithm 1.  

  Definition 1: [31, 33] A feedback control 
nu  defined on 

xΩ  

is said to be admissible with respect to (2) if 
nu is continuous on 

a compact set m

u RΩ ∈ , (0) 0u = , 
nu  stabilizes system (1) on 

xΩ , and 
0( )J x  is finite 

0 xx∀ ∈ Ω . 

  Lemma 1: Suppose the sequence 1{ }iQ + to be defined as in 

(13). If system (1) is controllable and 0 ( ) 0Q ⋅ = , then the 

following conclusions hold. 

  (a). Let iµ  be an arbitrary sequence of control policies, 

function 1i
W

+  be defined as 
1 T T

1

( , ) ( )

( ) ( ) ( ( )( ( ), ) )
i

i i i i

k k k

i i i

k k k k

W x x Qx R

f x gW x f x g x

µ µ µ
µ µ µ

+

−

= +

+ + +
      (14) 

and 0
( ) 0W ⋅ = , then 1 1

( , ) ( , )
i i i i

k k kQ x u W x µ+ +≤  can be 

satisfied; 

  (b). There exists an upper bound ( )kY x  such that 

1 1( , ) ( , ) ( )i i i i

k k k kQ x u W x Y xµ+ +≤ ≤ , where 1i
W

+  is obtained by 

letting iµ  be an admissible control policy; 

  (c). If (8) is solvable, then  1 *
( , ) ( ,

i i

k k kQ x u Q x
+ ≤  

*
( )) ( )k ku x Y x≤ . 

  Proof: (a): Notice that 1( , )i i

k kQ x u+  is the result of minimizing 

the right-hand side of (13) by using i

ku obtained from (12), 

while 1( , )i i

kW x µ+ is achieved under an arbitrary control input 

referring to (14), then 1 1
( , ) ( , )

i i i i

k k kQ x u W x µ+ +≤  can be 

derived 

    (b): Let ( )i

k
xµ η= to be an admissible control policy, and let 

0 0
( ) ( ) 0Q W⋅ = ⋅ = , one has the following difference 

1

1

1 1 1 1

1 2

2 2 2 2

2 1

1 1 1 1

1 0

1

( , ( )) ( , ( ))

( , ( )) ( , ( ))

( , ( )) ( , ( ))

( , ( )) ( , ( ))

( , ( )) ( , ( ))

( , ( ))

i i

k k k k

i i

k k k k

i i

k k k k

k i k i k i k i

k i k i k i k i

k i k i

W x x W x x

W x x W x x

W x x W x x

W x x W x x

W x x W x x

W x x

η η
η η

η η

η η
η η
η

+

−
+ + + +

− −
+ + + +

+ − + − + − + −

+ + + +

+ +

−

= −

= −

= −

= −

=

⋮     (15) 

Rewriting (15) yields 

          

1 1

1 1

1 1

( , ( )) ( , ( )) ( , ( ))

( , ( )) ( , ( ))

i i

k k k i k i k k

k i k i k i k i

W x x W x x W x x

W x x W x x

η η η
η η

+
+ +

+ + + − + −

= −

= +
 

          

1

1 1

1 1

1 2

2 2

( , ( ))

( , ( )) ( , ( ))

( , ( )) ( , ( ))

i

k k

k i k i k i k i

i

k i k i k k

W x x

W x x W x x

W x x W x x

η
η η

η η

−

+ + + − + −

−
+ − + −

+

= +

+ +

 

  

1 1

1 1

1 1

2 2

T T

0

( , ( )) ( , ( ))

( , ( )) ( , ( ))

( ) ( )

k i k i k i k i

k i k i k k

i

k n k n k n k n

n

W x x W x x

W x x W x x

x Qx x R x

η η
η η

η η

+ + + − + −

+ − + −

+ + + +
=

= +

+ + +

= +∑

⋮

⋯      (16) 

Since  ( )kxη  is an admissible control policy, one further has 

1( , ( )) ( )i

k kW x x Y kη+ ≤                              (17) 

where T T

0

( ) ( ) ( )k n k n k n k n

n

Y k x Qx x R xη η
∞

+ + + +
=

= +∑ . Combining 

with (a), (b) holds, i.e., 1 1
( , ) ( , ) ( )

i i i i

k k k kQ x u W x Y xµ+ +≤ ≤ . 
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  (c): If *( ) ( )k kx u xη = , then 1 * *( , ) ( , ( ))i i

k k k kQ x u Q x u x+ ≤ ≤  

( )kY x  can be derived from (b). This completes the proof.       □ 

  Lemma 2: Suppose the sequences i
u  and iQ  to be defined as 

in (12) and (13). If 0 ( ) 0Q ⋅ = , then it follows 1i i
Q Q

+≤ . 

  Proof: By (a) of Lemma 1, we have i iQ W≤ . Next we shall 

show 1i i
W Q

+≤  by using induction.  

  Since iµ  is an arbitrary sequence of control policies, then we 

let 1i i

k
uµ += .  First, when 0i = , one has  

1 0 0 0 T 0 T 0( , ) ( , ) ( ) 0k k k k k k k kQ x u W x u x Qx u Ru− = + ≥       (18) 

which means 1 0
Q W≥ . 

  Suppose that 1 1 1( , ) ( , )i i i i

k k k kW x u Q x u− − −≤  holds, then one has 

1

1

1 1

1 1 1

1 1 1 1

( , ) ( , )

( ( ) ( ) ( ( ) ( ) ))

( ( ) ( ) ( ( ) ( ) ))

(

,

,

, ( )) ( , ( )) 0

i i i i

k k k k

i i i i

k k k k k k

i i i i

k k k k k k

i i i i

k k k k

Q x u W x u

Q f x g x u u f x g x u

W f x g x u u f x g x u

Q x u x W x u x

+

−

− −

− − −
+ + + +

−

= + +

− + +

= − ≥

      (19) 

By induction, it can conclude 1i i
W Q

+≤ . Since i i
Q W≤ , then  

1i iQ Q +≤ holds. This completes the proof.                               □ 

  Theorem 1: For the iterative control policy i
u and the iterative 

Q-function i
Q  respectively defined as in (12) and (13), if 

0 ( ) 0Q ⋅ = , then i
Q  converges to the optimal value *

Q  and i
u  

converges to the optimal control policy *
u  as i → ∞ , i.e., 

*lim i

i
Q Q

→∞
=  and *lim i

i
u u

→∞
= . 

