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Comments on “Fractional Extreme Value Adaptive

Training Method: Fractional Steepest Descent

Approach”
Abdul Wahab and Shujaat Khan

Abstract—In this comment, we raise serious concerns over the
derivation of the rate of convergence of fractional steepest descent
algorithm in Fractional Adaptive Learning (FAL) approach pre-
sented in “Fractional Extreme Value Adaptive Training Method:
Fractional Steepest Descent Approach” [IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 4, pp. 653–662, April 2015].
We substantiate that the estimate of the rate of convergence is
grandiloquent. We also draw attention towards a critical flaw in
the design of the algorithm stymieing its applicability for broad
adaptive learning problems. Our claims are based on analytical
reasoning supported by experimental results.

Index Terms—Fractional calculus, fractional differential, frac-
tional energy norm, fractional extreme point, fractional gradient.

I. INTRODUCTION

T
HE Least Mean Squares (LMS) algorithm is a widely

used tool in adaptive signal processing due to its sta-

ble performance and simple implementation. However, its

convergence is slow. Accordingly, many variants of LMS

have been proposed in recent years in order to achieve an

accelerated convergence without compromising on the steady-

state residual error. In the same spirit, the FAL method based

on a fractional steepest descent approach was proposed in [1].

Unfortunately, the rate of convergence of the FAL algorithm

is derived in terms of an approximation of the general update

rule that furnishes unreliable estimate. We elaborate on this

issue in Section II-A. Further, we draw attention towards

a critical flaw in the design of the algorithm stymieing its

applicability on general adaptive learning problems in Section

II-B. The consequences of these flaws on the proposed method

are discussed in Section III. A brief conclusion is provided in

Section IV.

II. MAIN REMARKS

In order to facilitate ensuing discussion, we follow the

notation and equation numbering used in [1], the corrected and

the new numbers are distinguished by a superposed asterisk

and a prime, respectively.
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A. Remarks on Convergence Analysis

In [1], the update equation of the proposed FAL algorithm

based on fractional gradient descent is provided in (19) as

sk+1 = sk −
2µη

Γ(3 − ν) (sk − sν∗)2 s−ν
k
, if ν , 1, 2, 3. (19)

Since, (19) is nonlinear, it is intriguing to derive an explicit

expression for sk . Towards this end, sk is regarded as a discrete

sample of a continuous function s(t) at t = k in [1], and (19)

is converted to an ordinary differential equation (ODE),

D1
t s(t) � −2µη

Γ(3 − ν)ν(sν∗)ν−1s(t)
[s(t) − sν∗]2 , (20)

using a power series expansion of sν about s− sν∗ (furnishing

sν � ν(sν∗)ν−1s). Here, D1
t

is the derivative with respect to t.

The ODE (20) is solved in [1] for s(t), thereby furnishing

sk � sν∗ + e

(

−2µηk

Γ(3−ν)ν(sν∗)ν−1

)

, if ν , 1, 2, 3. (21)

We argue that the expression (21), on which the entire

convergence analysis is based, is an unreliable approximation

of the solution to (20). In fact, by separation of variables, (20)

renders

ln |s(t) − sν∗ | − sν∗

s(t) − sν∗
�

−2µηt

Γ(3 − ν)ν (sν∗)ν−1
+ C, (1’)

where C is the constant of integration whose value can be

determined by the initial input s0 = s(0). Specifically,

C � ln |s0 − sν∗ | − [sν∗/(s0 − sν∗)]. (2’)

Substituting (2’) in (1’) and setting s(t) = sk , one gets

(sk − sν∗) � (s0 − sν∗) e

(

−2µηk

Γ(3−ν)ν(sν∗)ν−1

)

e

(

s
ν∗

s
k
−sν∗

)

e

(

− s
ν∗

s0−sν∗
)

.

(21*)

Remark that (21) is different from the correct solution (21*)

to the ODE (20). In fact, if one chooses C � 0 and neglects

the second term on the LHS of (1’) while solving ODE

(20), one gets (21). In Section III, we substantiate that C

cannot be simply neglected under the parametric setting of

[1]. Moreover, the removal of the second term leads to an

unreliable estimation of the rate of convergence.

http://arxiv.org/abs/1802.09211v3
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(b) ν = 3/2
Fig. 1. Fractional derivative of the energy norm.

