
24 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

Spatially Arranged Sparse Recurrent Neural
Networks for Energy Efficient Associative Memory

Gouhei Tanaka , Member, IEEE, Ryosho Nakane , Member, IEEE, Tomoya Takeuchi , Member, IEEE,

Toshiyuki Yamane , Member, IEEE, Daiju Nakano, Yasunao Katayama , Senior Member, IEEE,

and Akira Hirose , Fellow, IEEE

Abstract— The development of hardware neural networks,
including neuromorphic hardware, has been accelerated over
the past few years. However, it is challenging to operate very
large-scale neural networks with low-power hardware devices,
partly due to signal transmissions through a massive number
of interconnections. Our aim is to deal with the issue of
communication cost from an algorithmic viewpoint and study
learning algorithms for energy-efficient information processing.
Here, we consider two approaches to finding spatially arranged
sparse recurrent neural networks with the high cost-performance
ratio for associative memory. In the first approach following
classical methods, we focus on sparse modular network struc-
tures inspired by biological brain networks and examine their
storage capacity under an iterative learning rule. We show that
incorporating long-range intermodule connections into purely
modular networks can enhance the cost-performance ratio.
In the second approach, we formulate for the first time an
optimization problem where the network sparsity is maximized
under the constraints imposed by a pattern embedding condition.
We show that there is a tradeoff between the interconnection cost
and the computational performance in the optimized networks.
We demonstrate that the optimized networks can achieve a better
cost-performance ratio compared with those considered in the
first approach. We show the effectiveness of the optimization
approach mainly using binary patterns and apply it also to gray-
scale image restoration. Our results suggest that the presented
approaches are useful in seeking more sparse and less costly
connectivity of neural networks for the enhancement of energy
efficiency in hardware neural networks.

Manuscript received May 22, 2017; revised January 15, 2018,
July 20, 2018, and December 23, 2018; accepted February 10, 2019. Date
of publication March 15, 2019; date of current version January 3, 2020. The
work of G. Tanaka was supported in part by Japan Society for the Promotion
of Science KAKENHI under Grant JP16K00326. (Corresponding author:
Gouhei Tanaka.)

G. Tanaka is with the Department of Electrical Engineering and Information
Systems, Institute for Innovation in International Engineering Education, The
University of Tokyo, Tokyo 113-8656, Japan, and also with the Institute of
Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan (e-mail:
gouhei@sat.t.u-tokyo.ac.jp).

R. Nakane and A. Hirose are with the Department of Electrical Engineering
and Information Systems, Institute for Innovation in International Engineer-
ing Education, The University of Tokyo, Tokyo 113-8656, Japan (e-mail:
nakane@cryst.t.u-tokyo.ac.jp; ahirose@ee.t.u-tokyo.ac.jp).

T. Takeuchi is with the Graduate School of Mathematical Sciences, The
University of Tokyo, Tokyo 153-8914, Japan (e-mail: take@ms.u-tokyo.ac.jp).

T. Yamane and D. Nakano are with IBM Research—Tokyo, Kawasaki
212-0032, Japan (e-mail: tyamane@jp.ibm.com; dnakano@jp.ibm.com).

Y. Katayama is with IBM Research—Tokyo, Tokyo 103-8510, Japan
(e-mail: yasunaok@jp.ibm.com).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2899344

Index Terms— Associative memory, energy efficiency, Hopfield
network, interconnection cost, iterative learning rule, sparse
neural networks, sparse optimization.

I. INTRODUCTION

UNLIKE the traditional rule-based computing, the paral-
lel distributed computing based on neural information

processing is able to perform intelligent tasks through learning
from sample data, such as pattern recognition, classifica-
tion, estimation, and prediction. Hardware implementations
of artificial neural networks have been widely studied for
laboratory experiments and commercial purposes over the two
decades [1], [2]. In the past few years, a rapid progress has
been made in the development of neuromorphic chips with
low power consumption [3], [4]. For enhancing scalability,
however, it is necessary to more efficiently implement a
massive number of interconnections corresponding to biolog-
ical synapses. In many current configurations, local intercon-
nections are implemented with a crossbar array architecture
and global interconnections are achieved indirectly with a
routing system [5]. Therefore, the communication cost for
signal transmissions between neuronal units increases as they
become distant in the integrated circuit. Since the number of
global interconnections tends to dramatically increase with
the system size in many existing neural network models,
the interconnection problem should be a bottleneck in realizing
scalability of hardware neural networks and neuromorphic
devices [6], [7].

For reducing the communication cost in hardware neural
networks, it is significant to decrease the number of global
interconnections as well as lessen the frequency of signal
transmissions through each interconnection. These require-
ments also correspond to the important constraints in the
brain and give a clue to understand an efficient synap-
tic plasticity [8]. Our study particularly focuses on the
former point, i.e., how to save the interconnection cost
and increase the cost-performance ratio. For this purpose,
we develop learning methods which work with more sparse
network structures and less costly connection topologies. This
approach from the algorithm side would be complementary
to the effort for efficient implementation techniques from the
hardware side.

The original Hopfield network [9] with full connectivity
is a typical example of densely connected recurrent neural

2162-237X © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6223-4406
https://orcid.org/0000-0002-9059-9349
https://orcid.org/0000-0003-3570-0675
https://orcid.org/0000-0002-8796-3007
https://orcid.org/0000-0002-2674-9365
https://orcid.org/0000-0002-6936-9733

TANAKA et al.: SPATIALLY ARRANGED SPARSE RECURRENT NEURAL NETWORKS 25

networks. Thanks to the fully connected structure, the Hopfield
network has an energy function that monotonically decreases
with each update of the neuronal state. Such a property is
favorable for many applications including associative memory
[10], image restoration [11], and combinatorial optimization
problems [12]. In an autoassociative memory task, the Hop-
field network embeds multiple patterns into the interconnec-
tion weights by a Hebbian learning rule. When a noisy version
of one of the stored patterns is given as the initial network
state, the network iteratively updates its state and retrieves
the correct stored pattern in a successful case. The maximum
number of successfully stored patterns is often represented as
αN , where N is the number of neurons and α is the storage
capacity used for evaluation of the computational performance.
It was theoretically shown that the storage capacity of the Hop-
field network is α ∼ 0.14 [10]. This performance is achieved
with approximately N2 interconnections which should cause
the interconnection problem for large N .

Motivated by biological and physical interests, the Hopfield
network with nonfully connected structures has been widely
studied. Sompolinsky [13] investigated diluted Hopfield net-
works where the fraction c of the interconnections is randomly
removed from the original fully connected network. It was
found that the storage capacity of the diluted network is
approximately given by α ∼ 0.14(1 − c). This means that
the computational performance is degraded linearly with the
dilution factor. This early study was followed by the analy-
ses of the associative memory ability of randomly diluted
Hopfield networks [14]–[19]. In addition, much attention has
been paid to the Hopfield networks with complex topologies
including small-world networks [20]–[22], scale-free networks
[23], and other architectures [24], [25]. Some studies suggest
that homogeneously connected random networks are better
than heterogeneously connected ones in the storage capacity
when the interconnection density is the same [20], [26], [27].
Most of the above-mentioned studies use the classical one-shot
Hebbian learning rule [28] for the storage of patterns, but there
is an option to use another learning rule, e.g., the iterative
Hebbian learning rule (Perceptron-like learning) [29]–[31],
for improving the storage capacity. So far, few studies have
explored effective network structures under the iterative learn-
ing algorithm. Moreover, although a variety of sparse network
structures have been considered, their efficiency in hardware
computation has not yet been quantitatively evaluated.

The purpose of this paper is to examine spatially arranged
sparse Hopfield-type networks for energy-efficient associative
memory in terms of cost-performance relationship. We take
two approaches for obtaining sparse recurrent network struc-
tures with low interconnection cost: one is to compare different
network structures with a fixed sparsity; the other is to
optimize the network structure for maximizing its sparsity
during the learning process. In the first approach, we focus
on sparse modular network structures which are biologically
plausible [32]–[34]. We clarify how the storage capacity scales
with the number of modules and demonstrate a modification
of the interconnection topology that enables a compatibility
between large storage capacity and low interconnection cost.
In the second approach, we optimize the network structure

such that the number of interconnections is minimized under
the constraints imposed by a pattern embedding condition.
We find a tradeoff between the interconnection cost and
the storage capacity in the optimized networks. Our results
show that the second approach can give a more cost-effective
network structure than the first approach at the expense of
computation time for optimization. Finally, we discuss remain-
ing issues and possible efforts for enhancing energy efficiency
in the associative memory networks.

