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Abstract—With exploiting contextual information over large 

image regions in an efficient way, the deep convolutional neural 

network has shown an impressive performance for single image 

super-resolution (SR). In this paper, we propose a deep 

convolutional network by cascading the well-designed inception-

residual blocks within the deep Laplacian pyramid framework to 

progressively restore the missing high-frequency details of high-

resolution (HR) images. By optimizing our network structure, the 

trainable depth of the proposed network gains a significant 

improvement, which in turn improves super-resolving accuracy. 

With our network depth increasing, however, the saturation and 

degradation of training accuracy continues to be a critical 

problem. As regard to this, we propose an effective two-stage 

training strategy, in which we firstly use images downsampled 

from the ground-truth HR images as the optimal objective to 

train the inception-residual blocks in each pyramid level with an 

extremely high learning rate enabled by gradient clipping, and 

then the ground-truth HR images are used to fine-tune all the pre-

trained inception-residual blocks for obtaining the final SR model. 

Furthermore, we present a new loss function operating in both 

image space and local rank space to optimize our network for 

exploiting the contextual information among different output 

components. Extensive experiments on benchmark datasets 

validate that the proposed method outperforms existing state-of-

the-art SR methods in terms of the objective evaluation as well as 

the visual quality. 

 
Index Terms—Single image super-resolution, Convolutional 

neural networks, Laplacian pyramid framework, Local rank 

space. 

 

I. INTRODUCTION 

ingle image super-resolution (SISR) aims to obtain the 

visually pleasing high-resolution (HR) image from a single 

low-resolution (LR) image generating by the low-cost imaging 

system and the limited environment condition. Since the 

obtained HR images often preserve important details and 

critical information for later image processing, analysis and 

interpretation, SISR is topic of great interest in digital image 

processing and is widely applied to various civilian and 

military field such as video surveillance [2], medical imaging 

[3], face recognition [4], satellite imaging [5] and etc. 

SISR problem usually assumes the observed LR image is to 

be a non-invertible low-pass filtering, down-sampling and 

noise version of HR image. For this reason, SISR is a highly 

ill-posed problem. To handle the ill-posed nature in the image 

SR reconstruction, a variety of methods have been developed 

in recent years. These methods can be classified into 

interpolation-based, reconstruction-based, and learning-based 

methods. The interpolation-based methods, such as bicubic 

interpolation [6], edge-guided interpolation [7], and nearest 

neighbor interpolation [8], typically adopt fixed-function 

kernels or structure-adaptive kernels to estimate the unknown 

pixels in the HR grid. Although the interpolation-based 

methods can reconstruct HR images in a very simple and 

effective way, they are prone to yield overly smooth edges and 

produce blurring details. Therefore, the reconstructed results 

are unsatisfactory to the practical applications. 

Reconstruction-based SR methods usually introduce certain 

image priors or constraints between the downsampling of the 

reconstructed HR image and the original LR images to tackle 

the ill-posed problem of image SR. These image priors include 

edge-directed priors [9], gradient profile priors [10], Bayesian 

priors [11], and nonlocal self-similarity priors [12]. Although 

this kind of SR methods is particularly effective to preserve 

geometric structure and to suppress ringing artifacts, it fails to 

add sufficient novel high frequency details to the reconstructed 

HR image and is limited in reconstructing the visual 

complexity of real images, especially for large scaling factor. 

Learning-based or example-based methods try to learn 

mappings from millions of co-occurrence LR-HR example 

image, and then use the learned mappings to reconstruct the 

desired HR images. Since the information on example images 

is exploited in an efficient way, learning-based methods have 

achieved convincing performance in predicting the high-

frequency details lost in HR images. In recent years, the 

learning-based SR methods have become the research focus in 

image processing and a variety of algorithms have been 

proposed including regression-based methods, sparse coding 

based methods and convolutional neural network (CNN) based 

methods. 

Regression-based methods exploit various regression 

models to establish the mappings between the LR and HR 

image spaces. For example, He and Siu [13] utilize Gaussian 

process regression (GPR) to predict each pixel of the HR 

image by its neighbors. Timofte et al. [14] propose an anchored 

neighborhood regression (ANR) approach which uses ridge 

regression to learn exemplar neighborhoods offline and use 

these neighborhoods to precompute the mapping between the 

LR and HR image spaces. More recently, they further propose 

an improved variant of ANR [15] namely, A+, to improve the 
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accuracy by combining the best qualities of ANR and simple 

functions. Some other typical methods ultilizing different 

regression models have also been proposed including support 

vector regression (SVR) [16], kernel ridge regression (KKR) 

[17]  and structured output regression machine (SORM) [18]. 

Since the regression-based methods require representing the 

complicated structures in generic images, the reconstructed 

HR images usually contain blurring details and ringing 

artifacts. To alleviate the problem in the regression-based 

methods, researchers have proposed another kind of learning-

based methods that attempt to capture the mappings between 

the LR and HR images in sparse coding space. Yang et al. [19] 

presume that the LR and HR image patches share the same 

sparse code with respect to their own dictionaries and jointly 

train a compact dictionary pair to imitate the mappings 

between two image spaces. However, the joint dictionary 

learning strategy cannot guarantee the co-occurrence of the 

sparse codes of two image spaces due to the insufficient 

constraints in the reconstruction phase. To alleviate the 

inconsistent problem, some sparse coding based methods 

introduce a variety of image priors or constraints into the 

reconstruction model, including nonlocal self-similarity prior, 

[20], regression constraints [21], geometric structure 

constraints [22], [23] and etc. Although the reconstruction 

accuracy of the coding based methods have attained 

impressive improvement over other SR methods, the 

computational cost is quite high due to the problem of L1 and 

L2 norms optimization. 