  Proof: From Lemma 1 and Lemma 2, one can conclude that 

the iterative Q-function i
Q converges, which leads to i

u  

converging as well. We are now in a position to prove that they 

respectively converge to the optimal value *
Q  and the optimal 

control policy *
u as i → ∞ . 

  By (7), one has  
* * 1( , ) ( , )i i

k k k kQ x u Q x u+≤                          (20) 

Combining (20) with the conclusion (c) of Lemma 1 yields 

 1 * *lim ( , ) ( , )i i

k k k k
i

Q x u Q x u−

→∞
=                        (21) 

Thus, one has *lim i

i
u u

→∞
=  by referring to (9) and (12). This 

completes the proof.                                                                  □ 

  Remark 1: Solving 1
( , )

i i

k kQ x u
+  in terms of (13) when 

implementing Algorithm 1 generally needs to add probing 

noise for satisfying PE condition like [8-10, 14-26]. [19] has 

shown that incorrect solutions resulting in incorrect optimal 

control policy would be caused by probing noise if using 

on-policy HDP method for optimal control of linear DT 

systems. This conclusion will be proven to still hold by the 

sequel for the case of affine nonlinear systems with using 

on-policy Q-learning algorithm. 

C. Bias of solution analysis for on-policy Q-learning algorithm  

  Lemma 3: Suppose that probing noise ke is added to the 

control policy i

ku  in Algorithm 1. Let 1iQ +ɶ  be the solution to 

(13) with i i

k k ku u e= +ɶ , 0≠ke , then 
1iQ +ɶ  is not the solution to  

(13)  with 0ke = .  

  Proof: Let (13) be Bellman equation without probing noise, 

i.e. 0ke = . If probing noise is added into the system (1), i.e. 

i i

k k ku u e= +ɶ
 

( 0)ke ≠ acts as control input to generate data 

using for performance evaluation, then (1) and (13) 

respectively become the forms below 

1 ( ) ( ) ( )i

k k k k k kx f x g x u g x e+ = + +ɶ               (22) 

and 
1 T T

1 1 1

( , )

(

( )

( ), )

i i i i

k k k k k k

ii

k k k

Q x u x Qx u Ru

x xQ u

+

+ + +

= +

+

ɶ

ɶɶ ɶ
                 (23) 

By considering (1) in (23), one has  
1 T T

1 1 1

( , ) ( )

( ) ( ( ) )( ),i

i i i i

k k k k k k

i

k k k k k k k

Q x u x Qx u Ru

x g x e x g x eQ u

+

+ + +

= +

+ + +

ɶ

ɶ
   (24) 

Contrasting (13) with (24) shows that 1iQ +ɶ  is not the same as 

1iQ + , which might lead to incorrect the control update since 

                                 1 1 T1
( )

2

+ −= −i

k ku R g x  

1

1 1 1

1

( ( ) ( ( ) )),+ + +
+

+

∂ + +
⋅

∂

ɶ i

k k k k k k

i

k

k

x g x e x g x

x

Q eu
        (25) 

This completes the proof.                                                         □ 

IV. OFF-POLICY Q-LEARNING TECHNIQUE  

  The basic target of this paper is to present an off-policy 

Q-learning method for achieving optimum of control 

performance of affine nonlinear DT systems. This section 

devotes to proposing an off-policy Q-learning algorithm and 

proving the convergence of the proposed off-policy Q-learning 

algorithm, as well as analyzing no bias of solution even though 

probing noise is added into the systems for reaching PE 

condition. 

A. Off-policy and Q-learning 

 On-policy and off-policy are two kinds of RL methods. 

On-policy methods evaluate or improve the same policy as the 

one that is applied to the systems for generating data. While, in 

the off-policy methods, there exist two types of unrelated 

control policies, one is called behavior policy used to generate 

date for implementing learning, and the other is target or 

estimation policy, which is evaluated and improved to 

approximate the optimal control policy  [4, 14-26]. 

  Q-learning can be implemented by on-policy [8-10, 14-18] or 

off-policy approach [19-21, 26] depending on updating 

Q-function value by using data from a behaviour policy or the 

target policy. What is showed Q-learning in Algorithm 1 is 

actually an on-policy method because it updates its Q-values 

using the trajectories drawn from the evaluated action.  

 B. Derivation of off-policy Q-learning algorithm 

  Introducing an auxiliary variable i

ku  into system (1)  yields 

1 ( ) ( ) ( )( )i i

k k k k k k kx f x g x u g x u u+ = + + −               (26)
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where 
ku  is called the behavior policy and 1i

ku −  is viewed as 

the target policy needed to be evaluated and improved. It is well 

known that (12) and (13) are respectively equivalent to  

  
1

1

1 1

1 T ( ( ) ( ) )1
( )

2 ( ( ) ( ) )

,
−

−

−
+− ∂ +

= −
∂ +

i

i k k k

i

k

i

k k i

k k

kQ f x g x u
u R g x

f x g x u

u
       (27)  

and  
1 T T

1

1

( , ) ( )

( ) ( ) ( ( ) ( ) ))( ,

+

−
+

= +

+ + +

i i i i

k k k k k k

i i i

k k k k k k k

i

Q x u x Qx u Ru

f x g x u f x g x uQ u
       (28) 

Along the trajectory of (26),  (27) and (28) can be respectively 

rewritten as 

              

1 1

1 T 1

1

1

1

1){ , ( }1
( )

2 ( )

− − −
− + +

−
+

∂
= −

∂

i i

i k k

i

k k

k

i

i

x x
u

x

Q u
R g x

           (29) 

and  

1

1

1

1

T T

{

, (

( , ) ( )

( ) ( )( ))}

( )

i i

k k k k

i i

k k k k k k

i i

k k k k

i

i

Q x u x g x

u u x g x u u

x Qx u R

Q

u

u

+
+

+
−

− −

⋅ − − −

= +

      (30) 

where 1 1

1 1 ( )( )
− −
+ += − −i i

k k k k kx x g x u u . The following Algorithm 

2 is to show how to implement off-policy learning for 

approximating the optimal control policy. 