The main novelty of this paper is to consider for the first
time how to enhance energy efficiency of hardware neural
networks for associative memories in a theoretical framework
as well as to formulate the optimization problem for finding
the optimal interconnection weights that maximize the sparsity
of recurrent neural networks for associative memory. Our
optimization method is regarded as a new learning method
for associative memory, which combines the iterative learning
algorithm [29]–[31] and the concept of sparse optimization
[35]. The relevance of our method is validated by numerically
showing that the optimized network connectivity is very sparse
and costless while achieving reasonable computational perfor-
mance. Our optimization method can be applied to a neural
network of any size in principle, although more computation
time and computer memory are needed for larger neural
networks. If the size of patterns used for associative memory
is very large, they can be divided into a set of smaller patterns
so that they can be handled with smaller neural networks in
parallel and the computation time is saved.

This paper is organized as follows. In Section II, we describe
the two approaches for finding sparse recurrent neural net-
works with the high cost-performance ratio. In Section III,
we show the results of associative memory tests with the
sparse neural networks obtained by the two approaches.
In Section IV, we summarize the results and give a discussion.

II. METHODS

The associative memory task is divided into the learning
phase and the retrieval phase. In this section, we introduce two
approaches for conducting the associative memory task using
sparse recurrent neural networks with low interconnection
cost. The first approach is to assume a sparse modular network
structure as described in Section II-A. The second approach
is to optimize the network connectivity so as to maximize the
network sparsity as described in Section II-B. In the retrieval
phase, the network state is repeatedly updated to retrieve a
correct pattern from a noisy one as explained in Section II-C.
The measure for evaluating the interconnection cost of the
sparse neural networks is introduced in Section II-D.

We consider a recurrent neural network consisting of N
neurons which are interconnected with each other [9]. The
neuronal states are represented by an N-dimensional vector
x = (x1, . . . , xN)� where xi ∈ [−1, 1] denotes the state
of neuron i for i = 1, . . . , N . The connection weights
are represented by an N × N weight matrix W = (wi j),
where wi j denotes the weight of the connection between
neuron i and neuron j . We assume that the weight matrix
is symmetric, i.e., wi j = w j i , and the self-loops are not

26 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

allowed, i.e., wii = 0 for all i . The interconnection density d is
defined as the number of nonzero components in W divided by
N(N −1). The P sample patterns to be stored are represented
as N-dimensional binary vectors, s(k) = (s(k)

1 , s(k)
2 , . . . , s(k)

N)�
for k = 1, . . . , P , where s(k)

i ∈ {−1, 1} for i = 1, . . . , N . The
set of stored patterns is simply represented as an N×P matrix
S = (s(1) s(2) · · · s(P)).

A. Learning Methods for Fixed Sparse Networks

In the original Hopfield model with full connectivity [9],
the weight matrix W is determined with the one-shot Hebbian
learning rule [28] described as follows:

W = 1

N
SS�. (1)

The diagonal components are deleted by subtracting diag(W)
from W to prohibit self-loops. The symmetric weight matrix
W determined in this way enables to well define an energy
function that monotonically decreases with each update of the
neuronal state [9]. Since the stored patterns are embedded
into point attractors corresponding to the local minima of the
energy landscape, each stored pattern is retrieved from a per-
turbed one after iterative updates of the network state, result-
ing in a successful memory association. However, in many
Hopfield-type networks with sparse or diluted connectivity
mentioned in Section I, the weight matrix is determined by
the one-shot Hebbian rule in (1) and the weights of the absent
interconnections are not used in the retrieval phase. This means
that some information of the stored patterns assigned to these
weights are lost compared with the full connectivity case
and that it leads to a low storage capacity compared with
the original Hopfield model. A possible way to mitigate the
information loss is to distribute the information of the stored
patterns only to the weights of the existing interconnections.

Such efficient information coding is possible using the
iterative Hebbian learning rule [29], [30], which is often called
the Perceptron-like learning rule. In fact, some studies have
shown that the iterative learning rule yields a better storage
capacity than the one-shot learning rule in sparse networks
[36], [37]. Therefore, we mainly focus on the iterative learning
rule as described in the following.

Each neuron receives the sum of weighted inputs from the
other neurons. The net input is often called the local field hi

which is given by

hi (x) =
∑
j∈Vi

wi j x j for i = 1, . . . , N (2)

where Vi ⊆ {1, 2, . . . , N} \ {i} stands for the set of indices
of neurons that are connected to neuron i . Then, the state of
neuron i is updated using the sign function as follows:

x ′i = sgn(hi (x)− θi) for i = 1, . . . , N (3)

where x ′i represents the updated state and θi represents the
threshold. A necessary condition for associative memory is
that the patterns s(k) for k = 1, . . . , P correspond to the fixed
points of (3). Therefore, the pattern embedding condition

Algorithm 1: Iterative Hebbian Learning Algorithm [29]

Initialize the weight variables, wi j = 0 for 1 ≤ i, j ≤ N ;
Initialize the flag for (5), f lag = 0 ;
Initialize the iteration step, l = 0 ;
while f lag = 0 or l < lmax do

f lag = 1 ;
for k := 0 to P do

for i := 0 to N do
hi =∑

j∈Vi
wi j s(k)

j ;

if s(k)
i hi < δ then
wi j ← wi j + s(k)

i s(k)
j /N ;

f lag = 0 ;
end

end
end
l ← l + 1 ;

end

can be given by the set of NP simultaneous inequalities as
follows [29]:

s(k)
i (hi (s(k))−θi)≥δ>0 for i = 1, . . . , N and k = 1, . . . , P

(4)

where δ is a margin parameter introduced to widen the
stability regions (i.e., the basins of attraction) of the fixed
point attractors corresponding to the stored patterns [29].
Setting θi = 0 for all i for simplicity, the above condition is
rewritten as follows:

s(k)
i

⎛
⎝∑

j∈Vi

wi j s(k)
j

⎞
⎠ ≥ δ for i = 1, . . . , N and k = 1, . . . , P.

(5)

Once the network structure is given, the weights wi j for
existing interconnections can be determined to satisfy the
condition (5) using an iterative Hebbian algorithm (see Algo-
rithm 1). We initially set wi j = 0 for all the weights. Until
the condition (5) is satisfied, the weight is repeatedly updated
as follows [29]:

wi j ← wi j + 1

N
s(k)

i s(k)
j for all j ∈ Vi . (6)

This process will give a suitable weight matrix satisfying
the pattern embedding condition (5) after a finite number of
iterations if it exists [29]. The same weight matrix can be
obtained by setting δ = 1 in the condition (5) and instead
replacing (6) with wi j ← wi j + s(k)

i s(k)
j /(δN). It is possible

that there is no solution satisfying the condition (5), e.g., for
a very sparse network. Therefore, in practice, we terminate
the iterative algorithm after a preset number of maximum
iterations, lmax.

B. Learning Methods With Network Sparsification

To seek a more sparse network structure, we formulate
an optimization problem that minimizes the interconnection

TANAKA et al.: SPATIALLY ARRANGED SPARSE RECURRENT NEURAL NETWORKS 27

cost under the pattern embedding conditions (5). We can
use the techniques of sparse optimization, which have been
widely applied in compressed sensing, signal processing,
image processing, and machine learning [35]. Although a
minimization of the total number of interconnections can
be directly formulated as an L0-norm optimization problem,
it is well known that this problem is NP-hard in terms
of computational complexity [38], [39]. A typical way for
reducing the computational cost is to consider a relaxation
problem using L1-norm, which is a linear programming prob-
lem and solvable in polynomial time. Thus, we consider an
approximated problem using the L1-norm optimization where
the objective function is given by the sum of the absolute
values of the weight variables [40], [41]. Recently, the similar
approach based on the L1-norm optimization has been used
for understanding energy and resource efficiency in the brain
[8], [42], although recurrent connections are not considered.
Some other studies have also used optimization methods to
examine how biologically inspired constraints influence the
structure and function of neural circuits [43]–[45].