Recently, some fast and high-performance models have 

been successfully applied in image SR. Among them, the 

CNN-based methods has drawn considerable attention due to 

its simple structure and excellent reconstruction quality. Dong 

et al. [24] firstly show that CNN can be used to image SR and 

train a three-layer convolutional network to learn the mapping 

from LR image patch space to HR one. Then, Wang et al. [25] 

introduce the domain knowledge of sparse coding into deep 

CNN and train a cascade network (SCN) to upsample input 

images to the desired HR images progressively. Kim et al. [26] 

propose a highly accurate SR method by using a very deep 

convolutional network (VDSR) inspired by VGG-net used for 

ImageNet classification [35]. Lei et al. [33] propose a deep 

Laplacian pyramid network and further increase the network 

depth to 27 convolutional layers, which greatly improves the 

accuracy and speed. In [34], Ledig et al. present a generative 

adversarial networks framework to generate plausible-looking 

natural HR images with high perceptual quality. While 

improving the quality of reconstructed HR images by 

increasing the networks depth, researchers are also working to 

achieve real-time single image and video SR reconstruction. 

Kim et al. [27] propose a shallow network with deeply 

recursive layers (DRCN) to reduce the number of parameters. 

ESPCN network [28] use an efficient sub-pixel convolutional 

layer to replace the bicubic up-sampling operation and extracts 

features in the LR image space. FSRCNN network [29] adopts 

a similar idea and uses an hourglass-shaped CNN with more 

layers but fewer parameters to accelerate SR reconstruction. 

Although the above CNN-based SR methods have achieved 

impressive performance in the reconstruction quality as well 

as efficiency, they still have deficiency to be addressed. The 

main limitation for the existing CNN-based methods is always 

trying to cascade small filters many times in a deep network 

structure to increase the network depth and improve the 

reconstruction accuracy, which ignores the influence of 

network topology structure and leads to the saturation and 

degradation problem of training accuracy. Besides that, the 

loss function for most CNN-based methods is the average 

mean squared error (MSE) which only concerns the overall 

difference between network output images and corresponding 

label images. Therefore, the reconstructed SR images have the 

blurring problem of image small scale structures. 

To practically resolve the aforementioned issues, in this 

paper, we propose a new CNN-based single image SR method, 

which introduces the well-designed inception-residual blocks 

into a deep Laplacian pyramid framework to gradually 

reconstruct the desired HR images from the observed LR input 

images. Although the trainable depth of the proposed network 

gains an obvious improvement by optimizing the network   

structure, the saturation and degradation of training accuracy 

continues to be a critical problem. In order to reduce our 

network training difficulty and accelerate the convergence 

speed, we present an effective two-stage training strategy. In 

the 1st stage, we firstly downsample the HR images to the size 

of each pyramid level features step by step, and then the 

obtained images with different resolution are gradually used to 

train the inception-residual blocks of the corresponding 

pyramid level from our network input to output. Inspired by 

VDSR [26], we also use extremely high learning rates enabled 

by gradient clipping to accelerate the inception-residual blocks 

convergence in the each pyramid level. To reduce the training 

time in the 1st stage, we will cut down the backward 

computation of the anterior pyramid level and only train the 

inception-residual blocks in the current pyramid level. When 

all the inception-residual blocks in each pyramid level are 

trained, we use the original HR training images to fine-tune the 

pre-trained inception-residual blocks for obtaining the final SR 

network model. Since the different components of high-

frequency information are lost in different downsampling 

stages of the HR images and we only learn one stage 

downsampled images in the inception-residual blocks of each 

pyramid level, the proposed model can gradually restore the 

high-frequency information of HR images. Furthermore, we 

propose a new loss function to alleviate the blurring problem 

of image small scale structures caused by the average MSE 

loss function that is used for many CNN-based SR methods. 

The proposed loss function can optimize our network in both 

image space and local rank space for exploiting the contextual 

information among different output components during the 

network training. 

The contributions of this paper can be summarized as 

follows: 

1) Inspired by the Inception and ResNet networks, we 

propose a very deep convolutional neural network within the 

Laplacian pyramid framework to gradually reconstruct the 

desired HR images. 

2) To reduce the training difficulty in a very deep networks, 

we introduce an effective two-stage training strategy to 

progressively train our network by utilizing the different 

components of high-frequency information. 

3) We propose a new loss function to exploit the contextual 

information among different output components of the 
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proposed network. 

The remainder of the paper is organized as follows. Section 

2 briefly reviews the related work that is important to our 

image SR method. Section 3 introduces our network structure, 

the new loss function and the implementation and network 

training in details. Experimental results and relevant 

discussions are shown in Section 4 and the conclusions of this 

paper are given in Section 5. 

II. RELATED WORK 

Numerous methods have been proposed to solve single 

image SR problem. In this section, we focus our discussion on 

recent CNN-based methods. 

