
ar
X

iv
:1

80
4.

05
09

3v
3

 [
cs

.N
E

]
 2

7
A

pr
 2

01
9

1

Heterogeneous Multilayer Generalized Operational

Perceptron
Dat Thanh Tran∗, Serkan Kiranyaz†, Moncef Gabbouj∗, and Alexandros Iosifidis‡,

∗Department of Computing Sciences, Tampere University, Tampere, Finland
†Department of Electrical Engineering, Qatar University, Qatar

‡Department of Engineering, Electrical & Computer Engineering, Aarhus University, Aarhus, Denmark

Email:thanh.tran, moncef.gabbouj@tuni.fi, mkiranyaz@qu.edu.qa, alexandros.iosifidis@eng.au.dk

Abstract—The traditional Multilayer Perceptron (MLP) using
McCulloch-Pitts neuron model is inherently limited to a set
of neuronal activities, i.e., linear weighted sum followed by
nonlinear thresholding step. Previously, Generalized Operational
Perceptron (GOP) was proposed to extend conventional per-
ceptron model by defining a diverse set of neuronal activities
to imitate a generalized model of biological neurons. Together
with GOP, Progressive Operational Perceptron (POP) algorithm
was proposed to optimize a pre-defined template of multiple
homogeneous layers in a layerwise manner. In this paper, we
propose an efficient algorithm to learn a compact, fully hetero-
geneous multilayer network that allows each individual neuron,
regardless of the layer, to have distinct characteristics. Based on
the complexity of the problem, the proposed algorithm operates
in a progressive manner on a neuronal level, searching for a
compact topology, not only in terms of depth but also width, i.e.,
the number of neurons in each layer. The proposed algorithm is
shown to outperform other related learning methods in extensive
experiments on several classification problems.

Index Terms—Generalized Operational Perceptron, Feedfor-
ward Network, Architecture Learning, Progressive Learning

I. INTRODUCTION

In recent years, learning systems based on neural networks

have gained tremendous popularity in a variety of application

domains such as machine vision, natural language processing,

biomedical analysis or financial data analysis [1], [2], [3], [4],

[5], [6], [7], [8], [9], [10]. The recent resurgence of neural

networks, especially deep neural networks, can be attributed

to the developments of specialized computing hardware such

as Graphical Processing Units (GPU) and improved training

techniques or architecture designs such as Batch Normaliza-

tion [11], Dropout [12], Residual Connection [13] as well

as stochastic optimization algorithms such as Nesterov SGD

[14] or Adam [15], to name a few. In order to improve the

performance and generalization capacity of neural networks,

a large amount of effort has been made to learn deeper

and deeper network topologies with larger, heavily annotated

datasets. While the network architectures and training heuris-

tics have evolved over the past few years, the core components

of a neural network, i.e., the neuron model has remained

relatively unchanged. The most typical artificial neuron model

is based on McCulloch-Pitts perceptron [16], hereafter simply

referred to as perceptron, which performs a linear summation

with learnable synaptic weights followed by an element-wise

nonlinear activation function. This design principle was aimed

to loosely simulate biological neurons in mammalian nervous

system, and is used in the current state-of-the-art architectures

such as Convolutional Neural Network (CNN) or Recurrent

Neural Network (RNN).

It was recently proposed in [17] that the crude model of

biological neuron based on McCulloch-Pitts design should

be replaced with a more general neuron model called Gen-

eralized Operational Perceptron (GOP), which also includes

the conventional perceptron as a special case. Each GOP is

characterized by learnable synaptic weights and an operator

set comprising of three types of operations: nodal operation,

pooling operation, and activation operation, as illustrated in

Figure 1. The form of each operation is selected from a library

of pre-defined operations. By allowing different neurons to

have different nodal, pool and activation operators, GOP can

encapsulate a diversity of both linear and nonlinear operations.

The diversity introduced by GOP poses a much more

challenging problem as compared to the traditional perceptron:

optimizing both the synaptic weights and the choice of the

operator set. In order to build a neural network using GOP, a

progressive learning algorithm called Progressive Operational

Perceptron (POP) was proposed in [17], which optimizes

a pre-defined network template in a layer-wise manner. To

avoid an intractable search process in the combinatorial space

of operator sets, POP constrains all GOPs within the same

layer to share the same operator set. While limiting the

Fig. 1. Computation of the i-th GOP neuron at layer l+1, characterized by

the synaptic weights w
l+1

ki
, the nodal operator ψl+1

i
, the pooling operator

ρk+1

i
and the activation operator f l+1

i

http://arxiv.org/abs/1804.05093v3

2

functional form of neurons in the same layer, training POP

is still painstakingly slow since the evaluation of an operator

set involves training a single hidden layer network and the

combinatorial search space of the optimal operator set in the

output layer in conjunction with the hidden layer is enormous.

POP achieves a partial degree of self-organization by adding

new hidden layers only until the objective is met on the data

forming the training set. The width of each layer is, however,

pre-defined beforehand, leading to a suboptimal final topology

in terms of compactness.

When building a learning system based on neural networks,

the architectural choice of the networks’ topology plays an

important role in the generalization capacity [18]. The size of

the neural network, i.e., the number of layers and the number

of neurons in each layer, are usually selected based on some

standard widely used structures or by manual tuning through

experimentation. While some designs favor network depth

such as Residual Networks with hundred of layers, empirical

experiments in [19] have shown that shallower but wider

topologies can achieve better generalization performance and

computation efficiency. In case of densely connected topolo-

gies, an MLP with large layers can easily lead to overfitting

while randomized neural networks [20], [21], [22], [23] typi-

cally formed by a large hidden layer with random neurons are

robust to overfitting. There have been several attempts [24],

[25], [17], [26], [27], [28], [29], [30], [31] to systematically

search for the optimized network architectures with a given

objective criterion. Regarding densely connected networks,

existing literature employs different learning strategies such

as progressively adding neurons and solving for the synaptic

weights by randomization or convex optimization, or both.

While randomization and convex optimization are character-

ized with fast training time and usually come with some forms

of theoretical guarantee, the resulting architectures are often

large with hundreds or thousands neurons. Another popular

approach is the application of evolutionary strategies in the

architectural search procedure. For example, by encoding the

network configurations and parameters into particles, multidi-

mensional particle swam optimization was used to evolve both

the network configurations and synaptic weights in [30]. While

evolutionary algorithms work well in practice, their fitness

evaluation step often requires heavy computation, rendering

their application in large datasets intractable. Recently, by em-

ploying powerful commodity hardware with 800 GPUs, it was

possible to evolve LSTM architectures on the Penn Treebank

language modeling dataset [31]. The common drawback of all

the aforementioned learning systems is the use of perceptron

model, which limits the learning capability of each neuron.

Due to the availability of low-cost embedded, mobile de-

vices that are affordable to many customer classes, more and

more research efforts have been focused on efficient infer-

ence systems on mobile devices that require small memory

footprint and computation power. While the state-of-the-art

machine learning models based on deep neural networks with

millions of parameters can be easily deployed to a powerful

workstation, they are not yet ready for the deployment on

mobile devices having limited memory, computing power, and

battery life. To reduce the storage and computation required

for deployment on such devices, existing approaches include

compressing a pretrained network by weight quantization, low-

rank approximations and parameter pruning [32] or designing

a network topology with fewer parameters and computations

[33], [34]. It should be noted that most of these works focus on

the convolutional architectures which are the core component

of many visual learning systems. While visual inference tasks

are actively investigated using convolutional neural networks,

the potential of neural networks encompasses a much wider

range of applications, ranging from health-care monitoring

to smart sensors, which are traditionally solved with densely

connected topologies [35], [36], [37]. In this regard, learning

a problem-dependent, compact network configuration makes a

step towards the realization of inference systems on low-cost

devices.

In this work, we focus on the problem of learning efficient

and compact network structures by learning fully hetero-

geneous multilayer networks using GOPs. We propose an

algorithm to progressively grow the network structures, both

in width and depth, while searching for the optimal operator

set, the synaptic weights of the newly added neurons and

the corresponding decision function. The contributions of our

work can be summarized as follows:

• We analyze the current drawbacks of the related algo-

rithms and propose an efficient algorithm to overcome the

existing shortcomings by learning data-dependent, fully

heterogeneous multilayer architectures employing GOPs.

The resulting networks can achieve a high degree of

self-organization with respect to the operator set of each

neuron, the number of neurons per layer and the number

of layers.

• In addition to the proposed algorithm, we also present

three other variants that can be seen as simplified versions

of it. This is followed by the discussion focusing on the

advantages and possible limitations of each variant in

comparison with our proposed algorithm.

• To validate the efficiency of the proposed algorithm in

comparison with other variants and existing progressive

learning systems, we have conducted extensive experi-

mental benchmarks on a variety of real-world classifica-

tion problems.

• We publish our implementation of all evaluated methods

in this paper to facilitate future research in this area 1.

