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3D PersonVLAD: Learning Deep Global
Representations for Video-based Person

Re-identification
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Abstract—In this paper, we introduce a global video rep-
resentation to video-based person re-identification (re-ID) that
aggregates local 3D features across the entire video extent.
Most of the existing methods rely on 2D convolutional networks
(ConvNets) to extract frame-wise deep features which are pooled
temporally to generate the video-level representations. However,
2D ConvNets lose temporal input information immediately after
the convolution, and a separate temporal pooling is limited in
capturing human motion in shorter sequences. To this end,
we present a global video representation (3D PersonVLAD),
complementary to 3D ConvNets as a novel layer to capture the
appearance and motion dynamics in full-length videos. However,
encoding each video frame in its entirety and computing an
aggregate global representation across all frames is tremendously
challenging due to occlusions and misalignments. To resolve
this, our proposed network is further augmented with 3D part
alignment module to learn local features through soft-attention
module. These attended features are statistically aggregated
to yield identity-discriminative representations. Our global 3D
features are demonstrated to achieve state-of-the-art results on
three benchmark datasets: MARS [1], iLIDS-VID [2], and PRID
2011 [3].

Index Terms—3D Convolution, VLAD, Video-based Person Re-
identification, Global Representations

I. INTRODUCTION

PERSON re-identification (re-ID) refers to matching
pedestrians in the context of non-overlapping camera

views. It is attracting substantial attention in computer vision
due to its wide range of potential applications, such as human
behavior analysis and security in public places. In general,
the existing person re-ID methods can be categorized into
image-based approaches and video-based alternatives. Many
approaches based on deep neural networks belong to the
image-based stream [4]–[25] while relatively fewer works
deal with videos [2], [26]–[33]. In practice, the video input
provides a more natural solution to person recognition because
pedestrian videos can be easily captured in a surveillance
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Fig. 1: Top: Existing methods based on 2D ConvNets extract
deep features frame-wise which are pooled temporally (e.g. through
RNNs) to produce video-level features. However, temporal priors are
completely lost right after each convolution and 2D ConvNets are
incapable of modeling a long video sequence. Bottom: The proposed
method learns a global video-level representation across the entire
spatiotemporal extent with efficiency.

system. Moreover, videos contain richer information than
images, and beneficial for identifying a person under complex
conditions.

Recent video-based re-ID methods focus on learning deep
features by considering both spatial and temporal informa-
tion [34]. Some spatial networks are based on one-stream
ConvNets to perform appearance modeling from individual
frames, and appearance features are pooled temporally to yield
the sequence-level representations [28], [30], [32]. However,
frame-based deep features are not suitable for videos due
to the lack of motion modeling, and critically 2D ConvNets
lose temporal priors of the input immediately after the con-
volutions. Some current studies demonstrate that two-stream
ConvNets [33], [35], [36] outperform one-stream ones by
decomposing the videos into motion and appearance streams.
Then separate CNNs for each stream are trained and the
outputs are fused in the end. However, current CNN methods
for video-based re-ID often extend CNN architectures de-
signed for static images and learn the representations for short
video intervals. Yet, pedestrian videos often contain complex
spatiotemporal characteristics with specific spatial as well
as long-term temporal structure. The problem even becomes
exaggerated when persons have large intra-class variability
caused by the changes of viewpoints, illuminations and human
poses. Breaking this structure into short clips, and aggregating
video-level information by the simple average of clip scores
or recurrence scheme such as LSTMs [30] is likely to be
suboptimal.
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A. Our Approach

To solve the problem above, in this paper, we propose to
learn the long-term, global representations for video-based
person re-ID. We consider space-time ConvNets [37] to per-
form 3D convolutions/pooling, and study the architecture that
aggregates mid-level convolutional descriptors across different
portions of the imaged identity across the entire temporal span.
It is known that 3D ConvNets are capable of modeling the
temporal prior much better because convolution and pooling
are performed spatiotemporally as opposed to 2D ConvNets
with only spatial modeling. The core to our network goes
to the proposed 3D PersonVLAD aggregation layer, that is
inspired by the “Vector of Locally Aggregated Descriptors”
[38], [39]. This 3D pooling operation captures information
about the statistics of local convolutional features aggregated
over the full-length temporal extent. The resulting aggregated
representation is regarded as the global descriptor for the
person video. However, one potential limitation of using global
representations lies in the absence of many explicit mechanism
to tackle the misalignment inherent to human pose changes and
imperfect detectors.

In view of attention models [40] and current reflection on
human body region based representation learning in static-
image person re-ID [5], [7], [9], [13], [41], we propose to learn
3D spatiotemporal representations with body part alignment.
Following this way, the 3D body filters with attention are
able to select the most informative regions both spatially and
temporally, and propagate them into the aggregation layer
to form a global representation. The attention module is
complementary to 3D convolutions and helps with modeling
long-range discriminations effectively.
Remark. We remark some major contributions of our model
upon the existing attention models in person re-ID [33], [34],
[36], [42]. First, current deep attention methods commonly
employ different attention mechanisms to spatial and temporal
priors. For instance, in [34] a penalization term is used to
regularize spatial attention whilst temporal attention is imple-
mented by assigning weights to different salient regions. In
contrast, our method has integrated spatiotemporal attention
whose parameters are learned over the course of end-to-end
training of the entire network. Second, in assembling local
features into global, these attention models are developed
without consideration of the compatibility of local and global
features. To this end, we design the architecture with the
VLAD pooling that statistically captures the information of
local descriptors over the temporal extent. Thus, the network
is forced to produce global presentations discriminative yet
robust to visual variations, while simultaneously learns to
focus on the relevant parts of the identities.

B. Contributions

We summarize the contributions of this work as follows.

• We present 3D PersonVLAD aggregation for video-based
person re-ID that attends human body part appearance
and motion simultaneously while encoding these interac-
tions into its global representation of a full-length video.

• We demonstrate the advantages of integrated spatiotem-
poral attention and the importance of VLAD aggregation
for learning accurate, generic, efficient video representa-
tions for person re-ID.

• The proposed architecture significantly outperforms off-
the-shelf CNN descriptors and two-stream image/motion
representations on three challenging benchmarks, and
improves over the current best methods on benchmarks.
We advance the state-of-the-art results from 71.7% to
80.8% on MARS [1], 62.0% to 69.4% on iLIDS-VID
[2], and 79.4% to 87.6% on PRID 2011 [3].