A. Convolutional neural network for SR 

In general, the observed LR images can be seen as a 

degraded product of HR images, which can be generally 

formulated as [36]  

  𝒚 = 𝑫𝑯𝒙 + 𝒗                                       (1) 

where 𝒙  and 𝒚  represent the original HR and observed LR 

image respectively, D is the downsampling operator, H is the 

blurring filter, and v represents the additive noise. In view of 

the above, it is a typical multi-output regression problem to 

reconstruct a HR image 𝒙 from the corresponding LR image 𝒚. 

Inspired by the promise performance of convolutional neural 

networks in classification and regression tasks, Dong et al.  

firstly propose the CNN-based SR method, namely Super-

Resolution Convolutional Neural Network (SRCNN). In 

SRCNN, the end-to-end mapping function 𝐹  used for 

reconstructing the desired HR image can be learn by 

minimizing the following loss function 

L(Θ) =
1

𝑁
∑‖𝐹(𝒚𝑖; Θ) − 𝒙𝑖‖

2

𝑁

𝑖=1

                  (2) 

where Θ = {𝑾1, 𝑾2, 𝑾3, 𝑩1, 𝑩2, 𝑩3} is the filter and bias 

of convolutional layers in SRCNN, 𝒙𝑖 and 𝒚𝑖 represent the HR 

and LR image patch respectively and 𝑁  is the number of 

training samples. 

Since SRCNN only uses three convolutional layers (patch 

extraction/representation layer, non-linear mapping layer and 

reconstruction layer), it is limited for the contextual 

information used for reconstructing HR images. To exploit 

more contextual information in a large image regions, Kim et 

al. [26] propose a deep CNN-based SR method (VDSR) by 

cascading 3 ×3 convolutional layer many times. Since VDSR 

utilize the residual-learning to exploit the similarity between 

input and output image, the loss function used for training the 

mapping function 𝐹 is formulated as  

L(Θ) =
1

𝑛
∑‖𝐹(𝒚𝑖; Θ) − 𝒓𝑖‖

2

𝑛

𝑖=1

                  (3) 

where 𝒓𝑖 = 𝒚𝑖 − 𝒙𝑖  is the residual image,  Θ = {𝑾1, ⋯ ,
𝑾𝑑 , 𝑩1, ⋯ , 𝑩𝑑}, 𝑑 = 20 is the depth of network. Although 

VDSR significantly improves the reconstruction quality, the 

restoration of finer texture details is still a challenging problem. 

To resolve this problem, Ledig et al. [34] propose a perceptual 

loss function which consists of an adversarial loss and a 

content loss 

L(Θ) =
1

𝑛
∑‖𝜙(𝐺𝜃(𝒚𝑖)) − 𝜙(𝒙𝑖)‖

2
− log 𝐷𝜃(𝐺𝜃(𝒚𝑖))

𝑛

𝑖=1

+ ‖∇𝐺𝜃(𝒚𝑖)‖                                              (4) 

where 𝜙(∙) is the feature representations, 𝐷𝜃(𝐺𝜃(𝒚𝑖)) is the 

estimated probability that the reconstructed HR image is a 

natural images and ∇𝐺𝜃(𝒚𝑖) is a regularizer based on the total 

variation to encourage spatially coherent solutions. Among the 

above methods, the HR images reconstruction is perform in 

one upsampling step: bicubic interpolation pre-processing or 

transposed convolution in network output layer. Methods with 

bicubic interpolation usually leads to high computation 

complexity since the convolutional operation are applied on 

the upsampled HR images. On the contrary, although the 

transposed convolution methods reduce the computational cost, 

the accuracy of the reconstructed HR images may be affected 

by the transposed convolutional layer, especially for large 

scaling factor (e.g.× 4). Accordingly, some of the CNN-based 

SR methods introduce Laplacian pyramid framework to strike 

a balance between reconstruction accuracy and computational 

cost. 

B. Laplacian pyramid framework 

The Laplacian pyramid framework has been used in a wide 

range of applications, such as edge-aware filtering [30], image 

blending [31], semantic segmentation [32], and etc. In the 

image SR, Lei et al. [33] first propose a deep network based on 

the Laplacian pyramid framework (LapSRN) to reconstruct the 

HR images. In LapSRN, the network consists of multiple 

pyramid level and each level is cascaded by a transposed 

convolutional layer. At each pyramid level, the sub-network is 

constructed with the same convolutional layers and has its loss 

function and the corresponding label image 𝒙𝑠 downsampled 

from ground truth HR image with bicubic interpolation. 

Accordingly, the overall loss function for LapSRN is defined 

as 

L(Θ) =
1

𝑛
∑ ∑ 𝜌 ((𝐹(𝒚𝑖; Θ) + 𝒚𝑠

𝑖 ) − 𝒙𝑠
𝑖 )

𝐿

𝑠

𝑛

𝑖=1

                 (5) 

where 𝐿 is the number of pyramid level, 𝒚𝑠 is the upsampled 

image from the input LR image 𝒚 in the pyramid level 𝑠 and 

𝜌(∙) is the Charbonnier penalty function used to handle outliers. 

Since the transposed convolutional layer can merely upsample 

the images or features with a fixed integer scaling factor, it is 

limited to the network structure and scaling factors of LapSRN. 