The remainder of the paper is organized as follows: In

Section 2, we review the GOP model with POP, the progressive

learning algorithm proposed in [17]. Section 3 starts by dis-

cussing the shortcomings of POP and proceeds to present our

approach towards the design of fully heterogeneous networks

using GOPs. The discussion of other variants of our approach

is also presented in Section 3. In Section 4, we provide details

of our experiment protocols and quantitative analysis of the

experiment results. Section 5 concludes our work.

II. RELATED WORK

This Section describes the GOP model and the correspond-

ing algorithm POP, proposed in [17] to learn GOP-based

1https://github.com/viebboy/HeMLGOP

3

networks.

A. Generalized Operational Perceptron

The neuronal computation of the i-th GOP neuron at layer

l + 1 is illustrated in Figure 1. As mentioned in the previous

section, each GOP is characterized by the adjustable synaptic

weights wl+1
ki (k = 1, . . . , Nl), the bias term bl+1

i and an

operator set (nodal operator ψl+1
i , pooling operator ρl+1

i , ac-

tivation operator f l+1
i). The form of each operator is selected

from a predefined library of operators: ψ
l+1
i ∈ Ψ, ρl+1

i ∈ P,

f l+1
i ∈ F. The task of learning a network using GOP is,

therefore, the search for the optimal operator set for each GOP

and the corresponding synaptic weights. Given (ψl+1
i , ρl+1

i ,

f l+1
i), bl+1

i and wl+1
ki (k = 1, . . . , Nl), the activities of the

i-th neuron can be described by the following equations:

zl+1
ki = ψl+1

i (ylk, w
l+1
ki) (1)

xl+1
i = ρl+1

i (zl+1
1i , . . . , zl+1

Nli
) + bl+1

i (2)

yl+1
i = f l+1

i (xl+1
i) (3)

In Eq. (1), the nodal operator takes as input the k-th output

of the previous layer and the synaptic weight wl+1
ki which

connects the k-th neuron at layer l to the i-th neuron at

layer l+1. After applying function ψl+1
i , the nodal operation

produces a scalar zl+1
ki .

In Eq. (2), the outputs of the nodal operation over neurons

from the previous layer are then combined through the pooling

operation, which applies the pooling function ρl+1
i over zl+1

ki

(k = 1, . . . , Nl). The pooled result is then shifted by the bias

term bl+1
i to produce xl+1

i .

In Eq. (3), the output of the pooling operation then goes

through the activation function f l+1
i to produce the output

yl+1
i of the i-th GOP in layer l + 1.

An example of a library of operators, which is also used in

our experiments, is shown in Table I. It is clear that when the

operator set of a GOP is selected as (multiplication, summa-

tion, sigmoid) then it operates as a conventional perceptron.

B. Progressive Operational Perceptron

Let NΨ, NP, NF be the number of elements in Ψ, P and F

respectively, then the total number of possible combinations

for a GOP is NO = NΨ ∗ NP ∗ NF. It is clear that given

a multilayer topology of GOPs and a large value for NO,

the combinatorial search space when optimizing all neurons

simultaneously in such network is enormous. For example,

consider the case where NO = 72, as used in [17], and using

a two-hidden-layer network with 100 neurons in each layer

and 10 output neurons. Such a small network architecture

corresponds to 72210 different configurations. To narrow the

search space, POP was proposed in [17] to learn the network

topology in a layerwise manner. In order to operate, a template

network structure specifying the number of neurons for each

hidden layer and maximum number of hidden layers is pre-

defined. In addition, a target objective is specified to determine

the convergence of the algorithm. For example, [Ni, N1, N2,

N3, No; mse = ǫ] defines a template with Ni input units, No

TABLE I
OPERATOR SET LIBRARY

Nodal (Ψ) ψl+1
i (ylk, w

l+1
ki)

Multiplication wl+1
ki ylk

Exponential exp(wl+1
ki ylk)− 1

Harmonic sin(wl+1
ki ylk)

Quadratic wl+1
ki (ylk)

2

Gaussian wl+1
ki exp(−wl+1

ki (ylk)
2)

DoG wl+1
ki ylk exp(−wl+1

ki (ylk)
2)

Pool (P) ρl+1
i (zl+1

1i , . . . , zl+1
Nli

)

Summation
∑Nl

k=1 z
l+1
ki

1-Correlation
∑Nl−1

k=1 zl+1
ki zl+1

(k+1)i

2-Correlation
∑Nl−2

k=1 zl+1
ki zl+1

(k+1)iz
l+1
(k+2)i

Maximum max
k

(zl+1
ki)

Activation (F) f l+1
i (xl+1

i)

Sigmoid 1/(1 + exp(−xl+1
i))

Tanh sinh(xl+1
i)/ cosh(xl+1

i)

ReLU max(0, xl+1
i)

Softplus log(1 + exp(−xl+1
i))

Inverse Absolute xl+1
i /(1 + |xl+1

i |)

ELU xl+1
i 1

xl+1
i

≥0 + exp(xl+1)i1xl+1
i

<0

output neurons, 3 hidden layers with N1, N2, N3 neurons

respectively, and ǫ specifies the target mean squared error.

Starting from the first hidden layer, POP constructs a Single

Hidden Layer Network (SHLN) [Ni, N1, No] and learns the

operator sets and weights in the hidden and output layer with a

constraint: neurons in the same layer share the same operator

set. Finding the operator sets is done by a greedy iterative

search procedure called two-pass GIS. In the first pass, a

random operator set φh is fixed to the hidden layer and POP

iterates through all operator sets in the library for the output

layer: at each iteration, the output layer is assigned the iterated

operator set φo; the synaptic weights of SHLN with (φh,

φo) are found by BP for E epochs, and the performance is

recorded. After this procedure, the current best operator set

φ∗
o in the output layer is found. With φ∗

o fixed in the output

layer, POP performs similar loop to find the best set for the

hidden layer φ∗
h. The second pass of GIS is similar to the first

one, except the operator set in the hidden layer is initialized

with φ∗
h from the first pass instead of random assignment.

After applying two-pass GIS, the performance of the current

SHLN is compared with the target objective ǫ. If the target

is not achieved, the output layer of SHLN is discarded and

the current hidden layer is fixed and used to generate fixed

inputs to learn the next hidden layer with N2 neurons in the

similar manner as the first hidden layer. On the other hand, if

the target objective is met, POP stops the progressive learning

procedure and fine-tunes all the weights and biases in the

network structure that has been learned.

C. Limitations in POP

It is clear from Section II-B that POP optimizes the operator

set and weights in each hidden layer by running through 4

4

loops over the library of the operator sets with each iteration

running BP with E epochs. Therefore, the computational

complexity to optimize an SHLN is O(4NOE) BP epochs.

Such a search scheme is not only computationally demanding,

but also redundant due to the fact that when the target objective

cannot be achieved with the current network configuration,

POP simply discards what has been learned for the output

layer and reiterates the searching procedure for the new hidden

and output layer. Let us consider the case where the operator

set in the output layer is already known a priori, the cost of

the search in POP is reduced from O(4NOE) to O(NOE),
which is a significant factor of reduction. In fact, we argue

that if the hidden neurons can extract highly discriminant

representations, which is the design target of GOP, then only

a simple linear decision function is needed in the output layer.

There are two constraints imposed by POP on the learned

architecture: a predefined width of each hidden layer and

the sharing of the operator set within the same layer. Both

constraints limit the representational power of the learned

hidden layer. While it is computationally infeasible to search

for the operator set of each individual GOP following the

searching approach in POP, [17] argued that in a classification

problem an optimal operator set of a neuron should also

be optimal to others in the same layer, i.e., on the same

level of the hierarchical abstract. This is, however, a strong

assumption. As an illustrational example, let us assume that,

at some arbitrary level of abstraction in the network, there

appears patterns of both straight lines and curves, and we

assume that there exist two operator sets that allow the neurons

to detect straight lines and curves respectively. By limiting

the neurons to either being able to detect a line or a curve,

whichever yields better results, one of the patterns will not be

captured in the internal representation of the network. Such an

approach will lead to the confusion on the objects which are

composed of both patterns. One might argue that with enough

neurons that can detect lines, a curvature can also be detected

in a limiting sense. This comes to the question: how many

neurons will be enough?. By imposing a predefined width of

each hidden layer, POP already incurs an additional hyper-

parameter choice, leading to either insufficient or redundant

representation, both of which require a huge amount of hyper-

parameter tuning efforts to achieve an efficient and compact

network.

III. PROPOSED METHOD

In this section, we describe a new approach to overcome

the limitations of current algorithms in building heterogeneous

network architectures directly from data. At the end of this

section, we also discuss other possible variants of our approach

and present our view on the pros and cons of each of them.

