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Abstract—Comparing with traditional learning criteria, such
as mean square error (MSE), the minimum error entropy (MEE)
criterion is superior in nonlinear and non-Gaussian signal pro-
cessing and machine learning. The argument of the logarithm
in Renyis entropy estimator, called information potential (IP),
is a popular MEE cost in information theoretic learning (ITL).
The computational complexity of IP is however quadratic in
terms of sample number due to double summation. This creates
computational bottlenecks especially for large-scale datasets. To
address this problem, in this work we propose an efficient
quantization approach to reduce the computational burden of
IP, which decreases the complexity from O

(

N2
)

to O (MN)
with M ≪ N . The new learning criterion is called the quantized
MEE (QMEE). Some basic properties of QMEE are presented.
Illustrative examples are provided to verify the excellent perfor-
mance of QMEE.

Key Words: Information Theoretic Learning (ITL), Minimum

Error Entropy (MEE), Computational Complexity, Quantization.

I. INTRODUCTION

A
S a well-known learning criterion in information theo-

retic learning (ITL) [1]–[3], the minimum error entropy

(MEE) finds successful applications in various learning tasks,

including regression, classification, clustering, feature selec-

tion and many others [4]–[17]. The basic principle of MEE is

to learn a model to discover structure in data by minimizing

the entropy of error between model and data generating system

[1]. Entropy takes all higher order moments into account and

hence, is a global descriptor of the underlying distribution.

The MEE can perform much better than the traditional mean

square error (MSE) criterion that considers only the second

order moment of the error, especially in nonlinear and non-

Gaussian (multi-peak, heavy-tailed, etc.) signal processing and

machine learning.

In practical applications, an MEE cost can be estimated

based on a PDF estimator. The most widely used MEE cost in

ITL is the information potential (IP), which is the argument of

the logarithm in Renyis entropy [1]. The IP can be estimated

directly from data and computed by a double summation over

all samples. This is much different from traditional learning

costs that only involve a single summation. Although IP is

simpler than many other entropic costs, it is still computa-

tionally very expensive due to the pairwise computation (i.e.

double summation). This may pose computational bottlenecks

for large-scale datasets. To address this issue, we propose in
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this paper an efficient approach to decrease the computational

complexity of IP from O
(

N2
)

to O (MN) with M ≪ N . The

basic idea is to simplify the inner summation by quantizing

the error samples with a simple quantization method. The

simplified learning criterion is called the quantized MEE

(QMEE). Some properties of the QMEE are presented, and

the desirable performance of QMEE is confirmed by several

illustrative results.

The remainder of the paper is organized as follows. The

MEE criterion is briefly reviewed in section II. The QMEE is

proposed in section III. The illustrative examples are provided

in section IV and finally, the conclusion is given in section V.

II. BRIEF REVIEW OF MEE CRITERION

Consider learning from N examples ZN =
{(xi, yi) ∈ XXX ×YYY}, i = 1, 2, · · · , N , which are drawn

independently from an unknown probability distribution DDD on

Z := XXX×YYY . Here we assume XXX ⊂ R
d and YYY ⊂ R. Usually, a

loss function ℓ (f, (x, y)) is used to measure the performance

of the hypothesis f : XXX → YYY . For regression, one can choose

the squared error loss ℓ (f, (x, y)) = (y − f(x))
2

= e2,

where e = y − f(x) ∈ R is the prediction error. Then the

goal of learning is to find a solution in hypothesis space that

minimizes the expected cost function E [ℓ (f, (x, y))], where

the expectation is taken over DDD. As the distribution DDD is

unknown, in general we use the empirical cost function:

J =
1

N

N
∑

i=1

ℓ (f, (xi, yi)) (1)

which involves a summation over all samples. Sometimes,

a regularization term is added to the above sum to prevent

overfitting. Under MSE criterion, the empirical cost function

becomes

JMSE =
1

N

N
∑

i=1

(yi − f(xi))
2
=

1

N

N
∑

i=1

e2i (2)

where ei = yi − f(xi) is the prediction error for sample

(xi, yi). The computational complexity for evaluating the

above cost and its gradient with respect to ei (i = 1, 2, · · · , N
) is O(N).

In the context of information theoretic learning (ITL), one

can adopt Renyis entropy of order α (α > 0, α 6= 1) as the

cost function [1]:

Hα(e) =
1

1− α
log

∫

pα(e)de (3)

where p(.) denotes the errors PDF. Under MEE criterion, the

optimal hypothesis can thus be solved by minimizing the error

http://arxiv.org/abs/1710.04089v2
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entropy Hα(e). The argument of the logarithm in Hα(e),
called information potential (IP), is

Iα(e) =

∫

pα(e)de = E
[

pα−1(e)
]

(4)

Since the logarithm function is a monotonically increasing

function, minimizing Renyis entropy Hα(e) is equivalent to

minimizing (for α < 1) or maximizing (for α > 1) the IP

Iα(e). In ITL, for simplicity the parameter α is usually set at

α = 2. In the rest of the paper, without loss of generality we

only consider the case of α = 2. In this case, we have

minH2(e) ⇔ max I2(e) = E [p(e)] (5)