To super-resolve the input LR image with a more flexible 

scaling factors, Zhao et al. [37] propose a gradual upsampling 

network (GUN) for image SR, which use the bicubic 

interpolation to upsample the features in the forward 

computation and downsample the gradients in the backward 

computation during training. However, the proposed method 

differs from the existing CNN-based SR methods in three 

aspects. 

First, although the proposed method also adopts Laplacian 

pyramid framework, the structure of our network is obviously 

different from the existing CNN-based SR methods. LapSRN 

uses the same structure of convolutional layer to form the sub-

network in each pyramid level. In contrast, our network use 

well-designed inception-residual blocks in each pyramid level 

to extract features from different scale receptive field. By 
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optimizing the network structure, the trainable depth of the 

proposed network gains an impressive improvement. Second, 

we adopt a new two-stage training strategy to further solve the 

saturation and degradation problem in a very deep networks. 

With the pre-training for the sub-network in each pyramid 

level and the fine-tuning for whole network, the reconstruction 

accuracy for our network has been further improved. Finally, 

the loss function for most existing CNN-based SR methods 

primary concerns the overall difference between predicted 

images and corresponding label images. On the contrary, the 

proposed loss function also pay attention to the relationship 

between the each pixels and its neighbors in the network output 

image. 

III. PROPOSED METHOD 

In this section, we describe the design methodology of the 

proposed convolutional network for single image super-

resolution, the optimization using the proposed loss functions 

with deep supervision, and the details for network training. 

A. Network architecture 

As shown in Figure 1(a), the proposed method uses the 

Laplacian pyramid framework to construct the proposed 

network model. Our network takes an observed LR image 𝒚 as 

input and gradually predicts the high-frequency details of the 

desired HR image 𝒙 at each pyramid level. Since each pyramid 

level of the proposed network has similar structures, we only 

describe one pyramid level network in details. 

In Figure 1 (b), we show the network structure of one pyramid 

level. For brevity, the activation (ReLU) and batch 

normalization (BN) layers are not shown in the sub-network 

structure. As illustrated in Figure 1 (b), the sub-network 

consists of the upsampling layer, well-designed residual blocks 

and output layer. At pyramid level  𝑠 , we first use the 

upsampling layer to upsample the input features 𝒚𝑠−1 to the 

size of the level 𝑠 features, which can be described as, 

𝒚𝑠
0 = 𝑫𝒖(𝒚𝑠−1; Θ)                        (6) 

where 𝒚𝑠−1 is the features of the pyramid level 𝑠 − 1, 𝒚𝑠
0 is the 

upsampled features in the pyramid level  𝑠  and 𝑫𝒖(∙)  is the 

upsampling function. In the proposed network, we use an 

improved transposed convolution to perform the upsampling 

processing. Comparing to the traditional transposed 

convolution which can only upsampling the input with a fixed 

scaling factor, the improved transposed convolution can 

upsample the input features to a specified resolution more 

freely. To obtain an upsampled features with an arbitrary 

resolution, the improved transposed convolution uses a non-

uniform method to insert rows and columns of zero elements 

before the convolution processing. Figure 2 show the inserted 

features with zero elements by the improved and traditional 

transposed convolution. Although the bicubic interpolation 

also can be used to resize the input to an arbitrary resolution 

[37], it always cause the loss of high frequency features and 

gradient information in the forward and backward computation. 

Thus, the upsampling layer for the proposed network can not 

only upsample the input features to an arbitrary resolution, but 

also preserve the high frequency information. 

Then, the upsampled features will pass the well-designed 

residual blocks for recovering the specified high-frequency 

details in the pyramid level  𝑠 . As shown in Figure (c), the 

residual block for the proposed network is the combination of 

the two most recent ideas: Residual connections introduced by 

He et al. in [38] and the latest revised version of the Inception 

architecture [39]. In [38], the authors have argued that residual 

connections are of inherent importance for training very deep 

architectures. To reap the benefits of the residual approach, 

Szegedy et al. in [1] use residual connections to replace the 

filter concatenation stage of the Inception architecture and 

obtain an outperformance on the ImageNet classification 

challenge. Inspired by this, we introduce the Inception-residual 

block architecture to the proposed network. The main technical 

difference between our residual block and the residual block in 

the Inception-ResNet is that in the case of the proposed 

network, we use a new residual connections introduced by He 

et al. in [40] to enhance the capacity of residual block. 

Accordingly, the residual block for our network can be 

formulated as, 

𝒚𝑠
𝑟 = 𝐹(𝒚𝑠

0; Θ) + 𝒚𝑠
𝑟−1                         (7) 

where 𝒚𝑠
𝑟−1 and 𝒚𝑠

𝑟 are the input and output features of the 𝑟 −
th residual block respectively.  

After the upsampled features passed all the residual blocks, 

the output of the residual block is connected to two different 

layers during the training: (1) a convolutional layer for 

reconstructing a residual image at the pyramid level 𝑠, and (2) 

an upsampling layer for super-resolving the features to the size 

of the finer pyramid level 𝑠 +1. The reconstructed residual 

image is then combined (using element-wise summation) with 

the bicubic interpolated image from input LR image to produce 

a HR output image 𝒙𝑠. Finally, the produced image 𝒙𝑠 with the 

bicubic downsampled image 𝒙𝑠  from the ground truth HR 

image 𝒙  will be used for training the sub-network of the 

pyramid level 𝑠. After completing the training of the network, 

we will remove the convolutional layer for reconstructing a 

residual image at each pyramid level and directly predict the 

residual image between the bicubic upsampled image from 

input LR image 𝒚 and the original HR image 𝒙. Actually, the 

entire network of the proposed SR method is a cascade of sub-

network with a similar architecture at each pyramid level.  

