Admittance-Based Adaptive Cooperative Control for Multiple Manipulators With Output Constraints | IEEE Journals & Magazine | IEEE Xplore

Admittance-Based Adaptive Cooperative Control for Multiple Manipulators With Output Constraints


Abstract:

This paper proposes a novel adaptive control methodology based on the admittance model for multiple manipulators transporting a rigid object cooperatively along a predefi...Show More

Abstract:

This paper proposes a novel adaptive control methodology based on the admittance model for multiple manipulators transporting a rigid object cooperatively along a predefined desired trajectory. First, an admittance model is creatively applied to generate reference trajectory online for each manipulator according to the desired path of the rigid object, which is the reference input of the controller. Then, an innovative integral barrier Lyapunov function is utilized to tackle the constraints due to the physical and environmental limits. Adaptive neural networks (NNs) are also employed to approximate the uncertainties of the manipulator dynamics. Different from the conventional NN approximation method, which is usually semiglobally uniformly ultimately bounded, a switching function is presented to guarantee the global stability of the closed loop. Finally, the simulation studies are conducted on planar two-link robot manipulators to validate the efficacy of the proposed approach.
Published in: IEEE Transactions on Neural Networks and Learning Systems ( Volume: 30, Issue: 12, December 2019)
Page(s): 3621 - 3632
Date of Publication: 01 March 2019

ISSN Information:

PubMed ID: 30843811

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.