
1

On the Universality of Memcomputing Machines
Yan Ru Pei, Fabio L. Traversa, and Massimiliano Di Ventra

Abstract—Universal memcomputing machines (UMMs) [IEEE
Trans. Neural Netw. Learn. Syst. 26, 2702 (2015)] represent
a novel computational model in which memory (time non-
locality) accomplishes both tasks of storing and processing of
information. UMMs have been shown to be Turing-complete,
namely they can simulate any Turing machine. In this paper, we
first introduce a novel set-theory approach to compare different
computational models, and use it to recover the previous results
on Turing completeness of UMMs. We then relate UMMs directly
to liquid-state machines (or “reservoir computing”) and quantum
machines (“quantum computing”). We show that UMMs can
simulate both types of machines, hence they are both “liquid-” or
“reservoir-complete” and “quantum-complete”. Of course, these
statements pertain only to the type of problems these machines
can solve, and not to the amount of resources required for such
simulations. Nonetheless, the set-theoretic method presented here
provides a general framework in which to describe the relation
between any computational models.

Index Terms—memory, elements with memory, Memcomput-
ing, Turing Machine, Reservoir Computing, Quantum Comput-
ing.

I. INTRODUCTION

Memcomputing stands for “computing in and with memory”
[1]. It is a novel computing paradigm whereby memory (time
non-locality) is employed to perform both the storage and the
processing of information on the same physical location. This
paradigm is substantially different than the one implemented
in our modern-day computers [2]. In our present computers,
there is a separation of tasks between a memory (storage)
unit and an information processor. Modern-day computers are
the closest physical approximation possible to the well-known
(mathematical) Turing paradigm of computation that maps
a finite string of symbols into a finite string of symbols in
discrete time [3].

The memcomputing paradigm has been formalized by
Traversa and Di Ventra in [4]. In that paper, it was shown that
universal memcomputing machines (UMMs) can be defined
as digital (so-called digital memcomputing machines (DMMs)
[5]) or analog [6], with the digital ones offering an easy path
to scalable machines (in terms of size) [7].

UMMs have several features that make them a powerful
computing model, most notably intrinsic parallelism, infor-
mation overhead, and functional polymorphism [4]. The first
feature means that they can operate collectively on all (or
portions of) the data at once, in a cooperative fashion. This
is reminiscent of neural networks, and indeed neural networks
can be viewed as special cases of UMMs. However, neural
networks do not have “information overhead”. This feature

YRP and MD are with the Department of Physics, University of California-
San Diego, 9500 Gilman Drive, La Jolla, California 92093-0319, USA, (e-
mail: yrpei@ucsd.edu, diventra@physics.ucsd.edu). FLT is with MemCom-
puting Inc., San Diego, CA 92130 USA (e-mail: ftraversa@memcpu.com).

is related to the topology (or architecture) of the network of
memory units (memprocessors). It means the machine has
access, at any given time, to more information (precisely
originating from the topology of the network) than what is
available if the memprocessors were not connected to each
other. Of course, this information overhead is not necessarily
stored by the machine (the stored information is the Shannon
one) [4]. Nevertheless, with appropriate topologies, hence with
appropriate information overhead, UMMs can solve complex
problems very efficiently [4]. Finally, functional polymor-
phism means that the machine is able to compute different
functions by simply applying the appropriate input signals [4],
without modifying the topology of the machine network.

In Ref. [4] it was shown that UMMs are Turing-complete,
meaning that UMMs can simulate any Turing machine. Note
that Turing-completeness means that all problems a Turing
machine can solve, can also be solved by a UMM. However,
it does not imply anything about the resources (in terms of
time, space and energy) required to solve those problems.

The reverse, namely that all problems solvable by UMMs
are also solvable by Turing machines has not been proven yet.
Nevertheless, a practical realization of digital memcomputing
machines, using electronic circuits with memory [5], has
been shown to be efficiently simulated with our modern-
day computers (see, e.g., [8]). In other words, the ordinary
differential equations representing DMMs and the problems
they are meant to solve can be efficiently simulated on a
classical computer.

In recent years, other computational models, each address-
ing different types of problems, have attracted considerable
interest in the scientific community. On the one hand, quantum
computing, namely computing using features, like tunneling
or entanglement, that pertain only to quantum systems, has
become a leading candidate to solving specific problems, such
as prime factorization [9], annealing [10], or even simulations
of quantum Hamiltonians [11]. This paradigm has matured
from a simple proposal [12] to full-fledged devices for possible
commercial use [13]. However, its scalability faces consider-
able practical challenges, and its range of applicability is very
limited compared to even classical Turing machines.

Another type of computing model pertains to a seemingly
different domain, the one of spiking (recurrent) neural net-
works, in which spatio-temporal patterns of the network can be
used to, e.g., learn features after some training [14]. Although
somewhat different realizations of this type of networks have
been suggested, for the purposes of this paper, here we will fo-
cus only on the general concept of “reservoir-computing” [15],
and in particular on its “liquid-state machine” (LSM) real-
ization [16], rather than the “echo-state network” one [17].
The results presented in this paper carry over to this other
type of realization as well. Therefore, we will use the term

ar
X

iv
:1

71
2.

08
70

2v
2

 [
cs

.N
E

]
 1

0
M

ay
 2

01
9

2

“reservoir-computing” as analogous to “liquid-state machine”
and will not differentiate among the different realizations of
the former.

Our goal for this paper is to study the relation between these
seemingly different computational models directly, without
reference to the Turing model. In particular, we will show that
UMMs encompass both quantum machines and liquid-state
machines, in the sense that, on a theoretical level, they can
simulate any quantum computer or any liquid-state machine.
Again, this does not imply anything about the resources
needed to simulate such machines. In other words, we prove
here that UMMs are not only Turing-complete, but also
“liquid-complete” (or “reservoir-complete”) and “quantum-
complete”.

In order to prove these statements, we will introduce a
general set-theoretical approach to show that the LSM and
quantum computers can be mapped to subsets of the UMM.
This set-theoretical approach is however very general and it
is applicable to any other type of computational model, other
than the ones we consider in this work.

Our paper is organized as follows. In Sec. II we briefly
review the definitions of the machines we consider in this
work, starting with UMMs. In Sec. III we introduce the
basic mathematical ingredients that are needed to prove the
completeness statements that we will need later. In Sec. IV
we define a general computing model within a set-theoretical
framework, and construct the equivalence and completeness
relations under this framework. In Sec. V, we will re-write
the definitions of UMMs, quantum computers and liquid-state
machines using the results from previous sections. This allows
us to show explicitly in Sec. VI that UMMs are not only
Turing-complete, but also quantum-complete and liquid-state
complete. In Sec. VII, we make clear what this work implies
and what it does not imply. We will also provide references to
works where the simulations of the DMM subclass of UMMs
have already shown significant performance advantages over
other computing models for hard combinatorial optimization
problems. In Sec. VIII we offer our conclusions and thoughts
for future work.

Note that most of the results from Sec. IV onward are orig-
inal results. Most notably, we construct the notion of a tran-
sition function “from the ground up” without any dependence
on objects such as tape, symbols, or head. This provides the
basis for a general methodology for showing equivalence and
completeness relations between different computing models.