B. Loss function 

For most of the CNN-based SR method, the loss function is 

usually the mean square error (MSE). Thus, the optimization 

objective for these SR method is defined as, 

min
Θ

1

𝑁
∑‖𝐹(𝒚𝑖; Θ) − 𝒙𝑖‖

2

2
𝑁

𝑖=1

                    (8) 

where 𝒚𝑖 and 𝒙𝑖 are 𝑖-th LR and HR image patch pair in the 

training data, and 𝐹(𝒚𝑖; Θ) is the predicted HR image patch 

from  𝒚𝑖  using the network with parameters Θ . Since MSE 

struggles to handle the uncertainty inherent relationship in 

recovering lost high-frequency details such as small scale 

structures and texture details, the optimization of MSE 

encourages finding pixel-wise averages of plausible solutions 

which are typically overly-smooth and thus have poor 

perceptual quality [46]. To make reconstructed HR images 

with realistic texture details and sharp edges, we propose a new 

loss function by exploiting the contextual information among 

different pixels of the network output images. The local rank 

transform is an effectively constraint can be used in preserving 



 

 

 

 

5 

texture details and edges of the reconstructed image [47] [47], 

because the contextual information in a rank window is 

exploited in an efficient way [49]. For a given image 𝑰, the 

definition of local rank transform can be formulated as,  

LRT𝛿(𝑰(𝑖, 𝑗)) = 𝑁𝑤 − ∑ C(𝑰(𝑖, 𝑗) − 𝑰(𝑖𝑤 , 𝑗𝑤))

𝑖𝑤,𝑗𝑤

               (9) 

where  

C(∙) = {
1,      𝑰(𝑖, 𝑗) − 𝑰(𝑖𝑤 , 𝑗𝑤) > 𝛿

0,      𝑰(𝑖, 𝑗) − 𝑰(𝑖𝑤 , 𝑗𝑤) ≤ 𝛿
                  (10) 

𝑁𝑤  is the total number of pixels in the rank window, 𝛿 is a 

parameter making the local rank suit the noisy image, 𝑰(𝑖, 𝑗) is 

the pixel value of image 𝑰 at the rank window center (𝑖, 𝑗), and 

( 𝑖𝑤 , 𝑗𝑤) is the pixel coordinate in the rank window. 

Considering that the local rank transform for a given pixel can 

be used for describing the statistical distribution characteristics 

between the given pixel and around pixels in a rank window, 

we introduce the local rank into the proposed loss function for 

restricting the contextual relationship among the given pixel 

and around pixels. Accordingly, the optimization objective for 

loss function with the introduced local rank constraint can be 

defined as, 

min
Θ

1

𝑁
∑‖𝐹(𝒚𝑖; Θ) − 𝒙𝑖‖

2

2
𝑁

𝑖=1

+ 𝛽 ‖LRT𝛿 (𝐹(𝒚𝑖; Θ)) − LRT𝛿(𝒙𝑖)‖
2

2

(11) 

where 𝛽 is the weight for the local rank constraint. Since our 

network adopt the Laplacian pyramid framework and residual 

learning, the overall loss function is defined as, 

L(Θ) = ∑ ∑ 𝑘𝑠 (‖𝒓𝑠
𝑖 − 𝒙𝑠

𝑖 ‖
2

2
𝐿

𝑠=1

𝑁

𝑖=1

+ 𝛽‖LRT𝛿(𝒓𝑠
𝑖 ) − LRT𝛿(𝒙𝑠

𝑖 )‖
2

2
)         (12) 

where 𝒓𝑠
𝑖 = 𝐹(𝒚𝑖; Θ) + 𝒚𝑠

𝑖 , 𝒙𝑠
𝑖  is downsampled image from the 

original images to the label images for the pyramid level  𝑠 

using bicubic interpolation, 𝒚𝑠
𝑖  is upsampled image from input 

LR image, 𝐿 is the number of pyramid level in the proposed 

network, and  𝑘𝑠  is the weight for the loss function of each 

pyramid level. 