A. Heterogeneous Multilayer Generalized Operational Per-

ceptron (HeMLGOP)

The aforementioned limitations in POP are, in fact, inter-

related. The computational complexity of the search procedure

can be reduced by avoiding the search of the operator sets in

the hidden layer in conjunction with the output layer. This

can be done by simply assuming a linear decision function,

which requires highly discriminative hidden representations. In

order to produce highly discriminative hidden representations,

heterogeneous hidden layers of GOPs with adaptive size might

be desirable. It should be noted that, in order to search for the

optimal operator set of a neuron, it is necessary to evaluate all

operator sets in the library. Instead of evaluating each operator

set by hundreds BP iterations as in POP, we propose to use

ideas originated from Randomized Networks (RN) [20], [21],

[22], [23] for the evaluation of an operator set. Given a single

hidden layer topology with linear transformation in the output

layer, we assign random synaptic weights connecting the input

layer to the hidden layer while giving a closed-form global

solution of the output layer, i.e., the decision function. In

particular, let H ∈ R
N×d and Y ∈ R

N×C be the hidden

representation, and the target representation of N training

samples respectively. The optimal synaptic weights B ∈ R
d×C

connecting the hidden layer and the output layer is given as:

B = H
†
Y (4)

where H
† is the Moore-Penrose generalized inverse of H.

There are several methods to calculate the Moore-Penrose

generalized inverse of a matrix [38], [39]. For example, in

the orthogonal projection method, H† = H
T (HH

T + cI)−1

when d > N or H† = (HT
H+cI)−1

H
T when d < N , with c

being a positive scalar added to the diagonal of HT
H or HH

T

to ensure stability and improve generalization performance

according to ridge regression theory [40].

Given a single hidden layer network with GOP neurons

in the hidden layer and linear output layer, and since each

operator set represents a distinct type of neuronal activity or

functional form, we argue that the suitable functional form

of a GOP, i.e., the operator set, can be evaluated with random

synaptic weights drawn from a uniform distribution [41]. After

finding the optimal operator set of a neuron with respect to

the objective function, the corresponding weights can be fine-

tuned by BP.

To learn a problem-dependent network topology, we adopt

a progressive learning approach in terms of width and depth

in our algorithm. Given a learning problem, the proposed

algorithm starts with a single hidden layer network of nmin

GOPs in the hidden layer and C linear neurons in the output

layer. By starting with a small nmin, e.g., nmin = 2, we

assume these GOPs share the same operator set. The algorithm

proceeds to select the optimal operator set of nmin neurons by

iterating through all operator sets in the library: at iteration j,

random synaptic weights in the hidden layer are drawn from

a uniform distribution, the decision boundary is calculated as

follows:

B
j
nmin

= H̄
j†
nmin

Y (5)

where H̄
j
nmin

denotes the standardized hidden output of nmin

GOPs with operator set φj .

At each iteration, the performance of the network is

recorded. After evaluating all NO operator sets, the best

performing one φ∗
nmin

is selected for the current nmin neurons

and the corresponding synaptic weights W
∗
nmin

as well as

5

output layer weights B∗
nmin

are updated with BP for E epochs.

During BP with mini-batch training, the normalization step

is replaced by Batch Normalization [11], which is initialized

with mean and standard deviation. Since the hidden layer

will be incrementally grown with heterogeneous GOPs, the

normalization step is necessary to ensure that the hidden

representations in the network have similar range. Once the

operator set is found and the synaptic weights of a GOP are

fine-tuned with BP, they are fixed.

The algorithm continues by progressively adding ni GOPs

sharing the same operator set to the hidden layer. It is worth

noting that when ni = 1, the algorithm allows the growth

of fully heterogeneous layers. The operator set of ni newly

added GOPs is found similarly as in case of the first nmin

GOPs, i.e., by iterating through all operator sets and solving

for the output layer weights. In particular, at iteration j, let H̄∗
c

be the normalized hidden representation of the existing GOPs

that have been learned and H̄
j
ni

be the normalized hidden

representation produced by the newly added GOPs with the

j-th operator set in the library and random weights, then the

optimal linear transformation in the output layer is given as:

B
j
c+i = [H̄∗

c , H̄
j
ni
]†Y (6)

As an alternative to Eq. (6), the new decision boundary

B
j
c+i can also be updated efficiently in an incremental manner

based on B
∗
c , the decision boundary with respect to H̄

∗
c [42].

After the best performing operator set φ∗
ni

of ni newly added

GOPs is found, their synaptic weights W∗
ni

, the normalization

statistics and the linear transformation B
∗
c+i in the output layer

are updated through BP. Here we should note that the existing

GOPs with H
∗
c representation are not updated since the

inclusion of ni neurons is expected to complement the existing

features. While the update of all the neurons, including the

existing GOPs, might produce better performance, it can also

lead the network to over-fitting regime by forcing the co-

adaptation of all neurons to the training data. Thus, by only

updating the weights and biases of the newly added GOPs,

we also enforce a form of regularization. The progressive

learning in the current hidden layer stops when the inclusion of

new neurons stops improving the performance of the network.

This is measured by a relative criterion based on the rate of

improvement rather than an absolute threshold value on the

performance as in POP:

ri =
Lc − Lc+i

Lc

(7)

where ri denotes the rate of improvement when adding ni

neurons to the current hidden layer and Lc, Lc+i denote the

loss values before and after adding neurons respectively. For

large positive ri, the inclusion of new neurons indicates a

large improvement of the network with respect to the existing

structure. On the contrary, a small or negative ri indicates a

minimal improvement or a degradation in the performance.

It should be noted that depending on the learning problem,

other quantities can be chosen in place of the loss value, with

appropriate signs in the numerator of Eq. (7). For example, in

classification problem, ri can be defined as (Ac+i −Ac)/Ac

with A denotes the classification accuracy. Given ri and a

threshold ǫn, the proposed algorithm stops adding neurons to

the current hidden layer if ri < ǫn.

When the progression in the current hidden layer stops

improving performance with respect to ǫn, the proposed al-

gorithm forms a new hidden layer with nmin GOPs between

the current hidden layer and the output layer. All the existing

hidden layers in the network are then fixed and act as feature

extractor, producing inputs to the newly formed hidden layer.

The progression in the new hidden layer repeats in a similar

manner as in the previous hidden layers with an initial nmin

GOPs and incrementally adding ni GOPs until the criterion

ri < ǫn is met. After the new hidden layer is fully learned,

the proposed algorithm evaluates the necessity to include

the newly learned hidden layer by evaluating the relative

improvement of the network before and after adding the new

hidden layer:

Algorithm 1 Heterogeneous Multilayer Generalized Opera-

tional Perceptron (HeMLGOP)

1: Inputs: X ∈ R
N×D, Y ∈ R

N×C , Φ = Ψ P F, nmin,

ni, ǫn, ǫl.
2: Initialization: Φ∗ = {}, W∗ = {}, l = 1.

3: while True do

4: For φj ∈ Φ: calculate B
j
nmin

as in Eq. (5).

5: Select φ∗
nmin

, B∗
nmin

, W∗
nmin

.

6: Fine-tune B
∗
nmin

, W∗
nmin

.

7: Update H̄
∗
c = H̄

∗
nmin

, B̄∗
c = B̄

∗
nmin

8: Φ∗
l = {φ∗

nmin
} and W

∗
l = {W∗

nmin
}.

9: while True do

10: For φj ∈ Φ: calculate B
j
c+i as in Eq. (6).

11: Select φ∗
ni

, B∗
c+i, W

∗
ni

.

12: Fine-tune B
∗
c+i, W

∗
ni

.

13: Calculate ri as in Eq. (7).

14: if ri < ǫn then

15: break

16: else

17: Update H̄
∗
c = [H̄∗

c , H̄
∗
ni
], B̄∗

c = B̄
∗
c+i

18: Φ∗
l = Φ∗

l + {φ∗
ni
} and W

∗
l = W

∗
l + {W∗

ni
}.

19: Calculate rl as in Eq. (8).

20: if rl < ǫl then

21: break

22: else

23: Update X = H̄
∗
c , Φ∗ = Φ∗ + {Φ∗

l }
24: and W

∗ = W
∗ + {W∗

l }.

25: Update l = l + 1

26: Fine-tune W
∗, B∗

c .

27: Outputs: Φ∗, W∗, B∗
c

rl+1 =
Ll − Ll+1

Ll

(8)

where rl+1 denotes the rate of improvement when adding the

new hidden layer and Ll, Ll+1 denote the loss values before

and after adding the new hidden layer respectively. Similar to

the progression of neurons in a hidden layer, the progression

of hidden layers is controlled through hyper-parameter ǫl. The

6

newly learned hidden layer is included in the network topology

and the progression continues if rl+1 ≥ ǫl. Otherwise, the

progressive learning terminates. After that, all the synaptic

weights and biases of the network are fine-tuned through

Back Propagation. On one hand, the final fine-tuning step

allows the co-adaption of all neurons in the network to fit

the training data, which might lead the network to the over-

fitting regime. On the other hand, if the network produced

by progressive learning step under-fits the problem, the fine-

tuning step allows the network to better fit the problem. Thus,

the necessity of this fine-tuning step is problem-dependent and

is evaluated based on the performance on the training set (or

validation set if exists). That is, if the training (validation)

performance improves after the fine-tuning step, the fine-

tuned network is used, otherwise, the network learned by

the progressive learning step is used. Since a new hidden

layer is initially formed with a small number of neurons,

our proposed algorithm only evaluates the inclusion of a new

hidden layer when it is fully learned. The summary of our

proposed algorithm is presented in Algorithm 1.