II. REVIEW OF MACHINE DEFINITIONS

We first provide a brief review of the definitions of the three
machines we will be discussing in this paper, so the reader will
have a basis of reference.

A. Universal Memcomputing Machines

The UMM is an ideal machine formed by interconnected
memory cells (“memcells” for short or memprocessors). It
is set up in such a way that it has the properties we have
anticipated of intrinsic parallelism, functional polymorphism,
and information overhead [4].

We can define a UMM as the eight-tuple [4]:

(M,∆, P, S,Σ, p0, s0, F) (1)

where M is the set of possible states of a single memory cell,
and ∆ is the set of all transition functions:

δa : Mma \ F × P →Mm′
a × P 2 ×A (2)

where ma is the number of cells used as input (being read),
F is the final state, P is the set of input pointers, m′a is
the number of cells used as output (being written), P 2 is the
Cartesian product of the set of output pointers and the set of
input pointers for the next step, and A is the set of indices a.

Informally, the machine does the following: every transition
function has some label a, and the chosen transition function
directs the machine to what cells to read as inputs. Depending
on what is being read, the transition function then writes
the output on a new set of cells (not necessarily distinct
from the original ones). The transition function also contains
information on what cells to read next, and what transition
function(s) to use for the next step.

Using this definition, we can better explain what the two
properties of intrinsic parallelism and functional polymor-
phism mean. Unlike a Turing machine, the UMM does not
operate on each input cell individually. Instead, it reads the
input cells as a whole, and writes to the output cells as a whole.
Formally, what this means is that the transition function cannot
be written as a Cartesian product of transition functions acting
on individual cells, namely δ(

∏
iMi) 6=

∏
i(δi(Mi)). This is

the property of intrinsic parallelism. We will later show that
the set of transition functions without intrinsic parallelism is,
in fact, a small subset of the set of transition functions with
intrinsic parallelism.

Furthermore, the transition function of the UMM is dy-
namic, meaning that it is possible for the transition function
to change after each time step. This is shown as the set A at
the output of the transition function, whose elements indicate
what transition functions to use for the next time step. This
is the property of functional polymorphism, meaning that the
machine can admit multiple transition functions. Finally, the
topology of the network is encoded in the definition of the
transition functions which map a given state of the machine
into another. A more in depth discussion of these properties
can be found in the original paper [4].

In practice, the transition function is made dynamic by
introducing non-linear passive elements such as memristors
(memory resistors) and active elements such as voltage-
controlled voltage generators (VCVGs) into the circuits [5].
Those elements provide “memory”, or hysteresis properties, to
the system as well as dynamical control. Memory is an integral
characteristic of the UMM computing model, which allows for
time dependency of the differential equations governing the
evolution of the system, thus a dynamic transition function.

B. Liquid-State Machines

Informally, we can think of the LSM as a reservoir of
water [17]. The process of sending the input signals into the
machine is analogous to us dropping stones into the water,

3

and the evolution of the internal states of the machine is
the propagation of the water waves. Different waveforms will
be excited depending on what stones were being dropped,
how and when they were dropped, and the properties of the
waveforms will encompass the information of the stones being
dropped. Therefore, we can train a function that maps the
waveforms to the corresponding output states that we desire.

Formally, we can define the machine using a set of filters
and a trained function [14]. A series of filters defines the
evolution of the internal states, and the trained function maps
the internal states to some output.

The set of filters must satisfy the point-wise separation
property. This is defined as follows:

Definition 1. A class B of basis filters has the pointwise
separation property if for any two input functions u and v,
with u(s) 6= v(s) for some s ≤ t, there is a basis filter b ∈ B
such that (b ◦ u)(t) 6= (b ◦ v)(t).

This means that we can choose a series of filters such
that the evolution of the internal states will be unique to any
given signal, at any given time. In other words, this property
ensures that different ”stones” excite different ”waveforms”.

The trained output function must satisfy the “fading mem-
ory” property. This is defined as follows:

Definition 2. F : U → Rn has fading memory if for every
internal state u ∈ U and every ε > 0, there exist δ > 0 and
T > 0 so that |(Fv)(0) − (Fu)(0)| < ε for all v ∈ U with
|u(t)− v(t)| < δ for all t ∈ [−T, 0].

Intuitively, this means that we do not need to know the
evolution of the internal states from the infinite past to
determine a unique output. Instead, we only need to know
the evolution starting from a finite time −T .

Since the liquid-state machine does not have any circuits
that are hard-wired to perform specific tasks, it is particularly
suited as a possible computational model for implementing
learning algorithms. It is different from the modern neural
networks in that it is not required for the reservoir (or hidden-
layers) to be trained. The connections between the neurons are
initialized randomly, so it is in essence a random projection
from the input signals to some high-dimensional space, more
specifically a pattern of activations in the network nodes,
which is then read out by linear discriminant units. This
effectively achieves a non-linear mapping from the inputs to
outputs, with very little control over the process, and for this
reason, it is not as favored compared to other neural networks.

C. Quantum Computers

There are many ways in which one can define a quantum
computer. For simplicity sake, we consider the most general
model of quantum computing and ignore its specific operations
[18].

Consider a quantum computer with n identical qubits, and
each qubit can be expressed as a linear combination of m
basis states. The choice of the basis states can be arbitrary.
However, they have to span the entire Hilbert space of the

system. If we look at one single qubit, then every state that it
admits can be expressed in terms of a linear combination of
the m basis states. (Typically m is chosen equal to 2, but we
do not restrict the quantum machine to this basis number here.)
In other words, |ψ〉 =

∑m−1
i=0 ci |i〉, where i simply labels the

basis state, and ci is some complex number. Note that we have
to impose the normalization condition

∑m−1
i=0 |ci|2 = 1.

Now, let us consider the whole system. In gen-
eral, the total state can be expressed as |ψ〉 =∑m−1
i1=0

∑m−1
i2=0 ...

∑m−1
in=0 ci1i2...in |i1i2...in〉. Here, ij denotes

that the j-th qubit is in the i-th basis state. A basis state
of the total wavefunction can be expressed as the tensor
product of the basis states of the individual qubits. Then
it is not hard to see that the total state will have a total
number of mn basis states. Each basis state is associated with
some complex factor ci1i2...in where, again, the normalization
condition

∑m−1
i1=0

∑m−1
i2=0 ...

∑m−1
in=0 |ci1i2...in |2 = 1 has to be

imposed.
Any quantum algorithm can be expressed as a series of

unitary operations [18]. Since the product of multiple unitary
operations is still a unitary operation, we can then express
the total operation after time t with a one-parameter operator
Û(t), so that |ψ(t)〉 = Û(t) |ψ(0)〉. In other words, the state
of the quantum system at any point in time can be expressed
as some unitary operation on the initial state. Note that Û(t)
can be either continuous or discrete in time. Either way, Û(t)
can be considered as the “transition function” of the quantum
computer.