In our formulation for recurrent neural networks, the con-
straints are given by the set of inequalities (5). Since the
weight matrix is symmetric and the diagonal elements are null,
we have

∑N
i=1

∑N
j=1 |wi j | = 2

∑N
i=2

∑
j<i |wi j | and we can

take the lower triangular elements of W as the independent
variables to be optimized. For a given set of pattern vectors
s(k) (k = 1, . . . , P), the optimization problem is formulated
as follows:

min
W

N∑
i=2

∑
j<i

|wi j | (7)

s.t. s(k)
i

⎛
⎝∑

j

wi j s(k)
j

⎞
⎠ ≥ δ

for i = 1, . . . , N and k = 1, . . . , P (8)

w j i = wi j for all i, j = 1, . . . , N (9)

wii = 0 for all i = 1, . . . , N. (10)

This optimization problem can be transformed into a linear
programming problem as described in the following. The
lower triangular elements are represented as the following
vector:

v = (v1, v2, . . . , vK)� (11)

where K ≡ N(N − 1)/2 and
⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
v1 0 0 0 0
v2 vN 0 0 0
...

...
. . . 0 0

vN−1 v2N−3 · · · vK 0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
w21 0 0 0 0
w31 w32 0 0 0
...

...
. . . 0 0

wN1 wN2 · · · wN,N−1 0

⎞
⎟⎟⎟⎟⎟⎠

.

First, we rewrite the objective function (7) using the ele-
ments of v as follows:

N∑
i=2

∑
j<i

|wi j | =
K∑

n=1

|vn|. (12)

A minimization of |vn | can be reformulated by replacing
vn with the difference between two nonnegative variables as
follows [46]:

vn = v+n − v−n for n = 1, . . . , K (13)

where v+n ≥ 0 and v−n ≥ 0. Assuming v+n v−n = 0, we obtain
|vn| = v+n + v−n because (v+n , v−n) = (vn, 0) if vn ≥ 0
and (v+n , v−n) = (0,−vn) otherwise. We define the two
K -dimensional vectors as follows:

v+ = (
v+1 , . . . , v+K

)�
(14)

v− = (
v−1 , . . . , v−K

)� (15)

where v = v+ − v−. Using ṽ ≡ (
v+
v−

)
, the objective function

(7) can be rewritten as c�2K ṽ, where c j = (1, . . . , 1)� is the
j -dimensional column vector with all elements equal to 1.
When all the elements of c2K are nonnegative as in this case,
we can drop the condition v+n v−n = 0 [46].

Next, we rewrite the constraints (8) using the vector ṽ.
We define the N2-dimensional column vector containing all
the elements of the weight matrix W as follows:

w =

⎛
⎜⎜⎜⎝

w1
w2
...

wN

⎞
⎟⎟⎟⎠ (16)

where

wi = (w1i , w2i , . . . , wNi)
� for i = 1, . . . , N. (17)

We also define the P × P diagonal matrix Qi consisting of
the pattern vector elements as follows:

Qi =

⎛
⎜⎜⎜⎜⎝

s(1)
i 0 . . . 0
0 s(2)

i . . . 0

0 0
. . . 0

0 0 . . . s(P)
i

⎞
⎟⎟⎟⎟⎠

for i = 1, . . . , N.

Using the componentwise inequality, the set of the NP inequal-
ities (8) can be written as follows:

Q Rw − δ ≥ 0 (18)

where

Q = diag(Q1, Q2, . . . , QN) (19)

R = diag(S�, S�, . . . , S�) (20)

δ = (δ, . . . , δ)� (21)

0 = (0, . . . , 0)�. (22)

Since the diagonal elements of W are null and the upper
triangular elements can be represented using the lower trian-
gular elements from symmetry, we can find the N2×K matrix
E that satisfies the following equation:

Ev = w (23)

28 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

where E = (ei j) with ei j ∈ {0, 1}. Substituting (23) into (18)
and using v = v+ − v−, we obtain

QRE(v+ − v−)− δ ≥ 0. (24)

This is equivalent to

Q RẼ ṽ − δ ≥ 0 (25)

where Ẽ ≡ (E,−E) is the N2 × 2K matrix.
As a result, the optimization problem (7)–(10) is converted

to the following linear programming problem with respect to
variables ṽ:

min
ṽ

c�2K ṽ (26)

s.t. Q RẼ ṽ − δ ≥ 0 (27)

ṽ ≥ 0. (28)

Once ṽ is found by solving the above-mentioned problem,
the weight vector w is obtained from (23). We set wi j = 0 if
|wi j | < ε where ε is the cutoff parameter.

We can add structural constraints in advance by forcing
some elements of v to be zero. In this case, the variables
which can be nonzero are represented by u = (u1, . . . , uL)
with L < K , where u1, . . . , uL ∈ {v1, . . . , vK }. We can find
the K × L matrix F that satisfies the following equation:

Fu = v (29)

where F = (fi j) with fi j ∈ {0, 1}. Introducing new vectors
u+ and u−, satisfying u = u+ − u−, and defining ũ = (

u+
u−

)
,

we can incorporate the structural constraint into the linear
programming problem as follows:

min
ũ

c�2L ũ (30)

s.t. Q RẼ F̃ ũ− δ ≥ 0 (31)

ũ ≥ 0 (32)

where F̃ = (F, F)�. Once ũ is found by solving the above
problem, the weight vector w is obtained from (23) and (29).
We set wi j = 0 if |wi j | < ε.

In numerical experiments, the linear programming problems
are solved using the interior point method solver in MOSEK
optimization toolbox [47] operating on the software package
MATLAB [48].

C. Retrieval Phase

After the weight matrix W is determined in the learning
phase, the associative memory ability is tested in the retrieval
phase. We generate a noisy input pattern s̄(k) by flipping
randomly chosen σ N components in the pattern s(k) for k =
1, . . . , P , where σ ∈ [0, 1] represents the noise level. The
network state at time step t is represented as x(t). For pattern
k, the initial state is set as x(0) = s̄(k). Then, the neuronal
states are repeatedly updated as follows:

xi (t + 1) = f

⎛
⎝∑

j∈Vi

wi j x j (t)

⎞
⎠ for i = 1, . . . , N (33)

where f (x) = 2/(1 + e−x/a) − 1 is the sigmoidal activation
function and its nonlinearity is adjusted by the slope parameter
a. The real vector x(t) is transformed into a binary vector
y(t) by thresholding as follows: y(t) = (y1(t), . . . , yN (t))�
where yi (t) = 1 if xi (t) ≥ 0 and yi (t) = −1 otherwise.
The state update is performed asynchronously and continued
until the network state converges to a steady state or the
time step reaches the predefined maximum value tmax.
We denote the binary vector corresponding to the final network
state by y(k)

f .
Now, we can see how the margin parameter δ influences the

retrieval process. We denote the optimal weights determined
from the optimization problem (7)–(10) by w∗i j (δ) for i, j =
1 . . . , N . Then, it is obvious that w∗i j (δ) = δw∗i j (1), and there-
fore, f (

∑
j∈Vi

w∗i j (δ)x j) = f (δ
∑

j∈Vi
w∗i j (1)x j). This means

that, instead of using w∗i j (δ) in the retrieval phase, we can
use the optimal weights w∗i j (1) for δ = 1 and the modified
activation function f (x) = 2/(1 + e−δx/a) − 1. Therefore,
we only need the results of the optimization calculation for
δ = 1. An increase in the δ value is equivalent to a decrease
in the slope parameter of the activation function, resulting in
a steeper function.

The associative memory ability is evaluated by how the
retrieved pattern is close to the correct pattern vector s(k). For
pattern k (k = 1, . . . , P), the overlap between the retrieved
pattern and the correct pattern is given by

m(k) = 1

N
s(k) · y(k)

f (34)

which ranges between −1 and 1. If the memory retrieval is
perfect, then m(k) = 1. For evaluation of the computational
performance, we use the average overlap m defined as follows:

m = 1

P

P∑
k=1

m(k). (35)

We denote by Pmax the maximum number of stored patterns
such that m ≥ 1 − ξ where ξ (0 ≤ ξ � 1) represents the
acceptable error.