According to ITL [1], an empirical version of the quadratic IP

can be expressed as

Î2(e)=
1

N

N
∑

i=1

p̂ (ei) =
1

N2

N
∑

i=1

N
∑

j=1

Gσ (ei − ej) (6)

where p̂(.) is Parzen’s PDF estimator [18]:

p̂ (x) =
1

N

N
∑

j=1

Gσ (x− ej) (7)

with Gσ(.) being the Gaussian kernel with bandwidth σ:

Gσ(x) =
1√
2πσ

exp

(

− x2

2σ2

)

(8)

The PDF estimator p̂(.) can be viewed as an adaptive loss

function that varies with the error samples {e1, e2, · · · , eN}.

This is much different from the conventional loss functions

that are typically left unchanged after being set. For example,

the loss function of MSE is always ℓ(x) = x2. The adaptation

of loss function is potentially beneficial because the risk is

matched to the error distribution. The superior performance

of MEE has been shown theoretically as well as confirmed

numerically [1]. However, the price we have to pay is that

there is a double summation over all samples, which is

obviously time consuming especially for large-scale datasets.

The computational complexity for evaluating the cost function

(6) is O(N2). The goal of this work is to find an efficient way

to simplify the computation of the empirical IP.

III. QUANTIZED MEE

Comparing with conventional cost functions for machine

learning, the MEE cost (or equivalently, the IP) involves an

additional summation operation, namely the computation of

the PDF estimator. The basic idea of our approach is thus

to reduce the computational burden of the PDF estimation

(i.e. the inner summation). We aim to estimate the errors PDF

from fewer samples. A natural way is to represent the N error

samples {e1, e2, · · · , eN} with a smaller data set by using

a simple quantization method. Of course, the quantization

will decrease the accuracy of PDF estimation. However, the

PDF estimator for an entropic cost function is very different

from the ones for traditional density estimation. Indeed, for a

cost function for machine learning, ultimately whats going to

matter is the extrema (maxima or minima) of the cost function,

not the exact value of the cost. Our experimental results have

shown that with quantization the MEE can achieve almost

the same (or even better) performance as the original MEE

learning.

Let Q[.] denote a quantization operator (or quantizer) with

a codebook C containing M (in general M ≪ N ) real valued

code words, i.e. C = {c1, c2, · · · , cM ∈ R}. Then Q[.] is a

function that can map the error sample ej into one of the M

code words in C, i.e. Q[ej ] ∈ C . In this work, we assume that

each error sample is quantized to the nearest code word. With

the quantizer Q[.], the empirical IP in (6) can be simplified to

Î2(e)=
1

N2

N
∑

i=1

N
∑

j=1

Gσ (ei − ej)

≈ Î
Q
2 (e) =

1

N2

N
∑

i=1

N
∑

j=1

Gσ (ei −Q[ej])

=
1

N2

N
∑

i=1

(

M
∑

m=1

MmGσ (ei − cm)

)

=
1

N

N
∑

i=1

p̂Q (ei)

(9)

where Mm is the number of error samples that are quantized

to the code word cm, and p̂Q (x)= 1
N

M
∑

m=1
MmGσ (x− cm)

is the PDF estimator based on the quantized error samples.

Clearly, we have
M
∑

m=1
Mm = N and

∫

p̂Q (x) dx= 1.

Remark: The computational complexity of the quantized MEE

(QMEE) cost Î
Q
2 (e) is O (MN), which is much simpler than

the original cost of (6) especially for large-scale datasets

(M ≪ N ).

Before designing the quantizer Q[.], we present below some

basic properties of the QMEE cost.

Property 1: When the codebook C= {e1, e2, · · · , eN}, we

have Î
Q
2 (e)=Î2(e).

Proof : Straightforward since in this case we have Q[ej ] = ej ,

j = 1, 2, · · · , N .

Property 2: The QMEE cost Î
Q
2 (e) is bounded, i.e. Î

Q
2 (e) ≤

1√
2πσ

, with equality if and only if e1 = e2 = · · · = eM = c,

where c is an element of C.

Proof : Since Gσ(x) ≤ 1√
2πσ

with equality if and only if x =
0, we have

Î
Q
2 (e) =

1

N2

N
∑

i=1

N
∑

j=1

Gσ (ei −Q[ej])

≤ 1

N2

N
∑

i=1

N
∑

j=1

1√
2πσ

=
1√
2πσ

(10)

with equality if and only if ei = Q[ej] , ∀i, j , which means

e1 = e2 = · · · = eM = c .