The rest of this paper is structured as follows. In Section
II, we briefly review related works. Section III presents the
architecture of the proposed method. Extensive experimental
results on three public data sets are given in Section IV and
Section V concludes this paper.

II. RELATED WORK

A. Video-based Person Re-identification

An image sequence can be viewed as a 3-dim space-time
volume and space-time features can be extracted based on
space-time interest points [43]. In person re-ID, some works
focus on motion features to describe the appearance variations
of pedestrians. For instance, Wang et al. [2] employ the
HOG3D [44] descriptor with dense sampling after identifying
walking periodicity. However, a pre-processing is needed to
select discriminative video fragments from which HOG3D
features can be extracted. Another work from Liu et al. [31] is
to extract 3D low-level features that encode both spatially and
temporal aligned appearance of a pedestrian. They also need to
manually align video fragments by using regulated flow energy
profile and spatial alignment is achieved by partitioning human
body into six rectangles to describe different body parts.

More recently, deep neural networks are demonstrated to
be effective for image based person re-ID and have achieved
notable improved performance [4], [5], [7]–[9], [13], [14],
[16], [19], [45]. In contrast, video-based re-ID is paid less
attention. McLaughlin et al. [28] extract CNN features for
each frame, and put through a RNN to impose their temporal
dependency. In [32], an end-to-end approach is proposed to
simultaneously learn deep features and their similarity metric
for a pair of videos as input. Also Yan et al. propose a
recurrent feature aggregation network (RFA-Net) [30] which
shares the similar idea of using RNN to aggregate frame-wise
features into a sequence level representation. Another effective
approach [33] is to use two RNNs where one is to exploit the
temporal dimension and the other is to calculate the spatially
context similarity of two corresponding locations in a pair of
video sequences. Similar to [33], an attentive spatial-temporal
pooling is presented [36] to employ spatial pooling to select
regions while temporal pooling is used to select informative
frames.

To go beyond individual image-level appearance informa-
tion and exploit the temporal information, Simonyan et al.
[46] propose the two-stream architecture, cohorts of spatial
and temporal ConvNets. The input to the spatial and temporal
networks are RGB frames and stacks of multiple-frame dense
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optical flow fields, respectively. Wang et al. [47] further im-
prove the two-stream architecture by enforcing consensus over
predictions in individual frames. These networks are still lim-
ited in their capacity to capture temporal information, because
they operate on a fixed number of regularly spaced, single
frames from the entire video. The ActionVLAD [48] extends
the NetVLAD aggregation layer [49] to videos and shows
that aggregating the last layers of convolutional descriptors
regarding spatial and temporal networks performs better. In-
spired by these two-stream architectures, a two stream Siamese
convolutional neural network architecture [35] is proposed to
use two CNNs to process spatial and temporal information
separately, and the outputs of two streams are fused together
using a weighted cost function. However, these deep learning
based methods commonly employ 2D ConvNets to extract
feature activations for each frame which are leveraged into
RNNs to ensure the temporal dependency among frames. In
this way, temporal priors are completely collapsed right after
convolutions. In contrast to these methods, we develop an end-
to-end trainable video architecture that combines the recent
advances in 3D ConvNets with a trainable spatiotemporal part
alignment based VLAD aggregation layer. This is to our best
knowledge, has not be done before. In addition, we compare
favourably the performance of our method with the above
methods in Section IV-C.

B. Attention Models in Person Re-identification
The attention mechanism has become a popular practice in

visual-textual relationship [40] and person recognition [33],
[34], [36], [42], [50]. Li et al. [34] propose a spatiotemporal at-
tention scheme to video-based re-ID that uses multiple spatial
attention models to localize discriminative image regions, and
pool these extracted local features across time using temporal
attention. However, they assemble an effective representation
regarding a person extracted from multiple spatial attention
models. In this way, multiple weights for temporal pooling are
required to be learned. Zhou et al. [33] combine the spatial
and temporal information by building an end-to-end attention
network that assigns importance scores to input frames, in
accordance with the hidden states of an RNN. The final
feature is produced by average pooling of the RNN’s outputs.
However, in the training of their model, the weights at each
time step tend to have the same values.

C. 3D Convolutional Networks
Quite a few are concerned with effective representations

using local spatiotemporal features. For example, Laptev et
al. [51] proposed spatiotemporal interest points (STIPs) by
extending Harris corner detectors to 3D. SIFT and HOG are
also extended to be SIFT-3D [43] and HOG3D [44] for action
recognition. Improved Dense Trajectories [52] are the state-
of-the-art hand-crafted features. Nonetheless, it starts with
densely sampled features points in video fragments and uses
optical flows to track them. This is computationally intensive
and intractable on large-scale data sets. With the availability
of large amount of training data and powerful GPUs, con-
volutional neural networks (ConvNets) have achieved break-
throughs in visual recognition [53], and these deep networks

are used for image feature learning. Deep learning has also
been applied to video feature learning in supervised [54] or
unsupervised setting [55], [56]. Recently, 3D ConvNets are
proposed for human action recognition [37], [57] and person
re-ID [58]. However, there is no principled approach to exploit
3D deep nets for video-based person re-ID to learn a global
discriminative representation across the entire video sequence.

Our work is also related to feature aggregation such as
VLAD [48], [49] and Fisher vectors (FV) [19]. In recent,
these aggregation techniques have been extended into end-
to-end training within a CNN for representing images in
different scenarios, such as instance-level retrieval [59] and
place recognition [49]. We build on this work and develop it
to be an end-to-end trainable video representation for person
re-ID by feature aggregation over human body part alignment
over the entire video span.

III. LEARNING GLOBAL DISCRIMINATIVE
SPATIOTEMPORAL FEATURES WITH 3D BODY PART

AGGREGATION

In this section, we present the network architecture to seek
a video-level global representation that is end-to-end trainable.
We introduce an architecture outlined in Fig.2. In detail, we
sample 3D convolutional features from the entire video, and
aggregate body features with alignment using a vocabulary of
“person words” into a single video-level fixed length vector.
This representation is then put through a classifier that outputs
the final classification scores on each identity. The parameters
of the aggregation layer, i.e., the set of “person words” are
learnt jointly with the feature extractors in a discriminative
manner for the task of person re-ID. In what follows, we
first describe the basic operations of 3D convolution and
pooling for high-level feature extraction (Section III-A), then
we discuss the proposed 3D body part alignment followed
by the aggregation layer (Section III-B). Finally, the training
details are given in Section III-C.