B. HeMLGOP Variants

One can also identify three variants of the proposed algo-

rithm. They are the following:

• Homogeneous Multilayer Randomized Network

(HoMLRN): instead of a heterogeneous layer of

GOPs, in this variant, all neurons in the same layer

share the same operator set. A hidden layer starts with

nmin neurons whose operator set is found by using RN

in the operator set search procedure. Once the operator

set of the starting nmin neurons is found, it is fixed for

all other neurons in the same layer. At each progressive

step, ni neurons with random weights are added to

the current hidden layer, and the decision boundary is

adjusted through linear regression. After the progression

finishes, the final network structure is fine-tuned through

BP.

• Heterogeneous Multilayer Randomized Network

(HeMLRN): in this variant, the progressive learning

procedure is similar to our algorithm, i.e., for newly

added neurons, the algorithm searches for the best

performing operator set by using RN. The only

difference between this variant and our algorithm is

that the synaptic weights are not fine-tuned during

progressive learning but only after the final topology is

found.

• Homogeneous Multilayer Generalized Operational Per-

ceptron (HoMLGOP): similar to HoMLRN and POP,

this variant enforces the sharing of operator set within

the same layer. The progressive learning in a hidden

layer starts with nmin GOPs whose operator set is found

via Randomized Network in the operator set search

procedure. GOPs with the operator set the same as the

starting nmin neurons are incrementally added to the

current hidden layer. At each increment, the synaptic

weights of newly added neurons are updated through BP

instead of Randomized Network as in HoMLRN. After

the progression of network structure, the final topology

is fine-tuned as a whole.

It is clear that the aforementioned variants can be seen as

simplified versions of our approach in certain aspects. Partic-

ularly, both HoMLRN and HeMLRN depend solely on Ran-

domized Networks during progressive learning, which reduces

a portion of computational cost induced by weights finetuning

through BP. While Randomized Networks can be suitable to

search for the functional form of newly added GOPs, we

argue that it is necessary to further adjust the weights of

the newly added neurons through BP to effectively exploit

their representation power. Without the weight adjustment

step interleaved with Randomized Network, both HoMLRN

and HeMLRN are expected to progress towards having large

hidden layers. Moreover, since the hidden layers rely only

on random weights during the progression, the outputs of a

hidden layer are not expected to be highly discriminative as

an input to the next hidden layer, which might also lead to

ineffective progression in depth. While HoMLGOP incorpo-

rates the weight finetuning step in the progressive learning

procedure, this variant avoids the cost of searching for the

optimal operator set when incrementally adding neurons. As

a result, the homogeneity constraint in hidden layers might

prevent HoMLGOP from learning compact hidden layers.

C. Convergence analysis

The proposed algorithm consists of two processing phases:

• Network architecture initialization: During the progres-

sive learning phase, the networks architecture is de-

termined in a layer-wise manner. This phase not only

determines the structure of the network, i.e. the number

of layers and number of neurons per layer, but also deter-

mines the characteristics of each neuron (or each added

block of neurons). During this stage, the progression in

each layer converges, i.e., adding new blocks to the same

layer produces a converging sequence of the loss values

(MSE). The proof is given in the Appendix B and we

also provide illustrations of the training curves obtained

in our experiments in Appendix C. While each of the

steps in phase one converges, there is no guarantee that

adding new hidden layers will produce a monotonically

decreasing sequence of the training losses considering the

loss values obtained for different layers of the network.

Since the output layer is a linear layer which linearly

combines the dimensions of the data representations of

the previous layer, to ensure this property, we must have

a mechanism to ensure that the subspace spanned by the

representations from the newly added layer overlaps with

the subspace spanned by the training targets more than

the previous hidden layer does. In order to develop this

property, more research is required, which would be a

very interesting and challenging future research work.

• Combined network training: This phase corresponds to

the training (fine-tuning in our case) of a feedforward

network the structure of which and the initial parame-

ters are obtained by applying the network architecture

initialization process of the first case. Since all layers

7

are formed by neurons with well-behaved nodal, pooling

and activation operators (in the sense of differentiation),

this optimization process converges to a local optimum

following stochastic gradient descent [43].

Thus, we can conclude that the first phase leads to a network

structure the parameters of which are initialized to a set

of parameters achieving a good loss value and are further

optimized through BP to reach a local minimum of the loss

function.

It is worth mentioning here that the strategy followed

for stopping the network architecture initialization phase is

important for the generalization performance of the resulting

network. As mentioned above, when the growth of neurons

in the last hidden layer converges, HeMLGOP forms a new

hidden layer. New blocks are added to this newly formed

layer until convergence. HeMLGOP then evaluates whether

the addition of this new hidden layer improves performance.

Without any constraint, there is no guarantee that adding a

new hidden layer will improve the training loss. When the

addition of a new hidden layer produces a smaller training

MSE value compared to the previous hidden layer, it only

indicates that the new features produced by the new hidden

layer span a feature space that can better approximate the

training targets in the MSE sense. For function approximation

tasks, this property is desirable. However, for prediction tasks

that require generalization, improvement of the training loss

does not guarantee the improvement of the generalization

of the model to unseen data. With the availability of the

validation data, improvement obtained by the addition of the

new hidden layer can be evaluated based on the performance

on the validation set. An improvement on the validation set

performance means that the feature space determined by the

outputs of the newly added layer can better approximate the

validation targets and, thus, incorporating the new layer in the

network increases the generalization ability of the model.

D. Complexity analysis

Since the proposed algorithm is a progressive algorithm,

its computational complexity is the sum of the computational

complexity of all progressive steps, each depending on the

current network specifications, i.e. the dimension of the current

and previous hidden layer, the operator set of each GOP

neuron. We provide the computational complexity estimation

of adding a new block of neurons, given the current network

settings in Appendix A.

It is not straightforward to compare the computational

complexity of the proposed algorithm and its variants, POP

and related algorithms, since the complexity of all progressive

learning algorithms depends on the speed of convergence, the

number of hidden layers added and the selected operators.

However, it is worth noting that since the proposed algorithm

allows the growth of heterogeneous hidden layers, and at each

incremental step, the synaptic weights of newly added neurons

are strengthened through BP to fully adapt to the problem, we

expect to observe the rate of improvement to converge quickly,

producing both compact and efficient network structures. In

our empirical analysis, the proposed algorithm converges after

a few incremental steps in most of the learning problems, and

the number of network parameters in the learned architectures

is much lower compared to the competing approaches. Another

point worth mentioning is that the search procedure in the

proposed method and the mentioned variants relies on random

weights, which might produce different operator sets at differ-

ent runs. This can lead to high variance in the final topologies

between different runs, especially in case of HoMLRN and

HoMLGOP in which the operator set of a layer is found

only once. The effect of randomness is, however, reduced in

the proposed algorithm because in the case where an optimal

operator set was not found in the previous incremental steps

due to randomness, it can still be chosen in the next steps.

IV. EXPERIMENTS

In this section, we provide empirical analysis of the pro-

posed algorithm, the aforementioned variants, and other related

algorithms. We start by describing the experimental protocols

and datasets, followed by the discussion of the empirical

results.

A. Competing methods

In order to compare the effectiveness of the proposed

algorithm with related approaches, the following additional

methods were included in our empirical analysis:

• Progressive Operational Perceptron (POP) [17]: the only

existing GOP-based algorithm.

• HoMLRN, HeMLRN, HoMLGOP: the 3 variants of the

proposed method mentioned in the previous section.

• Progressive Learning Network (PLN) [24]: by using

nonlinear activation functions that satisfy the progression

property, the authors in [24] proposed a progressive

learning algorithm that increments the width of a hidden

layer by random perceptrons and solving a convex op-

timization problem. When the performance improvement

in a hidden layer saturates, PLN forms a new hidden layer

by incrementally adding random neurons to the current

output layer to form a new hidden layer and adding new

output layer.

• Broad Learning System (BLS) [25]: based on the idea of

Random Vector Functional Link Neural Network [44],

the authors proposed a progressive learning algorithm

that increments the width of a two hidden layer network.

Neurons in the first hidden layer are called feature

nodes, which synthesize hidden features by random linear

transformation and sigmoid activation. Neurons in the

second hidden layer are called enhancement nodes, which

again linearly transform the outputs of feature nodes

with random weights, followed by the sigmoid activation.