Property 3: It holds that Î
Q
2 (e) = 1

M

M
∑

j=1

αmp̂ (cm), where

αm=Mm

N
, satisfying

M
∑

m=1
αm=1.
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Proof : One can easily derive

Î
Q
2 (e) =

1

N2

N
∑

i=1

(

M
∑

m=1

MmGσ (ei − cm)

)

=

M
∑

m=1

Mm

N

(

1

N

N
∑

i=1

Gσ (ei − cm)

)

=

M
∑

m=1

αmp̂ (cm)

(11)

Remark: By Property 3, the QMEE cost Î
Q
2 (e) is equal to

a weighted average of the Parzen’s PDF estimator evaluated

at the code words. Moreover, when there is only one code

word in C, i.e. C= {c}, we have Î
Q
2 (e) = p̂ (c). In particular,

when C= {0}, we have Î
Q
2 (e) = V̂ (e) = 1

N

N
∑

i=1

Gσ (ei) =

p̂ (0), where V̂ (e) denotes the empirical correntropy [19]–[23],

which is a well-known local similarity measure in ITL. In

this sense, the correntropy can be viewed as a special case of

the QMEE cost. Actually, the correntropy measures the local

similarity about the zero, while QMEE cost Î
Q
2 (e) measures

the average similarity about every code word in C.

Property 4: When σ is large enough, we have Î
Q
2 (e) ≈

1√
2πσ

− 1
2
√
2πσ3

M
∑

m=1
αmµm, where µm= 1

N

N
∑

i=1

(ei − cm)
2

is

the second order moment of error about the code word cm.

Proof : As σ → ∞, we have Gσ (ei − cm) ≈
1√
2πσ

(

1− (ei−cm)2

2σ2

)

. It follows easily that

Î
Q
2 (e) =

1

N2

N
∑

i=1

(

M
∑

m=1

MmGσ (ei − cm)

)

≈ 1

N2
√
2πσ

N
∑

i=1

(

M
∑

m=1

Mm

(

1− (ei − cm)2

2σ2

))

=
1√
2πσ

− 1

2N2
√
2πσ3

N
∑

i=1

(

M
∑

m=1

Mm(ei − cm)
2

)

=
1√
2πσ

− 1

2
√
2πσ3

M
∑

m=1

Mm

N

(

1

N

N
∑

i=1

(ei − cm)2
)

=
1√
2πσ

− 1

2
√
2πσ3

M
∑

m=1

αmµm

(12)

Remark: By Property 4, as σ → ∞, the second order

moments tend to dominate the QMEE cost Î
Q
2 (e). In this

case, maximizing the QMEE cost is equivalent to minimizing

a weighted average of the second order moments about the

code words.

Property 5: If∀j, |ej −Q[ej]| ≤ ε with ε being a positive

number, then

∣

∣

∣Î
Q
2 (e)− Î2(e)

∣

∣

∣ ≤ ε exp(−1/2)
σ

.

Proof : Because the Gaussian function Gσ(.) is con-

tinuously differentiable over R, according to the Mean

Value Theorem, ∀i, j , there exists a point ξij ∈
(min {ei −Q[ej], ei − ej} ,max {ei −Q[ej ], ei − ej}) such

that f ′ (c) = f(b)−f(a)
b−a

.

Gσ (ei −Q[ej])−Gσ (ei − ej)

= Gσ (ei − ej+(ej −Q[ej]))−Gσ (ei − ej)

= (ej −Q[ej])G
′
σ (ξij)

(13)

where G′
σ(.) denotes the derivative of Gσ(.) with respect to

the argument. Then we have

|Gσ (ei −Q[ej ])−Gσ (ei − ej)|
= |ej −Q[ej ]| × |G′

σ (ξij)|
(a)

≤ ε exp(−1/2)

σ

(14)

where (a) comes from |ej −Q[ej ]| ≤ ε and |G′
σ (x)| ≤

exp(−1/2)
σ

for any x ∈ R. It follows that

∣

∣

∣Î
Q
2 (e)− Î2(e)

∣

∣

∣=

∣

∣

∣

∣

∣

∣

1

N2

N
∑

i=1

N
∑

j=1

(Gσ (ei−Q[ej])−Gσ (ei−ej))

∣

∣

∣

∣

∣

∣

≤ 1

N2

N
∑

i=1

N
∑

j=1

|Gσ (ei−Q[ej])−Gσ (ei−ej)|

≤ 1

N2

N
∑

i=1

N
∑

j=1

ε exp(−1/2)

σ

=
ε exp(−1/2)

σ
(15)

Remark: From Property 5, when ε is very small or σ is very

large, the difference between the values of Î
Q
2 (e) and Î2(e)

will be very small.

Property 6: For a linear regression model f(x) = ωTx, with

ω ∈ R
d being the weight vector to be estimated, the optimal

solution under QMEE criterion satisfies

ω = R−1
QMEEPQMEE (16)

where RQMEE =
N
∑

i=1

M
∑

m=1
MmGσ (ei − cm)xixi

T and

PQMEE =
N
∑

i=1

M
∑

m=1
MmGσ (ei − cm) (yi − cm)xi.