A. 3D Convolution and Pooling

It has been shown that 3D ConvNets [37], namely C3D, is
well-suited for spatiotemporal feature learning owing to the
encapsulated 3D convolution and 3D pooling operations. We
follow the network architecture of 3D ConvNets [37] which
have empirically identified a good architecture for video anal-
ysis. A video clip is referred to have a size of C×L×H×W
where C is the number of channels, L is the length of frames,
H and W are the height and width of the frame, respectively.
The 3D convolution and pooling kernel size is denoted by
d × k × k, where d is the kernel temporal depth and k is
the kernel spatial size. The networks are set up to take video
clips as inputs an predict the class labels which belong to
different identities. The 3D convolution and pooling operations
are identical to 3D ConvNets [37]. The network consists of
5 convolution layers and 5 pooling layers (each convolution
layer is immediately followed by a pooling layer), 3D body
part alignment layer, the spatiotemporal aggregation layer and
a loss function layer to predict the person identity labels.
Fig.2 illustrates the network architecture of our approach. The
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Fig. 2: The proposed 3D PersonVLAD architecture for video-based person re-ID. The network has 8 convolutions, 5 max-pooling, 3D body
part alignment (consists of B part map detectors), followed by the aggregation layer and a loss function layer. Spatiotemporal convolutions
with 3× 3× 3 are applied into the convolutions. Max-pooling and ReLU are applied between all convolutional layers.
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Fig. 3: The 3D part alignment model consists of B branches, each of
which estimates a part attention map to re-weight the feature cubic
from 3D convolutions. A global pooling is performed to train the
network with localization on the attentive part.

number of filters for 5 convolution layers are set to be 64,
128, 256, 256, and 256, respectively. All convolution kernels
have the size of d. All pooling layers are max pooling with
kernel size 2 × 2 × 2 (except for the first pooling layer with
kernel size 1× 2× 2).

B. Trainable Spatiotemporal Aggregation on 3D Body Parts

To learn part-aligned representations from video clips, we
design a 3D body part net which detects, localizes part maps
from 3D convolutions, and outputs the part features extracted
over the parts. This is inspired by attention models [40] that
are capable of learning salient features from a lot of clutter in
an image. The 3D body part net is shown in Fig. 3. It contains
B branches which correspond to B part detectors. Each branch
receives the feature cubic from pool5, detects a discriminative
region, and extracts the feature over the detected region as the
output, followed by their respective fully-connected layers.

Let a 4-dim tensor F represent the feature cubic computed
from the pool5 and thus f(c, l, x, y) reflects the c-th response
to the location (x, y) of the l-th frame. The part map detector
estimates a 3-dimensional cubic Mb, where mb(l, x, y) indi-
cates the degree that the location (x, y)of frame l appears in
the b-th region, from the video feature cubic F. Thus, we have:

Mb = CDetectorb(F), (1)

where CDetectorb(·) is a region map detector implemented as
a 3D convolutional network. Specifically, the part estimator
CDetectorb(·) is implemented as a 1× 1× 1 convolution layer
followed by a nonlinear sigmoid layer. The number of part
detector B is determined by cross-validation and empirically
studied in Section IV-B. To detect a region, it is suggested
to generating a positive weight for each location, which can
be interpreted as the relative importance to give the location
where the region would appear [40]. Thus, the part feature

cubic Fb for the specific b-th region can be computed through
a weighting scheme below

fb(c, l, x, y) = f(c, l, x, y)⊗mb(l, x, y). (2)

where ⊗ indicates element-wise multiplication.
To aggregate these detected body parts into a compact

representation over the entire video extent, we consider each
feature cubic fb ∈ RD to be represented by an anchor point
{ck}, k ∈ K which is achieved by dividing the descriptor
space RD into K cells using a vocabulary of K person words.
The VLAD aggregation records counts of visual words by
storing the sum of residuals (difference vector between the
local descriptor fb and its corresponding cluster centre ck) for
each visual word ck.

In our case, given B local convolutional feature cubic {fb}
as inputs, and K cluster centres (a.k.a visual words) {ck} as
the VLAD parameters, the output of VLAD aggregation is the
representation matrix V ∈ K ×D. The element of V[j, k] is
computed as

V[j, k] =

B∑
b=1

ak(fb)(fb(j)− ck(j)), (3)

where fb(j) and ck(j) are the j-th dimensions of the b-th
feature and k-th cluster, respectively. ak(fb) denotes the mem-
bership assignment of fb to k-th visual word, i.e., ak(fb) = 1 if
ck is the closest cluster to fb, and ak(fb) = 0 otherwise. Thus,
each column k of V records the sum of residuals (fb−ck) of
features which are assigned to cluster ck.

However, the computation of VLAD is not continuous.
Designing a trainable generalized VLAD layer plug into CNNs
requires the operation is differentiable w.r.t all its parameters
and the input. To make the VLAD aggregation differentiable,
the hard assignment ak(fb) of fb to ck is replaced with
soft assignment to multiple clusters [49], that is, âk(fb) =

e−α||fb−ck||
2∑

k′ e
−α||fb−c

k′ ||
2 , which assigns the weight of fb to cluster ck

proportional to their proximity. α is a tunable hyper-parameter,
and when α → ∞, âk(fb) turns to be the original VLAD.
Hence, each video descriptor fb is assigned to one of the cells
and represented by a residual vector fb − ck. The difference
vectors are then summed across the entire temporal extent as

V[j, k] =

B∑
b=1

e−α||fb−ck||
2∑

k′ e
−α||fb−ck′ ||2︸ ︷︷ ︸

Soft−asignment

(fb(j)− ck(j)︸ ︷︷ ︸
Residual

). (4)
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(a) max-pooling (b) average-pooling (c) 3D PersonVLAD

𝒄𝑘

𝒇𝑏

Fig. 4: Different pooling strategies for a collection of divergent fea-
ture descriptors. Points represent features from a video and different
colors respond to different motion cycles of persons. The max or
global/average pooling are suitable for similar features, however they
do not capture the whole feature distribution space. The PersonVLAD
representation effectively clusters the appearance and motion features
and aggregates their residuals from the nearest cluster centers.