 

Algorithm 2: Off-policy Q-learning  

1: Initialize the optimal Q-function ( ) 0iQ ⋅ = , and set the 

iteration index 0i = ; 

2: Calculate the initial control 0

ku  by 

  0 0 1 0

1 1 1

0 T Targ min( )( , ( ))
k

k k k k k k k k
u

Q x uu x Qx u Ru x−
+ + += + +     (31) 

3: Update the iterative Q-function 

          
1 0 T 0 T 0( , ) ( )k k k k k kQ x u x Qx u Ru= +                          (32) 

4: Update the sequence of action policies by (30) and the 

sequence of the iterative Q-functions by (29);                  

5: If 1 1( , ) ( , )i i i i

k k k kQ x u Q x u ε+ −− ≤ , stop and obtain the 

approximate optimal control policy i

ku ; Otherwise, set 1i i= +  

and go to step 4. 

 

  Theorem 2: 
1( , )i i

Q u
+

 is the solution of (12) and (13) if and 

only if it is the solution of (29) and (30).  

  Proof: One can find that if 1( , )i i
Q u

+  is the solution of (12) 

and (13), then it also make (27) and (28) hold for 
k xx∀ ∈Ω  

(
xΩ  is a compact set). For the state 

kx  generated by  (26), 

substituting 
1 ( )( ) ( ) ( )i i

k k k k k k kx g x u u f x g x u+ − − = +  into (27) 

and (28) yields (29) and (30), so the solution 1( , )i i
Q u

+  of  (12) 

and (13)  can satisfy (29) and (30) as well. Next, we shall prove 

that the solution of (29) and (30) is also the solution of (12) and 

(13). Substituting (26) into (29) and (30) yields (27) and (28), 

further gets (13) and (12). This completes the proof.               □                                                      

  Remark 2: Note that the solutions of Algorithm 1 and 

Algorithm 2 are equivalent as shown in Theorem 2. Moreover, 

the convergence of Algorithm 1 has been proved in Theorem 1, 

therefore, if 
1( , )i i

Q u
+

 can be solved correctly from Algorithm 

2, then *lim i

i
Q Q

→∞
=  and *lim i

i
u u

→∞
=  can be concluded.           

  Remark 3: The Q-learning in Algorithm 2 is definitely an 

off-policy approach, since the target control policy is updated 

but not to be applied to the real systems during learning due to 

the introduction of an arbitrary stabilizing behavior policy 
k

u  

used to generate data and enrich data exploration, which is a 

remarkable feature possessed by the off-policy learning as 

opposed to the on-policy learning  [4, 14-26]. 

C. No bias of off-policy Q-learning algorithm 

   In [19], it was shown that adding probing noise does not 

result in biased solution for optimal control of linear DT 

systems using off-policy RL learning. Here, we extend that 

result to affine nonlinear DT systems for finding the optimal 

control policy by using off-policy Q-learning.  

  Theorem 3: Suppose that a probing noise ke is added to the 

behavior policy in Algorithm 2. Let 
1( , )i i

Q u
+

 be the solution 

to  (29) and (30) with 
k k ku u e= + , 0≠ke , then 

1( , )i i
Q u

+
 is 

also the solution to (29) and (30) with 0ke = .  

  Proof: A probing noise is added into the behavior control 

policy, that is, 
k k ku u e= + . By Algorithm 2, 0 0

k ku u=  and 

1 0 1 0
( , ) ( , )k k k kQ x u Q x u=  hold. We assume 1 1i i

k ku u
− −=  and 

1 1( , ) ( , )i i i i

k k k kQ x u Q x u− −=  hold, and substituting 
ku  into (26)  

yields  

                       1
( ) ( )( )

k k k k k
x f x g x u e+ = + +

 
1 1

1 1

1

1

1

( )( )

( ) ( )

− −
+ +

−

−
+

= − −

= +

=

i i

k k k k k

i

k k k

i

k

x x g x u u

f x g x u

x

                           (33) 

By (29), one has  
1 1

1

1

T 1 1

1

)}1
(

(
)

(

{ ,

2 )

− −
− + +

−

+

∂
= −

∂

i ii i

i k k

k k i

k

Q ux x
u R g x

x
                 (34) 

Due to 1 1i i

k ku u− −=  and 1 1( , ) ( , )i i i i

k k k kQ x u Q x u− −= , (34) 

becomes  
1 1

1 T 1

1

1

1

1){ , ( }1
( )

2 ( )

− − −
− + +

−
+

∂
= −

∂

i i

i k k

i

k k

k

i

i

x x
u

x

Q u
R g x           (35)

 

  By comparing (29) and (35), one can conclude that i i

k ku u=  

resulting in 
1 1+ +=i i

k kx x  by referring to (33).  Note that 

1 T T

1

1

1

( , ) ( )

( )), (

i i i i

k k k k k k

i i i

k k

i

Q x u x Qx u Ru

Q x xu
−

+

+ +

= +

+
                (36) 

substituting i i

k ku u=  and 
1 1+ +=i i

k kx x  into (36), one has  

 

1 T T

1 1{

( , ) ( )

( )( ) ( )( ))( },

i i i i

k k k k k k

i ii

k k k k k k k

i

k

Q x u x Qx u

Q

Ru

x g x u u x g x uu u

+

+ +

= +

+ − − − −
(37) 

By comparing (30) with (37), one can conclude that 
1 1i iQ Q+ += . By mathematical induction, 1 1( , ) ( ,i i iQ u Q+ +=  

)
i

u  even though 0≠ke . 
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  Therefore, adding the probing noise during implementing the 

proposed off-policy Q-learning Algorithm 2 cannot produce 

bias of solution. This completes the proof.                              □ 

  Remark 4: In contrast to the off-policy Q-learning method 

[26], the developed off-policy Q-learning Algorithm 2 in this 

paper has a different learning strategy shown in (29) and (30). 