The outputs of feature nodes and enhancement nodes are

concatenated as an input to a linear output layer. Before

progressively adding new feature nodes and enhancement

nodes, BLS fine-tunes the feature nodes by Alternating

Direction Method of Multiplier (ADMM). During the

progression, only random nodes are added.

• Progressive Multilayer Perceptron (PMLP): this is a vari-

ant of POP that uses McCulloch-Pitts perceptron instead

8

TABLE II
DATASETS INFORMATION

Database #Samples Input dimension Target dimension

PIMA [45] 768 8 2

Olympic Sports [46] 774 100 16

Holywood3d [48] 945 100 14

CMC [52] 1473 9 3

YEAST [47] 1484 8 10

15 scenes [53] 4485 512 15

MIT indoor [54] 15620 512 67

Caltech101 [55] 9145 512 102

Caltech256 [56] 30607 512 257

PubFig [57] 13002 512 83

CFW60k [58] 60000 512 500

of GOP. The progressive learning step is similar to POP

with a pre-defined maximal template structure as an input,

PMLP incrementally adds a new hidden layer if a target

objective cannot be achieved.

B. Datasets

We have conducted experiments on 11 classification prob-

lems in different application domains with different sizes,

ranging from few hundred samples up to 60k samples. With

respect to the problem size, the 11 datasets can be divided

into 2 groups: small-scale problems (5 datasets) formed by

less than 2000 samples and medium/large scale problems (6
datasets) formed by more than 2000 samples.

Information about all datasets used in our experiments is

presented in Table II. For PIMA [45], CMC [46] and YEAST

[47], we used the original data representations provided by

the database. Olympic Sports [46] and Holywood3d [48]

are human action video datasets. We used the state-of-the-

art action video representation in [49] and combined the

five action descriptions following the suggested multi-channel

kernel approach followed by KPCA to obtain vector-based

representation for each action video. All medium/large scale

problems are classification problem based on visual inputs.

Particularly, 15 scenes and MIT indoor are scene recognition

datasets, Caltech101 and Caltech256 are related to the problem

of object recognition while CFW and PubFig are face recog-

nition problems. Regarding the input representation of scene

recognition and object recognition datasets, we employed

the deep features generated by average pooling over spatial

dimension of the last convolution layer of VGG network [50]

trained on ILSVRC2012 database. Similarly, deep features

generated by VGGface network [51] were used in CFW and

PubFig.

Since POP is the most computationally demanding algo-

rithm, we could only afford to perform experiments with

POP in small-scale problems. Although empirical results in

medium/large scale problems are not available, the efficiency

of POP in comparison with other algorithms can be observed

in five small-scale datasets.

C. Experiment Protocol

In small-scale problems, since the number of samples is

small, we only partitioned the datasets into a train (60%) and

a test (40%) set, except for Holywood3d and Olympic Sports

in which we used the partition given by the databases. In

medium/large scale problems, 60% of the data was randomly

chosen for training while 20% was selected as validation and

test set each. To deal with the effect of randomness, each

algorithm was run 3 times on each problem, and the median

performance on the test set and the corresponding architectural

information are reported.

Since other progressive learning methods (PLN, BLS)

are significantly affected by hyper-parameter settings,

we have conducted extensive hyper-parameter search

for each algorithm. Particularly, in PLN, we tested

the values λ ∈ {10−3, 10−2, 10−1, 1, 101, 102, 103}
for the least-square regularization parameter,

and α ∈ {10−3, 10−2, 10−1, 1, 101, 102, 103} ,

µ ∈ {10−3, 10−2, 10−1, 1, 101, 102, 103} for the

regularization parameters when solving the output

layer; in BLS, the regularization parameter used in

the calculation of pseudo-inverse is in the set of

λ ∈ {10−3, 10−2, 10−1, 1, 101, 102, 103} and regularization

parameter used in ADMM algorithm is in the set of

µ ∈ {10−3, 10−2, 10−1, 1, 101, 102, 103}. The number of

iterations in ADMM algorithm was set to 500 for both PLN

and BLS.

Regarding the hyper-parameter settings of the pro-

posed method (HeMLGOP) and other variants (HoMLRN,

HeMLRN, HoMLGOP), c ∈ {10−1, 1, 101} was used in

the Randomized Network step. For all the methods that

employ BP, it is important to properly regularize the net-

work structure to avoid overfitting. Regularization setting

in BP includes weight regularization and Dropout [12].

We experimented with 2 types of weight regularization:

weight decay with scale of 0.0001 and l2 norm constraint

with maximum value in {1.0, 2.0, 3.0}. The dropout step

was applied to the output of the hidden layer with the

percentage selected from {0.5, 0.3, 0.1}. In addition, 0.2
dropout was applied to the deep feature input during BP.

For small-scale problems, during progressive learning, the

following learning rate schedule {0.01, 0.001, 0.0001} and

the corresponding number of epochs {20, 40, 40} were ap-

plied to all methods while in medium/large scale datasets,

the learning rate schedule and the number of epochs

were set to {0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00001},

{100, 100, 100, 100, 100}, respectively. During fine-tuning

stage, all networks were fine-tuned for 200 epochs with the

fixed learning rate 0.00005.

For POP and PMLP, we defined a network template of max-

imum 4 layers and 8 layers in small-scale and medium/large

scale problems, respectively, with each layer having 200
neurons. In all competing algorithms that have incremental

steps within a layer, the layer starts with 40 neurons and

increments 20 neurons at each step, i.e., nmin = 40, ni = 20.

To avoid the problem of growing arbitrarily large hidden

layers, and to make the learned architectures comparable

9

TABLE III
CLASSIFICATION ACCURACY (%)

HeMLGOP HoMLGOP HeMLRN HoMLRN POP PMLP PLN BLS

Holywood3d 78.78 76.72 78.93 74.42 74.42 79.38 75.24 71.38
Olympic Sports 87.06 87.08 87.50 83.92 87.82 87.45 87.23 85.88

CMC 60.37 59.36 62.63 58.90 59.75 59.95 58.93 55.23
PIMA 81.81 79.84 81.41 76.68 79.05 78.66 71.94 68.77

YEAST 65.75 65.31 65.53 63.69 64.30 63.29 63.08 55.57

15 scenes 92.01 91.57 91.80 90.24 - 91.68 89.46 86.36

MIT indoor 69.77 69.14 69.23 67.99 - 69.18 64.38 56.23
Caltech101 92.08 91.41 91.68 90.87 - 91.78 89.64 84.28
Caltech256 79.21 78.61 79.09 77.65 - 79.26 75.58 70.60

PubFig 98.92 98.29 98.85 98.69 - 98.85 98.46 95.00
CFW60k 88.15 88.23 87.90 57.80 - 87.93 85.09 75.19

TABLE IV
MODEL SIZES (#PARAMETERS)

HeMLGOP HoMLGOP HeMLRN HoMLRN POP PMLP PLN BLS

Holywood3d 9.4k 7.0k 14.0k 18.7k 64.0k 23.4k 6.4k 58.8k

Olympic Sports 7.1k 11.9k 23.8k 11.9k 64.1k 105.0k 6.8k 43.84k

CMC 0.9k 0.9k 3.0k 1.5k 43.6k 84.2k 4.9k 7.9k

PIMA 0.8k 4.5k 2.3k 15.8k 43.2k 43.2k 21.5k 7.4k

YEAST 1.3k 1.3k 4.2k 10.3k 44.8k 44.8k 219.7k 18.8k

15 scenes 63.6k 110.9k 106.0k 106.0k - 187.2k 134.2k 252.3k

MIT indoor 69.9k 81.5k 116.5k 116.5k - 116.5k 122.3k 513.8k

Caltech101 74.1k 98.8k 123.5k 123.5k - 204.7k 166.9k 653.0k

Caltech256 92.9k 154.7k 154.7k 154.7k - 235.9k 1466.2k 2205.7k

PubFig 47.9k 47.9k 119.7k 119.7k - 160.3k 130.8k 591.1k

CFW60k 162.9k 183.2k 203.5k 203.5k - 203.5k 5472.6k 5092.0k

TABLE V
TRAINING TIME (IN SECONDS) ON SMALL-SCALE PROBLEMS ON CPU

HeMLGOP HoMLGOP HeMLRN HoMLRN POP PMLP PLN BLS

Holywood3d 1002 717 469 447 330980 28 0.48 0.57
Olympic Sports 699 1063 751 220 257926 29 0.18 0.38

CMC 274 300 477 114 334599 21 0.25 0.18
PIMA 217 551 364 441 183362 14 0.85 0.12

YEAST 312 323 461 484 395465 33 3.05 0.33

between all methods, we limit the maximum number of added

neurons in a hidden layer in our proposed method and 3 other

variants to 200, and 300 for PLN and BLS. Moreover, we

applied a universal convergence criterion based on the rate

of improvement during network progression for all methods,

i.e., an algorithm stops adding neurons to the current hidden

layer when ri < 10−4 and stops adding hidden layers when

rl < 10−4 with ri and rl calculated according to Eq. (7) and

(8) with accuracy as the performance measure.