Finally, we have to make measurements on the system
in order to convert the quantum state into some meaningful
output for the observable we are interested in. The process
of measurement can be considered as finding the expecta-
tion value of some observable Ô, so the output function
of a quantum computer can be written as 〈ψ(t)|Ô|ψ(t)〉 =
〈ψ(0)|Û(t)†ÔÛ(t)|ψ(0)〉. Of course, to obtain an accurate
result of the expectation value, many measurements have to
be made. In fact, the initial state has to be prepared multiple
times, evolved multiple times, and the corresponding expecta-
tion value at a given time, must be measured multiple times.
A quantum computer is thus an intrinsically probabilistic-type
of machine.

III. MATHEMATICAL TOOLS

We now introduce the necessary mathematical tools that
will allow us to construct a general description of a computing
machine using set theory and cardinality arguments. Most of
the definitions and theorems in this section, with their detailed
proofs can be found in the literature on the subject (see,
e.g., the textbook [19]). Note also that one does not have to
understand the proofs in order to understand the theorems.
Neither do the main results of this paper rely on understanding
the proofs. Therefore, some of the proofs can be skipped over
according to the interest of the reader.

First, we introduce the famous Cantor’s Theorem [20]:

Theorem III.1. The power set of the set of natural numbers
has the same cardinaltiy of the set of real numbers, or |R| =
2|N|.

4

Here, “cardinality” simply means the “number” of elements
in the set, or the “size” of the set. Furthermore, one can also
show the following theorem to be true:

Theorem III.2. Any open interval of real numbers has cardi-
nality |R|.

Proof. Note that the function f(x) = x
1−x2 is a bijection from

(−1, 1) to R. Furthermore, there is a bijection from (−1, 1)
to any finite open interval (a, b), through the linear function
f(x) = −1 + 2x−ab−a . Therefore, there is a bijection from (a, b)
to R, so the two sets have the same cardinality.

Note that what we have just done is relating two infinities
through exponentiation. We can further generalize these rela-
tions by introducing Beth numbers [21], defined as follows:

Definition 3. Let i0 = |N|, and iα+1 = 2iα for all α ∈ N.

By this definition, we see that i1 = 2i0 = 2|N| = |R|.
Of course, each Beth number is strictly greater than the one
preceding it.

The following theorem [19] allows us to perform arithmetics
on infinite cardinal numbers, and derive relationships between
Beth numbers.

Theorem III.3. Given any two positive numbers, µ and κ, if
at least one of them is infinite, then µ+κ = µκ = max{µ, κ}.

Using this theorem, we can prove the following properties
of Beth numbers:

Corollary III.3.1. The addition or multiplication of two Beth
numbers equals to the greater of the two, or iβiα = iβ +
iα = iβ if α ≤ β for all α, β ∈ N.

Corollary III.3.2. µiα = iα+1 if 2 ≤ µ ≤ iα+1. (iα)κ =
iα if 1 ≤ κ ≤ iα−1
Proof. Corollary III.3.1 comes directly from Theorem III.3
and the fact that each Beth number is greater than its prede-
cessors.

Proof. Corollary III.3.2 can be proven as follows. By defi-
nition 2iα = iα+1. Furthermore, (iα+1)iα = (2iα)iα =
2(iαiα) = 2iα = iα+1, where iαiα = iα from Corollary
III.3.1. Since 2 ≤ µ ≤ iα+1, then iα+1 = 2iα ≤ µiα ≤
(iα+1)iα = iα+1. This implies µiα = iα+1. The second
equality can be proven in the same vein.

In the following section, we will define computing models
using Cartesian products and mapping functions. The follow-
ing two theorems will be helpful [19]:

Theorem III.4. Let the set S be the Cartesian product of the
sets S1 and S2, or S = S1 × S2. Then |S| = |S1||S2|.

Theorem III.5. Let f : S → T be a function that maps set
S to set T , and let F be the set of all possible functions f .
Then |F | = |T ||S|.

Finally, we introduce the following theorem, which can be
derived directly from the definition of cardinality [19]:

Theorem III.6. Two sets have the same cardinality if and only
if there is a bijection between them.

An interesting corollary of this theorem is the following:

Corollary III.6.1. There is a bijection between Rn and Rm,
for any n,m ∈ N.

Proof. From Corollary III.3.2, we see that |Rn| = |R|n =
(i1)n = i1. Similarly, |Rm| = i1. Therefore, the two sets
have the same cardinality, so there is a bijection between the
two.

Note that for complex coordinate spaces, |Cn| = |C|n =
|R2|n = |R|2n = (i1)2n = i1, so this bijection further
extends to complex coordinate spaces.

IV. GENERAL COMPUTING MODEL

We have now introduced all the mathematical tools neces-
sary to describe a computing machine under a set-theoretical
framework. There are two sets that we are interested in: the
set of all internal states that the machine supports, and the set
of all realizable transition functions.

A. Internal States

Consider a general computing machine. We define a state
variable s to describe the full internal state of the machine, and
we define the set S as the collection of all possible states. The
internal state should encompass all the necessary information
of the machine at a given iteration. Formally, we can define it
as follows:

Definition 4. The symbol s is the internal state of the machine
if and only if given s, the machine states of subsequent
iterations are all fully determined for any algorithm.

For example, consider the full internal state of a Turing
machine. The internal state should consist of three sub-states:
the register state of the control (s(1)), the tape symbols written
on the cells (s(2)), and the current address of the head (s(3))
[22]. Given these three substates and some transition function
(depending on how the machine is coded), then the processor
will know what to write (thereby changing s(2)), in what
direction to move (thereby changing s(3)), and what new
register state to be in (thus changing s(1)). Therefore, we see
that the next state is uniquely determined, so the transition
function is well-defined under this framework. Note that if
we eliminate any of the three sub-states, then it will be
impossible for us to uniquely determine the internal state of
the subsequent iteration.

Under the set theoretical framework, we can express the set
of internal states as the Cartesian product of the three sets of
the respective sub-states, or S = S(1) × S(2) × S(3), then
|S| = |S(1)||S(2)||S(3)|. By calculating the cardinality of the
set S, we essentially know the “number” of internal states that
a general Turing machine can support.

Consider a Turing machine with m tape symbols, n tape
cells, and k register states. It is easy to see that |S(1)| = k,
|S(2)| = mn, and |S(3)| = n. Therefore, we can calculate
|S| = |S(1)||S(2)||S(3)| = kmnn < |N| = i0. The strict
inequality comes from the fact that m, n, and k are all
finite numbers. In other words, this is a finite digital/discrete

5

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

ϕ1 ϕ2

ϕ3 ϕ4

Fig. 1. The set of all transition functions for |S| = 2. There are 22 = 4
transition functions in total. A transition function on this set is described by
two red arrows.

machine, and in general, the inequality |S| < i0 is true for a
finite digital machine.

On the other hand, if we consider the theoretical model of
a Turing machine with infinite tape cells µ = |N| = i0, then
the calculation changes significantly. In this case, we have
|S(1)| = k, |S(2)| = mi0 = i1 (from Corollary III.3.2), and
|S(3)| = i0. Therefore, we see that |S| = |S(1)|S(2)||S(3)| =
ki1i0 = i1 (from Corollary III.3.1). For the purpose of
proving Turing-completeness, we use this model of infinite
tape.