Proof : The derivative of the QMEE cost Î
Q
2 (e) with respect

to ω is

∂

∂ω
Î
Q
2 (e) =

1

N2

N
∑

i=1

(

M
∑

m=1

Mm

∂

∂ω
Gσ (ei − cm)

)

=
1

N2σ2

N
∑

i=1

(

M
∑

m=1

MmGσ (ei−cm) (yi−ωTxi−cm)xi

)

=
1

N2σ2

N
∑

i=1

M
∑

m=1

MmGσ (ei − cm) (yi − cm)xi

− 1

N2σ2

(

N
∑

i=1

M
∑

m=1

MmGσ (ei−cm)xixi
T

)

ω

=
1

N2σ2
{PQMEE −RQMEEω}

(17)
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Setting ∂
∂ω

Î
Q
2 (e) = 0, we get ω = R−1

QMEEPQMEE . It

completes the proof.

Remark: It is worth noting that the solution ω =
R−1

QMEEPQMEE is not a closed-form solution as the matrix

RQMEE and the vector PQMEE on the right side of the

equation depend on the weight vector ω through the error

samples (i.e. ei = yi − ωTxi ). Actually, the equation

ω = R−1
QMEEPQMEE is a fixed-point equation.

A key problem in QMEE is how to design a simple and

efficient quantizer Q[.], including how to build the codebook

and how to assign the code words to the data. In this work,

we will use a method proposed in our recent papers, to

quantize the error samples. In [24], [25], we proposed a simple

online vector quantization (VQ) to curb the network growth

in kernel adaptive filters, such as kernel least mean square

(KLMS) and kernel recursive least squares (KRLS). The main

advantage of this quantization method lies in its simplicity and

online feature. The pseudocode of this online VQ algorithm

is presented in Algorithm 1.

Algorithm 1

Input: error samples {ei}Ni=1

Output: quantized errors {Q[ei]}Ni=1

1: Parameters setting: quantization threshold ε

2: Initialization: Set C1 = {e1}, where Ci denotes the

codebook at the iteration i

3: for i = 2, ..., N do

4: Compute the distance between ei and Ci−1:

dis (ei, Ci−1) = |ei − Ci−1(j
∗)|

where j∗ = argmin
1≤j≤|Ci−1|

|ei − Ci−1(j)|, Ci−1(j) denotes

the jth element of Ci−1, and |Ci−1| stands for the

cardinality of Ci−1.

5: if dis (ei, Ci−1) ≤ ε then

6: Keep the codebook unchanged: Ci = Ci−1 and quan-

tize ei to the closest code word Q[ei] = Ci−1(j
∗);

7: else

8: Update the codebook: Ci = {Ci−1, ei} and quantize

ei to itself: Q[ei] = ei;

9: end if

10: end for

Remark: The online VQ method in Algorithm 1 creates the

codebook sequentially from the samples, which is computa-

tionally very simple, with computational complexity that is

linear in the number of samples.

IV. ILLUSTRATIVE EXAMPLES

In the following, we present some illustrative examples to

demonstrate the desirable performance of the proposed QMEE

criterion.

A. Linear Regression

In the first example, we use the QMEE criterion to perform

the linear regression. According to Property 6, the optimal

solution of the linear regression model f(x) = ωTx can easily

be solved by the following fixed-point iteration:

ωk = [RQMEE(ωk−1)]
−1

PQMEE(ωk−1) (18)

in which the matrix RQMEE(ωk−1) and vector

PQMEE(ωk−1) are















RQMEE(ωk−1) =
M
∑

m=1

XΛmXT

PQMEE(ωk−1) =
M
∑

m=1
XΛmYm

(19)

where X = [x1, x2, · · · , xN ] ∈ R
d×N , Ym =

[y1 − cm, y2 − cm, · · · , yN − cm]
T ∈ R

N , and Λm is a

N × N diagonal matrix with diagonal elements Λm(ii) =
MmGσ (ei − cm) , with . The detailed procedure of the linear

regression under QMEE is summarized in Algorithm 2.

Algorithm 2

Input: samples {xi, yi}Ni=1

Output: weight vector ω

1: Parameters setting: iteration number K , kernel width σ,

quantization threshold ε

2: Initialization: Set ω0 = 0

3: for k = 2, ...,K do

4: Compute the error samples based on ωk−1: ei = yi −
ωT
k−1xi, i = 1, 2, · · · , N ;

5: Create the quantization codebook C and quantize the

N error samples by Algorithm 1;

6: Compute the matrix RQMEE(ωk−1) and the vector

PQMEE(ωk−1) by (19);

7: Update the weight vector by (18);

8: end for

We now consider a simple scenario where the data samples

are generated by a two-dimensional linear system yi =
ω∗Txi + vi, where ω∗ = [2, 1]T , and vi is an additive noise.