B. Technical Flaw in the Algorithmic Design

The FAL approach in [1] is proposed for seeking a mini-

mizer sν∗ of the energy norm [1, Eq. (6)] in the real domain

R. Both negative and positive minimizers are sought in [1].

However, the update equation (19) of the FAL algorithm

contains a fractional power of sk which becomes complex

whenever sk < 0. In particular, dνE/dsν for ν = 1/2 and

3/2 is pure imaginary. In this situation, sk+1 will be complex

since (19) is also derived from dνE/dsν . Consequently, the

FAL method is not expected to converge to a real value. In

order to elaborate on this point, we evaluate dνE/dsν (based

on [1, Eq. (8)]) using the same parameters as in [1, Sect. IV-

B], i.e., we set E1
min = 10, η = 2, and s1,∗

= 5, 1 < ν ≤ 2, and

the domain −4 < s < 8 as used for [1, Figs. 2(e), 2(d)]. Then,

for ν = 3/2,

d3/2E

ds3/2 = −
1
√
π

(

30s−3/2
+ 20s−1/2 − 8s1/2

)

, (2’)

which contains fractional powers of s ∈ (−4, 8). In particular,

at s = −1,

d3/2E

ds3/2

�

�

�

�

�

s=−1

= − 2ι
√
π
, (3’)

where ι =
√
−1. Similarly, the 1/2−order derivative of the

energy norm (based on [1, Eq. (8)]) can be calculated as

d1/2E

ds1/2 =
4

3
√
π

(

45s−1/2 − 30s1/2
+ 4s3/2

)

, (4’)

with parameters as in [1, Fig. 2(a)]. Especially, at s = −1,

d1/2E

ds1/2

�

�

�

s=−1
= − 316ι

3
√
π
. (5’)

As a result, (19) is also complex since it is based on the

same expression of the fractional derivative. Consequently, the

future updates sk+1 will be complex and the algorithm will not

converge to a real value as anticipated. In order to substantiate

this, we plotted the expressions (2’) and (4’) in Fig. 1 over

the domain (−4, 8) using same parameters as in [1, Fig. 2]. It

is observed that dνE/dsν is real as long as s > 0 and is pure

imaginary for s < 0. Note also that dνE/dsν is singular at

s = 0 which actually justifies that s0 = 0.

III. DISCUSSION

A. Reliability of the Rate of Convergence

Let us discuss some consequences of the flaws indicated

in Section II-A. First, it is worthwhile precising that the FAL
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Fig. 2. Estimation of the rate of convergence.

approach is based on left Riemann-Liouville fractional deriva-

tive [1, Eq. (3)] (instead of Grünwald-Letnikov derivative as

pretended in [1]) with a = 0 . Therefore, FAL is valid only

for s > 0 and s0 = 0. Consequently, Eq. (2’) suggests that

C � ln |sν∗ |+1. Since sν∗ is unknown sought value, one cannot

simply set C � 0 in (1’) to get (21).

On the other hand, the approximation (21), derived from

(21*) by ignoring exp (sν∗/(sk − sν∗)) and choosing C � 0,

is highly unreliable. The convergence analysis in [1] is based

entirely on the estimate (21). By choosing µ such that

lim
k→+∞

k χ = +∞, with χ :=
2µη

Γ(3 − ν)ν (s∗ν)ν−1
> 0, (6’)

it is suggested in [1] that the algorithm converges at the rate

exp(−χk). In fact, since (sk)k∈N is assumed to be convergent

to sν∗, (sk − sν∗) → 0 as k → +∞. Hence, sν∗/(sk −
sν∗) → +∞ and consequently, exp (sν∗/(sk − sν∗)) → +∞
when sν∗/(sk − sν∗) is positive and k → +∞. Therefore, the

product exp (−χk) exp
(

sν∗(sk − sν∗)−1
)

has an indeterminate

form 0 ×∞. One cannot guarantee that it will approach to 0.

Even if it does so, the factor exp
(

sν∗(sk − sν∗)−1
)

will severely

impede the decay of exp (−χk), which will be grandiloquent

as the rate of convergence of FAL.

In order to elaborate on this point, we have compared the

rates of convergence based on estimates (19), (21), and (21*)

in Fig. 2. We choose same parameters as in [1, Fig.5(a)].

The computational results indicate that the FAL (with update

rule (19)) converges at a very slow rate as compared to that

predicted by (21). When χ = 0.25, (21) suggest that FAL

converges to the sought value sν∗ = 4.2856 after only 29

iterations with s29 ≈ 4.2856. On contrary, (19) suggests that

after k = 1948 iterations sk ≈ 4.316. On the other hand,

(21*) predicts that a steady state is achieved at k = 414 with

s414 ≈ 4.2856. Similarly, when χ = 1.75, the actual number

of iterations for FAL to achieve a steady state is k = 1741

whereas (21) and (21*) predict k = 5 and k = 56, respectively.

Following remarks are in order. First, (21) does not provide

any reliable estimate for the rate of convergence as the actual

convergence is roughly two orders of magnitude slower than

the predicted rate. Second, (21*) also predicts a convergence

almost an order of magnitude faster than the actual rate, yet,

it provides much superior estimation than (21). Thirdly, based

on these observations, it seems inappropriate to consider sk
as a discrete sample of a continuous function s(t) based on

which both (21) and (21*) are derived.
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B. Consequences of the Flaw in Algorithmic Design

In view of the remarks in Section II-B, it is clear that for

negative sought values, the FAL update weight sk+1 in (19) be-

comes complex and cannot converge to a real negative desired

output. As mentioned above, the fractional gradient ([1, Eq.