B. Transition Function

1) General Definition of Transition Function: The opera-
tion of any computing machine is defined using a transition
function [22] (or a set of transition functions such as in a
general UMM [4]). In this paper, we only consider determin-
istic machines, or well-defined transition functions. Here, we
give a much more general definition of the transition function.
Essentially, we are throwing away constraints such as initial
states, accepting states, tape symbols, and so forth, and simply
define the transition function as a mapping from some state to
some other (or the same) state. We can then formally define
the transition function as follows:

Definition 5. Let S be any set, then ϕS is said to be a
transition function on S if, for every s ∈ S, we have a unique
ϕS(s) ∈ S. In other words, ϕS is a function that maps S to
a subset of itself, or ϕS : S 7→ S′, where S′ ⊆ S. We denote
the set of all possible transition functions on S as ΦS .

From Theorem III.5, it is easy to see that the cardinality of
ΦS is simply |ΦS | = |S||S|. It is important to note that we are
not defining the transition function based on the operation of
the machine. Instead, we are defining the transition function
as the mapping of a set to itself (see Fig. 1 for a schematic
representation). As a result, there will be some transition
functions that are not realizable in the context of a particular
computational model. The next subsection, section IV-B2,
gives illustrative examples of transition functions that cannot
be realized by a Turing machine.

2) Turing Machine as Example: For a Turing machine, after
the machine is coded, the transition function remains stationary
and cannot be changed during the execution of an algorithm
(unlike a UMM where the transition function is dynamic). In
other words, the machine will take some initial internal state si
and apply some transition function ϕS to it recursively until
the final state sf is reached and the machine halts. We can
express this as

sf = ϕS(...ϕS(ϕS︸ ︷︷ ︸
n iterations

(si))). (3)

Furthermore, when the final state is reached, we should have
sf = ϕS(sf), meaning that the transition function should not
alter the final state, and this represents the termination of the
algorithm.

It is obvious that for any Turing machine algorithm, one can
always find a transition function associated with it; however,
the reverse is not true. In fact, there are transition functions
in ΦS that are not realizable on a Turing machine. Some
examples are writing symbols on two cells at once, writing a
symbol on a cell not directly under the head, moving the head
two to the right/left of the current one, and so on. However,
note that these operations are not excluded a priori from the
full set of transition functions.

C. Realizable Transition Functions
For convenience, let us denote the set of all realizable

transition functions acting on set S as Φ′S . Then of course,
Φ′S ⊆ ΦS must be true. We call Φ′S the realizable set of
transition functions, and ΦS the full set of transition functions.

As a simple example, consider a machine with only two
states, 0 and 1. Furthermore, the machine can only perform
two functions at each iteration. The first function is to do
nothing at all, and the second function is to switch between
the two states. It is clear that the set of internal states can
be expressed as S = {0, 1}. This machine only supports two
transition functions, which can be expressed as ϕ1(s) = s and
ϕ2(s) = 1− s for all s ∈ S.

As a side note, we could have also written the second
transition function as ϕS(s) ≡ 1+s (mod 2). However, since
the transition function is defined by its mapping rather than its
form, the 2 different expressions represent the same transition
function. In this paper, we do not concern ourselves with the
representation of the transition functions.

Therefore, we see that the realizable set of transition func-
tions is simply a set with two elements, Φ′S = {ϕ1, ϕ2}. Note
that there are two more transition functions possible, but they
are not supported by the machine. They are ϕ3(s) = 0, and
ϕ4(s) = 1. However, they are not excluded from the full set
of transition functions, ΦS = {ϕ1, ϕ2, ϕ3, ϕ4}.

Given S and Φ′S , one can fully describe the machine
structure, so we can naturally make the following definition:

Definition 6. A machine S ×Φ′S is a machine with the set of
internal states S and the realizable set of transition functions
Φ′S

Here, the product notation is borrowed from group action
[23], though it is somewhat of an “abuse of notation” because

6

s1

s2

s3

s4

S

t1

t2

t3

t4

T

Fig. 2. Let S and T be two sets of the same cardinality, and label the set
elements such that si pairs with ti. The collection of all blue arrows within a
set represent a single transition function for each set. Informally, the pairing
of the two transition functions is represented by the purple arrows that pair
the arrows in set S with their respective counterparts in set T .

Φ′S is not necessarily a group. Nevertheless, this does not
matter for what we are about to discuss next.

D. Isomorphism

Traditionally, the notion of “equivalence” is defined as
follows [24]:

Definition 7. Two machines, A and B, are said to be equiv-
alent if and only if A can simulate B, and B can simulate
A.

If machines A and B are equivalent, then machine A can
simulate the machine processes of machine B, and vice versa
[24]. But recall that machine processes can be expressed in
terms of transition functions acting on internal states. So
informally, two machines are equivalent if and only if they
have the same internal states and transition functions.

Again, borrowing from group theory the notion of isomor-
phism [23], we can formalize what it means exactly for two
sets to be the “same”:

Definition 8. Two machines, S × Φ′S and T × Φ′T , are
isomorphic if and only if the following holds:

1. S and T are of the same cardinality.
2. Φ′S and Φ′T are of the same cardinality.
3. There exist bijections g : S 7→ T and h : Φ′S 7→ Φ′T such

that g(ϕS(s)) = h(ϕS)(g(s)) for any s ∈ S and ϕS ∈ Φ′S .

At this point, we can use the terminology equivalence and
isomorphism interchangeably. From the definition of isomor-
phism, we can derive directly the following theorem about
machines with full sets of transition functions:

Theorem IV.1. If |S| = |T |, the machine S×ΦS is isomorphic
to T × ΦT , where ΦS and ΦT are full sets of transition
functions acting on their respective sets.

Proof. We show that the two machines satisfy the three
conditions for isomorphism:

1. Since |S| = |T |, then S and T are of the same cardinality.
2. Since |ΦS | = |S||S| = |T ||T | = |ΦT |, then ΦS and ΦT

are of the same cardinality.
3. Let g : S 7→ T be any arbitrary bijection. Then we

define h(ϕS) = gϕSg
−1. It is obvious that h is in fact a

bijection under this definition. Furthermore, for any s ∈ S and
ϕS ∈ Φ′S , we have h(ϕS)(g(s)) = gϕSg

−1g(s) = g(ϕS(s)).

It is important to note that this theorem is only useful if the
two machines under comparison both support their full sets of
transition functions. If two machines only support realizable
sets of transition functions, then they are not necessarily
isomorphic even if they have the same “size”. For example,
consider two machines both with the same internal states,
S = {0, 1}. Machine A only supports the function ϕA = s,
and machine B only supports the function ϕB = 1 − s.
Informally, machine A is a machine that does nothing, and
machine B is a machine that keeps switching between the
two states. It is clear that there is no appropriate mapping
between the two machines.