The input vectors {xi} are assumed to be uniformly distributed

over [−2, 2] × [−2, 2]. In addition, the noise vi is assumed

to be generated by vi = (1− ai)Ai + aiBi, where ai is

a binary process with probability mass Pr {ai = 1} = c,

Pr {ai = 0} = 1 − c, with 0 ≤ c ≤ 1 being an occurrence

probability. The processes Ai and Bi represent the background

noises and the outliers respectively, which are mutually inde-

pendent and both independent of ai. In the simulations below,

c is set at 0.1 and Bi is assumed to be a white Gaussian

process with zero-mean and variance 10000. For the distri-

bution of Ai, we consider four cases: 1) symmetric Gaussian

mixture density: 0.5N (3, 1)+0.5N (−3, 1), where N
(

µ, σ2
)

denotes the Gaussian density with mean µ and variance σ2; 2)

asymmetric Gaussian mixture density: 2
3N (−5, 1)+ 1

3N (2, 1)
; 3) binary distribution with probability mass Pr {x = −2} =
Pr {x = 2} = 0.5; 4) Gaussian distribution with zero-mean

and unit variance. The root mean squared error (RMSE) is

employed to measure the performance, computed by

RMSE =

√

1

2
‖ωk − ω∗‖2 (20)

where ωk and ω∗ denote the estimated and the target weight

vectors respectively.
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We compare the performance of four learning criteria,

namely MSE, MCC [19]–[23], MEE and QMEE. For the

MSE criterion, there is a closed-form solution, so no iteration

is needed. For other three criteria, a fixed-point iteration is

used to solve the model (see [22], [26] for the details of the

fixed-point algorithms under MCC and MEE). The parameter

settings of MCC, MEE and QMEE are given in Table I. The

simulations are carried out with MATLAB 2014a running in

i5-4590, 3.30 GHZ CPU. The mean deviation results of the

RMSE and the training time over 100 Monte Carlo runs are

presented in Table II. In the simulations, the sample number

is N = 200 and the iteration number is K = 100. From Table

II, we observe: i) the MCC, MEE and QMEE can significantly

outperform the traditional MSE criterion although they have

no closed-form solution; ii) the MEE and QMEE can achieve

much better performance than the MCC criterion, except the

case of Gaussian background noise, in which they achieve

almost the same performance; iii) the QMEE can achieve

almost the same (or even better) performance as the original

MEE criterion, but with much less computational cost. Fig.

1 shows the average training time of QMEE and MEE with

increasing number of samples.

Further, we show in Fig. 2 the contour plots of the per-

formance surfaces (i.e. the cost surfaces over the parameter

space), where the background noise distribution is assumed to

be symmetric Gaussian mixture. In Fig. 2, the target weight

vector and the optimal solutions of the performance surfaces

are denoted by the red crosses and blue circles, respectively.

As one can see, the optimal solutions under MEE and QMEE

are almost identical to the target value, while the solutions

under MSE and MCC (especially the MSE solution) are apart

from the target.

TABLE I
PARAMETER SETTINGS OF THREE CRITERIA

MCC MEE QMEE

σ σ σ ǫ

Case 1) 10 1.1 1.5 0.3

Case 2) 15 1.1 1.5 0.3

Case 3) 8 0.7 1.0 0.3

Case 4) 2.8 0.6 4.0 0.1

B. Extreme Learning Machines

The second example is about the training of Extreme Learn-

ing Machine (ELM) [27]–[31], a single-hidden-layer feedfor-

ward neural network (SLFN) with random hidden nodes.

Given N distinct training samples {xi, ti}Ni=1, with xi =

[xi1, xi2, . . . , xid]
T ∈ R

d being the input vector and ti ∈ R

the target response, the output of a standard SLFN with L

hidden nodes is

yi =

L
∑

j=1

βjf (wjxi + bj) (21)

0 200 400 600 800 1000
0
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1

1.5

2

2.5
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T
ra
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tim
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ec
)

 

 

QMEE
MEE

Fig. 1. Training time versus the number of samples

where f(.) is an activation function, wj =
[wj1, wj2, ..., wjd] ∈ R

d and bj ∈ R (j = 1, 2, ..., L )

are the randomly generated parameters of the L hidden nodes,

and β = (β1, ..., βL)
T ∈ R

L represents the output weight

vector. Since the hidden parameters are determined randomly,

we only need to solve the output weight vector β. To this

end, we express (22) in a vector form as

Y = Hβ (22)

where Y = (y1, ..., yN )T , and

H =







h1

...

hN






=







f(w1x1 + b1), ...
...