D. Cost Evaluation

In hardware neural networks, short-range communications
are less costly than long-range ones [5]. Therefore, we simply
assume that the communication cost is approximately eval-
uated by the interconnection cost for the existing intercon-
nections in a 2-D space. We suppose that N neurons are
arranged like grid points in the 2-D square space as illustrated
in Fig. 1. The size of the square is N (1/2) × N (1/2). The
length of the interconnection between neuron i at (xi , yi) and
neuron j at (x j , y j) is defined as the L1 (Manhattan) distance
D(i, j) = |xi−x j |+|yi−y j |, which corresponds to the number
of hops along the grid lines for signal transmissions. The total
length of the interconnections, normalized by the space size,
is given by

D = 1

N

⎛
⎝

N∑
i=1

∑
j∈Vi

D(i, j)

⎞
⎠. (36)

TANAKA et al.: SPATIALLY ARRANGED SPARSE RECURRENT NEURAL NETWORKS 29

Fig. 1. Schematic of the arrangement of neuronal units in the square space.
The size of the space is N (1/2)×N (1/2) for a network consisting of N neurons.
The interconnection cost for connecting neuron i and neuron j in this space
is evaluated by the L1-norm (Manhattan) distance D(i, j) as indicated by the
dashed line.

Fig. 2. Examples of the binary image patterns with size 32 × 32 used for
the associative memory test. (a) Random patterns. (b) Handwritten character
images [49]. (c) Fingerprint images [50].

We define the normalized interconnection cost as follows:

C = D/D0 (37)

where D0 is the total cost for the original fully connected
Hopfield network, i.e., D0 ≡ (1/N)

∑N
i=1

∑N
j=1, j
=i D(i, j).

III. RESULTS

A. Setup of Numerical Experiments

We mainly used the three kinds of image patterns shown
in Fig. 2 for associative memory tests. The random patterns
shown in Fig. 2(a) were generated by randomly assigning
black or white color to each pixel with probability 0.5.
Fig. 2(b) shows the handwritten character images from the
U.S. postal database [49], including 26 alphabets and 10 digits.
Fig. 2(c) shows the fingerprint images from the database used
for Fingerprint Verification Competition [50]. The size of all
of these images was scaled to 32 × 32. To handle these
images, we fixed the number of neurons at N = 1024. We set
the parameters at δ = 1, a = 0.1, ε = 0.001, ξ = 0.05,
lmax = 50 000, unless otherwise noted. Furthermore, in order
to demonstrate that our network sparsification is effective for
more practical images, we employed gray-scale images in
Section III-E.

B. Fixed Network Structures

Once a network structure is given, we can determine the
weight matrix by the learning rule as described in Section II-A.
The interconnection density d , or the network sparsity, is fixed
for fair comparison between different network topologies.

We seek a network topology which yields better storage capac-
ity and enables efficient computing with less energy. Sparsity
and modularity are the major characteristics of biological brain
networks [32]–[34]. These factors can be a key for the brain
function to operate with very low power consumption [51].
Based on this notion, we focus on sparse modular network
structures in this section. This type of structure is advantageous
in terms of interconnection cost as well. We assume that the
whole network consists of M modules with the same size.
Each module contains N/M locally interconnected neurons.
As M increases, the interconnections become localized.

Fig. 3 shows the performance comparison based on the
average overlap m between the one-shot rule (1) and the
iterative rule (6) in the associative memory tests with random
patterns. Fig. 3(a)–(c) correspond to the three types of sparse
modular network structures with M = 1, M = 4, and M = 16,
respectively. In all the networks, the interconnection density
is fixed at d = 0.05. The first and second columns show the
spatial structures of the modules and the connectivity matrices,
respectively. The connectivity in each module is random and
there are no intermodule connections. The third and fourth
columns show the final overlap m for the one-shot rule and the
iterative rule, respectively. In each panel, the results for three
different noise levels σ are plotted. The results show that the
iterative rule yields much better performance than the one-shot
rule. The computational performance for the iterative learning
rule is degraded with an increase in the noise level σ , but it
is still much higher than that of the one-shot rule. Under the
iterative learning rule, the associative memory ability gradually
decreases with an increase in the number of modules M .
Hereafter, we focus on the iterative learning rule.

Fig. 4 shows how the associative memory ability of the
sparse modular networks depends on the number of stored
patterns P and the noise level σ for the three kinds of image
patterns. Fig. 4(a)–(c) correspond to the network structures
shown in Fig. 3(a)–(c), respectively. The gray-scale color in
each panel indicates the final overlap m. The white region
surrounded by the dashed lines corresponds to the parameter
conditions such that m ≥ 1− ξ . Therefore, the computational
performance can be approximately compared based on the size
of the white region. For all the image patterns, the single
module network [Fig. 4(a)] yields the best performance. As the
number of modules increases, both the memory capacity and
the noise tolerance are deteriorated. Although local intercon-
nections are desirable for reducing the communication cost,
the increase in the number of modules causes the decline of
the computational performance as seen from the comparison
shown in Fig. 4(a)–(c). This result indicates that the networks
only with very localized interconnections result in low com-
putational performance.

Inspired by the fact that the biological brain networks are
not perfectly modularized but have shortcut pathways between
the modules [32]–[34], we introduce intermodule connections
into the purely modular structure with M = 16 shown
in Fig. 3(c). We randomly chose 30% of the intramodule
connections in each module and rewired them to be intermod-
ule connections. The interconnection density is not changed
by this rewiring and kept at d = 0.05. By this structural

30 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

Fig. 3. Performance comparison between the one-shot and iterative Hebbian learning rules in sparse modular networks. The interconnection density is fixed
at d = 0.05. The first and second columns show the spatial modular structures and the connectivity matrices, respectively. The third and fourth columns show
the final overlap m for the random patterns shown in Fig. 2(a) under the one-shot and iterative rules, respectively. (a) M = 1. (b) M = 4. (c) M = 16.

modification, the storage capacity is expected to increase
without largely increasing the interconnection cost. If the
connections are randomly rewired, the network modification
process is similar to that for generating a Watts–Strogatz
small-world network [52] from a locally connected network.
In the previous studies on small-world networks that are char-
acterized by a small average shortest path length and a large
clustering coefficient [20]–[22], it is reported that the storage
capacity increases with the rewiring probability. The same
property was confirmed in our previous study for different
values of the rewiring fraction [51]. We have tested four
topologies depending on whether the intramodule connections
are regular or random and whether the intermodule connec-
tions are regular or random as in [51]. In all the four cases,
the enhancement of computational performance was observed.
The best performance among these four cases was obtained
for the network structure with random intramodule and reg-
ular intermodule connections as shown in Fig. 5 (left). This
network can be regarded as a hierarchical network including
overlapped module structures [53]. Compared with the result
for 16-module network shown in Fig. 4(c), the computational
performance is considerably improved as shown in Fig. 5,
suggesting the benefit of long-range intermodule connections
in exchange for the increased interconnection cost. Such a
positive effect is brought about by the small-world property
which is necessary for embedding pattern correlations between
distant neurons belonging to different modules.

The relationship between the interconnection cost C and
the maximum number of stored patterns Pmax for the sparse

Fig. 4. Effect of the number of modules on the computational performance
under the iterative Hebbian rule. The overlap m is indicated by the gray-scale
color in the plane of the number of stored patterns P and the noise level σ .
(a) M = 1 [Fig. 3(a)]. (b) M = 4 [Fig. 3(b)]. (c) M = 16 [Fig. 3(c)].

modular networks is summarized as shown in Fig. 6. The blue
circles indicate the results for the purely modular networks
with M = 1, 2, 4, 8, 16 where intermodule connections are
absent. For these modular networks, the decreasing intercon-
nection cost is represented as C ∼ d/M(1/2) in the case of

TANAKA et al.: SPATIALLY ARRANGED SPARSE RECURRENT NEURAL NETWORKS 31

Fig. 5. Effect of intermodule connections on the associative memory performance. The connection matrix representing the network structure where 36% of
the intramodule connections of the modular network shown in Fig. 3(c) were rewired to be regular intermodule connections (left). The overlap m indicated
by the gray-scale color in the plane of the number of stored patterns P and the noise level σ for the random patterns, the handwritten character images, and
the fingerprint images, respectively (right).