In Eq.(4), the first term represents the soft-assignment of
descriptor fb to cell k and the second term of fb(j) − ck(j)
is the residual between the descriptor and the anchor point
of cell k. The summing operation over all regions is able to
aggregate all local features over the entire video because the
3D ConvNets are designed to be convolutional sampling across
all frames with a spatiotemporal kernel. The output of the
aggregation layer is a matrix V, where the k-th column V[·, k]
represents the aggregated descriptors in the k-th cell. The
columns of the matrix are then intra-normalized [38], stacked
and L2-normalized [39] into a single descriptor v ∈ RKD of
the entire video sequence.

Intuitively, by expanding the Eq. (4) and removing the term
e−α||fb||2, we have the soft-assignment in the following form:

âk(fb) =
ew

T
k fb+zk∑

k′ e
wT
k′ fb+zk′

,V[j, k] =

B∑
b=1

ew
T
k fb+zk∑

k′ e
wT
k′ fb+zk′

(fb(j)−ck(j)),

(5)
where the independent vectors {wk} = 2α{ck}, scalar
zk = −α||ck||2, and {ck} are sets of trainable parameters
for each cluster k. The anchor point ck can be interpreted
as the origin of a new coordinate system local to the cluster
k. Hence, all components in the proposed model including
convolutional feature extractor, attention-based part alignment,
person words, and the classifier are differentiable opera-
tions. Also, the spatiotemporal aggregation and the follow-
ing L2-normalization are differentiable and allow for back-
propagating error gradients to lower layers of the network. The
soft deterministic attention mechanism on different body parts
is also differentiable [40]. As all components are differentiable,
one can back-propagate through the network architecture to
joint learn the optimal weights for all parameters from the
video data in an end-to-end manner so as to better discriminate
the target person. Thus, the proposed model 3D PersonVLAD
is designed to aggregate 3D body part features into a compact
video-level representation across the entire video extent.

a) Discussions on Other Pooling Operations: It is worth
remarking the differences of the above aggregation compared
to alternative pooling strategies: 3D global/average pooling
and the common max pooling. The 3D global pooling can also
be applied to produce video-level features, as can be performed
over the potential regions (see Fig.3). With a global/average
pooling over all locations across frames, we can have f̄b =
AvePooling(Fb), where f̄b(c) = Averagel,x,y[fb(c, l, x, y)].
The global average pooling is to not only minimize the over-
fitting by reducing the number of parameters in the model but

also augment the localization ability of the network. Thus,
each of the activation maps in the B branches can act as
detector for an attentive region against various variations so as
to address the misalignment of body parts. Thereafter, features
from detected regions are extracted (i.e., f̄b), followed by a
fully-connected layer to transform f̄b to a d-dim feature vector
fb = W7

FCb
(W6

FCb
f̄b), with a non-linear ReLU operation sub-

sequently. These fully-connected layers on each branch do not
share parameters because different body regions should have
different importance when used for identifying persons. Thus,
the embedding on B parts should be optimized separately.
Finally, all part features are concatenated to produce the clip-
level feature output. Thus, we have f = [fT1 , f

T
2 , . . . , f

T
B ]T ,

which is used to be the pedestrian representations. Similarly,
the max-pooling is in the form f̄b = MaxPooling(Fb),
the transformation to form the video representation is the
same as average pooling. However, the global/average or max
pooling represents the entire distribution of points as only a
single descriptor which can be sub-optimal for representing an
entire video composed of multiple person motion cycles. In
contrast, the proposed video aggregation represents an entire
distribution of descriptors with multiple motion cycles by
splitting the descriptor space into cells and pooling inside
each of the cells. Moreover, the proposed residual aggregation
which can be interpreted as a strong regularization constraint,
is more suitable for training on limited person re-ID data
while producing a global descriptor with a high dimensionality
of KD = 16, 384. The comparison on different pooling
operations is shown in Fig.4.

C. Training Procedure

To learn the global discriminative representation, we train
our 3D networks on MARS [1] which is currently the largest
video benchmark for person re-ID. The training is done on
the MARS train split containing 5K bounding boxes for 625
identities. We adopted a two-step training procedure. First,
given the competitive performance of 3D ConvNets on video
classification tasks, we use C3D [37] as the initialization for all
the 3D convolutions and pooling which is training the network
on Sports-1M train split [37]. Then, the parameters of 3D part
alignment module and the classifier are random initialized.
In the aggregation layer, we use K = 64 and a high value
for α = 1000.0, as suggested in [48], [49]. The α parameter
is initially chosen to be large such that the soft assignment
weights are sparse to resemble the conventional VLAD. To
simplify the learning, we decouple the parameters {ck} in the
aggregation layer that are used to compute the soft assignment
and the residual in Eq.(4). Decoupling parameters is a means
to adapt VLAD into a new dataset [38]. Pedestrian labels are
regarded as training target and identification loss (Eq.(6)) is
used to fine-tune these parameters.

In the training, all video frames are fixed into the size of
90×180 and split into 16-frame clips to fit into the networks.
Thus, the input dimensions are 3× 16× 90× 180. The input
frames are downsized in order to keep a larger batch size
(e.g., 15 in our training) to reduce the batch bias so as to
achieve faster and stable convergence. Unlike [37], we do
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not perform random cropping on the input clips because this
spatial/temporal jittering would cause visual loss in the visual
appearance of persons. We also horizontally flip them with
50% probability. The training batch size is 15. All convolution
layers are applied with appropriate padding (both spatial and
temporal) and the stride is 1. The kernel temporal depth is
d = 3 throughout all convolutions in accordance to the best
setting of C3D. When training the PersonVLAD, we use the
Adam solver [60] with ε = 10−4. This is required as the
PersonVLAD output is L2-normalized and a lower value of ε
is needed to ensure a fast convergence. Thus, we perform a
two-step training. First, we train the network from scratch but
initialize and fix the PersonVLAD cluster centers, and only
train the classifier with a learning rate of 0.003. The learning
rate is divided by 2 after very 1K iterations. The optimization
is stopped at 50K iterations. In the second step, we jointly
fine tune the other components and the PersonVLAD cluster
centers with a smaller learning rate of 10−4.