. . .

f(w1xN + b1), ...

f(wLx1 + bL)
...

f(wLxN + bL)







(23)

Usually, the output weight vector β can be solved by min-

imizing the following squared (MSE based) and regularized

loss function:

JMSE (β) =

N
∑

i=1

e2i + λ ‖β‖22 = ‖Hβ − T‖22 + λ ‖β‖22 (24)

where ei = ti−yi = ti−hiβ is the ith error between the target

response and actual output, λ ≥ 0 represents the regularization

factor, and T = (t1, ..., tN )
T

. Applying the pseudo inversion

operation, one can obtain a unique solution under the loss

function (24), that is

β =
[

HT H + λI
]−1

HT T (25)

Here, we propose the following QMEE based loss function:
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TABLE II
RMSE AND TRAINING TIME OF DIFFERENT CRITERIA

MSE MCC MEE QMEE

Case 1)
RMSE 1.1649 ± 0.6587 0.1493 ± 0.0756 0.0468 ± 0.0205 0.0473 ± 0.0203

Training Time (sec) N/A 3.0000×10−4 ± 2.6000×10−4 0.2963 ± 3.5300×10−3 9.1410×10−3 ± 6.1800×10−4

Case 2)
RMSE 1.2951 ± 0.6701 0.1987 ± 0.1111 0.0455 ± 0.0226 0.0460 ± 0.0227

Training Time (sec) N/A 3.3900×10−4
± 2.6000×10−4

0.3013 ± 8.4110×10−3
9.0140×10−3

± 8.6000×10−4

Case 3)
RMSE 1.0939 ± 0.6407 0.0928 ± 0.0480 7.7500× 10

−4
± 0.0010 7.8940 × 10

−4
± 0.0010

Training Time (sec) N/A 3.6700×10−4 ± 2.6500×10−4 0.2932 ± 3.4600×10−3 7.3230×10−3 ± 5.2700×10−4

Case 4)
RMSE 1.2031 ± 0.6531 0.0422 ± 0.0224 0.0452 ± 0.0262 0.0422 ± 0.0231

Training Time (sec) N/A 3.5300×10−4 ± 2.6100×10−4 0.2999 ± 2.4750×10−3 7.9500×10−3 ± 6.4300×10−4
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Fig. 2. Contour plots of the performance surfaces (a) MSE; (b) MCC; (c) MEE; (d) QMEE
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JQMEE (β) = −Î2(e) + λ ‖β‖22

= − 1

N2

N
∑

i=1

(

M
∑

m=1

MmGσ (ei − cm)

)

+ λ ‖β‖22

= − 1

N2

N
∑

i=1

(

M
∑

m=1

Mm exp

(

− (ei − cm)
2

2σ2

))

+ λ ‖β‖22
(26)

Setting
∂JQMEE(β)

∂β
= 0, one can obtain

β = [A+ λ′
I]−1B (27)

where A =
M
∑

m=1
HT

ΛmH , B =
M
∑

m=1
HT

ΛmTm ,λ′ =

2λN2σ2 , Tm = [t1 − cm, · · · , tN − cm]
T

, and Λm is a

N × N diagonal matrix with diagonal elements Λm(ii) =
MmGσ (ei − cm) .

Similar to the linear regression case, the equation (27) is

a fixed-point equation since the matrix Λm depends on the

weight vector β through ei = ti − hiβ. Thus, one can solve

β by using the following fixed-point iteration:

βk = [A(βk−1) + λ′
I]−1B(βk−1) (28)

where A(βk−1) and B(βk−1) denote, respectively, the matrix

A and vector B evaluated at βk−1. The learning procedure

of the ELM under QMEE is described in Algorithm 3. This

algorithm is called the ELM-QMEE in this paper.

Algorithm 3 ELM-QMEE

Input: samples {xi, yi}Ni=1

Output: weight vector β

1: Parameters setting: number of hidden nodes L, regular-

ization parameter λ′, iteration number K , kernel width σ,

quantization threshold ε

2: Initialization: set β0 = 0 and randomly initialize the

hidden parameters wj and bj (j = 1, ..., L )

3: for k = 2, ...,K do

4: Compute the error samples based on βk−1: ei = ti −
hiβk−1, i = 1, 2, · · · , N ;

5: Create the quantization codebook C and quantize the

N error samples by Algorithm 1;

6: Compute the matrix A(βk−1) and the vector B(βk−1)
by (19);

7: Update the weight vector β by (28);

8: end for

In the following, we consider the regression problem with

five benchmark datasets from the UCI machine learning repos-

itory [32].The details of the datasets are shown in Table

III. For each dataset, the training and testing samples are

randomly selected form the dataset. Particularly, the data are

normalized to the range [0, 1]. Five algorithms are compared

here, including ELM [27], RELM [28], ELM-RCC [30], ELM-

MEE and ELM-QMEE. The ELM-MEE can be viewed as

the ELM-QMEE with ε = 0. The parameter settings of the

five ELM algorithms are presented in Table IV, which are

experimentally chosen by fivefold cross-validation.

TABLE III
SPECIFICATION OF THE DATASETS

Datasets Features
Observations

Training Testing

Servo 5 83 83

Yacht 6 154 154

Computer Hardware 8 105 104

Price 16 80 79

Machine-CPU 6 105 104

The RMSE is used as the performance measure for re-

gression. The “mean ± standard deviation” results of Testing

RMSE and the Training time over 100 runs are shown in Table

V and VI. In addition, since the MEE and QMEE criteria are

shift-invariant, the RMSE of MEE and QMEE are calculated

by adding a bias value to the testing errors. This bias value

was adjusted so as to yield zero-mean error over the training

set. As one can see, in all the cases the proposed ELM-QMEE

can outperform other algorithms except the ELM-MEE, and

the results of ELM-QMEE is very close to those of ELM-

MEE. Besides, compared with ELM-MEE, the computational

complexity of ELM-QMEE is much smaller.