Fig. 6. Cost-performance relationship in the sparse modular networks. The maximum number of stored patterns Pmax is plotted against the interconnection
cost C . The interconnection density is fixed at d = 0.05 and the noise level is at σ = 0.06. Blue circles: purely modular networks without intermodule
connections. Dashed line: fitting line for these five plots. Red marks: modular networks with intermodule connections, including the networks with regular
intramodule and regular intermodule connections (upward triangles), regular intramodule and random intermodule connections (downward triangles), random
intramodule and regular intermodule connections (filled squares), and random intramodule and random intermodule connections (diamonds). (a) Random
patterns. (b) Handwritten character images. (c) Fingerprint images.

uncorrelated random patterns as shown in Fig. 6(a). The fitting
(dashed) line indicates that the computational performance
degrades with the decreasing interconnection cost in a power
law fashion. Namely, there is a tradeoff between the cost
effectiveness and the computational capability in the sparse
modular networks. The red marks in Fig. 6 correspond to
the modular networks with intermodule connections, including
the networks with regular intramodule and regular intermod-
ule connections (upper triangles), regular intramodule and
random intermodule connections (downward triangles), ran-
dom intramodule and regular intermodule connections (filled
squares), and random intramodule and random intermodule
connections (diamonds). As we mentioned, the best results are
obtained in the case of random intramodule and regular inter-
module connections (filled squares) shown in Fig. 6(a)–(c).
These plots show the effectiveness of introducing the long-
range interconnections into the 16-module network. In fact,
the interconnection cost is similar to that of the 4-module
network shown in Fig. 3(b) and the performance is better
than or comparable to that of the 1-module network shown
in Fig. 3(a). It is suggested that a network structure resembling
biological brain networks enable compatibility between good
computational performance and low communication cost.

C. Optimization of Network Structures
We perform the learning algorithm with network sparsi-

fication by solving the optimization problem formulated in
Section II-B. In the optimization problem (26)–(28) where no
structural constraint is imposed, the number of variables to
be optimized is given by K = N(N − 1)/2, which requires
large computer memory and long computation time for large
N . To save the computational cost for learning, we impose
structural constraints on the network by setting the matrix F
in (29) and solve the optimization problem (30)–(32).
We demonstrate that the learning algorithm with network
sparsification contributes to finding cost-effective network
structures for associative memory.

Following the results in Section III-B, we first restrict the
network structure to be similar to that shown in Fig. 5 (left).
We assume that the intramodule connections are full (instead
of the random ones shown in Fig. 5) in each module and
the intermodule connections are regular (as shown in Fig. 5).
The motivation for considering this module constraint is the
fact that the combination of the local dense connections and
the global sparse connections are suitable for the current
configuration of the neuromorphic chips as mentioned in the
beginning of the Introduction. Before the optimization and

32 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

Fig. 7. Results of the network optimization under the constraint of modular structure. The size of the images is 32 × 32. The interconnection density is
fixed at d ∼ 0.05 before the connection cutoff for all the patterns. (a) Connectivity matrices of the optimized networks for P = 10. The size of the matrices
is 1024× 1024. (b) Interconnection cost C for a variation of the number of stored patterns P . (c) Overlap m plotted against P .

the connection cutoff, the interconnection density is given
by d ∼ 0.076 and the interconnection cost by C ∼ 0.03.
Fig. 7(a) shows the connectivity matrices of the optimized
network structures for P = 10, which are different depending
on the type of the stored patterns. Fig. 7(b) shows the
interconnection cost C plotted against the number of stored
patterns P . When P = 1, the interconnection cost is the
same as that before the optimization and the connection
cutoff (indicated by the horizontal dashed line) because all
the adjusted weights have absolute values larger than the cutoff
parameter value ε. As P is increased, the number of weights
with |wi j | < ε increases and accordingly the interconnection
cost dramatically decreases. After the cost touches the bottom
at around P ∼ 6, it gradually increases. Fig. 7(c) shows
the final overlap m in the associative memory test using the
optimized networks. For the random and fingerprint patterns,
the performance is slightly degraded at around P ∼ 6. This
degradation occurs even if the connections with small weights
are not cut off from the optimized networks (i.e., even when
ε = 0). In other words, the fixed point attractors corresponding
to the stored patterns have very small stability regions in the
optimized networks for these P values. With a further increase
in P , the overlap recovers to 1 and then falls again con-
siderably. In contrast, for the handwritten character patterns,
the overlap keeps a high level but gradually decreases as P

is increased. When the noise level is σ = 0.06, the maximum
number of successfully stored random patterns is Pmax = 30,
which is achieved by the optimized network with intercon-
nection cost C ∼ 0.014. This optimized network yields the
computational performance comparable to that for the network
shown in Fig. 5 inspite of its lower interconnection cost.

Next, we demonstrate the result under the structural con-
straint that prohibits long-range connections. If the L1 distance
between neuron i and neuron j is larger than the radius
N (1/2)/2 in the 2-D square space, we remove the weights wi j

from the variables to be optimized. This radius constraint is
motivated by the notion that shorter communications between
neuronal units are more power efficient in the neuromorphic
hardware [6]. Before the optimization and the connection
cutoff, the interconnection density is given by d ∼ 0.036 and
the interconnection cost by C ∼ 0.18. Fig. 8(a) shows the
connectivity matrices of the optimized networks for P = 10,
which are different depending on the type of the stored
patterns. The interconnections outside the diagonal belt are
absent due to the structural constraint. The interconnection
cost and the final overlap are shown in Fig. 8(b) and (c),
respectively, which are qualitatively similar to those shown
in Fig. 7(b) and (c). In this case, however, a perfect memory
association is achieved even at P = 40 for the random and
fingerprint patterns as shown in Fig. 8(c). This is reasonable

TANAKA et al.: SPATIALLY ARRANGED SPARSE RECURRENT NEURAL NETWORKS 33

Fig. 8. Results of the network optimization under the radius constraint. The size of the images is 32× 32. The interconnection density is fixed at d ∼ 0.05
before the connection cutoff for all the patterns. (a) Connectivity matrices of the optimized networks for P = 10. The size of the matrices is 1024 × 1024.
(b) Interconnection cost C for a variation of the number of stored patterns P . (c) Overlap m plotted against P .

because the optimized networks under the radius constraint
are less sparse than those under the module constraint.

The cost-performance relationship of the optimized net-
works for the random patterns is summarized as shown
in Fig. 9. The green downward triangles and orange upward
ones correspond to the results of the optimized networks
under the module constraint shown in Fig. 7 and the radius
constraint shown in Fig. 8, respectively. Only the successful
cases where m ≥ 1 − ξ are plotted. Under the module
constraint, the memory association fails for P > 30, whereas
under the radius constraint, the successful memory association
is achieved up to P = 65. The positive slope of the sequential
plots for the optimized networks indicates the tradeoff between
the interconnection cost and the computational performance.
The slope for the optimized sparse networks is steeper than
that for the fixed sparse modular networks trained by the
Perceptron-like learning (the dashed line), indicating that the
optimization approach can yield more cost-effective networks
than the other one with the fixed structures. For example,
the interconnection cost C required for storing 30 random pat-
terns in the optimized modular networks (the rightmost green
downward triangle, C ∼ 0.13) is approximately half of that
in the fixed modular networks with long-range connections
(the red square, C ∼ 0.24). The results demonstrate that the
learning method with network sparsification is highly useful

for finding cost-effective sparse recurrent network structures
for energy efficient hardware neural networks.

We numerically examine how the computation time for the
optimization of the weight matrix depends on the system size
N and the number of patterns P . We use random patterns with
three different sizes, including N = 8× 8, N = 16× 16, and
N = 32 × 32. Fig. 10 shows the computation time plotted
against P for different network sizes and different types of
structural constraints (the radius and module constraints). If the
plots are well fitted with a linear function in this figure, then it
would indicate that the computation time grows exponentially
with P . However, the gap between the neighboring plots for a
fixed N seems to decrease as P increases. This suggests that
the computation time is a polynomial function of P for a fixed
number of N .

A practical option for handling large-scale images is to
divide each of them into a set of smaller scale subimages in
the same way and process them using smaller scale neural net-
works. By performing the associative memory task using the
subimages in corresponding positions, we can obtain smaller
scale retrieved patterns and combine them into a large-scale
retrieved pattern. The learning and retrieval processes in the
different positions are executable in parallel, meaning that the
computation time is determined not by the size of the original
large-scale images but by the size of the subimages. Fig. 11

34 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

Fig. 9. Cost-performance relationship in the optimized networks for the
random patterns of size 32× 32. The number of stored patterns P is plotted
against the interconnection cost C for the cases where m ≥ 1− ξ . The noise
level is fixed at σ = 0.06. The green downward triangles and the orange
upward ones correspond to the optimized networks in Fig. 7 under the module
constraint and Fig. 8 under the radius constraint, respectively. The blue circles
and red square are the same as those in Fig. 6.