To predict the person’s identity, we follow the previous
works [34], [61] and use the Online Instance Matching loss
function (OIM) as the objective loss. The identification loss is
defined as follows:

pi =
exp(eTi v�τ)∑C

j=1 exp(eTj v�τ) +
∑Q
k=1 exp(uTk v�τ)

, (6)

where ei is the i-th column (corresponding to the i-th labeled
identity) of the lookup table E that stores the features of all
the labeled identities. C denotes the total number of labeled
identities. U denotes the features in the circular queue with
queue size Q that stores the features of these unlabeled iden-
tities that appear in the recent mini-batches. The temperature
parameter τ controls the softness of probability distribution
(e.g. a higher value τ leads to a softer probability distribution.
In our experiments, the temperature scalar is set to be 0.1
and Q is set to be 5,000 according to the practice [34] 1).
Intuitively, this OIM loss is optimized be able to minimize the
features discrepancy among the instances of the same person,
while maximize the discrepancy among different people by
memorizing the features of all the people. Specifically, the
OIM loss function uses a lookup table to store features of
all identities appearing in the training set. In each forward
iteration, a mini-batch sample is compared against all the
identities when computing classification probabilities. This
loss function has shown to be very more effective than softmax
loss in training re-ID networks [61].

D. Visualization of Features

Fig.5 shows feature response visualization at each layer
of the 3D person re-ID network. The response maps of
Conv1a/pool1 show the responses after Conv1a but before
poo1. The features respond strongly to the black regions of the
input sequence, highlighting the hair regions. This is mainly
because the 3D filter can encapsulate the spatial dimension
and temporal dependency during convolutions. The features

1The probability of being classified as the i-th unlabelled identity in Q is

defined as qi =
exp(uTi v�τ)∑C

j=1 exp(eTj v�τ)+
∑Q
k=1

exp(uT
k
v�τ)

after Conv2a indicate that after the second 3D convolution, the
filters capture tan and skin-color regions, giving high responses
to the legs and hands of the person. Since it is 3D filter, similar
parts of the sequence are highlighted across frames. After
another three 3D convolution and pooling, a 3D part module
with B branches is applied to detect B distinct regions that
are discriminative to the person. The resultant local features
from different parts are passed through the PersonVLAD layer,
followed by a L2-normalization to produce the global video-
level representation.

IV. EXPERIMENTS

In this section, we present empirical evaluations on the pro-
posed model. Experiments are conducted on three benchmark
video sequences for person re-identification.

A. Datasets and Evaluation Metrics

We validate our method and compare to state-of-the-art
approaches on three data sets (Fig.6): MARS [1], iLIDS-VID
[2], and PRID 2011 [3].

• The MARS dataset contains 1,261 pedestrians, and
20,000 video sequences, making it the largest video re-ID
dataset. Each sequence is automatically obtained by the
Deformable Part Model [62] detector and the GMMCP
[63] tracker. These sequences are captured by six cameras
at most and two cameras at least, from which each
identity has 13.2 sequences on average. This dataset is
evenly divided into train and test sets, containing 625
and 636 identities, respectively.

• The iLIDS-VID dataset consists of 600 image sequences
for 300 randomly sampled people, which was created
based on two non-overlapping camera views from the i-
LIDS multiple camera tracking scenario. The sequences
are of varying length, ranging from 23 to 192 images,
with an average of 73. This dataset is very challenging
due to variations in lighting and viewpoint caused by
cross-camera views, similar appearances among people,
and cluttered backgrounds.

• The PRID 2011 dataset includes 400 image sequences
for 200 persons from two adjacent camera views. Each
sequence is between 5 and 675 frames, with an average
of 100. This dataset was captured in uncrowded outdoor
scenes with rare occlusions and clean background. Also,
the dataset has obvious color changes and shadows in one
of the views.

A person re-ID system can be tested as a ranking problem
where a probe/query in camera 1 is issued to compute its
similarity against each candidate in the gallery set under a
different camera 2. The expectation is that the correct matched
candidates to the probe pedestrian in camera 2 will be ranked
at the top. The widely used evaluation metric is Cumulative
Matching Characteristics (CMC) [64], which is an estimate
of the expectation of finding the correct match in the first n
matches. We also report the Mean Average Precision (mAP)
[65] over MARS.
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Fig. 5: Visualization of features learned by our network. Initial layers tend to learn spatiotemporal features evolving over time while deeper
layers learn to localize distinct regions so that the extracted local features are highly discriminative to be aggregated into global representation
and the classification performance is maximized. Refer to Section III-D for more details.

Fig. 6: Left: iLIDS-VID. Middle: PRID2011. Right: MARS. Image sequences of the same pedestrian (in row) in different camera views
from the three datasets.

TABLE I: Statistical characteristics of three datasets.
Datasets iLIDS-VID PRID2011 MARS
]identities 300 200 1,261
]tracklets 600 400 20,478
]bboxes 44K 40K 1M
]distractors 0 0 3,248
]cameras 2 2 6
]resolution 64× 128 64× 128 128× 256
]detection hand hand DPM+GMMCP
]evaluation CMC CMC mAP+CMC

B. Empirical Analysis

In this section, we conduct extensive empirical evaluations
to analyze the properties of the proposed network in terms of
the following aspects. All empirical experiments are conducted
on the MARS dataset.

a) Number of Tracklets for Video Descriptors: Once
training is finished, the proposed 3D person net can be used to
extract video-level descriptor for each identity in test. In the
test split of MARS, the number of tracklets regarding most
individual varies from 5 to 20 (average 13.2), and thus, it is
necessary to determine how many tracklets should be selected
for feature extraction. To this end, we study the effect of the
selection of tracklets with appropriate pooling.

• Random tracklet (probe) and all tracklets (gallery): For
each probe identity, a tracklet is randomly selected whilst
all tracklets of the gallery candidates are used. To extract
3D features, each tracklet is split into 16 frame long clip
with a 8-frame overlap between two consecutive clips.
These clips are put through the network to produce its
global feature. These clip-level activations are averaged to
form a final 16,384-dim video descriptor, namely tracklet
activation. This process is performed 10 times and the
CMC results are averaged.

• All tracklets (probe) and all tracklets (gallery): For each
probe/gallery identity, all tracklets are used to produce
their tracklet activations which are averaged to form a
global vector.