D. Results

Table III shows the classification accuracy of all competing

methods on the 11 datasets and Table IV shows the corre-

sponding model sizes, i.e., the number of parameters in the

network.

Regarding the performances on small-scale datasets, among

all competing algorithms, it is clear that the proposed algo-

rithm (HeMLGOP) and its heterogeneous variant (HeMLRN)

are the leading performers. The differences, in terms of classi-

fication accuracy, between the two algorithms are statistically

insignificant. However, the models learned by HeMLGOP

are significantly smaller (approximately 3× in most cases)

as compared to those learned by HeMLRN. Between two

homogeneous variants of the proposed algorithm, it is clear

that HoMLGOP consistently outperforms HoMLRN in terms

of both classification accuracy and compactness.

Between the two algorithms that employ BP during pro-

10

TABLE VI
COMPUTATIONAL COMPLEXITY DURING INFERENCE (FLOPS)

HeMLGOP HoMLGOP HeMLRN HoMLRN POP PMLP PLN BLS

Holywood3d 31.4k 25.1k 42.2k 66.8k 113.3k 46.4k 13.5k 157.1k

Olympic Sports 31.1k 22.1k 62.1k 52.2k 206.7k 208.8k 14.6k 118.2k

CMC 2.5k 1.6k 9.0k 2.6k 248.2k 167.2k 10.0k 14.4k

PIMA 2.2k 4.8k 4.6k 54.8k 126.4k 85.6k 43.5k 13.4k

YEAST 1.9k 2.8k 6.4k 18.2k 55.2k 88.8k 728.5k 382.3k

15 scenes 248.0k 356.8k 290.5k 413.0k - 373.2k 355.1k 853.7k

MIT indoor 152.0k 225.0k 372.6k 321.4k - 232.5k 289.8k 1563.1k

Caltech101 187.0k 344.6k 338.8k 124.3k - 408.2k 417.3k 1883.1k

Caltech256 175.3k 461.6k 380.4k 462.1k - 470.5k 4083.4k 5323.3k

PubFig 150.5k 130.0k 294.1k 324.6k - 319.8k 316.9k 1698.1k

CFW60k 250.2k 184.6k 204.9k 205.1k - 406.6k 15449.4k 11182.9k

gressive learning, the results of HeMLGOP are similar or

better than its homogeneous counterpart (HoMLGOP) in both

classification accuracy and memory footprint, with the only

exception in Holywood3d in which HeMLGOP is 2% more

accurate, requiring 2.4k more parameters. The empirical re-

sults of HeMLGOP and its 3 variants are consistent with our

discussion in Section III-B: allowing heterogeneous neurons

within a hidden layer can lead to better performing networks,

and weights adjustment through BP is necessary to fully

harness the representation power of newly added neurons

during progressive learning.

Regarding the performance of POP and PMLP on small-

scale datasets, it is obvious that the final network topolo-

gies learned by the two algorithms are enormous, compared

to the proposed algorithm and its variants. Particularly, in

CMC, PIMA, and YEAST, HeMLGOP needs approximately

only 1000 parameters, while POP and PMLP require a vast

amount of more than 40k parameters, i.e., 40× memory saving

achieved by HeMLGOP with similar or better accuracies. The

differences between POP, PMLP and the proposed algorithm

are expected since our proposed algorithm addresses the

two limitations in POP as discussed in Section II-C: fixed

hidden layer sizes and the homogeneity constraint of a layer.

Regarding PLN, while the algorithm requires slightly fewer

parameters in Holywood3d and Olympic Sports datasets as

compared with HeMLGOP, the classification performances

of PLN are similar or much worse. In other small-scale

problems, PLN is inferior to HeMLGOP in both accuracy and

compactness.

Similar phenomena between the competing algorithms can

be observed in medium/large scale datasets: the proposed

HeMLGOP remains as the best performing algorithm to learn

the most compact network topologies while being similarly

or more accurate than other benchmarked algorithms. The

classification accuracies of HeMLRN and HoMLGOP, are

competitive with the proposed algorithm, however, achieved

by larger network configurations. HoMLRN performs worst

among its GOP-based counterparts. While being as accurate

as the proposed HeMLGOP in most medium/large scale prob-

lems, the models learned by PMLP require 2× to 3× number

of parameters. Moving to a medium/large scale setting with

more challenging problems, PLN and BLS are consistently

inferior to other algorithms in both measures. In addition, the

networks grown by PLN in some datasets such as Caltech256

(257 classes) or CFW (500 classes) are enormous with the

number of parameters reaching the order of millions. This is

due to the limitations in PLN that the size of a hidden layer is

always equal or larger than twice the number of target outputs

since a new hidden layer is constructed based on the current

output layer. By having only 2 hidden layers and resorting

entirely to random weights during progression, BLS tends

to grow large but inefficient networks as compared to other

algorithms.

As mentioned in Section III, one of the motivations in our

work is to speed up the operator set searching procedure

in GOP-based system like POP. Thus, Table V presents the

training time (in seconds) of all algorithms on small-scale

problems. It should be noted that algorithms based on BP can

take huge advantage of GPUs to speed up the training process.

However, to give comparable results in terms of training time

of all competing methods, we conducted all small-scale exper-

iments based on CPUs with the same machine configuration.

It is clear that the proposed algorithm is much faster than

POP by approximately 300× in most cases. While HoMLGOP,

HeMLRN, HoMLRN can be seen as simplified versions of

the proposed algorithm, there is no clear winner among the

four algorithms in the context of training time. Depending

on the difficulty of the given problem, the training time of

HeMLGOP is relatively short as compared to its variants

since the proposed algorithm tends to converge after only a

few progressive steps with small network topologies, e.g., in

CMC, PIMA, YEAST. Among all competing algorithms, it

is clear that PLN and BLS are the fastest algorithms to train

since both algorithms rely only on random weights during the

network progression. As shown in Table III, this advantage of

fast training time results in the cost of inferior performances

and very large model sizes for deployment as compared to the

proposed algorithm. While Table V can give an intuition on the

speed of each algorithm during the training stage, it is worth

noting that the benchmark can only give strict comparisons

11

#GOPs

ELU
Inverse Absolute

Softplus
ReLU
Tanh

Sigmoid
Maximum

2-Correlation
1-Correlation
Summation

DoG
Gaussian
Quadratic
Harmonic

Exponential
Multiplication

HeMLGOP

#GOPs

HoMLGOP

0 200 400 600 800 1000
#GOPs

ELU
Inverse Absolute

Softplus
ReLU
Tanh

Sigmoid
Maximum

2-Correlation
1-Correlation
Summation

DoG
Gaussian
Quadratic
Harmonic

Exponential
Multiplication

HeMLRN

0 200 400 600 800 1000 1200 1400
#GOPs

HoMLRN

Fig. 2. Operator distribution

between the proposed algorithm, its variants, and POP, all of

which are based on our unoptimized implementation of GOP.

The exact relative comparison on the training time between

perceptron-based networks (PMLP, PLN, BLS) and GOP-

based networks (POP, the proposed algorithm and, its variants)

can change drastically when an optimized implementation of

GOP is available.

Nowadays, with the development of commodity hardware,

training an algorithm in some orders of magnitude longer

than another might not prevent its application. However,

deploying a large pretrained model to constrained computing

environments such as those in mobile, embedded devices

poses a big challenge in practical application. Not only the

storage requirement plays an important factor during the

deployment stage in mobile devices but also the amount

of energy consumed during inference. While the actual in-

ference time of each algorithm depends on the details of

the implementation such as hardware-specific optimizations

or concurrency support, the computational complexity of an

algorithm is directly related to the energy consumption. Under

this perspective, Table VI shows the number of floating-point

operations (FLOPs) required by each network in Table III to

predict a new sample. With compact network configurations,

it is clear that 5 out of 11 datasets, the proposed algorithm

requires the smallest number of operations during inference.

In other cases, the number of FLOPs in HeMLGOP remains

relatively low as compared to other algorithms. For example, in

CMC, Caltech101 or PubFig, HeMLGOP is the second best in

terms of computational complexity. Although being very fast

to train, making inference with the learned models produced

by PLN and BLS is costly in most cases. For example, in

YEAST, Caltech256 and CFW, the numbers of FLOPs in

PLN and BLS are more than 200× compared to HeMLGOP.

Regarding POP, not only does the algorithm take a very long

time to train but also heavy costs to make an inference. The

computational complexity of PMLP during testing is on the

same order as POP, however, with much shorter training time.

It is worth noting that in case of GOP-based networks, the

number of parameters in the model and the inference cost

are not directly related, i.e., two networks having the same

topology could have different inference complexities. This is

due to the fact that different operator sets in GOP possess

different computational complexities.