Fig. 10. Computation time for the optimization of the weight matrix, plotted
against the number of stored patterns. The different marks correspond to
different network sizes and different structural constraints: N = 64 and the
radius constraint (red pluses); N = 64 and the module constraint (red crosses);
N = 256 and the radius constraint (blue squares); N = 256 and the module
constraint (blue circles); N = 1024 and the radius constraint (green upward
triangles); N = 1024 and the module constraint (green downward triangles).

shows the result of the network optimization for handwritten
character and fingerprint images with size 64 × 64, which
are obtained by rescaling the images of size 32 × 32 shown
in Fig. 2(b) and (c). We divide these images into four subim-
ages of size 32×32 and perform the associative memory task
under the radius constraint. The optimized weight matrices for
the four parts are represented as the four diagonal blocks in
the unified matrices as shown in Fig. 11(a). For handwritten
character images, the division of the images is successful for
P = 6 but not for P = 9, because the top left diagonal block is
present in the former case but missing in the latter case. The
null diagonal block is caused by a high correlation among
the subimages in the corresponding position. For fingerprint
images, such a null diagonal block is not found for P ≤ 40.
Fig. 11(b) shows the interconnection costs for the optimized
networks, which are quite small compared with that (C = 1)

Fig. 11. Results of the network optimization under the radius constraint. The
size of the images is 64×64. Each image is divided into four 32×32 subimages
and the learning method is applied to each subimage. The interconnection
density is fixed at d ∼ 0.05 before the optimization and the connection
cutoff in each neural network. (a) Connectivity matrices of the optimized
networks. The size of the matrices is 4096 × 4096. (b) Interconnection cost
C for a variation of the number of stored patterns P . (c) Overlap m plotted
against P .

for the fully connected networks of size 4096×4096. Fig. 11(c)
(left) shows that the overlap for the handwritten character
images falls from 1 to around 3/4 at P ∼ 9, due to the
failure of obtaining an appropriate upper left diagonal block.
For fingerprint images, the associative memory performance
is good as shown in Fig. 11(c) (right) and comparable to
that shown in Fig. 8(c) (right). The above-mebtioned results
demonstrate that a division of images into subimages is a valid
and feasible way for reducing the time for learning large-scale
images if the subimages in corresponding positions are not
highly correlated with each other. We omit the results for
random patterns because the size of the random subimages
is equal to 32 × 32 and the performance for those subimages
is already shown in Fig. 8(c) (left). The total performance for
random images of size 64 × 64 is approximately given by
the average of the overlaps for the four random subimages,
which is almost the same as those shown in Fig. 8(c) (left).
In this case, the normalized cost C is much lower than that
in Fig. 8(b) (left) because D0 [the denominator in (37)] for
the full connectivity case is much larger for N = 4096 than
for N = 1024.

D. Modified Objective Function

The objective function (7) in the optimization problem can
be modified to incorporate the information of the distance of
interconnections. As an example, we consider the following
objective function:

min
W

N∑
i=2

∑
j<i

D(i, j)|wi j | (38)

TANAKA et al.: SPATIALLY ARRANGED SPARSE RECURRENT NEURAL NETWORKS 35

Fig. 12. Results of the network optimization under the radius constraint. The interconnection density is fixed at d ∼ 0.05. (a) Connectivity matrix of the
optimized networks. (b) Interconnection cost C for a variation of the number of stored patterns P . (c) Overlap m plotted against P .

where D(i, j) is the distance between neurons i and j as
defined in Section II-D. We can expect that the weights
corresponding to long connections are more likely to be
reduced (and removed) than those corresponding to short con-
nections. The optimization problem composed of the objective
function (38) and the constraints (8)–(10) can be transformed
into a linear programming problem in a similar way to that in
Section II-B. Fig. 12(a) shows that the interconnection costs of
the optimized networks under the modified objective function
are much smaller than those for the original objective function
shown in Fig. 8(b). However, the overlaps for the modified
objective function shown in Fig. 12(b) are not better than
those for the original objective function shown in Fig. 8(c).
As demonstrated earlier, the objective function in our learn-
ing method significantly affects the optimized weight matrix
which determines the cost and performance of the associative
memory model.

E. Application to Gray-Scale Image Restoration

So far, we have tested our method using binary patterns
(Fig. 2). Here, we demonstrate that our method is applicable
to restoration of gray-scale standard images (Supplementary
Fig. S1). For associative memory with P images, the images
with indices p = 1, . . . , P were used. Each image consists
of 256 × 256 pixels and each pixel takes 256 gray levels
([0, 255]). To handle these images with binary neural net-
works, each image was divided into 64 subimages of size
32×32 (Supplementary Fig. S2), and then, each subimage was
converted to 8 binary patterns of size 32×32 by representing a
pixel value as an 8-bit binary sequence (e.g., 76=“01001100”)
and collecting binary values in the corresponding bit. From the
above-mentioned procedure, 512 (= 64×8) binary patterns of
size 32× 32 were obtained from each gray-scale image. In an
image restoration test with P standard images, we performed
the learning under the radius constraint and the retrieval for
512 sets of P binary patterns in corresponding parts. A noisy
version of a standard image was divided into binary patterns
in the same way and used in the retrieval phase. After the

Fig. 13. (a) Original “Barbara” image. (b) Noisy image with 20% salt-and-
pepper noise. (c)–(f) Recovered images for (c) P = 4, (d) P = 8, (e) P = 12,
and (f) P = 16.

retrieval, we unify 512 retrieved binary patterns into a gray-
scale image.

The results of the experiments are shown in Fig. 13 and
Table I. In the retrieval phase, by adding 20% salt-and-
pepper noise to the original “Barbara” image [Fig. 13(a)],
we generated a noisy image [Fig. 13(b)]. The images retrieved
with the optimized sparse recurrent neural networks are shown
in Fig. 13(c)–(f) for P = 4, 8, 12, 16, respectively. Image
retrieval performance is evaluated using peak signal-to-noise
ratio (PSNR), defined as PSNR = 20 log10(255/rms) where
rms is the root mean square difference between a retrieved
image and the original image. A higher value of PSNR
indicates a higher similarity between them, or a more suc-
cessful image restoration. Table I shows the average sparsity
of the optimized connection matrices obtained by our method,
the interconnection cost C defined by (37), and the PSNR
value. The results indicate that our method achieves gray-scale
image restoration with highly sparse and costless recurrent
neural networks as in the case of binary pattern retrieval.
The degradation of the PSNR values with an increase in the

36 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

TABLE I

RESULTS FOR GRAY-SCALE IMAGE RESTORATION

number of stored images is a significant issue to be overcome
in a future study, which also occurs for the normal Hopfield
network.

IV. CONCLUSION AND DISCUSSION

We have explored sparse recurrent neural networks for
associative memory to realize energy efficient information
processing in hardware neural networks. We have presented
the two effective learning algorithms: one is the iterative
Hebbian learning rule for given network structures; the other
is the sparse optimization which maximizes the network
sparsity under the constraints of pattern embedding condi-
tions. We have shown that, for fixed sparse modular network
structures, the iterative rule is much more effective than the
one-shot rule. Moreover, we have demonstrated that adding
intermodule connections to the purely modular networks is a
good option to improve the balance between the interconnec-
tion cost and the computational performance. We have clarified
that the network topology has a substantial impact on the asso-
ciative memory ability. In the learning method with network
optimization, we have demonstrated the tradeoff between the
cost effectiveness and the storage capacity in the optimized
network structures. We have shown that the proposed learning
method is quite useful for finding a good network structure
with high cost-performance ratio. In practice, the optimized
weight matrix will be obtained by off-chip learning and used
for low-power on-chip computation for pattern retrieval. The
optimization-based learning is suited for batch processing,
whereas the Perceptron-like learning is available for online
processing.

The presented learning methods rely on the pattern embed-
ding condition (5) represented by the set of simultaneous
inequalities. The margin parameter δ controls the size of the
stability regions (the basins of attraction) of the point attractors
corresponding to the stored patterns. In this paper, we have
fixed the value of δ, but the effect of δ on the computational
performance should be clarified in a future work. It is possible
to set different values of δ for each of the inequalities. Our
problem formulation suggests that the sparsification of other
recurrent neural networks is possible in a similar way if there
is a conditional equation or inequality, under which good
computational performance is expected, such as the pattern
embedding condition for autoassociative memory.