• Random tracklet (probe) and random tracklet (gallery):
For each probe/gallery identity, a tracklet is randomly

TABLE II: The effect of varied tracklets for probe and gallery on
MARS. The CMC values of rank-1 are reported.

aaaaaa
Gallery

Probe random (CMC@1) all (CMC@1)

random (CMC@1) 74.1 71.7
all (CMC@1) 80.8 80.2

0 10 20 30 40 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Rank

M
a
t
c
h
i
n
g
 
R
a
t
e

1 part   (74.7%)
2 parts (76.4%) 
4 parts (77.8%) 
6 parts (80.8%) 
8 parts (78.8%)

Fig. 7: The effect of varied number of body parts on MARS.

selected to obtain the tracklet activations. It is performed
10 times and the CMC results are averaged.

• All tracklets (probe) and random tracklet (gallery): In this
setting, for each gallery identity, a tracklet is randomly
selected whilst all tracklets of the probes are used to
extract their video descriptors.

Table II shows the CMC values against varied selection of
tracklets in probe and gallery. It can be seen that multiple
tracklets in the gallery are beneficial to the re-ID recognition
whilst increased tracklets for the probe are not helpful. For
example, a random tracklet of probe against all tracklets of
gallery can yield rank-1=80.8 while all tracklets for both
probe and gallery achieves the similar result (rank-1=80.2). To
balance the complexity, we refer to this representation (random
tracklet of probe and all tracklets of gallery) as 3D global video
descriptor in all experiments unless we specify the difference.

b) Number of Body Parts and Spatial Partition: To
determine the number of body parts (B), we quantitatively
evaluate the our method with respect to varied number of
body parts. Table IV and Fig.7 show the results associated
with varied number of body parts from 1, 2, 4, 6, and 8. The
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TABLE III: The comparison of our approach and spatial partition
based methods (stripe and fixed grid) over MARS.

Datasets Method rank-1 rank-5 rank-10 rank-20

MARS

stripe 68.3 87.2 90.0 94.6
grid 67.1 86.0 89.5 94.0

3D ConvNets+GP 74.8 90.6 92.9 95.1
PersonVLAD 80.8 94.5 96.9 99.0

TABLE IV: The validation with varied numbers of body parts (B)
over MARS. The network is trained on a random half of the training
data and the validation is performed on the remaining half.

No. parts rank-1 rank-5 rank-10 rank-20
1 74.7 91.8 94.3 96.4
2 76.4 92.2 94.3 97.2
4 77.8 92.4 95.5 98.7
6 80.8 94.5 96.9 99.0
8 78.8 91.9 95.7 98.2

empirical evaluation indicates that 6 body partition is more
suitable for MARS in which pedestrians exhibit diverse visual
appearance and finer body partition is needed. Fig.8 shows
the attentive parts our approach learns through the 3D part-
based alignment. It can be seen that body parts of pedestrians
under disjoint camera views are generally well aligned for the
same identity. For example, the parts almost describe the same
regions on different frames.

To study how well the misalignment is addressed in the
learned part based representations, we empirically compare
our approach with two alternative spatial partition schemes:
dividing the frame box into 5 horizontal stripes or 5 × 5
grids to form the region maps. The new region maps are
used to replace the part masks in our approach and train
the network to produce spatial partition-based features. The
results given in Table III demonstrate that local body part
partition is more effective than spatial partition alternatives.
This is mainly because the pose changes or uncontrolled
human spatial distributions in the human frame box, and pre-
defined spatial partition such as stripe or grid-based, may
not be well-aligned with human body parts. In contrast, the
proposed 3D local features encapsulate the distinct regions and
address the misalignment in their representation learning stage.
Based on the 3D part alignment module, the aggregation layer
can well preserve the identity discrimination across the entire
video span. Thus, it enables high similarity search values with
the Euclidean distance.

c) Comparison with Motion Features: In this experiment,
we compare the learned deep 3D global features with different
motion features below.
• HOG3D extracts 3D HOG features [44] from volumes

of video data [2]. After extracting a walk cycle by
computing local maxima/minima of the Flow Energy
Profile (FEP) signal, video fragments are further divided
into 2×5 (spatial) × 2 (temporal) cells with 50% overlap.
A spatiotemporal gradient histogram is computed for each
cell which is concatenated to form the HOG3D descriptor.

• STFV3D is a low-level feature-based Fisher vector learn-
ing and extraction method which is applied to spatially
and temporally aligned video fragments [31]. STFV3D
proceeds as follows: 1) temporal segments are obtained
separately by extracting walk cycles [2], and spatial
alignment is implemented by detecting spatial bounding

Fig. 8: Illustration of the part maps learned by the 3D part alignment
module. For each frame box, our method can generate 6 part maps
corresponding to distinct regions.

TABLE V: Comparison results of different motion features.
Features rank-1 rank-5 rank-20
HOG3D [44]+KISSME [66] 2.6 6.4 12.4
STFV3D [31]+ KISSME [66] 22.0 33.4 59.0
C3D [37] 58.9 81.0 93.7
PersonVLAD 80.8 94.5 99.0

boxes corresponding to six human body parts; 2) Fisher
vectors are constructed from low-level feature descriptors
on those body-action parts.

• C3D features [37] are state-of-the-art deep spatiotemporal
features for videos. We use the pre-trained model and
fine-tune the parameters on MARS. The input video clips
have 16 frames and the network is set up to take video
clips as inputs and predict the class labels belonging to
625 identities.