More importantly, even though probing noise is added to the 

system for satisfying PE condition, no bias of solution can be 

guaranteed and is proved for the first time from the perspective 

of Q-learning, whereas off-policy RL for linear DT systems 

was taken into account in [19-21].  

V. NEURAL NETWORK-BASED OFF-POLICY INTERLEAVED 

Q-LEARNING  

  In this section, three neural networks are used to approximate 
1

( , )
i i

k kQ x u
− , i

ku  and the affine nonlinear system (1) by 

function value approximation approach. Algorithm 2 is 

implemented based on interleaved-learning critic and actor 

structure by neural networks. Therefore, this is a data-driven 

approximate optimal control strategy without the knowledge of 

system model. 

A. The model neural network 

  Note that updating Q-function and control policy in Algorithm 

2 requires ( )kg x  to be known a priori, but it is difficult to know 

( )kg x  in real applications. Actually 1( ) k

k

k

x
g x

u

+∂
=

∂
, so the 

following three-lay NN [29, 33] is used to approximate the 

dynamics of system (1) for estimating ( )kg x  by using 1
ˆ

k

k

x

u

+∂
∂

. 

 
1

ˆ ( )
kT T

k x x

k

x
x v

u
ω σ+

 
=  

 
                       (38)

 

where 
xω  and 

xv  are respectively the weights of the hidden 

layer to the output layer and the weights of the input layer to the 

hidden layer. ( )
kT l

x

k

x
v R

u
σ  

∈ 
 

 is the activation function vector, 

[ ( )] ( ) ( )z z z z

lz e e e eσ − −= − +  and l  is the number of neurons 

in the hidden layer.  To train the NN (38), the gradient descent 

algorithm is used to update the weight 
xω . 

( 1) ( ) xk

x x c

x

E
k kω ω η

ω
∂

+ = −
∂

                   (39) 

where 
xke  and 

xkE  are respectively the approximate error and 

the squared error of model network, and they are defined as 

T

1 1

1
ˆ,

2
+ += = −xk xk xk xk k kE e e e x x                  (40) 

Thus, one has 

1

1

T T

ˆ

ˆ

( )

ω ω

σ

+

+

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂

 
=  

 

xk xk xk k

x xk k x

k

x xk

k

E E e x

e x

x
v e

u

                        (41) 

B. The actor neural network 

  We employ the actor NN to approximate actor i

ku  given by 

Tˆˆ ( ) ( ( ))ω σ=i i

k ak au Z k                        (42) 

where T
( ) =a a kZ k v x , ˆ i

akω  and 
av  respectively are the weights 

of the hidden layer to the output layer and the weights of the 

input layer to the hidden layer. Training ˆ i

akω  is implemented by 

using gradient descent algorithm. 

1ˆ ˆ
ˆ

i

i i ak

ak ak a i

ak

Eω ω η
ω

+ ∂
= −

∂
                        (43) 

where i

ake  and i

akE  respectively are the approximate error and 

the squared error of actor network, and they are defined as 

T1
ˆ( ) ,

2
= = −i i i i i i

ak ak ak ak k kE e e e u u                   (44) 

and  

                          

ˆ

ˆ ˆˆ

( ( ))

i i i i

ak ak ak k

i i i i

ak ak k ak

i

ak a

E E e u

e u

e Z k

ω ω
σ

∂ ∂ ∂
=

∂ ∂ ∂

=
 

1 1
1 T1 1 1

1

1

1

ˆ )}1
( )

2 (

ˆ { (

)

,− −
− + +

−
+

−
+

∂ ∂
= −

∂ ∂

i i
i k

i i

k k

k i

k k

x x x
u R

x

Q u

u
        (45) 

C. The critic neural network 

  A critic neural network is used to allow approximate the 

iterative Q-function. The critic NN is given by the form of the 

three-layer neural network 

  1 1 T

,
ˆ ˆˆˆ( , ) ( ) ( ( ))ω σ+ +=i i i

k k c k cQ x u Z k
                  (46) 

where Tˆ ( )
ˆ

 
=  

 

ki

c c i

k

x
Z k v

u
, 

ciω  and 
cv  respectively are the 

weights of the hidden layer to the output layer and the weights 

of the input layer to the hidden layer. (46) can be used to 

approximate 1

1 1
ˆ ˆ( , )i i

k kQ x u −
+ +  as 

T T 11

1 1 ,

1

ˆ ˆ)ˆ{ }, ( ) ( )
)

(
ˆ (

ω σ− +
+ +

+

 
=  

 

i

i i i i k

k k c k c i

i

k

i

x
Q x xu v

u x         (47)
 

where  

                  1

1 1

ˆ
ˆ( )i ik

k k k k

k

x
x x u u

u

+
+ +

∂
= − −

∂
, 

                2 T1

1

ˆ
( ( )ω σ+  ∂

= −  ∂  

kk

x x

kk

xx
I I v

uu
,  

1

0 0

0

n n n m

m n m m

I
I

× ×

× ×

 
=  
 

, 

( ) 1

1

1
n m

I

+ ×

 
 =  
  

⋮                (48) 

Then, the squared error and approximate error of the critic 

network are respectively defined as i

ckE  and i

cke . 