In the optimization approach, we have reduced the number
of interconnections by setting wi j = 0 if |wi j | < ε. If ε
is too large, then much information would be lost and the
computational performance could be worse. If ε is too small,
then the network sparsity would not be enhanced and a low
interconnection cost would not be achieved. Therefore, it is

significant to develop a method to appropriately set the value
of ε for realizing both cost effectiveness and high performance.

The optimization approach is extremely useful for finding
cost-effective network structures, but an excellent computa-
tional environment would be necessary for handling larger
scale networks. In our formulation, we use the N2 × 2K
matrix E which contains around N4 elements if structural
constraints are not imposed. For large N , the operation of
this matrix would require a large-capacity computer memory.
The structural constraints are useful for reducing the number
of variables in the optimization problem, saving the com-
puter memory, and speeding up the optimization calculation.
As demonstrated in Sections. III-C and III-E, a practical
strategy for handling large-scale image data is to divide them
into small subimages and process them using smaller scale
neural networks. Another formulation of the optimization
problem using more efficient information representation and
coding could be worth investigation. It is also a future work
to increase the memory capacity by improving the proposed
method, e.g., by changing the spatial constraint (i.e., the initial
condition of the optimization calculation) and the optimization
solver.

In this paper, we have considered binary neural networks
and used binary and gray-scale image patterns for the asso-
ciative memory test. For more practical applications of the pro-
posed methods, the performance evaluation should be carried
out using color images. In such a case, the noise type could
be an additional factor to influence the computational perfor-
mance. Our method of learning with network sparsification
can be applied to other variants of recurrent neural networks
including complex-valued neural networks [54], [55] and other
variants of associative memories including bidirectional asso-
ciative memories [56]. The formulation of optimization prob-
lems based on the similar idea for other computational tasks,
such as time series prediction and combinatorial optimization,
is also a significant issue for expanding the applications of
sparse recurrent neural networks and realizing energy-efficient
neural information processing.

REFERENCES

[1] F. M. Dias, A. Antunes, and A. M. Mota, “Artificial neural networks:
A review of commercial hardware,” Eng. Appl. Artif. Intell., vol. 17,
no. 8, pp. 945–952, Dec. 2004.

[2] J. Misra and I. Saha, “Artificial neural networks in hardware: A sur-
vey of two decades of progress,” Neurocomputing, vol. 74, nos. 1–3,
pp. 239–255, 2010.

[3] P. A. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, vol. 345,
no. 6197, pp. 668–673, Aug. 2014.

[4] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proc. IEEE, vol. 102, no. 5,
pp. 699–716, May 2014.

[5] D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: Materials,
devices and applications,” Nanotechnology, vol. 24, no. 38, 2013,
Art. no. 382001.

[6] J. Hasler and B. Marr, “Finding a roadmap to achieve large neuromor-
phic hardware systems,” Frontiers Neurosci., vol. 7, no. 118, Sep. 2013.

[7] Y. Katayama, T. Yamane, D. Nakano, R. Nakane, and G. Tanaka,
“Wave-based neuromorphic computing framework for brain-like energy
efficiency and integration,” IEEE Trans. Nanotechnol., vol. 15, no. 5,
pp. 762–769, Sep. 2016.

[8] J. Sacramento, A. Wichert, and M. C. van Rossum, “Energy efficient
sparse connectivity from imbalanced synaptic plasticity rules,” PLoS
Comput. Biol., vol. 11, no. 6, 2015, Art. no. e1004265.

TANAKA et al.: SPATIALLY ARRANGED SPARSE RECURRENT NEURAL NETWORKS 37

[9] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79,
no. 8, pp. 2554–2558, 1982.

[10] R. McEliece, E. Posner, E. Rodemich, and S. Venkatesh, “The capac-
ity of the Hopfield associative memory,” IEEE Trans. Inf. Theory,
vol. IT-33, no. 4, pp. 461–482, Jul. 1987.

[11] J. K. Paik and A. K. Katsaggelos, “Image restoration using a modified
Hopfield network,” IEEE Trans. Image Process., vol. 1, no. 1, pp. 49–63,
Jan. 1992.

[12] J. J. Hopfield and D. W. Tank, “Computing with neural circuits:
A model,” Science, vol. 233, no. 4764, pp. 625–633, 1986.

[13] H. Sompolinsky, “Neural networks with nonlinear synapses and a static
noise,” Phys. Rev. A, Gen. Phys., vol. 34, no. 3, pp. 2571–2574, 1986.

[14] B. Derrida, E. Gardner, and A. Zippelius, “An exactly solvable asymmet-
ric neural network model,” Europhys. Lett., vol. 4, no. 2, pp. 167–173,
1987.

[15] A. Treves and D. J. Amit, “Metastable states in asymmetrically
diluted Hopfield networks,” J. Phys. A, Math. Gen., vol. 21, no. 14,
pp. 3155–3169, 1988.

[16] E. Gardner, “Optimal basins of attraction in randomly sparse
neural network models,” J. Phys. A, Math. Gen., vol. 22, no. 12,
pp. 1969–1974, 1989.

[17] A. Bovier and V. Gayrard, “Rigorous bounds on the storage capacity of
the dilute Hopfield model,” J. Stat. Phys., vol. 69, nos. 3–4, pp. 597–627,
1992.

[18] J. J. Arenzon and N. Lemke, “Simulating highly diluted neural net-
works,” J. Phys. A, Math. Gen., vol. 27, no. 15, pp. 5161–5165, 1994.

[19] M. Löwe and F. Vermet, “The Hopfield model on a sparse Erdös–Renyi
graph,” J. Stat. Phys., vol. 143, no. 1, pp. 205–214, 2011.

[20] J. W. Bohland and A. A. Minai, “Efficient associative memory using
small-world architecture,” Neurocomputing, vols. 38–40, pp. 489–496,
Jun. 2001.

[21] H. Oshima and T. Odagaki, “Storage capacity and retrieval time of small-
world neural networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 76, no. 3, 2007, Art. no. 036114.

[22] P. Zheng, W. Tang, and J. Zhang, “A simple method for designing
efficient small-world neural networks,” Neural Netw., vol. 23, no. 2,
pp. 155–159, 2010.

[23] D. Stauffer, A. Aharony, L. da Fontoura Costa, and J. Adler, “Efficient
Hopfield pattern recognition on a scale-free neural network,” Eur. Phys.
J. B-Condens. Matter Complex Syst., vol. 32, no. 3, pp. 395–399, 2003.

[24] B. J. Kim, “Performance of networks of artificial neurons: The role of
clustering,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 69, no. 4, 2004, Art. no. 045101.

[25] M. Löwe and F. Vermet, “Capacity of an associative memory model on
random graph architectures,” Bernoulli, vol. 21, no. 3, pp. 1884–1910,
2015.

[26] P. N. McGraw and M. Menzinger, “Topology and computational perfor-
mance of attractor neural networks,” Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 68, no. 4, 2003, Art. no. 047102.

[27] J. Lu, J. He, J. Cao, and Z. Gao, “Topology influences performance
in the associative memory neural networks,” Phys. Lett. A, vol. 354,
nos. 5–6, pp. 335–343, Jun. 2006.

[28] D. O. Hebb, The Organization of Behavior: A Neuropsychological
Theory. Hoboken, NJ, USA: Wiley, 1949.

[29] S. Diederich and M. Opper, “Learning of correlated patterns in spin-
glass networks by local learning rules,” Phys. Rev. Lett., vol. 58, no. 9,
pp. 949–952, 1987.

[30] E. Gardner, “The space of interactions in neural network models,”
J. Phys. A, Math. Gen., vol. 21, no. 1, p. 257, 1988.

[31] N. Davey, S. P. Hunt, and R. G. Adams, “High capacity recurrent asso-
ciative memories,” Neurocomputing, vol. 62, pp. 459–491, Dec. 2004.

[32] M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity: Uses and interpretations,” NeuroImage, vol. 52, no. 3,
pp. 1059–1069, 2010.

[33] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and
D. B. Chklovskii, “Structural properties of the caenorhabditis ele-
gans neuronal network,” PLoS Comput. Biol., vol. 7, no. 2, 2011,
Art. no. e1001066.

[34] E. Bullmore and O. Sporns, “The economy of brain network organiza-
tion,” Nature Rev. Neurosci., vol. 13, no. 5, pp. 336–349, May 2012.

[35] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of
systems of equations to sparse modeling of signals and images,” SIAM
Rev., vol. 51, no. 1, pp. 34–81, 2009.