Table V reports the comparison results yielded by different
motion features. We can see that low-level features of HOG3D
and STFV3D have low matching rate on MARS. The primary
reason is in a large dataset there are many pedestrian sharing
similar motion features w.r.t the probe. Thus, it is difficult to
discriminate different persons based on their motions. Also,
since MARS has six cameras to capture videos of persons in
which the same identity may exhibit dramatic variations due
to pose and viewpoint changes. Thus, spatial misalignment
is a significant issue to be addressed and STFV3D yields
under-performed matching rates otherwise. Deep C3D features
are able to capture the visual appearance changes and mo-
tions more precisely and yield promising recognition results.
However, C3D features still learn global features to describe
persons whilst human body regions across cameras are not
well aligned. In contrast, our 3D global features are learned to
not only capture spatial and temporal dynamics simultaneously
but also localize body regions and extract local features to form
global discriminative representations.

d) Cross-dataset Evaluation: In this experiment, we
study the generalization capability of our model across data
sets. This is conducted by transferring the optimized param-
eters from MARS to two smaller target data sets: iLIDS-
VID and PRID2011. First, we directly transfer the model
trained on MARS to iLIDS-VID and PRID2011, denoted as
MARS→ iLIDS-VID (PRID2011). In Table VI, it shows that
directly extracting features pre-trained on MARS for iLIDS-
VID and PRID2011 cannot obtain high re-id accuracy due to
the disparity of data samples between MARS and the target
data sets. The second trail is fine-tuning the MARS-trained
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TABLE VI: Cross-dataset evaluation results.
Training rank-1 rank-5 rank-20
MARS → iLIDS-VID 56.3 78.2 93.7
Fine-tune on iLIDS-VID 69.4 87.6 99.2
MARS→ PRID2011 71.7 85.6 94.1
Fine-tune on PRID2011 87.6 96.1 98.7

TABLE VII: Comparison with state-of-the-art two-stream ConvNets.
Dataset iLIDS-VID PRID2011 MARS
Rank @ R R = 1 R = 1 R = 1
VGG-16-Element-Max 56.2 71.6 65.7
VGG-16-Element-Average 57.1 73.8 65.9
VGG-16-Element-Multiplication 60.4 76.3 67.8
Two-stream Fusion [46] 64.1 83.0 74.9
ActionVLAD [48] 65.6 83.7 76.5
FstCN [67] 59.1 76.8 68.3
VideoDarwin [68] 62.5 81.1 73.4
RNN+FV [69] 58.4 78.3 70.2
PersonVLAD 69.4 87.6 80.8

model on the training splits of the two targets. For both
data sets, a random half of the data sets are divided into
training and the rest half are used as testing. On both data
sets, fine-tuning yields notable improvement over the direct
model transferral. On iLIDS-VID, we achieve rank-1=69.4,
which is much higher than that value of MARS→ iLIDS-VID
(rank-1=56.3). On PRID2011, fine-tuning strategy is higher
than MARS → PRID2011 by 16% at rank-1.

C. Comparison with CNN Video Representations

Recent works in learning video representations directly from
data using CNNs can be categorized into two-stream architec-
tures and spatiotemporal convolutions. In this experiment, we
compare the proposed PersonVLAD aggregation with a variety
of CNN video features learned by different architectures with
varied aggregation options.

a) Two-steam ConvNets: In our evaluation, we con-
sider three two-stream architecture baselines which are varied
on different aggregation functions: element-wise maximum,
element-wise average and element-wise multiplication. To this
end, we employ the VGG-16 [70] for the design of two-stream
ConvNets, which consist of spatial and temporal networks.
The spatial ConvNet operates on the RGB frames, and the
temporal ConvNet operates on a stack of 10 dense optical flow
frames. The input RGB frames are resized into 224 × 224,
and then mean-subtracted for network training. To fine-tune
the network, the original classification layer is replaced with a
C-way softmax layer where C indicates the number of training
identities. The prediction scores of the spatial and temporal
ConvNets are combined in a late fusion manner as averaging
before softmax normalization.

Other state-of-the-art are also considered including Two-
stream Fusion [46], ActionVLAD [48], FstCN [67], Video-
Darwin [68], and RNN+FV [69]. The comparison results
are shown in Table VII. We observe that amidst the two-
stream baselines, the element-wise multiplication performs the
best. This observation suggests a feasible way of aggregating
the appearance and motion information, however, element-
wise multiplication leads to a high-dimensional feature, and
thus not efficient to compute. In comparison with the current
methods using two-stream ConvNets, PersonVLAD performs
the best among all methods. The performance gap between

TABLE VIII: Comparison with state-of-the-art 3D ConvNets.
Dataset iLIDS-VID PRID2011 MARS
Rank @ R R = 1 R = 1 R = 1
C3D [37] 60.4 73.8 58.9
LTC [57] 61.7 75.2 67.4
iDT+FV [52] 60.8 76.7 59.8
LRCN [71] 59.5 73.0 58.1
Spatio-Temporal ConvNet [54] 58.1 68.4 51.6
Composite LSTM [55] 54.8 65.4 53.1
SpaAtn+TemAtn [34] 69.7 88.4 77.1
PersonVLAD 69.4 87.6 80.8

PersonVLAD and ActionVLAD [48] is 3.8%, 3.9%, and 4.3%
on the three benchmarks. Also, PersonVLAD is 5.3/4.6/5.9%,
10.3/10.8/12.5, 6.9/6.5/7.4%, 11/9.3/10.6% better than Two-
stream Fusion [46], FstCN [67], VideoDarwin [68], and
RNN+FV [69] methods on the three benchmarks. Hence,
our model clearly show the effectiveness of encoded feature
representation in video-level for entire videos, in end-to-end
learning. Moreover, our PersonVLAD has fewer parameters to
train, in comparison to other methods which have several fully-
connected layers to train, such as Two-stream Fusion [46].

b) 3D ConvNets: In Table VIII, we compare the perfor-
mance of 3D PersonVLAD with state-of-the-art 3D ConvNets
which include C3D [37], LTC [57], iDT+FV [52], LRCN [71],
Spatio-Temporal ConvNet [54], and Composite LSTM [55].
Similar to two-stream ConvNets, the proposed 3D Person-
VLAD outperforms other methods, and achieve an accuracy
of 69.4%, 87.6%, and 80.8% on iLIDS-VID, PRID2011,
and MARS, respectively, which is 9/8.6%, 13.8/10.9%, and
21.9/21% better than the original C3D ConvNet [37], and
iDT+FV [52] methods on the three data sets.

D. Comparison with State-of-the-arts Methods

In this experiment, we compare the proposed 3D Person-
VLAD with state-of-the-arts in video based person re-ID. The
experimental results are summarized in Table IX and Fig.9.