However, note that it is possible for two machines to be
isomorphic without supporting the full set of transition func-
tions. For example, consider again two machines both with the
same internal states, S = {0, 1}. Machine A only supports the
function ϕA = 0, and machine B only supports the function
ϕB = 1. At first site, the two machines may seem different.
However, we can map the 0 state of machine A to the 1 state
of machine B, and the 1 state of machine A to the 0 state of
machine B. And if we denote this mapping as f(s) = 1− s,
then we can easily show that ϕB(f(0)) = f(ϕA(0)) = 1
and ϕB(f(1)) = f(ϕA(1)) = 1. Therefore, we see that the
two machines are isomorphic. Informally, both machines work
by bringing every state to some fixed state, so they behave
the same even though they have different sets of transition
functions.

Isomorphism is an equivalence relation. So if machine A is
isomorphic to machine B, then we can denote this as A ≡ B.
Then, the following properties clearly hold:

1) A ≡ A.
2) if A ≡ B, then B ≡ A
3) if A ≡ B and B ≡ C, then A ≡ C.

E. Sub-machines

Traditionally, the notion of “completeness” is defined as
follows [24]:

Definition 9. Machine A is B-complete if and only if the
former can simulate the latter.

The difference of this definition from the definition of
equivalence is that the reverse need not be true. In other words,
it is not required that B can simulate A. In a sense, we can
say that machine A is a more “general” computation model
than machine B.

Informally, if machine A is B-complete, then the internal
states and transition functions of machine B are “included” in

7

those of machine A. To formalize the concept of “inclusion”,
we introduce the notion of a sub-machine. Then we can define
sub-machine in a way such that A is B-complete if and only
if we can find a sub-machine of A such that it is isomorphic
to B.

The most obvious way to construct a sub-machine from a
given machine is through the reduction of sets - the reduction
of the internal state set, the reduction of the transition function
set, and the reduction of both. First, let us look at the reduction
of the transition function set:

Definition 10. Consider two machines, S × Φ′1 and S × Φ′2.
We define the latter to be a functional reduction of the former
if and only if Φ′2 ⊆ Φ′1.

Note that the subscript S of ΦS is implied. Essentially, we
are keeping S the same while shrinking the set ΦS . As an
example, consider again the machine with internal state set
S = {0, 1} and transition functions ϕ1(s) = s and ϕ2(s) =
1 − s. We can reduce the transition function set by throwing
away ϕ2 and keeping only ϕ1. Originally, the machine can
perform two functions, doing nothing and switching. After the
functional reduction, the machine loses its switching function,
and can only perform the trivial function of doing nothing.

There is also the reduction of the internal state set, which
we can define as follows:

Definition 11. Consider two machines, S×Φ′S and S′×Φ′S′ .
We define the latter to be a state reduction of the former if
and only if the following holds:

1. S′ ⊆ S.
2. For any ϕ′ ∈ Φ′S′ , there exists a ϕ ∈ Φ′S such that

ϕ′(s) = ϕ(s) for every s ∈ S′.
3. For any ϕ ∈ Φ′S with image ϕ(S′) ⊆ S′, there exists a

ϕ′ ∈ Φ′S′ such that ϕ′(s) = ϕ(s) for every s ∈ S′.

Note that after a state reduction, both the internal state
set and the transition function set change. Furthermore, note
that a state reduction is unique given some S′ ⊆ S. The
intuition behind this form of reduction is fairly straightforward.
Informally, we simply throw away some elements from the
internal state set, and after that, we throw away the functions
that cannot be well-defined without the state elements that we
have thrown out.

It is important to note that the state reduction of a machine
with a full set of transition functions is still a machine with a
full set of transition functions, or compactly stated:

Theorem IV.2. The state reduction of S × ΦS is S′ × ΦS′ ,
where S′ ⊆ S and Φ denotes the full set of transition functions.

This follows directly from the definition of sub-machine.
It is obvious that a machine can simulate a reduced version

of itself. So at this point, we can appropriately define a sub-
machine as a series of state and functional reductions of the
original machine. However, we can simplify this definition if
we first introduce a few lemmas:

Lemma IV.3. Applying functional reductions twice is equiv-
alent to applying one functional reduction.

Lemma IV.4. Applying state reductions twice is equivalent to
applying one state reduction.

Lemma IV.5. A reduction is expressible in terms of a func-
tional reduction followed by a state reduction if and only if
it is expressible in terms of a state reduction followed by a
functional reduction.

Proof. The first two lemmas are fairly straightforward to
prove, so let us focus on the third lemma. Let Φ′S′ be a state
reduction of Φ′S , then we can define a surjection h : Φ′S 7→ Φ′S′

such that (h(ϕ))(s) = ϕ(s) for every s ∈ S′ and every
ϕ ∈ Φ′S . If we let Φ′′S ⊆ Φ′S be a functional reduction, then
it is obvious that h(Φ′′S) ⊆ Φ′S′ , meaning that h(Φ′′S) is a
functional reduction of Φ′S′ . In other words, the state reduction
of a functional reduction is also some functional reduction
of a state reduction. The converse can be proven similarly
by inverting the mapping so that we have some multivalued
function h−1 : Φ′S′ 7→ Φ′S . In this case, if we let Φ′′S′ ⊆ Φ′S′ ,
then we have h−1(Φ′′S′) ⊆ Φ′S . Note that h−1 is not really a
function in the conventional sense, but this does not matter for
the proof.

Note that Lemma IV.3 implies that multiple functional
reductions can be “compressed” into one, and Lemma IV.4
implies that multiple state reductions can also be “compressed”
into one. Furthermore, Lemma IV.5 implies that the order in
which we apply the functional and state reductions does not
matter. With these in mind, we can finally make the following
definition of sub-machine:

Definition 12. Machine B is a sub-machine of A if and only
if B can be expressed as a functional reduction followed by
a state reduction of A.

To see that this definition is appropriate, recall that a sub-
machine can be constructed through a series of reductions.
Since by Lemma IV.5, the order of functional and state
reductions does not matter, we can choose to apply all the
functional reductions first, and then apply all the state re-
ductions. Furthermore, from Lemma IV.3 and IV.4, we can
condense all the functional reductions into one, and all the
state reductions into one as well. Therefore, in the end, we
are left with one functional reduction followed by one state
reduction.

An important thing to note is that sub-machine is an order
relation. So if machine B is a sub-machine of machine A,
then we can denote this as B � A. The following properties
then hold:

1) A � A.
2) If A � B and B � A, then A ≡ B.
3) If B � A and C � B, then C � A.
At this point, we are in the position to formalize the relation

of completeness between two machines under our set-theoretic
framework. We can define completeness through the use of
sub-machine:

Definition 13. Machine S×Φ′S is T ×Φ′T -complete if we can
find a sub-machine of S × Φ′S such that it is isomorphic to
T × Φ′T .

8

Intuitively, what this means is that we are able to find a
mapping between the two machines such that the machine
processes of T ×Φ′T are “included” in the machine processes
of S × Φ′S . In other words, machine S × Φ′S can simulate
T × Φ′T . Under this definition, we can derive an important
result about machines with full sets of transition functions:

Theorem IV.6. Machine S × ΦS is T × Φ′T -complete if ΦS
is the full set of transition functions on S and |T | ≤ |S|.