T

,

1
( )

2
=i i i

ck c k ckE e e                                (49) 

1 1

1 T 1 T 1

1 1 1

1 1

2

ˆ ˆ ˆ( , ) ( , )

ˆ ˆ ˆ ˆ( , ) ( ( )

ˆ ˆ{ , )( })

i i i i i

ck k k k k

i i i i

k k k k k k

i i ii

k k

e Q x u Q x u

Q x u x Qx u Ru

Q x xu

− −

− − −

− −− −
+ +

= −

= − +

+

          (50) 



 7

The gradient descent algorithm is used to update the weight for 

the critic network, which is given as follows 

 
1ˆ ˆ

ˆ

i

i i ck

ck ck c i

ck

Eω ω η
ω

+ ∂
= −

∂
                         (51) 

where 
1

, , ,

, , ,

1

,

ˆ ˆ( , )

ˆˆ ˆˆ( , )

ˆ( ( ))

i i i i i
c k c k c k k k

i i ii i
c k c k c kk k

i i

c k c

E E e Q x u

e Q x u

e Z k

ω ω

σ

−

−

∂ ∂ ∂ ∂
=

∂ ∂ ∂∂

=

           (52) 

  D. Interleaved Q-learning 

 The following presents an off-policy interleaved Q-learning 

algorithm based on interleaved-iteration critic and actor 
networks. 

Algorithm 3 Off-policy interleaved Q-learning 

1: Data collection: Collect system data kx  and store them in 

the sample sets 
 
by using the behavior control policy

 ku ; 

2: Initialization: Initialize weight vector 
xω , 

xv  for the affine 

nonlinear neural network; 

3: Train the model network 

(1) Train weight in terms of (39) using the measured data until 

xk xe ε≤  ( 0)xε > ; 

(2) Get the trained weight 
xω . Let 0k = ; 

4: Interleaved iteration 

(1) Let the initial iterative Q-function 0 ( ) 0Q ⋅ =  and further 

calculate the initial control 0

ku  by (31). Let the iteration index 

0i = ; 

(2) Train critic network: Calculate 1ˆ ˆ( , )i i

k kQ x u+ ,  

1 1
ˆ, )}{ (ˆ ii i i

k kQ x xu+ +   and i

cke  using (46), (47) and (50) to  update 

the critic weight 1ˆ i

ckω +  once using (51); 

(3)  Train actor network: Calculate ˆ i

ku , i

ku  and i

ake  using (42) 

and (45) to update the actor weight 1ˆ i

akω +  once using (43); 

(4) Check 1 1ˆ ˆˆ ˆ( , ) ( , ) ε− +− ≤i i i i

k k k k QQ x u Q x u  ( 0)Qε > , if it is not 

satisfied, go to (2) in step (4), otherwise get ˆ i

ku . 

5: Set 1k k= + , and go back to step 4. 

  Remark 5: One can easily find that no information on 

dynamics of affine nonlinear systems is required when learning 

the optimal control policy by constructing three neural 

networks in Algorithm 3.  

  Remark 6: In Algorithm 1 and Algorithm 2 of this paper, the 

neural network weight 1ˆ i

ckω +  is kept training with time k until it 

converges for each iterative index 1i +  and then the actor 

weight ˆ i

akω  is trained by the same approach, which is the 

traditional value iteration RL method [8, 30, 33]. While, in 

interleaved Q-learning Algorithm 3, for each time k , critic 

network and actor network are interleaved iterated with 

iterative index i  until convergence, and they finally converge 

with increasing time k . Actually, the proposed interleaved 

Q-learning is a kind of variant of generalized value iteration [34, 

35], is more easily implemented for the practical applications, 

which is another bright spot in this paper.   

  Remark 7: Notice that in Algorithm 3 the critic neural 

network for Q-function value is updated off-line by using an 

entire set of data under the PE condition, instead of on-line 

updating it. This idea is basically the same as Neural Fitted Q 

(NFQ) Iteration [2].  

  Theorem 4: Let the optimal performance index function and 

the optimal control policy be expressed by 
* * * T
( , ) ( ) ( ( ))ω σ=k k ck cQ x u Z k                 (53) 

and  
* * T

( ) ( ( ))ω σ=k ak au Z k                       (54)
 

respectively, where 
T

*
( )

 
=  

 

k

c c

k

x
Z k v

u
. Let the actor and critic 

networks be regulated by (43) and (51), respectively. Let 
*ˆi i

ck ck ckω ω ω= − , *ˆi i

ak ak akω ω ω= − , if there exist 0cW >  and 

0aW >  satisfying 

                        
2

1

ˆ( ( ))
c

i

cZ k

η
σ

< , 
2

1

( ( ))
a

aZ k
η

σ
< , 

                                

2

2
ˆ( ( ))i

c ci

ck

q

W Z k
e

σ

η
> , 

 

2
2 ( ( ))a ai

ak

u

W Z k
e

σ
η

>                        (55) 

then the errors i

ckω  and i

akω  both converge to zero, as i → ∞ . 

where 
2 2

ˆ ˆ2 ( ( 1)) ( ( 1))q c c cZ k Z kη η σ σ= − + − + , 2uη = −  

2 2
( ( )) ( ( ))a a aZ k Z kη σ σ− . 

  Proof: By (43) and (51), one has  
1 1ˆ( ( ))i i i i

ck ck c ck ce Z kω ω η σ+ −= −                       (56) 

and  
1

( ( ))
i i i

ak ak a ak ae Z kω ω η σ+ = −                       (57) 

Choose a Lyapunov function candidate as  
T T

, , , , , ,( , ) tr(( ) ( ) )ω ω ω ω ω ω= +i i i i i i

c k a k c k c k a k a kV          (58) 

  Let T

1( ) = ( )ω ωi i

ck ckV i  and T

2 , ,( ) = ( )ω ωi i

a k a kV i ,  so the 

following holds 
1 T 1 T

1

2 T

1 T

22
2 1

1 T *

( ) = tr(( ) ( ) )

ˆ ˆ( ( ( 1))) ( ( 1)

ˆ2 ( ( ( )) )

ˆ( ( ))

ˆ ˆ2 ( ( ( )) ( ))

ω ω ω ω

η σ σ

η σ ω

η σ

η σ ω ω ω ω

+ +

−

−

−

∆ −

= + +

−

=

− − + −

i i i i

ck ck ck ck

i i

c ck c ck c

i i i

c ck c ck

i i

c ck c

i i i i i

c ck c ck ck ck ck

V i

e Z k e Z k

e Z k

e Z k

e Z k

      (59) 

and  
1 T 1 T

2

2 T

( ) = tr(( ) ( ) )

( ( ( )) ( ( )