C. Implementation and training details 

1) Training dataset 

For fair comparison with the other state-of-the-art methods, 

we also use 91 images from Yang et al. [19] and 200 images 

from the training set of BSD500 [41] as our training HR 

images. To make full use of these images, the data 

augmentation is adopted in the proposed network training. We 

augment these images data in three ways: (1) Scaling: each HR 

image is downscaled by bicubic interpolation with the scaling 

factor 0.9, 0.8, 0.7, and 0.6. (2) Rotation: each image is rotated 

with the degree of 90, 180 and 270. (3) Flipping: each image 

is flipped with horizontal and vertical. Thus, we will obtain 

5 × 4 × 3 = 60  times image to form the final HR image 

training set {𝑿}. Once these HR image trainings are obtained, 

we can prepare the training data for the proposed network. To 

generate the training data, we first use bicubic interpolation to 

downsample the original HR training images  {𝑿}  with the 

desired scaling factor 𝑛  to form the corresponding LR 

image {𝒀}. Then we crop the LR training image into a set of 

LR image patches {𝒚𝑖}𝑖=1
𝑁 with a stride 𝑘. The corresponding 

HR image patches {𝒙𝑖}𝑖=1
𝑁  are also cropped with a stride 𝑛 × 𝑘 

from the HR images. Actually, the cropped LR/HR image 

patch pairs {(𝒚𝑖 , 𝒙𝑖)}𝑖=1
𝑁  are the training data for the proposed 

network. Since the proposed network adopts zero padding in 

all convolutional layers to keep the size of the features as the 

same input of each level, it is necessary to employ the LR 

image patches with the same size for the different factor 

networks. Thus, for × 2 , × 3 and × 4 networks, the size of 

LR/HR image patches are set to be  272/542 ,  272/812 

and 272/1082, respectively. 

2) Training methodology 

For the proposed SR method, we utilize the Caffe package 

[42] with stochastic gradient descent algorithm to train our 

network on an NVidia Titan GPU. Since our network consists 

of the coupled sub-networks with its loss functions and the 

corresponding HR image at each pyramid level, the training of 

our network becomes a critical problem. To reduce the 

difficulty of network training, we explore a new two-stage 

training strategy. First, we train the proposed network one 

pyramid level by one pyramid level using the training 

data {(𝒚𝑖 , 𝒙𝑠
𝑖 )}𝑖=1

𝑁  downsampled by bicubic interpolation from 

the original HR training data {(𝒚𝑖, 𝒙𝑖)}𝑖=1
𝑁  at pyramid level 𝑠. 

When we train the sub-network of pyramid level 𝑠, we will 

remove all the output convolutional layers used for 

reconstructing the residual images and freeze the weights of 

the others convolutional layers before the pyramid level  𝑠 . 

Once all the sub-networks are trained, we fine-tune our final 

network using the original HR training data {(𝒚𝑖 , 𝒙𝑖)}𝑖=1
𝑁  at a 

low learning rate. With this strategy, the training converges 

much earlier than training all the sub-networks together from 

the beginning. 

In addition, we provide parameters used for training our 

final network. In the first training stage. We use a learning rate 

of 0.1 for the convolutional layers and 0.01 for the improved 

transposed convolutional layers. The learning rate will be 

decayed every two epochs using an exponential rate of 0.94. 

Since we adopt an extremely high learning rates (0.1) to 

accelerate the convergence, the gradient clipping is set to be 1 

and then is decreased by a factor of 10 every two epochs. For 

weights initialization, all the filters of the convolutional and 

transposed layers are initialized with the method described in 

He et al.[43]. During the fine-tuning, the learning rate for all 

layers is set to be 0.00045 and decayed by an exponential rate 

of 0.94 every two epochs. Our first stage of training uses 

momentum [44] with a decay of 0.9, while our fine-tuned 

models are achieved using RMSProp [45] with decay of 0.9 

and ϵ = 1.0. The batches of size and weight decay are set to 

128 and 0.0001 for all the training stage, respectively. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we first analyze the contributions of the 

different components of the proposed network. Then, we 

compare the proposed method with state-of-the-art SR 

algorithms on five representative image datasets and show the 

super-resolution results on the real-world images. Finally, we 

discuss the computational complexity of the proposed 

algorithm in terms of reconstructing phase. 

In our experiments, we follow the publicly availabel 
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evaluation framework of Timofte et al. [14]. It enables the 

comparison of the proposed method with many state-of-the-art 

SR methods in the same setting. The framework first crops 

pixels near image boundary and enables the size of cropped 

images with respect to the target scaling factors. Then, 

considering that the human visual system is more sensitive to 

details in intensity than color, the framework transforms the 

cropped images from RGB color space into YCbCr color space 

and applies bicubic interpolation on the transformed images 

for obtaining the input LR images in YCbCr space. Finally, 

this framework applies the SR reconstruction algorithm on the 

luminance channel and directly upscales the chrominance (Cb 

and Cr) channels to the desired resolution using bicubic 

interpolation. Furthermore, SR performance metrics including 

the peak signal-to-noise ratio (PSNR) and structural similarity 

(SSIM) are applied to evaluate the objective quality of 

reconstructed HR images. 

A. Investigation of the proposed network 

In this section, we design a set of controlling experiments to 

analyze the property of the proposed network and confirm the 

contributions of the different components of our network for 

the accuracy of image SR reconstitution. 

1) Topology structure of the proposed network 

To demonstrate the effect of the network structure of our 

network, we remove all the inception-residual blocks in the 

deep Laplacian pyramid framework and directly cascade the 

same convolutional layers many times at each pyramid level. 

For a fair comparison, the number of convolutional layers and 

weight parameters for the degraded network is same as the 

proposed network. Moreover, the proposed network and 

degraded network all are optimized using MSE loss function 

from the weights initialized randomly by the same method. 

Figure 3 shows the convergence curves in terms of PSNR on 

the Set14 for the scaling factor of 3. The performance of the 

degraded network (blue curve) is significantly worse than the 

network with the inception-residual structure. The proposed 

network (coffee curve) has better convergence accuracy and 

speed. In Figure 4, we show that the degraded network 

reconstructs HR image with more blurring edges and details. 