Figure 2 shows the distribution of operators used by our

proposed algorithm and its three variants in all datasets. It is

clear that while the proposed algorithm and its heterogeneous

variant (HeMLRN) used a diverse set of operators, the types

of operators selected by HoMLGOP and HoMLRN are more

limited. Within the library of nodal operators, “Multiplication”

was popular among all four algorithms. Similar observations

can be seen in activation operators: “ReLU” and “ELU”

were favored as activation functions while “Summation”,

“1-Correlation” and “2-Correlation” were the most popular

pooling operators to all algorithms.

V. CONCLUSIONS

In this paper, we proposed an efficient algorithm to learn

fully heterogeneous multilayer networks that utilize General-

ized Operational Perceptron. The proposed algorithm (HeML-

GOP) is capable of learning very compact network structures

with efficient performances. Together with the proposed algo-

rithm, we also presented 3 related variants which can be seen

as simplified versions of HeMLGOP. Extensive experimental

benchmarks in real-world classification problems have shown

12

TABLE VII
SHLN SPECIFICATION

Parameter Notation

Input dimension DI

Output dimension DO

current hidden neurons DH

new hidden neurons Dh

training samples N
operator sets NO

BP epochs E

that, under different perspectives, the proposed algorithm and

its variants outperform other related approaches, including

POP, an algorithm that also employs Generalized Operational

Perceptron.

APPENDIX A

COMPUTATIONAL COMPLEXITY

Since the proposed algorithm determines the network’s

topology both in block-wise and layer-wise manner, after train-

ing a hidden layer, the training data can always be transformed

by calculating the outputs of that layer to produce the new

training data to be used for determining the next hidden layer.

Therefore, when estimating the computational complexity at

each progressive step, we consider the complexity under a

Single Hidden Layer Network (SHLN) configuration with the

specifications given in Table VII.

Since the computational complexity of each GOP neuron

depends on the form of the operator set and the input dimen-

sions, we denote the complexity of the i-th GOP neuron as a

function of number of input dimensions: Fi(DI) and Bi(DI)
for the forward and backward pass respectively. At each

progressive step, the algorithm consists of two procedures:

the search of the operator set for Dh neurons through NO

randomized processes and the weights and biases update

through BP.

• Complexity of a randomized process: this involves pro-

ducing the hidden representation of the training data

O
(

N
∑DH+Dh

i=1 Fi(DI)
)

and solving the least-square

problem O
(

(DH + Dh)
3
)

(here we assume that DH +
Dh < N as usually the case).

• Complexity of weights and biases update through BP:

in an epoch, the forward pass involves producing the

hidden representation O
(

N
∑DH+Dh

i=1 Fi(DI)
)

and the

output representation O
(

N(DH+Dh)DO

)

, the backward

pass involves updating the weights and biases of Dh

GOPs O
(

N
∑DH+Dh

i=DH+1 Bi(DI)
)

and the linear output

layer O
(

2N(DH +Dh)DO + (DH +Dh)DO

)

(here we

assume the MSE loss function).

To conclude, given NO operator sets and E BP epochs,

the estimated computational complexity of the given pro-

gressive step is O

(

NO

(

N
∑DH+Dh

i=1 Fi(DI) + (DH +

Dh)
3
)

+ E
(

N
∑DH+Dh

i=1 Fi(DI) + 3N(DH + Dh)DO +

N
∑DH+Dh

i=DH+1 Bi(DI) + (DH +Dh)DO

)

)

APPENDIX B

PROOF OF CONVERGENCE

To prove that progressive learning in each layer of HeML-

GOP converges, we adopt the following notations:

• h
(l)
k ∈ R

N×D
(l)
k denote the output produced by the k-th

block of the l-th hidden layer given the training data.

• H
(l)
k = [h

(l)
1 , . . . ,h

(l)
k] ∈ R

N×(D
(l)
1 +···+D

(l)
k

) denote the

output produced by the first k blocks of the l-th hidden

layer, given the training data.

• B
(l)
k ∈ R

(D
(l)
1 +···+D

(l)
k

)×C denotes the output weights

obtained when adding the k-th block in the l-th hidden

layer.

• E
(l)
k ∈ R denotes the training Mean Squared Error (MSE)

obtained with H
(l)
k and B

(l)
k .

We will prove that the sequence (E
(l)
k){k} is monotonically

decreasing. By using the fact that (E
(l)
k){k} is bounded below

by 0, we can then conclude that (E
(l)
k){k} converges.

Firstly, we should note that B
(l)
k is obtained after the

intermediate fine-tuning step when adding the k-th block.

Given a fixed H
(l)
k , B

(l)
k is not necessarily the optimal weights

in terms of MSE since we have the following relation:

E
(l)
k = ‖H

(l)
k B

(l)
k −Y‖22 ≥ ‖H

(l)
k B

∗(l)
k −Y‖22 (9)

where B
∗(l)
k = (H

(l)
k)†Y denote the optimal weights obtained

by the least-square solution.

When adding the (k + 1)-th block in the l-th hidden layer,

after the randomized operator set search, we obtain the hidden

representation H
(l)
k+1 = [H

(l)
k ,h

(l)
k+1] in which H

(l)
k is fixed

from the previous progressive step and h
(l)
k+1 is generated by

the new random GOPs, and the corresponding optimal output

weights b
(l)
k+1 ∈ R

(D
(l)
1 +···+D

(l)
k+1)×C with respect to H

(l)
k+1 in

terms of MSE. Thus

E
(l)
k+1 = ‖H

(l)
k+1b

(l)
k+1 −Y‖22 ≤ ‖H

(l)
k+1b−Y‖22 (10)

∀b ∈ R
(D

(l)
1 +···+D

(l)
k+1)×C (11)

where E
(l)
k+1 denote the training MSE after the operator set

searching step when adding the (k + 1)-th block.

Since (10) holds for all b, we can replace H
(l)
k+1 with

[H
(l)
k ,h

(l)
k+1] and b with

[

B
∗(l)
k

0

]

to have the following relation

E
(l)
k+1 ≤ ‖[H

(l)
k ,h

(l)
k+1]

[

B
∗(l)
k

0

]

−Y‖22 (12)

or

E
(l)
k+1 ≤ ‖H

(l)
k B

∗(l)
k + h

(l)
k+10−Y‖22 (13)

= ‖H
(l)
k B

∗(l)
k −Y‖22 ≤ E

(l)
k (14)

Since E
(l)
k+1, the MSE achieved after adding the (k + 1)-

th block, is obtained by fine-tuning h
(l)
k+1 and b

(l)
k+1 (which

13

becomes B
(l)
k) through stochastic gradient descent which has

been proven to converge to the local optimum [43] with small

enough step sizes, we have the following relation:

E
(l)
k+1 ≤ E

(l)
k+1 (15)

From (14) and (15), we have E
(l)
k+1 ≤ E

(l)
k thus the sequence

(E
(l)
k){k} is monotonically decreasing. �

We should note that by discarding the unrelated steps, the

above proof is also valid for the three variants of HeMLGOP.

APPENDIX C

TRAINING CURVES OF THE PROPOSED ALGORITHM

The training curves of HeMLGOP on Holywood3D and

Olympic Sports are shown in Figures 3-6. In all figures,

the continuous lines show the statistics (accuracy/loss) during

Back Propagation at progressive learning stage while the

dashed lines show the statistics during fine-tuning stage of

the whole network. Here it should be noted that we did not

attempt to tune the hyper-parameters during the fine-tuning

stage but we used a small (and fixed) learning rate 0.00005
to fine-tune all the networks for 200 epochs. In practical

cases, to better take advantage of the fine-tuning stage, one

could further tune hyper-parameters such as learning rate and

learning rate schedule following a trial and error approach

(as is the standard approach) for individual datasets. However,

since this is not practical for a systematic comparison of

many competing methods, as is the case of the study in our

experiments, we relied on a basic approach using the fixed

learning rate.

0 100 200 300 400 500 600
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

HeMLGOP on Holywood3d dataset
train loss (new block BP update)
val loss (new block BP update)
train loss (fine-tune)
val loss(fine-tune)
start of new block
start of new block

Fig. 3. Loss curve of HeMLGOP on Holywood3d

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 779–788,
2016.

[2] A. Iosifidis, A. Tefas, and I. Pitas, “View-invariant action recognition
based on artificial neural networks,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 23, no. 3, pp. 412–424, 2012.

0 100 200 300 400 500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

HeMLGOP on Olympic Sports dataset
train loss (new block BP update)
val loss (new block BP update)
train loss (fine-tune)
val loss(fine-tune)
start of new block
start of new block

Fig. 4. Loss curve of HeMLGOP on Olympic Sports

0 100 200 300 400 500 600
Iterations

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

HeMLGOP on Holywood3d dataset

train acc (new block BP update)
val acc (new block BP update)
train acc (fine-tune)
val acc(fine-tune)
start of new block
start of new block

Fig. 5. Accuracy curve of HeMLGOP on Holywood3d

[3] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and
A. Iosifidis, “Forecasting stock prices from the limit order book using
convolutional neural networks,” in Business Informatics (CBI), 2017

IEEE 19th Conference on, vol. 1, pp. 7–12, IEEE, 2017.