(8)]) is valid over the domain (0, s). Therefore, the algorithm

cannot be used for negative values of the independent variable.

This is the main reason that the fractional derivative appears

to be complex for s < 0. As a consequence, almost every

simulation in [1] is affected and is unreliable.

1) [1, Figs. 2(a), (b), (d), (e), (g), and (h)] are counter-

factual as the fractional derivative in all these cases is

complex. Particularly for ν = 1/2 or 3/2, the fractional

derivative is pure imaginary (see, for example, (2’)-(5’)

or Fig. 1 in this note). For ν = 0 (i.e., no derivative

is taken), the quadratic energy function [1, Eq. (6)] is

expected to have a parabolic graph. However, in [1,

Fig 2(h)], it appears to be a straight line, which is

impossible. Similar observations also hold for [1, Figs.

2(b), (d), (e), and (g)].

2) In [1, Fig. 3(b)], the fractional derivative is evaluated

over the domain s < 0. Therefore, derivative should be

complex valued.

3) In [1, Fig. 4(b)], a negative optimal value sν∗
2
= −0.6406

is sought. In fact, with initial step s20 = −0.25 and the

parameters for [1, Fig. 4(b)], even s21 becomes complex

if [1, Eq. (19)] is used. If [1, Eq. (21)] is used then the

exponent on the RHS becomes complex (due to the term

(sν∗)ν−1).

4) In [1, Fig. 5], the rate of convergence is evaluated

for different choices of µ and χ. As discussed in

Section III-A, the displayed results are misleading and

grandiloquent (see Fig. 2 in this note). Note that s0 = 15

is assumed for [1, Fig. 5] whereas s0 = 0 is tacitly

assumed in the derivation of the FAL algorithm.

5) The results in [1, Fig. 6] are also affected by the complex

outputs when the x or the y component is varying over

a part of the negative axis as multi-dimensional FAL is

essentially a generalization of the 1-D FAL.

C. Comparison to [3]

In [3], Bershad, Wen, and Cheung So, have already debated

the unsuitability of fractional learning frameworks for adaptive

signal processing [4]. Theoretical obeservations in this note

can be compared to those made in [3] through a variety of

experimental results (see [3, Sect. 1 and Remark 1]). In fact, it

is well-known that the LMS algorithm is a stochastic version

of the steepest descent algorithm when the statistics of the

input are unknown. Thus, [3, Eq. (1)] can be compared directly

to [1, Eq. (19)].

Based on extensive experiments, the following conclusions

have been drawn in [3, Page 225].

1) The fractional variants of the LMS are only useful when

all the update weights are positive but their performance

is comparable to that of the LMS. That is, under no

conditions fractional variants of LMS perform better

than the standard LMS.

2) In case when some of the update weights are negative,

the fractional variants of LMS render complex outputs

(see [3, Remark 1]). Moreover, even when the absolute

operator is employed in the fractional algorithms (see,

for instance, Refs. 3 and 5 in [3]), their performance is

inferior than standard LMS. Finally, if only the real part

of the complex update weight is employed, the fractional

LMS reduces to LMS with a slower convergence rate.

Observe that the FAL method proposed in [1] has similar

drawbacks as highlighted in [3] for fractional frameworks for

adaptive signal processing. Precisely, as debated in Sections

III-A and III-B, the FAL method has limited applicability for

broad spectrum of adaptive learning problems due to complex

outputs and has slow convergence rate when the update iterates

remain real.

IV. CONCLUSION

In this comment, some serious concerns over the derivation

of the rate of convergence of Fractional Adaptive Learning

(FAL) approach proposed in [1] were raised. It is established

that the convergence analysis perfomed in [1] is unreliable

in general and the FAL algorithm converges much slower

than anticipated. It was also highlighted that the FAL method

can practically work only for positive domains. Over negative

domains or whenever its iterative update becomes negative, the

FAL algorithm furnishes a complex output due to the presence

of fractional powers in its update rule. In this situation, the

algorithm is not expected to converge to a real sought value.

Moreover, thanks to the analogy of the FAL algorithm with

fractional variants of Least Mean Squares (LMS) for adaptive

signal processing [4], the analysis performed by Bershad, Wen,

and Cheung So [3] suggests that FAL is not better than LMS

under any condition. Their performances are nearly the same

but the FAL approach is much more complicated than LMS.

Finally, it is needless to say that the multi-dimensional variant

of the FAL also inherits the same flaws and is unreliable.
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