In contrast, the reconstructed HR images provided by the 

proposed network contain more clean edges and visual details. 

In view of the above, the network with the inception-residual 

blocks in a deep Laplacian pyramid framework is more capable 

of reconstructing the desired HR images. 

2) Loss function 

In the proposed method, we present a new loss function for 

our network to exploit the contextual information among 

different output components during training. Here we verify 

the effectiveness of the proposed loss function. For a fair 

comparison, we use the same training parameters and 

initialization method to optimize the proposed network with 

the MSE loss function. As illustrated in Figure 3, the network 

optimized with our proposed loss function (red curve) requires 

more iterations to achieve comparable performance with 

FSRCNN and the convergence curve also fluctuates 

significantly. This is mainly because that the proposed loss 

function apply the more stringent constraints among the 

predicted images and original HR training images. However, 

the optimized network with the proposed loss function has 

shown to promise an excellent reconstruction accuracy. In 

addition, we show the super-resolution results by the proposed 

algorithm and the proposed network trained with MSE loss 

function in Figure 4. As shown in Figure 4 (d), the 

reconstructed HR images by the network trained with MSE 

loss function contain blurring details and ringing artifacts. In 

contrast, the proposed method show promising performance in 

preserving sharpen edges, reconstructing visual details, and 

suppressing ringing artifacts because the more contextual 

information among the different components is exploited in an 

efficient way. 

3) Two-Stage training strategy 

Since the depth of the proposed network is remarkably 

increased by cascading more one well-designed inception-

residual blocks within the deep Laplacian pyramid network, 

the convergence accuracy and speed becomes a critical issue 

during training. In order to alleviate this problem, we adopt a 

two-stage training strategy to optimize our network. Here we 

validate the effectiveness of the proposed training strategy by 

comparing our final model to that of the proposed network 

trained from the randomly initialized condition. For a fair 

comparison, we also use extremely high learning rate enabled 

by adjustable gradient clipping to accelerate the convergence 

of the randomly initialized network. As shown in Figure 3, the 

trained network with our proposed two-stage strategy (yellow 

curve) has better convergence accuracy, and there is no 

obvious fluctuation in the convergence curve of fine-tuning 

network. Furthermore, we report the PSNR and SSIM on the 

Set5 and Set14 for the scaling factor of 3 in Table 1 and show 

the reconstructed HR images by the randomly initialized 

network in Figure 4. From the tables, the average PSNR gains 

of the proposed training strategy are 0.21dB and 0.18dB, 

respectively. In Figure 4, we also can observe that our final SR 

model generates HR results with less ringing artifacts and more 

sharpen edges. It is obvious that the proposed training strategy 

can further improve the reconstructed HR images quality. 

4) Network depth 

To demonstrate the effect of network depth, we train the 

proposed network with different depth and show the trade-off 

between super-resolving performance and speed in Table 2 and 

3. Since our network depth is decided by the number of 

pyramid level 𝐿 and the number of inception-residual blocks 𝑑 

on the each pyramid level, we train the proposed network with 

different 𝐿 and 𝑑 to validate the effect of the two parameters 

independently. To show the effect of the number of pyramid 

level 𝐿, we first fix the 𝑑 as 1 and then train the our network 

with different number of pyramid level 𝐿 = 1, 2, 3, 4, 5. Table 

2 illustrates the average PSNR values and running time on the 

Set5 and Set14 with different number of pyramid level. In 

general, deep networks perform better than shallow ones at the 

expense of increased computational cost. However, the PSNR 

results increase slowly when 𝐿 is larger than 4. Accordingly, 

we choose 𝐿 = 2, 4, 6 for our 2 × , 3 × and 4 × SR networks 

to strike a balance between super-resolving performance and 

efficiency, respectively. 

After we choose the number of pyramid level 𝐿 for our SR 

models, we can train our network with the different number of 

inception-residual blocks 𝑑 = 1, 2, 3, 4, 5 in the pyramid level 

to validate the effect of the sub-network depth at each pyramid 
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level of the proposed network. In Table 3, we report the 

average PSNR values and average running time on the Set5 

and Set14 with different 𝑑 = 1, 2, 3,4, 5. As shown in Table 3, 

it is obvious that the proposed network with more inception-

residual blocks at each pyramid level can improve the quality 

of reconstructed HR images. However, the PSNR values 

increase slowly at the expense of increased computational cost 

when the number of inception-residual blocks at each pyramid 

level is larger than 3. Hence, we choose 𝑑 = 3 for our 2 × , 

3 ×  and 4 ×  SR models for striking a balance between 

reconstruction quality and execution time, respectively. 

B. Comparisons with the state-of-the-arts 

To validate the performance of the proposed method, the SR 

experiments for different scaling factors (×2, ×3 and ×4) are 

performed on all the images in the five representative image 

datasets Set5, Set14, BSD100, Urban100 and Manga109 [30]. 

Among these datasets, Set5, Set14 and BSDS100 consist of 

natural scenes images; Urban100 contains challenging urban 

scenes images with details in different frequency bands; and 

MANGA109 is a dataset of Japanese manga. Then, we 

compare the proposed method with 6 state-of-the-art SR 

algorithms: FSRCNN [29], SelfExSR [50], SCN [25], VDSR 

[26], DRCN [27], and LapSRN [33]. All the compared results 

are reproduced by the codes downloaded from the authors’ 

websites under the same setting with our experiments. 