[4] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-

cessing (icassp), 2013 ieee international conference on, pp. 6645–6649,
IEEE, 2013.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 580–587, 2014.

[6] M. Zabihi, A. B. Rad, S. Kiranyaz, M. Gabbouj, and A. K. Katsaggelos,
“Heart sound anomaly and quality detection using ensemble of neural
networks without segmentation,” in Computing in Cardiology Confer-

ence (CinC), 2016, pp. 613–616, IEEE, 2016.

[7] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and
A. Iosifidis, “Using deep learning to detect price change indications
in financial markets,” in European Signal Processing Conference (EU-

SIPCO), Kos, Greece, 2017.

[8] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

14

0 100 200 300 400 500
Iterations

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

HeMLGOP on Olympic Sports dataset

train acc (new block BP update)
val acc (new block BP update)
train acc (fine-tune)
val acc(fine-tune)
start of new block
start of new block

Fig. 6. Accuracy curve of HeMLGOP on Olympic Sports

[9] M. A. Waris, A. Iosifidis, and M. Gabbouj, “Cnn-based edge filtering
for object proposals,” Neurocomputing, 2017.

[10] X. An, D. Kuang, X. Guo, Y. Zhao, and L. He, “A deep learning method
for classification of eeg data based on motor imagery,” in International

Conference on Intelligent Computing, pp. 203–210, Springer, 2014.

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778, 2016.

[14] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in
optimizing recurrent networks,” in Acoustics, Speech and Signal Pro-

cessing (ICASSP), 2013 IEEE International Conference on, pp. 8624–
8628, IEEE, 2013.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[16] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
no. 4, pp. 115–133, 1943.

[17] S. Kiranyaz, T. Ince, A. Iosifidis, and M. Gabbouj, “Progressive opera-
tional perceptrons,” Neurocomputing, vol. 224, pp. 142–154, 2017.

[18] D. Ellis and N. Morgan, “Size matters: An empirical study of neural
network training for large vocabulary continuous speech recognition,”
in Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999

IEEE International Conference on, vol. 2, pp. 1013–1016, IEEE, 1999.

[19] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv

preprint arXiv:1605.07146, 2016.

[20] Y.-H. Pao and Y. Takefuji, “Functional-link net computing: theory,
system architecture, and functionalities,” Computer, vol. 25, no. 5,
pp. 76–79, 1992.

[21] W. F. Schmidt, M. A. Kraaijveld, and R. P. Duin, “Feedforward
neural networks with random weights,” in Pattern Recognition, 1992.

Vol. II. Conference B: Pattern Recognition Methodology and Systems,

Proceedings., 11th IAPR International Conference on, pp. 1–4, IEEE,
1992.

[22] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501,
2006.

[23] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in neural information processing systems,
pp. 1177–1184, 2008.

[24] S. Chatterjee, A. M. Javid, M. Sadeghi, P. P. Mitra, and M. Skoglund,
“Progressive learning for systematic design of large neural networks,”
arXiv preprint arXiv:1710.08177, 2017.

[25] C. P. Chen and Z. Liu, “Broad learning system: An effective and efficient
incremental learning system without the need for deep architecture,”
IEEE transactions on neural networks and learning systems, vol. 29,
no. 1, pp. 10–24, 2018.

[26] A. G. Ivakhnenko, “Polynomial theory of complex systems,” IEEE

transactions on Systems, Man, and Cybernetics, no. 4, pp. 364–378,
1971.

[27] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in neural information

processing systems, pp. 153–160, 2007.

[28] M. Kulkarni and S. Karande, “Layer-wise training of deep networks
using kernel similarity,” arXiv preprint arXiv:1703.07115, 2017.

[29] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2,
pp. 99–127, 2002.

[30] S. Kiranyaz, T. Ince, A. Yildirim, and M. Gabbouj, “Evolutionary artifi-
cial neural networks by multi-dimensional particle swarm optimization,”
Neural networks, vol. 22, no. 10, pp. 1448–1462, 2009.

[31] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[32] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint

arXiv:1710.09282, 2017.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.

[34] D. T. Tran, A. Iosifidis, and M. Gabbouj, “Improving efficiency in
convolutional neural network with multilinear filters,” arXiv preprint

arXiv:1709.09902, 2017.

[35] E. Haselsteiner and G. Pfurtscheller, “Using time-dependent neural
networks for eeg classification,” IEEE transactions on rehabilitation

engineering, vol. 8, no. 4, pp. 457–463, 2000.

[36] S. J. Qin, “Neural networks for intelligent sensors and controlpractical
issues and some solutions,” in Neural Systems for Control, pp. 213–234,
Elsevier, 1997.

[37] P. J. Antsaklis, “Neural networks for control systems,” IEEE Transac-

tions on Neural Networks, vol. 1, no. 2, pp. 242–244, 1990.

[38] D. Serre, “Matrices, volume 216 of graduate texts in mathematics,” 2002.

[39] K. Banerjee, “Generalized inverse of matrices and its applications,”
1973.

[40] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[41] X. Liu, S. Lin, J. Fang, and Z. Xu, “Is extreme learning machine
feasible? a theoretical assessment (part i),” IEEE Transactions on Neural

Networks and Learning Systems, vol. 26, no. 1, pp. 7–20, 2015.

[42] P. Courrieu, “Fast computation of moore-penrose inverse matrices,”
arXiv preprint arXiv:0804.4809, 2008.

[43] H. Robbins and S. Monro, “A stochastic approximation method,” in
Herbert Robbins Selected Papers, pp. 102–109, Springer, 1985.

[44] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, “Learning and generalization
characteristics of the random vector functional-link net,” Neurocomput-

ing, vol. 6, no. 2, pp. 163–180, 1994.

[45] J. W. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes,
“Using the adap learning algorithm to forecast the onset of diabetes
mellitus,” in Proceedings of the Annual Symposium on Computer

Application in Medical Care, p. 261, American Medical Informatics
Association, 1988.

[46] J. C. Niebles, C.-W. Chen, and L. Fei-Fei, “Modeling temporal struc-
ture of decomposable motion segments for activity classification,” in
European conference on computer vision, pp. 392–405, Springer, 2010.

[47] P. Horton and K. Nakai, “A probabilistic classification system for
predicting the cellular localization sites of proteins.,” in Ismb, vol. 4,
pp. 109–115, 1996.

[48] S. Hadfield and R. Bowden, “Hollywood 3d: Recognizing actions in 3d
natural scenes,” in Computer Vision and Pattern Recognition (CVPR),

2013 IEEE Conference on, pp. 3398–3405, IEEE, 2013.

[49] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in Computer Vision (ICCV), 2013 IEEE International Conference

on, pp. 3551–3558, IEEE, 2013.

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[51] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al., “Deep face recognition.,”
in BMVC, vol. 1, p. 6, 2015.

15

[52] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, “A comparison of prediction
accuracy, complexity, and training time of thirty-three old and new
classification algorithms,” Machine learning, vol. 40, no. 3, pp. 203–
228, 2000.

[53] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,” in
Computer vision and pattern recognition, 2006 IEEE computer society

conference on, vol. 2, pp. 2169–2178, IEEE, 2006.
[54] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in Computer

Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pp. 413–420, IEEE, 2009.

[55] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories,” Computer vision and Image understanding,
vol. 106, no. 1, pp. 59–70, 2007.

[56] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[57] N. Pinto, Z. Stone, T. Zickler, and D. Cox, “Scaling up biologically-
inspired computer vision: A case study in unconstrained face recognition
on facebook,” in Computer Vision and Pattern Recognition Workshops

(CVPRW), 2011 IEEE Computer Society Conference on, pp. 35–42,
IEEE, 2011.

[58] X. Zhang, L. Zhang, X.-J. Wang, and H.-Y. Shum, “Finding celebrities
in billions of web images,” IEEE Transactions on Multimedia, vol. 14,
no. 4, pp. 995–1007, 2012.

	I Introduction
	II Related Work
	II-A Generalized Operational Perceptron
	II-B Progressive Operational Perceptron
	II-C Limitations in POP

	III Proposed Method
	III-A Heterogeneous Multilayer Generalized Operational Perceptron (HeMLGOP)
	III-B HeMLGOP Variants
	III-C Convergence analysis
	III-D Complexity analysis

	IV Experiments
	IV-A Competing methods
	IV-B Datasets
	IV-C Experiment Protocol
	IV-D Results

	V Conclusions
	Appendix A: Computational Complexity
	Appendix B: Proof of Convergence
	Appendix C: Training Curves of The Proposed Algorithm
	References