MARS: In MARS, several state-of-the-art methods are
compared, including JST [33], RCN [28], IDE [1], MSCAN
[41], and ASTPN [36]. Compared with the methods based
on the combination of CNNs and RNNs, such as RCN [28],
IDE [1] and ASTPN [36], the proposed approach can pre-
serve the spatiotemporal information through all layers of the
networks to avoid the collapsing of temporal priors by using
2D ConvNets. Moreover, these current methods are limited in
shorter sequences and they even rely on a pre-selection step to
select informative frames to conduct the feature learning. In
contrast, our PersonVLAD is able to deal with the entire video
to produce a global yet highly discriminative representation.
Compared with full body representations, such as JST [33],
our method aims to aggregate body part based representations
to combat the misalignment issue. MSCAN [41] considers
the learning of features over both full body and body parts,
however, they use the spatial transformation networks to
encode spatial constraints and introduce additional parameters.

iLIDS-VID and PRID2011: For the two small data sets, we
fine-tune the pre-trained model on MARS on their respective
training split and then compute the CMC values on testing.
We can observe that our approach is able to achieve state-
of-the-art results, e.g., rank-1=69.4 vs rank-1=62.0 of ASTPN
[36] on iLIDS-VID and rank-1=87.6 vs rank-1=79.4 of JST
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TABLE IX: Comparison with state-of-the-art methods. The results are computed in single query setting.
Dataset iLIDS-VID PRID2011 MARS
Rank @ R R = 1 R = 5 R = 10 R = 20 R = 1 R = 5 R = 10 R = 20 R = 1 R = 5 R = 20 mAP
HOG3D+DVR [2] 23.3 42.4 55.3 68.4 28.9 55.3 65.5 82.8 12.4 33.2 71.8 9.6
STFV3D [31] 44.3 71.7 83.7 91.7 64.1 87.3 89.9 92.0 22.0 33.4 59.0 12.3
TDL [27] 56.3 87.6 95.6 98.3 56.7 80.0 87.6 93.6 - - - -
RFA-net [30] 49.3 76.8 85.3 90.0 58.2 85.8 93.4 97.9 - - - -
SI2DL [26] 48.7 81.1 89.2 97.3 76.7 95.6 96.7 98.9 - - - -
PaMM [72] 30.3 56.3 70.3 82.7 56.5 85.7 96.3 97.0 - - - -
TS-DTW [73] 31.5 62.1 72.8 82.4 41.7 67.1 79.4 90.1 - - - -
JST [33] 55.2 86.5 91.0 97.0 79.4 94.4 97.0 99.3 70.6 90.0 97.6 50.7
RCN [28] 58.0 84.0 91.0 96.0 70.0 90.0 95.0 97.0 54.7 79.1 88.4 37.4
IDE [1]+ KISSME [66] 47.6 76.1 86.1 92.5 66.3 88.5 93.9 98.2 65.0 81.1 88.9 45.6
MSCAN [41]+ XQDA [12] - - - - - - - - 71.7 86.5 93.1 56.0
ASTPN [36] 62.0 86.0 94.0 98.0 77.0 95.0 99.0 99.0 44.0 70.0 81.0 -
Two-stream [35] 60.0 86.0 93.0 97.0 78.0 94.0 97.0 99.0 - - - -
PersonVLAD 69.4 87.6 96.7 99.2 87.6 96.1 98.7 99.8 80.8 94.5 99.0 63.4
PersonVLAD + XQDA [12] 70.7 88.2 97.1 99.2 88.0 96.2 98.6 99.7 82.8 94.9 99.0 64.7

30

35

40

45

50

55

60

65

70

0.5 1 1.5 2

m
A

P
(%

)

Iterations (*10,000)

Subsampling 10

Subsampling 100

Subsampling 1000

Fig. 10: Scalability: The study on the sub-sampling effect on the loss
function optimization.

TABLE X: The comparison of computational cost on MARS.
Method Training inference mAP
PersonVLAD 1.2 days 1182.4fps 63.4
C3D [37] 3.4 days 313.9fps 58.9
2D ConvNets [46] - 1.2fps 51.4

[33] on PRID2011. We suspect the main reason accountable
for the marginal improvement on PRID2011 is the scarcity
of training samples to optimize the networks. As for iLIDS-
VID, our method can achieve the highest accuracy of rank-
1=69.4, outperforms the state-of-the-art ASTPN [36] by a
margin of 7.4%, and the learned global features can improve
the recognition rate further if they are combined with a metric
learning algorithm, e.g., XQDA [12].

E. Computational Analysis and Scalability Study

In this experiment, we compare the computational cost
with C3D [37], and a temporal stream network based on

2D ConvNets [46] in terms of running time in training and
inference. The comparison results on the MARS dataset are
reported in Table X. In inference, the PersonVLAD runs at
1182.4fps on a Titan X GPU and 16 CPU cores, which is 3.8
faster than C3D and efficiently applicable in real-time analysis.
This is mainly because the aggregation layer with 3D body
part detection is amount to reducing the spatial resolution,
and thus the learned video feature is still computationally
efficient with increasing the temporal extent. For the 2D
ConvNets [46], the method uses Brox’s optical flows [74]
as temporal inputs that are computed by stacking every 10
frames. The fusion on spatial dimensions is implemented by
a convolutional fusion which can perform best as opposed to
sum fusion and concatenation [46], however, it is running at a
much longer training time with a large number of parameters
(]97.58M [46]).

To further study the scalability of network in training which
is the computational concern caused by the time-consuming
computation on the partition function in Eq. (6), we employ
the sub-sampling strategy on the labelled and unlabelled
identities as suggested by the Xiao et al. [61]. This validation
is performed by training the network on MARS with sub-
sampling size of 10, 100, and 1000. The mAP curves are
shown in Fig. 10. It can be observed that sub-sampling leads
to faster convergence rate even though some slight drop on
performance. It indicates that our network is scalable to large-
scale dataset and video features can be efficiently produced.
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V. CONCLUSIONS

In this paper, we present an end-to-end trainable deep neural
network to produce global video-level features over the entire
video span for video-based person re-ID. The basic idea is to
build up a deep 3D convolution architecture with an amenable
layer, namely 3D PersonVLAD aggregation layer, to encode
spatiotemporal signals into a global compact video descriptor.
To make the learned video features discriminative against
various misalignment, a 3D part alignment module based
on attention models is introduced into the feature learning
stage to localize distinct regions from which local features are
aggregated to yield the global representations highly robust
to pose changes and various human spatial distributions.
With the global space-time convolutions over full-length video
extent, we obtain the state-of-the-art performance over three
video-based person re-ID datasets. We also demonstrate the
generalization and scalability of the proposed model.
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