Proof. Let |S′| ⊆ |S| be some arbitrary subset of S such
that |S′| = |T |, then we can define some arbitrary bijection
g : T 7→ S′. Furthermore, we can define an injection h :
Φ′T 7→ ΦS′ such that h(ϕT) = gϕT g

−1 for every ϕT ∈ Φ′T .
To show that h is in fact an injection, note that:

1) Given any ϕT ∈ Φ′T , we have h(ϕT)s1 = gϕT g
−1s1 =

gϕT t1 = gt2 = s2 ∈ S′ for any s1 ∈ S′. Therefore,
h(ϕT) : S′ 7→ S′ is a transition function on S′, or
h(ϕT) ∈ ΦS′ .

2) Furthermore, s2 = h(ϕT)s1 is uniquely determined for
every s1 ∈ S′. So there is only one h(ϕT) possible
for any given ϕT ∈ Φ′T . Therefore, h is a well-defined
mapping.

3) Assume that ϕT 6= ϕ′T , then there exists t1 ∈ T such that
ϕT (t1) = t2 6= t3 = ϕ′T (t1). So h(ϕT)s1 = s2 6= s3 =
h(ϕ′T)s1, implying that h(ϕT) 6= h(ϕ′T). Therefore, h is
an one-to-one mapping.

Now, if we let Φ′S′ ⊆ ΦS′ be the set of all transition functions
ϕS′ with a well-defined inverse h−1(ϕS′), then it is easy to
see that h : Φ′T 7→ Φ′S′ is a bijection. Furthermore, we see
that machine T ×Φ′T is isomorphic to machine S′×Φ′S′ . But
S′ × Φ′S′ is a functional reduction of S′ × ΦS′ , which itself
is a state reduction of S ×ΦS , so S′ ×Φ′S′ is a sub-machine
of S × ΦS . Putting everything together, we see that T × Φ′T
is isomorphic to a sub-machine of S × ΦS , so S × ΦS is
T × Φ′T -complete.

This theorem essentially states that if a machine supports
the full set of transition functions (such as the UMM), then it
can simulate any machine of a smaller size. This will be our
basis for showing completeness relations for the UMM with
respect to the other computation models.

V. REVISED MACHINE DEFINITIONS WITHIN SET THEORY

Up to this point, we have avoided the discussion of the
concept of “output states” of a machine. However, under this
new set-theoretic framework, this concept is easily expressible.

In general, the internal state of the machine must be
“decoded” into an output state to be read by the user. We
can denote the set of all possible output states as F . Then it is
obvious that |F | ≤ |S|, otherwise we would not be able to find
a function that maps S to F . In other words, every internal
state must correspond to some output state, and it is easy to
show that the output function is expressible as a transition
function.

To show this, we first choose a subset SF ⊆ S such
that |SF | = |F |, then there is a bijection between F and
SF . Therefore, we can simply describe the output mapping
function as a transition function that maps S to SF . It is

then clear that the set of all possible functions mapping
internal states to outputs must be a subset of ΦS , so we can
simply expand the realizable set Φ′S to include these functions,
without the need to redefine a new set.

The mathematical framework has now been fully estab-
lished, and we are ready to redefine the three machines we
are considering in this work within this framework.

A. Universal Memcomputing Machines

In the original definition of the UMM, there is the complica-
tion of input and ouput pointers (see Eq. (1)). Within the new
set-theory framework, we can avoid the concept of pointers,
since the transition function always reads the full internal state
(all the cells) and writes the full internal state. In other words,
we consider the combination of all cell states as a whole, and
make no effort in describing which cell admits which state. In
this case, intrinsic parallelism is obviously implied.

Let us then discuss the cardinality of the set of internal
states. For a UMM, there is a finite number of cells, n < i0,
and each cell may admit a continuous state (with cardinality
i1). In this case, it is easy to show that |S| = (i1)n = i1.

Furthermore, in the original definition of the UMM
[Eq. (1)], there are no constraints on the transition function
δ. This means that we can use the full set of transition
functions, ΦS , to describe the machine. In this case, functional
polymorphism is obviously implied. Therefore, we can define
the UMM machine as S × ΦS , with |S| = i1.

B. Liquid-State Machine

It is not hard to see that the internal state structures for the
LSM and the UMM are similar. Instead of memory cells, the
LSM has neurons. But if we make the conservative assumption
that there are no constraints on the internal states of the
LSM, then the cardinality of the set of internal states for this
machine is the same as that of a UMM, |S| = i1. However,
what distinguishes the LSM from the UMM is that the set of
transition functions for the LSM is not full.

Recall that the LSM consists of a series of filters and an
output function (see Sec. II). The set of filters satisfies the
point-wise separation property, and the function satisfies the
fading-memory property. There is no need to express the two
properties in the language of our new framework. Instead, it
is enough to note that the point-wise property is a property of
the transition function set, while the fading-memory property
is a property of the transition function itself.

Therefore, we can find a subset (ΦS)1 ⊆ ΦS such that its
elements represent the filters, with the subset itself satisfying
the point-wise separation property. As discussed earlier, we
can express the output function as a transition function, so
we can find a subset (ΦS)2 ⊆ ΦS such that its elements
represent the output functions, and they satisfy the fading-
memory property. Then, we can take the union of the two
subsets Φ′S = (ΦS)1 ∪ (ΦS)2 to get the realizable set of
transition functions on S.

Therefore, we can describe the LSM as S×Φ′S , with |S| =
i1. The specific structure of the machine can be defined by
expressing the two properties as constraints on Φ′S . This is a

9

slightly tedious process, so we will not be presenting it here,
since it is irrelevant for our conclusions.

C. Quantum Computers

Again, consider a quantum computer with n identical qubits,
each having m basis states. In subsection II-C, we have shown
that the total number of basis states for the entire system is
mn < |N|. Each basis state is associated with some complex
factor ci1i2...in ∈ C. These factors are constrained by the nor-
malization condition

∑m−1
i1=0

∑m−1
i2=0 ...

∑m−1
in=0 |ci1i2...in |2 = 1.

Furthermore, in practice we usually ignore an overall phase
factor since it does not affect the expectation value of an
observable.

At this point, it is clear that we can fully describe a quantum
state as the Cartesian product of the complex factors for all
basis states. In other words, we can represent an internal state
as c0102...0n × c1101...0n ... × c(m−1)1(m−1)2...(m−1)n , where
there are mn factors.

Given this information, we can calculate the cardinality of
the full set of internal states to be |S| = |Cmn | − |R2| =
|Cmn | ≤ |CN| = |C||N| = (|R||N|)2 = (ii0

1)2 = (i1)2 =
i1. (The unimportant |R2| is from the normalization condition
and factoring out the overall phase factor.) In addition, |S| =
|Cmn | ≥ |R| = i1. Therefore, we have |S| = i1.

The full set of internal states contains quantum states with
varying degrees of entanglement. It is worth stressing though
that, in practice, it is extremely hard to construct a quantum
computer that can support the full set of quantum states. For
example, it is very challenging to prepare 100 qubits that are
fully entangled. (The current record is on the order of tens of
fully-entangled qubits [25][26].) Therefore, the actual set S′ is
a small subset of S, or S′ ⊆ S, unless m and n are both very
small. However, since we are making here only theoretical
arguments, let us just assume that the full set S of all possible
entangled states can be supported.