ω ω ω ω
η σ σ

+ +∆ −

=

i i i i

ak ak ak ak

i i

a ak a ak a

V i

e Z k e Z k
 

T

2 22

T *

2 ( ( ( )) )

( ( ))

ˆ2 ( ( )) ( ))

η σ ω

η σ

η σ ω ω ω ω

−

=

− − + −

i i

a ak a ak

i

a ak a

i i i i

a ak a ak ak ak ak

e Z k

e Z k

e Z k

      (60) 

We assume T T 1

1 1

1

1

1
)} ( ) ({ (

ˆ
)

)
ˆ,

(

i

i

i i i i k

k k ck c i i

k

x
Q x x vu

u x
ω σ −

+
+ +

+

−  
=  

 
,  and  
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T( ) ( )ω=i i

k ak au Z k ,
 

then we have 1ˆ ˆ( , ) ( ,
i i i i

ck k k ke Q x u Q x
−= −  

1 1 Tˆ ˆˆ ) ( ( )) ( )σ ω ω− −= −i i i i

k c ck cku Z k  and  ˆi i i

ak k ke u u= − =  

T ˆ( ( )) ( )σ ω ω−i i

a ak akZ k . By the analysis in Remark 2, one can 

know that  *lim( ) 0i

ck ck
i

ω ω
→∞

− =  and *lim( ) 0i

ak ak
i

ω ω
→∞

− = . So there 

must exist 0cW >  and 0aW > , such that 
2

*i

ck ck cWω ω− ≤ , 

2
*i

ak ak aWω ω− ≤  hold. Thus, one has 

22
1

1

T 1 *

22
1

22
T 1 *

22
1

ˆ( ) = (2 ( ( )) )

ˆ2( ( ( ))( ))

ˆ(2 ( ( )) )

ˆ( ( ( ))( ) )

ˆ( ( ( )) )

η η σ

σ ω ω

η η σ

η σ ω ω

η η σ

−

−

−

−

−

∆ − −

+ −

≤ − −

+ + −

= −

i i

c ck c c

i i i

ck c ck ck

i i

c ck c c

i i i

c ck c ck ck

i i

c ck q c c

V i e Z k

e Z k

e Z k

e Z k

e W Z k

           (61) 

and 
2 2

2

T *

2 2

2 2
*

2 2

( ) = (2 ( ( )) )

2( ( ( ))( ))

(2 ( ( )) )

( ( ( ))( ) )

( ( ( )) )

η η σ

σ ω ω

η η σ

η σ ω ω

η η σ

∆ − −

+ −

≤ − −

+ + −

≤ − −

i

a ak a a

i i

ak a ak ak

i

a ak a a

i T i

a ak a ak ak

i

a ak u a a

V i e Z k

e Z k

e Z k

e Z k

e W Z k

          (62) 

If (55) holds, then 1 2( ) = ( ) + ( ) < 0V i V i V i∆ ∆ ∆ . Hence, 

lim 0i

ck
i

ω
→∞

=  and lim 0i

ak
i

ω
→∞

= . This completes the proof.         □ 

  Remark 8:  Since the analytical solution 1
( , )

i i
Q u

+  is quite 

hard to achieve, neural network approximation is necessary for 

presenting a numerical solution of them. But it has to point out 

that the reconstruction errors inherently exist due to the facts of 
* * * T

1( , ) ( ) ( ( )) ( )ω σ ε= +k k ck c kQ x u Z k x  and * * T( )ω=k aku  

2( ( )) ( )a kZ k xσ ε+ , where 
1( )kxε  and 

2 ( )kxε  are bounded 

reconstruction errors. This means that *ˆ i

ck ckω ω−  and *ˆ i

ak akω ω−  

are both bounded, whose details can be seen in [36]. Hence, we 

claim that an approximate optimal solution of the HJB equation 

(8) is actually obtained instead of the exact optimal one. 

D. For linear system using off-policy Q-learning 

  For linear DT system given as 

1k k k
x A x Bu+ = +                                 (63) 

Actually, the optimal Q-function is a quadratic form  
T T

* ( , ) ( )vec( )
k k

k k

k k

x x
Q x u H

u u

   
= ⊗   
   

             (64) 

since T T) ( )vec(( )kk kJ x x Px = ⊗  if 
k ku Kx= − , where 0H ≥ , 

0P ≥  and 
T T

T T T( )

xx xu

xu uu

H H A PA Q A PB
H

H H B PA B PB R

   +
= =    +   

     (65)

T
I I

P H
K K

   =    − −   
                             (66) 

DT HJB equation (8) is reduced as 
T T T T T T

1 1( )vec( ) ( )vec( )k k k k k k k kz z H x Qx u Ru z z H+ +⊗ = + + ⊗  (67) 

where T T T[ ]k k kz x u= . (9) correspondingly becomes 

* 1 T( )k uu xu ku H H x−= −                       (68)     
Thus, (13) and (12) are correspondingly rewritten as 

T T 1 T T T T

1 1( )vec( ) ( ) ( )vec( )i i i i

k k k k k k k kz z H x Qx u Ru z z H+
+ +⊗ = + + ⊗

                           (69) 

and
         

1 T( ) ( )i i i

k uu xu ku H H x−= −                    (70)
 

  To implement the off-policy Q-learning algorithm for linear 

system (63), (26) is correspondingly changed into 

1 ( )i

k c k k kx A x B u u+ = + −                       (71)
 

where i

cA A BK= −  and j i

k ku K x= − . Notice that (69) is 

equivalent to the following form    
T

1 T

T

T

( )

( ) ( )

i i i

i i

i i i

i i

I I
H Q K RK

K K

I I
A BK H A BK

K K

+    = +   − −   

   
+ − −   − −   

    
 (72) 

Thus, (29) is correspondingly changed into  

                 

1

T

T T

( , )+

   
−    − −   

i i

k k

i

k c c kj j

Q x u

I I
x A H A x

K K

 

T

T 1

1

T

T

1

T T

(

( ))

( ( ))

( ( ) )