C. Echo State Networks

In the last example, we apply the QMEE to train an echo

state network (ESN) [33]–[35], a new paradigm in recurrent

neural network (RNN) [36], [37]. The ESN randomly builds

a large sparse reservoir to replace the hidden layer of RNN,

which overcomes the shortcomings of complicated computa-

tion and difficulties in determining the network topology of a

traditional RNN.

We consider a discrete-time ESN with P input units, L

internal network units and Q output units. The dynamic and

output equations of the standard ESN can be written as

follows:

{

x (k + 1) = f
(

Wxx (k) + Winu (k + 1) + Wfby (k)
)

y (k) = g
(

Woutϕ (k)
)

(29)

where ϕ (k) =

(

u (k)
x (k)

)

, f = (f1 . . . fL) is the nonlinear

activation function of reservoir units, g = (g1 . . . gQ) is a

linear or nonlinear activation function of the output layer, Win

is an L × P input weight matrix, Wx is an L × L internal

connection weight matrix of the reservoir, Wfb is an L × Q

weight matrix that feeds back the output to the reservoir units,

and Wout is an Q×(P+L) output weight matrix. To establish

an ESN described above, with the property of echo states, the

weight matrix Wx must satisfy the condition σmax < 1, with

σmax being the largest singular value of Wx. In this article

we assume that Wfb = 0. The weight matrices Win and Wx

are randomly determined. Then the nonlinear system can be

converted to:
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TABLE IV
PARAMETER SETTINGS OF FIVE ELM ALGORITHMS

Datasets
ELM RELM ELM-RCC ELM-MEE ELM-QMEE

L L λ L σ λ L σ λ L σ λ′ γ

Servo 25 90 1× 10−5 65 0.8 1× 10−4 55 0.1 8× 10−7 75 0.2 4× 10−4 0.05

Yacht 90 187 2.5 × 10−5 195 0.4 1× 10−7 225 0.1 1× 10−7 210 0.2 5× 10−7 0.6

Computer Hardware 20 35 9× 10−6 40 0.1 8× 10−6 95 0.2 5× 10−6 90 0.1 6× 10−5 0.009

Price 20 20 4× 10−6 15 0.3 4× 10−5 15 0.3 7× 10−6 15 0.3 8× 10−6 0.02

Machine-CPU 10 30 7× 10−5 20 0.2 7× 10−5 25 0.3 5× 10−6 25 0.4 0.06 0.08

TABLE V
TESTING RMSE OF FIVE ELM ALGORITHMS

Datasets ELM RELM ELM-RCC ELM-MEE ELM-QMEE

Servo 0.1199±0.0200 0.1046±0.0178 0.1029±0.0158 0.1014±0.0194 0.1014±0.0196

Yacht 0.0596±0.0171 0.0490±0.0058 0.1029±0.0158 0.0327±0.0080 0.0223±0.0108

Computer Hardware 0.0262±0.0198 0.0170±0.0110 0.0162±0.0125 0.0140±0.0081 0.0147±0.0114

Price 0.1036±0.0182 0.1031±0.0168 0.1006±0.0142 0.0985±0.0137 0.0997±0.0161

Machine-CPU 0.0646±0.0260 0.0573±0.0182 0.0544±0.0156 0.0530±0.0163 0.0534±0.0164

TABLE VI
TRAINING TIME(SEC) OF FIVE ALGORITHMS

Datasets ELM RELM ELM-RCC ELM-MEE ELM-QMEE

Servo 0.0020±0.0082 0.0011±0.0040 0.0127±0.0184 1.0286±0.0116 0.0314±0.0181

Yacht 0.0056±0.0125 0.0048±0.0103 0.0641±0.0325 59.9422±2.1326 0.1086±0.0340

Computer Hardware 0.0022±0.0067 0.0014±0.0067 0.0050±0.0125 4.7689±0.2338 0.0716±0.0271

Price 1.5625 × 10
−4

±0.0016 0.0651±0.0086 7.8125× 10
−4

±0.0034 0.5859±0.0093 0.0233±0.0129

Machine-CPU 0.0011±0.0056 3.1250 × 10−4±0.0022 0.0027±0.0063 1.0913±0.0121 0.0223±0.0114

Y = WoutX (30)

where the kth column of the matrix X is ϕ (k) . The optimal

solution of Wout under MSE criterion can be obtained by

Wout =
(

XT X
)−1

XT Y. Here, we use the following QMEE

cost function to train the ESN:

JQMEE

(

Wout
)

=
1

N2

N
∑

i=1

(

M
∑

m=1

MmGσ (ei − cm)

)