As discussed previously, the transition functions of a quan-
tum computer can be expressed as unitary operations on some
initial state. The set of all unitary operations is obviously a
strict subset of the full set of transition functions. For example,
one cannot find an unitary operation that collapses every single
state to |00...0〉 (setting c0102...0n = 1, and setting all the
other factors to 0), though this is excluded a priori from
ΦS . Therefore, we can describe the quantum computer as
S × Φ′S , where Φ′S is the set of unitary evolutions governed
by all possible Hamiltonians. Note that it is also possible for
a quantum computer to have a dynamic transition function.
This is the case if one performs quantum annealing for finding
the ground states [10]. In this process, the Hamiltonian of the
system is varied slowly, thus giving rise to a dynamic transition
function.

A few words on the “output function” of a quantum
computer are also in order. The output function essentially
represents the operation of taking the expectation value of
some observable on the internal state, or 〈ψ|Ô|ψ〉. This maps
the set of internal states to the set of output states F ⊆ R
(expectation values have to be real), so we obviously have
|F | ≤ |S|. All things considered, a quantum computer can

then be described as S × Φ′S , where |S| = i1, and Φ′S is its
realizable set of transition functions.

VI. UNIVERSALITY OF MEMCOMPUTING MACHINES

From the above discussions, we can summarize all the
results we have obtained so far, and express all the machines
we considered here in their most general form:
• Turing Machine: T × Φ′T , |T | ≤ i1,
• Liquid-State Machine: L× Φ′L, |L| = i1,
• Quantum Computer: Q× Φ′Q, |Q| = i1,
• Universal Memcomputing Machine: M×ΦM , |M | = i1.
Therefore, by applying Theorem IV.6, we see that a UMM

can simulate any Turing machine, any liquid-state machine,
and any quantum computer.

At this point, the goal of this paper is essentially accom-
plished. However, we can expand on this for each pair of
machines separately. In particular, let us briefly discuss how a
mapping between a UMM and the three other machines can
be realized in theory. Of course, this mapping does not tell us
anything about the resources required for a UMM to simulate
these other machines. Hence, this is by no means a discussion
on how to realize an efficient or practical mapping.

A. UMM vs. Turing Machines

Let us look at the mapping between a Turing machine
and a UMM. First, we map each tape cell to a memory cell
(memcell). We can denote these memcells collectively as a
“memtape”. The tape symbols can be mapped to the internal
states of each memcell of the memtape.

Then, we can map the state register to another memcell
which we will denote as “memregister”. The state of the
Turing machine is then stored as the internal state of the
memregister. Finally, we can store the current address of the
head as an internal state of yet another memcell which we
denote as “memaddress”.

We can then wire the memcells together into a circuit
such that it simulates the operation of the Turing machine.
Note that as a result of functional polymorphism, we do not
have to re-wire the circuit each time we choose to run a
different algorithm. The circuit first reads the memregister
and the memaddress, so that it knows which memcell of the
memtape to modify and how to modify it. After that memcell
is modified, the memregister and memaddress then update
themselves to prepare for the next cycle. In short, we are
replacing the tape, head, and control with memprocessors.

B. UMM vs. LSM

The mapping between a LSM and a UMM is fairly obvious.
We simply have to map each “reservoir cell” to a memcell, and
wire the circuit such that the point-wise separation and fading-
memory properties are satisfied. The explicit construction of
the circuit to realize such properties will not be explored here.

Although, in theory, it is possible to simulate an LSM with
a UMM, it is not always efficient or necessary to do so in
practice. The circuit topologies of the two machines are very
different, and they are designed to perform different tasks.

10

For the LSM model, the connections between the reservoir
cells are typically random, and the reservoir as a whole is
not trained. The expectation of getting the correct output
relies entirely on training the output function correctly. In
the end, the operation of the machine relies on statistical
methods, and is inevitably prone to making errors. In some
sense, the machine as a whole is analogous to a “learning
algorithm” [27].

On the other hand, for the UMM, we can connect the mem-
cells into a circuit specific to the tasks at hand. One realization
of this connection employs self-organizing logic gates [5] to
control the evolution of the machine such that it will always
evolve towards an equilibrium state representing the solution
to a particular problem (the machine is deterministic).

In the general case, the UMM is an entirely different com-
puting paradigm than the LSM, with the UMM being able to
provide exponential speed-up for certain hard problems [5][8].
In other words, while possible, utilizing a UMM to simulate
an LSM will not be exploiting all the properties of the UMM
to its full use. In practical applications, it would then be more
advantageous to use a UMM (and its digital version, a DMM)
to tackle directly the same problems investigated by LSMs,
without the intermediate step of simulating the LSM itself.

C. UMM vs. Quantum Computers

Simulating a quantum computer with a UMM requires
“compressing” the internal state of a quantum computer. Recall
that a quantum computer has mn basis states, and each basis
state is associated with some complex factor. The most obvious
mapping is to map the mn basis states to mn mem-cells, and
we can perform the simulation by wiring the mem-cells in a
way such that the unitary evolution of interest is realizable. Of
course, this would require an exponentially scaling number of
mem-cells to achieve.

However, in this work, we have shown that any finite
number of mem-cells can produce an internal state set with
size i1, which is also the size of any quantum computer.
Therefore, in theory, we can map the basis states of the
quantum computer to only O(n) mem-cells, a linearly scaling
number. However, in practice, this may come at the expense of
exponentially deteriorating accuracy or exponentially scaling
time.

This paper does not give a definitive answer as to whether
it is possible for a UMM to simulate a quantum computer
in polynomial time. Nevertheless, one of the features that
makes UMMs a practical and powerful model of computation
is precisely its “information overhead”. Information overhead
and quantum entanglement share some similarities: in some
sense, both of them allow the machine to access a set of
results of mathematical operations (without actually storing
them) that is larger than that provided by simply the union of
non-interacting processing units [4][9]. We could then argue
that we may exploit the information overhead property of a
UMM to represent efficiently the entanglement of a quantum
system. At this point, however, this question is still open.

VII. DISCUSSION

Within the set-theoretic framework of this paper, all the
formulations are independent of the notion of resource. In
other words, we showed that a UMM, in theory, can simulate
any Turing machines, liquid-state machines, or quantum com-
puters. However, performing such simulations with polynomial
resources, especially in the quantum case, cannot be proved
within this framework. In fact, the question of whether one can
perform the simulation of these machines using UMMs with
polynomial resources is, of course, dependent on the specific
algorithms that one is trying to simulate.

Nevertheless, on a more practical note, the usefulness of
UMMs, and in particular their digital realization (DMMs) [5],
have already been shown to offer substantial advantages over
standard algorithms, or even quantum computers, for a wide
variety of hard combinatorial optimization problems. In fact,
simulations of DMMs have already been applied to problems
such as the maximum satisfiability (Max-SAT) [8], [28],
subset-sum [7], pre-training of neural networks [29], and inte-
ger linear programming [30], all of which carry great scientific
and industrial value. In all these cases, DMM simulations have
already outperformed traditional algorithmic approaches, in
some cases providing an exponential speed up [8]. Therefore,
if a physical DMM is realized through self-organizing logic
gates and memristive elements [5], the speed increase will be
even more evident.