+
+

+

   
= −   − −   

   
− −    − −   

⋅ − −

= +

i

k k ki i

i i

k k i i

i

k k k

i i

k k

I I
x H x x

K K

I I
B u u H

K K

x B u u

x Q K RK x               (73) 

  Since 1i
P

+ and 1i
H

+ have the relationship shown in (65) and 

(66), then the following off-policy Q-function based Bellman 

equation holds 

 

T

T 1

T

T

1 1

T T

T

T T

2 ( ) ( )( )

( ) ( )( )

( ( ) )

i

k ki i

i

k ki i

i i i i

k xu k k k uu k k

i i i

k uu k k

i i

k k

I I
x H x

K K

I I
x H x

K K

x H u K x u H R u K x

K x H R u K x

x Q K RK x

+

+ +

   
   − −   

   
−    − −   

+ + + − +

− − +

= +

     (74) 

Properly manipulating (74) yields the following form 

 1( )vec( )i i i
kk Hθ ρ+ =                      (75) 

where  
T T

T T

T T

1 1 ( )

k k k k

i

i

k

k ki i

x Qx u Ru

I I
x x vec H

K K

ρ

+ +

+

      
   + ⊗      − −      

=
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T T

T T

2( ( ) ) ( )

( ) ( )

i i

k k k xu

i

k k uu

x u K x vec H

u u vec H

− ⊗ +

− ⊗  

           

T T

T T( ) k ki i

i
I I

x x
K K

kθ
   
   =
   
 

   
⊗   

 
−  

− 
  

When finding
 

1iH + , thus 1jK +  can be calculated as 

 
1 1 1 1 T( ) ( )i i i

uu xuK H H+ + − +=                       (76)
  

Algorithm 3 is reduced as follows for the case of linear system. 

 

Algorithm 4 Off-policy interleaved Q-learning for linear 

systems 

1: Data collection: Collect system data kx  and store them in 

the sample sets ( )i kθ  and
 

iρ
 
by using the behavior control 

policy
 ku ; 

2: Initiation: Choose the initial stabilizing gains
 

0K , and let the 

initial iterative matrix 0H . Set
 

0i = , 0k = ;
 

3: Implementing Q-learning: Calculate 1iH +  in (75) using the 

collected data in Step 1, and then 1iK +  can be updated in terms 

of (76);
 

4: If 1i iK K l+ − ≤
 
( l  is some small positive number), then 

stop the iteration, and let 1k k= + , go back to Step 3, and thus 

the optimal control policy has been obtained. Otherwise, let 

1i i= +  and go back to Step 3. 

            
 

  Remark 9: A distinctive feature existed in Algorithm 4 for the 

special case of linear systems is to approximate the optimal 

control policy gain without knowing system matrices A  and 

B , even no need of identifying system model using neural 

networks or something similar. 

VI. SIMULATION RESULTS  

  In this section, the proposed off-policy interleaved Q-learning 

algorithm is applied to two representative examples to show its 

effectiveness. Simulations are operated to show the no bias of 

solutions when adding probing noise to systems if we use this 

developed off-policy Q-learning algorithm. Moreover, 

simulations show the implementation and control performance 

of the proposed algorithm.  

  Case 1: Consider the following open-loop unstable system: 

                            1

1 2 2

2.2 1.7 1.6
k k kx x u+

−   = +   
   

                    
(77)

                       
 

Choose 6Q = and 1R = . First, the optimal solution *P  was 

calculated by using command "dare" in Matlab. Thus, the 

optimal Q-function matrix *H  and the optimal controller gain 
*K  can be respectively obtained in terms of (65) and (68). 

   

[ ]

*

*

96.4653 95.5203 96.9205

95.5203 289.2950 281.7826

96.9205 281.7826 281.3409

0.3445 1.0016

H

K

− − 
 = − 
 − 

= −

            (78) 

  Using three different probing noises, the unbiasedness of the 

off-policy Q-learning algorithm is verified compared with the 

on-policy Q-learning algorithm. The probing noise is 

respectively considered as
 

1: 

           

2

2

1.1(0.5sin (2.0 )cos(10.1 )

0.9sin (1.102 )cos(4.001 )

ke k k

k k

=

+             

(79) 

2:  

 

2

2

2.97(0.5sin (2.0 ) cos(10.1 )

0.9sin (1.102 )cos(4.001 )

ke k k

k k

=

+             

(80) 

3: 

2

2

3.2(0.5sin (2.0 ) cos(10.1 )

0.9sin (1.102 )cos(4.001 )

ke k k

k k

=

+              

(81) 

  Table 1 respectively lists the convergence results of the 

iterative controller gain and means and variances of their 

differences from the theoretical optimal controller gains by 

using the on-policy Q-learning algorithm [8, 10, 14, 15] and the 

developed off-policy Q-learning algorithm under the 

above-mentioned three cases. In Table 1, 'N' denotes 

unavailable. For probing noise 1, the PE condition is not 

satisfied when implementing the on-policy Q-learning 

Algorithm 1, thus this algorithm cannot work. For probing 

noise 2 and 3, the PE condition is satisfied only at the first 

iteration and the third iteration, respectively. The learned 

controller gain shown in Table 1 cannot stabilize system (77) 

(see Fig. 2(a) with using 3K of probing noise 3). It shows that 

the learned controller gains are incorrect. However, for all three 

probing noises, the controller gains can converge to the 

theoretical optimal values when implementing off-policy 

interleaved Q-learning after 10 iterations, which shows that 

adding probing noise cannot produce bias on learning solution 

of LQT problem unlike on-policy Q-learning. Fig. 2(b) and Fig. 

  Table 1 Comparisons between on-policy and off-policy learning 

 on-policy Q-learning off-policy interleaved Q-learning 

Probing 
noise 

Controller gain mean variation Controller gain mean variation 

1 N N N [ ]10 0.3441 1.0017K = −  4
6.7075e

−
 

5
1.7353e

−

 

2 1=[0.4839 1.0025]K −
 

N N [ ]10 0.3445 1.0016K = −  43.2443e−  51.7353e−

 

3 3 [0.1669 0.7327]K = −
 

N N [ ]10 0.3445 1.0016K = −  4
3.2849e

−  5
1.7353e

−
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2(c) show the  state trajectories of the system and cost variation 

under the learned optimal control policy, respectively. 