[36] N. Davey and R. Adams, “High capacity associative memories and
connection constraints,” Connection Sci., vol. 16, no. 1, pp. 47–65, 2004.

[37] G. Tanaka, T. Yamane, D. Nakano, R. Nakane, and Y. Katayama,
“Hopfield-type associative memory with sparse modular networks,” in
Proc. Int. Conf. Neural Inf. Process. (ICONIP). Kuching, Malaysia:
Springer, Nov. 2014, pp. 255–262.

[38] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM
J. Comput., vol. 24, no. 2, pp. 227–234, 1995.

[39] D. Ge, X. Jiang, and Y. Ye, “A note on the complexity of Lp
minimization,” Math. Program., vol. 129, no. 2, pp. 285–299, 2011.

[40] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.

[41] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Stat. Soc., B (Methodol.), vol. 58, no. 1, pp. 267–288, 1996.

[42] C. Pehlevan and A. Sengupta, “Resource-efficient perceptron has sparse
synaptic weight distribution,” in Proc. 25th Signal Process. Commun.
Appl. Conf. (SIU), May 2017, pp. 1–4.

[43] D. B. Chklovskii, T. Schikorski, and C. F. Stevens, “Wiring optimization
in cortical circuits,” Neuron, vol. 34, no. 3, pp. 341–347, Apr. 2002.

[44] B. L. Chen, D. H. Hall, and D. B. Chklovskii, “Wiring optimization
can relate neuronal structure and function,” Proc. Nat. Acad. Sci. USA,
vol. 103, no. 12, pp. 4723–4728, 2006.

[45] J. Chapeton, R. Gala, and A. Stepanyants, “Effects of homeostatic
constraints on associative memory storage and synaptic connectivity of
cortical circuits,” Frontiers Comput. Neurosci., vol. 9, p. 74, Jun. 2015.

[46] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ,
USA: Princeton Univ. Press, 2016.

[47] MOSEK ApS. (2017). The MOSEK Optimization Toolbox for MAT-
LAB Manual. Version 8.0.0.52., [Online]. Available: http://docs.
mosek.com/8.0/toolbox/index.html

[48] MATLAB, Version 9.0 (R2016a), The MathWorks Inc., Natick, MA,
USA, 2016.

[49] J. J. Hull, “A database for handwritten text recognition research,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 5, pp. 550–554,
May 1994.

[50] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of Fingerprint
Recognition. London, U.K.: Springer, 2009.

[51] G. Tanaka, T. Yamane, D. Nakano, R. Nakane, and Y. Katayama,
“Regularity and randomness in modular network structures for neural
associative memories,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2015, pp. 1–7.

[52] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[53] G. Zamora-López, C. Zhou, and J. Kurths, “Cortical hubs form a module
for multisensory integration on top of the hierarchy of cortical networks,”
Frontiers Neuroinform., vol. 4, p. 1, Mar. 2010.

[54] A. Hirose, Complex-Valued Neural Networks. Berlin, Germany:
Springer, 2012.

[55] G. Tanaka and K. Aihara, “Complex-valued multistate associative mem-
ory with nonlinear multilevel functions for gray-level image recon-
struction,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1463–1473,
Sep. 2009.

[56] B. Kosko, “Bidirectional associative memories,” IEEE Trans. Syst., Man,
Cybern., vol. 18, no. 1, pp. 49–60, Jan./Feb. 1988.

Gouhei Tanaka (M’15) received the B.E. degree in
mathematical engineering and the M.S. and Ph.D.
degrees in complexity science from The University
of Tokyo, Tokyo, Japan, in 2000, 2002, and 2005,
respectively.

From 2011 to 2013, he was a Project Associate
Professor with the Institute of Industrial Science,
The University of Tokyo. Since 2013, he has been
a Project Associate Professor with the Graduate
School of Engineering, The University of Tokyo.
His current research interests include mathematical

engineering, nonlinear science, network science, and their applications to real-
world phenomena from complex systems viewpoint.

Dr. Tanaka is a member of the IEEE Computational Intelligence Society.

38 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 1, JANUARY 2020

Ryosho Nakane (M’13) received the B.S. and M.S.
degrees in electronic engineering from Hokkaido
University, Sapporo, Japan, in 2000 and 2002,
respectively, and the Ph.D. degree in electronics
engineering from The University of Tokyo, Tokyo,
Japan, in 2005.

Since 2013, he has been a Project Research Asso-
ciate Professor with The University of Tokyo. His
current research interests include semiconductor-
based spintronic devices, semiconductor-based elec-
tronic devices for next-generation integrated circuits,

and neuromorphic electronic devices for energy-efficient systems.
Dr. Nakane is a member of the IEEE Electron Device Society and the Japan

Society of Applied Physics.

Tomoya Takeuchi (M’17) received the B.S., M.S.,
and Ph.D. degrees in mathematical science from The
University of Tokyo, Tokyo, Japan, in 2001, 2003,
and 2007, respectively.

He has been involved in a variety of projects
related to industrial and applied mathematics. His
current research interests include inverse problems
in industry, numerical partial differential equations,
and mathematical modeling and optimization, espe-
cially time-series-based forecasting of wind power
generation.

Toshiyuki Yamane (M’13) received the B.S., M.S.,
and Ph.D. degrees in mathematical engineering and
information physics from The University of Tokyo,
Tokyo, Japan, in 1995, 1997, and 2000, respectively.

In 2000, he joined IBM Research—Tokyo,
Kawasaki, Japan. He has been involved in a vari-
ety of projects related to mathematical engineering
based on statistics and signal processing. His current
research interests include error corrections, wireless
communications, and design methodology and per-
formance analysis of the conventional and future

bioinspired computing systems.
Dr. Yamane is a member of the IEEE Communications Society.

Daiju Nakano received the B.S. and M.S. degrees
in physics from The University of Tokyo, Tokyo,
Japan, in 1994 and 1996, respectively.

In 1996, he joined IBM Research—Tokyo, Tokyo,
where he was involved in liquid crystal display
technology, thin-film transistor-array tester devel-
opment, and wireless communication research. He
is currently the Manager of Research at the
Tokyo Research Laboratory, IBM Research—Tokyo,
Tokyo. His major field is optical physics related
to laser spectroscopy. His current research interests

include neuromorphic science and engineering, especially designing hardware
architecture for neuromorphic computing.

Yasunao Katayama (M’95–SM’11) received the
B.S. and M.S. degrees in physics from Tokyo Uni-
versity, Tokyo, Japan, in 1984 and 1986, respec-
tively, and the Ph.D. degree in electrical engineer-
ing from Princeton University, Princeton, NJ, USA,
in 1994.

He is currently with IBM Research—Tokyo,
Tokyo, where he has been involved with a variety
of academic disciplines covering physics, informa-
tion theory, and semiconductor/optical communi-
cation research, especially positron physics, frac-

tional quantum Hall effect, quantum devices, numerical analysis, memory
technology and systems, logic/dynamic random access memory integration,
information theory, wireless and optical communication systems, and more
recently on a new computing paradigm including neuromorphic computing.

Akira Hirose (F’13) received the Ph.D. degree
in electronic engineering from The University of
Tokyo, Tokyo, Japan, in 1991.

He is currently a Professor with the Department
of Electrical Engineering and Information Systems,
The University of Tokyo. His current research inter-
ests include wireless electronics and neural net-
works.

Dr. Hirose is a Fellow of The Institute of
Electronics, Information and Communication Engi-
neers (IEICE) and a member of Japanese Neural

Network Society (JNNS). He served as the Founding President for Asia Pacific
Neural Network Society in 2016, the President for JNNS from 2013 to 2015,
the Vice President for IEICE Electronics Society from 2013 to 2015. He
was the Chair of IEICE Neurocomputing Technical Group, the General Chair
of the 2013 Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba,
the 2016 International Conference on Neural Information Processing, Kyoto,
and the IEEE International Geoscience and Remote Sensing Symposium,
Yokohama, to be held in 2019. He serves as the Chair for Complex-Valued
Neural Network Task Force in IEEE Computational Intelligence Society
Neural Network Technical Committee and IEICE Electromagnetic Theory
Technical Group. He was the Editor-in-Chief of IEICE Transactions on
Electronics from 2011 to 2012 and an Associate Editor of journals such as
the IEEE TRANSACTIONS ON NEURAL NETWORKS from 2009 to 2011 and
the IEEE GEOSCIENCE AND REMOTE SENSING NEWSLETTER from 2009 to
2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