(31)

where ei = ti − yi, with ti and yi being respectively, the ith

rows of the target matrix T and output matrix Y. Different

approaches can be used to solve the above optimization

problem. Here, the Root Mean Square Propagation (RMSProp)

is used. The RMSProp as a variant of stochastic gradient

descent (SGD) has been widely used in deep learning. With

RMSProp the output weights can be updated by

wout
i (k + 1) = wout

i (k)− η√
v + r

∇wout
i

JQMEE (k) (32)

v = ρv + (1− ρ)
(

∇wout
i

JQMEE (k)
)2

(33)

where η is the learning rate parameter, r is a small positive

constant and ρ is the forgetting factor. The gradient term

∇wout
i

JQMEE (n) can be computed as

∇wout
i

JQMEE (k)=

M
∑

m=1

Mm exp

(

−(ti (k)−wout
i (k)x (k)−cm)

2

2σ2

)

(

ti (k)− wout
i (k)x (k)− cm

)

x′ (k)
(34)

The learning algorithm of the ESN under QMEE is given in

Algorithm 4, called ESN-QMEE in this paper.

Next, we apply the proposed ESN-QMEE to the short-

term prediction of the Mackey-Glass (MG) chaotic time series,

compared to some other ESN algorithms. The MG dynamic

system is governed by the following time-delay ordinary

differential equation [38]

dx

dt
= ax (t) +

bx (t− τ )

1 + x(t− τ )10
(35)

with a = −0.1, b = 0.2, τ = 17. This system has a chaotic

attractor if τ > 16.8 . In this article, we choose the delay

time and the embedded dimension as six and four, which are

determined by the mutual information [39], i.e. the vector
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Algorithm 4 ESN-QMEE

Input: samples {ui, ti}Ni=1

Output: weight matrix Wout

1: Parameters setting: learning rate η, constant r, forgetting

factor ρ, iteration number K , kernel width σ, quantization

threshold ǫ

2: Initialization: set the number and the sparseness of reser-

voir units, randomly initialize Wx and Win , and compute

the matrix X

3: for k = 2, ...,K do

4: Compute the gradient term ∇wout
i

JQMEE (k) by (34)

5: Compute the term v by (33)

6: Update the weight matrix Wout by (32)

7: end for

TABLE VII
PARAMETER SETTINGS OF FIVE ESN ALGORITHMS IN CHAOTIC TIME

SERIES PREDICTION

α
RESN LESN [40] CESN [41] ESN-MEE ESN-QMEE

λ L σ σ σ γ

0.1 0.01 0.94 6.3 0.06 0.8 0.07

0.2 0.01 0.92 4.0 0.07 0.7 0.01

0.3 0.1 0.93 3.0 0.08 0.7 0.02

0.4 0.1 0.93 3.0 0.08 0.7 0.03

[x (t− 24) , x (t− 18) , x (t− 12) , x (t− 6)]
T

is used as the

input to predict the present value x(t) that is the desired

response in this example. In the simulation, the number of

reservoir units is set to 400. The spectral radius and the

sparseness of Wx are 0.95 and 0.01. A segment of 900 samples

are used as the training data and another 400 samples as

the testing data. The noise model vi = (1− ai)Ai + aiBi

mentioned in the subsection A is used to generate the noises

added to the training data, where the occurrence probability

is c = 0.2, Bi is a white Gaussian process with zero-mean

and variance 0.01, and Ai is a mixture Gaussian process

with density 0.5N (α, 0.01) + 0.5N (−α, 0.01). Further, the

normalized root mean squared error (NRMSE) is used to

measure the performance of different algorithms, given by

NRMSE =

√

√

√

√

1

Nσ2
target

N−1
∑

n=0

(t (n)− y (n))
2

(36)

which σ2
target denotes the variance of the target signal. Similar

to the previous example, the NRMSE of the MEE and QMEE

will be calculated by adding a bias value to the testing errors.

The parameter settings of five ESN algorithms are given in

Table VII. The NRMSEs of six ESN algorithms over 10 Monte

Carlo runs for different values of α are illustrated in Fig. 3,

and the corresponding training times are shown in Table VIII.

Once again, the QMEE based algorithm can outperform other

algorithms, whose performance is very close to that of the

MEE based algorithm but with much less computational cost.
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Fig. 3. NRMSE with different values of α

V. CONCLUSION

Minimum error entropy (MEE) criterion can outperform

traditional MSE criterion in non-Gaussian signal processing

and machine learning. However, it is computationally much

more expensive due to the double summation operation in the

objective function, resulting in computational expense scaling

as O(N2), where N is the number of samples. In this paper,

we proposed a simplified MEE criterion, called quantized

MEE (QMEE), whose computational complexity is O(MN),
with M ≪ N . The basic idea is to reduce the number of

the inner summations by quantizing the error samples. Some

important properties of the QMEE are presented. Experimental

results with linear and nonlinear models (such as ELM and

ESN) confirm that the proposed QMEE can achieve almost

the same performance as the original MEE criterion, but needs

much less computational time.
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