 
Fig. 1 Convergence of matrices iH and iK  

 

  Case 2: Now the developed off-policy interleaved Q-learning 

algorithm is verified in the following inverted pendulum 

system [37]: 

 

1 2
1( 1)

2( 1) 1 2

2

sin( ) (1 )

0

k k
k

k k k

k

x tx
x

g
x t x t x

ut

m

κι
ι

ι

+

+

+ ∆ 
   =   ∆ + − ∆    

 
 + ∆ 
  

                 (82) 

where the sampling interval 0.1st∆ = , 0.5kgm =  and 

1.0545mι =  are the mass and length of the pendulum bar, 

respectively. Let 8.5415κ =  and 23.1002m / (s )g =  be the 

frictional factor and the gravitational acceleration, respectively. 

Let the initial state be T

0 [0.3 0.3]= −x ,   the structures of the 

inverted pendulum network, the critic and action networks be 

3-6-1, 3-8-1 and 2-2-1, respectively. Choose diag(1,1)Q = and 

0.1R = . 

 

 
Fig. 2 The curves of state trajectories (a) using on-policy Q-learning, (b) using 

off-policy Q-learning and cost (c) using off-policy Q-learning  

 
  Let the learning rates of  the inverted pendulum network, the 

critic and action networks respectively be 0.1, 0.3, 0.1. Let the 

training errors be 0.02 for these three neural networks. Fig. 3(a) 

shows the results of regulating neural network weights. 

Implementing the off-policy interleaved Q-learning Algorithm 

3 yields the training or iteration results of the critic and actor 

networks as shown in Fig. 3(b) and Fig. 3(c). Thus, the 

approximate optimal control policy is learned, Fig. 4(a) 

presents the approximation of the optimal Q-function 
* *( , ( ))k kQ x u x . In the real operation of the inverted pendulum 

system, external disturbance and measurement errors are not 

completely avoided, so they are combined and assumed as 
0.0001 T

0.2 sin([2 0] )
k

e k
− and put it into (82). Fig. 4(b) and Fig. 

4(c) are given to show the system sates under the approximate 

optimal control policy and the trajectory of the approximate 

optimal control policy, respectively. The performance *

0( )J x  

along with the system trajectories under the learned optimal 

control policy is plotted in Fig. 4(d) . 

  

Fig. 3. The updating process of weights (a) of the inverted pendulum neural network; (b) of the critic neural network; and (c) the actor neural network  
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 Case 3: Consider the following three-dimensional DT affine 

nonlinear system [33]: 
  

1( 1) 1 2

2
2( 1) 1 2

2( 1) 3

0

10.5sin( )

1

+

+

+

     
     = +−     
     −   

k k k

k kk k

k k

x x x

x ux x

x x

                  (83) 

  Let 
T

0 [ 0.5 0.5 1]= −x , diag(1,1,1)Q = and 0.1R = . The 

model network, the critic network and the action network are 

built with the structures 4-3, 4-8-1 and 3-1, respectively. And 

the learning rates of  these three networks are all set to be 0.1. 

For the critic network, the entries of input layer to hidden layer 

weight matrix are randomly generated in [−0.15, 0.05] and  then 

kept unchanged. 

   Under the probing noise rand(1,1)*0.2=ke , the performance 

is tested on 5 trials under the same scenario (the same initial 

neural network weights 
xω , ˆ i

akω , ˆ i

ckω  and 
cv ). The results of 5 

trials by using off-policy interleaved Q-learning Algorithm 3 

are listed in Table 2. Approximate optimal control policy is 

quite hard to be found by using on-policy learning as not only 

neural network approximation but also adding probing noise 

might produce biased iterative Q-function solutions, as shown 

in these 5 trials wherein four testings are failed and the not good 

performance is obtained in one successful testing compared 

with the off-policy Q-learning method. Whereas adding 

probing noise wouldn't take any effect on precise solution of 

iterative Q-function  and adequate exploration can be satisfied 

by using arbitrary behaviour control policy if the off-policy 

Q-learning algorithm is employed. Additionally, the iterative 

target control policy with probing noise has to act on the real 

system to learn the optimal control policy when running 

on-policy learning, which inevitably produces negative impact 

on performance of systems. Fig. 5(a) and Fig. 5(b) give the 

curves of state trajectories and the approximate optimal control 

laws that make the accumulated cost respectively reach 5.6789 

and 195.1209 by using off-policy interleaved Q-learning and 

on-policy interleaved Q-learning. 

 
Table 2 Performance comparisons of on-policy vs. off-policy learnings 

Off-policy interleaved Q-learning 

 Approximate optimal cost 
0( )J x  Operation time 

1 3.4618 1.692s 

2 7.8311 1.662s 

3 5.6789 1.293s 

4 5.7520 1.248 s 

5 6.1557 1.505s 

Average 5.7757 1.48s 

standard 

deviation 

1.5599 

 

0.2046s 

 

On-policy interleaved Q-learning 

1 195.1209 1.018s 

   

VII. CONCLUSION  

  This paper focuses on presenting a novel off-policy 

interleaved Q-learning method for approximating the optimal 

control policy to achieve the optimum of affine nonlinear DT 

systems without knowing the dynamics of models. Based on 

the existing on-policy Q-learning methods for solving the 

optimal control problem, an off-policy Q-learning algorithm 

is developed and further the critic and actor structure based 

off-policy interleaved Q-learning algorithm is proposed. The 

rigorously theoretical proofs on the less sensitivity of solution 

of optimality problem to probing noise and the convergence of 

the proposed off-policy interleaved Q-learning are presented. 

Simulation results have demonstrated the effectiveness of the 

proposed method. 

 
Fig. 4. Simulation results under the approximate optimal control policy  

 

 
Fig. 5. The curves of state and control input (a) using off-policy interleaved 

Q-learning and (b) using on-policy interleaved Q-learning 
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