On the more theoretical end of the spectrum, this paper
presents a simple but general set-theoretical methodology
for checking equivalence or completeness relations between
different computational models. This is useful in cases where
other formal approaches are too cumbersome.

VIII. CONCLUSIONS

In conclusion, we have developed a set-theoretical approach
to describe the relation between universal memcomputing
machines and other types of computing models, in particular
Turing machines, liquid-state machines, and quantum com-
puters. Within this new mathematical framework, we have
confirmed that UMMs are Turing-complete, a result already
obtained in [4] using a different approach.

In addition, we have also shown that UMMs are liquid-
complete (or reservoir-complete) and quantum-complete,
namely they can simulate any liquid-state (or reservoir-
computing) machine and any quantum computer without ref-
erence to Turing machines. Of course, the results discussed
here do not provide an answer to the question of what
resources would be needed for a UMM to efficiently simulate
such machines. Along these lines, it would be interesting to
study the relation between information overhead and quantum
entanglement. If such a relation exists and can be exploited
at a practical level, it may suggest how to utilize UMMs
to efficiently simulate quantum problems that are currently
believed to be only within reach of quantum computers (such
as the efficient simulation of quantum Hamiltonians). Further
work is however needed to address this practical question.

Acknowledgments – MD acknowledges partial support from
the Center for Memory and Recording Research at UCSD.

11

REFERENCES

[1] M. Di Ventra and Y. V. Pershin, “The parallel approach,” Nature Physics,
vol. 9, pp. 200–202, 2013.

[2] J. v. Neumann, “First draft of a report on the edvac,” tech. rep., 1945.
[3] S. Arora and B. Barak, Computational Complexity: A Modern Approach.

New York, NY, USA: Cambridge University Press, 1st ed., 2009.
[4] F. L. Traversa and M. Di Ventra, “Universal memcomputing machines,”

IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 11, p. 2702, 2015.
[5] F. L. Traversa and M. Di Ventra, “Polynomial-time solution of prime

factorization and np-complete problems with digital memcomputing
machines,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 27, p. 023107, 2017.

[6] F. L. Traversa, C. Ramella, F. Bonani, and M. Di Ventra, “Mem-
computing NP-complete problems in polynomial time using polyno-
mial resources and collective states,” Science Advances, vol. 1, no. 6,
p. e1500031, 2015.

[7] M. Di Ventra and F. L. Traversa, “Memcomputing: Leveraging memory
and physics to compute efficiently,” J. Appl. Phys., vol. 123, p. 180901,
2018.

[8] F. Traversa, P. Cicotti, F. Sheldon, and M. Di Ventra, “Evidence of an
exponential speed-up in the solution of hard optimization problems,”
Complexity, vol. 2018, no. 7982851, 2018.

[9] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
pp. 1484–1509, Oct. 1997.

[10] A. Finnila, M. Gomez, C. Sebenik, C. Stenson, and J. Doll, “Quantum
annealing: A new method for minimizing multidimensional functions,”
Chemical Physics Letters, vol. 219, pp. 343–348, Mar. 1994.

[11] G. H. Low and I. L. Chuang, “Optimal hamiltonian simulation by
quantum signal processing,” Physical Review Letters, vol. 118, Jan.
2017.

[12] P. Benioff, “The computer as a physical system: A microscopic quantum
mechanical hamiltonian model of computers as represented by turing
machines,” Journal of Statistical Physics, vol. 22, pp. 563–591, May
1980.

[13] D. Korenkevych, Y. Xue, Z. Bian, F. Chudak, W. G. Macready, J. Rolfe,
and E. Andriyash, “Benchmarking quantum hardware for training of
fully visible boltzmann machines,” 2016.

[14] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[15] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[16] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout,
“Isolated word recognition with the liquid state machine: a case study,”
Information Processing Letters, vol. 95, no. 6, pp. 521–528, 2005.

[17] H. Jaeger, “The “echo state” approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, vol. 148, no. 34, p. 13, 2001.

[18] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge Series on information and the Natural Sciences,
Cambridge University Press, 10th Aniversary ed., 2010.

[19] H. B. Enderton, Elements of set theory. Academic Press, 1977.
[20] G. Cantor, “Ueber eine eigenschaft des inbegriffs aller reellen alge-

braischen zahlen.,” Journal für die reine und angewandte Mathematik,
vol. 77, pp. 258–262, 1874.

[21] T. E. Forster, “Set theory with a universal set. exploring an untyped
universe,” 1994.

[22] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata
theory, languages, and computation,” ACM SIGACT News, vol. 32, no. 1,
pp. 60–65, 2001.

[23] D. Dummit and R. Foote, Abstract Algebra. Wiley, 2004.
[24] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of

Computation. Prentice Hall PTR, 1997.
[25] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A.

Coish, M. Harlander, W. Hänsel, M. Hennrich, and R. Blatt, “14-
qubit entanglement: Creation and coherence,” Physical Review Letters,
vol. 106, no. 13, p. 130506, 2011.

[26] C. Song, K. Xu, W. Liu, C.-p. Yang, S.-B. Zheng, H. Deng, Q. Xie,
K. Huang, Q. Guo, L. Zhang, et al., “10-qubit entanglement and par-
allel logic operations with a superconducting circuit,” Physical Review
Letters, vol. 119, no. 18, p. 180511, 2017.

[27] Y. Zhang, P. Li, Y. Jin, and Y. Choe, “A digital liquid state machine with
biologically inspired learning and its application to speech recognition,”
IEEE transactions on neural networks and learning systems, vol. 26,
no. 11, pp. 2635–2649, 2015.

[28] F. Sheldon, P. Cicotti, F. L. Traversa, and M. Di Ventra, “Stress-
testing memcomputing on hard combinatorial optimization problems,”
arXiv:1807.00107, 2018.

[29] H. Manukian, F. L. Traversa, and M. Di Ventra, “Accelerating deep
learning with memcomputing,” arXiv:1801.00512, 2018.

[30] F. L. Traversa and M. Di Ventra, “Memcomputing integer linear pro-
gramming,” arXiv:1808.09999, 2018.

	I Introduction
	II Review of Machine Definitions
	II-A Universal Memcomputing Machines
	II-B Liquid-State Machines
	II-C Quantum Computers

	III Mathematical Tools
	IV General Computing Model
	IV-A Internal States
	IV-B Transition Function
	IV-B1 General Definition of Transition Function
	IV-B2 Turing Machine as Example

	IV-C Realizable Transition Functions
	IV-D Isomorphism
	IV-E Sub-machines

	V Revised Machine Definitions within Set Theory
	V-A Universal Memcomputing Machines
	V-B Liquid-State Machine
	V-C Quantum Computers

	VI Universality of Memcomputing Machines
	VI-A UMM vs. Turing Machines
	VI-B UMM vs. LSM
	VI-C UMM vs. Quantum Computers

	VII Discussion
	VIII Conclusions
	References