Table 4, 5, 6 shows the average PSNR and SSIM results of 

reconstructed HR images on the five representative image 

datasets by the proposed and baseline methods with different 

scaling factors, respectively (×2, ×3 and ×4). From these 

tables, we can see that the proposed method achieves the 

consistent performance on all the test image datasets. Since the 

proposed and compared methods are based on the learning 

methods and the training data are limit, the performance for all 

methods tends to decline with the increase of test examples. 

However, the proposed method still performs better than all the 

compared methods in both PSNR and SSIM. These 

experimental results suggest that the proposed method can 

effectively improve the quality of reconstructed HR images.  

To assess the visual quality of the proposed method, we 

show reconstructed HR images by the proposed and compared 

methods on the images, drawn from B100, Urban100 and 

Manga109, with different scaling factors (×2, ×3 and ×4) in 

Figure 5, 6 and 7, respectively. As shown in these figures, our 

proposed method accurately reconstructs parallel straight lines 

and grid patterns such as windows and the stripes on tigers. We 

observe that methods using the bicubic upsampling for pre-

processing generate results with noticeable artifacts. In 

contrast, our approach effectively suppresses such artifacts 

through progressive reconstruction and the proposed new loss 

function. 

C. Super-resolving on real-world images 

In this section, we perform our proposed method and some 

compared methods on the historical photographs with JPEG 

compression artifacts to demonstrate the super-resolving 

performance on real-world images. In our experiment, neither 

the ground-truth HR images nor the downsampling kernels are 

available. The super-resolved historical images for different 

upsampling scale factors (×2, ×3 and ×4) are shown in Figure 

8, 9 and 10, respectively. As shown in Figure 9, the proposed 

method can provides clearer details and sharper edges in the 

reconstructed HR historical images than other existing state-

of-the-art methods. 

D. Computational complexity 

For the reality SR applications, the time complexity of the 

algorithm also needs to be considered owing to the limitation 

of computing resource. In this section, we discuss the time 

complexity of the proposed algorithm. For a fair comparison, 

the proposed and compared methods are conducted on the 

same platform with Ubuntu 14.04 operating system, 3.5 GHz 

Intel i7-5960x CPU, 64 GB memory and NVIDIA Titan X 

GPU. Since the testing codes for FSRCNN are based on CPU 

implementations, we reconstruct the network of FSRCNN in 

Caffe with the same weights to measure the execution 

efficiency on GPU. Fig. 11 show trade-offs between the 

execution time and PSNR values by the proposed method and 

the compared methods on Set14 dataset for the scaling factor 

of 4. Since the proposed method has more complicated 

network structure and applies more convolutional layers on 

larger upsampling scale factors, the time complexity of our 

network increases slightly with respect to the target scaling 

factors. However, the reconstructed quality of our method still 

performs favorably against LapSRN, DRCN and other existing 

SR methods. 

V. CONCLUSION 

In this paper, we propose an accurate single image super-

resolution method using very deep convolutional neural 

network within the Laplacian pyramid framework. In the 

proposed method, our network consists of an input upsampling 

layer, the well-designed inception-residual blocks on each 

pyramid level, and an output layer. Since the different 

components of the missed high-frequency information are 

gradually recovered by the well-designed inception-residual 

blocks of each pyramid level, the proposed network can 

efficiently learn to reconstruct the HR images. In order to 

alleviate the difficulty of training in a very deep networks, we 

adopt a simple yet effective two-stage training strategy, in 

which the different components of high-frequency information 

are firstly utilized to train gradually the inception-residual 

blocks of each pyramid level as the initial weights of the 

proposed network, and then the original HR training images 

with the more complex high-frequency information are used 

for fine-tuning our final network model. Furthermore, we 

present a new loss function for the proposed network, in which 

our network is optimized in both image space and local rank 

space to exploit the contextual information among different 

output components. Experimental results on a number of 

images, drawn from five representative image datasets, 

demonstrate that the proposed method can obtain accurate 

results and performs competitively in comparison to other 

existing state-of-the-art SR methods. 
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(c) 

Fig.1 Framework of the proposed method. (a) The overall structures of the proposed network. Red arrows indicate convolutional 

layers, and green arrows denote upsampling operators. (b) The sub-network structures of each Pyramid level. The convolutional layer 

for reconstructing the residual images (orange double dot line rectangular box) is only activity in the pre-training of each Pyramid 

level sub-network. (c) The schema for Inception-residual module on the each Pyramid level of the proposed network. 
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                         (a)                                                          (b) 

Fig.2 The inserted feature maps with zero elements by the improved and traditional transposed convolutional layers (Blue squares 

represent the elements of the original feature maps. White squares indicate the inserted zero elements). (a) The inserted feature maps 

with traditional transposed layers (3x3 transposed, padding: 1, stride: 2, the size of output features: 2 × (6 − 1) + 1 × (3 − 1) + 1 −

2 × 1 = 11). (b) The inserted feature maps with our transposed layers (3x3 transposed, padding: 1, stride: 1.5, the size of output 

features: 1.5 × (6 − 1) + 1 × (3 − 1) + 1 − 2 × 1 = 9). 

 
Fig.3 Convergence analysis on the network structure, loss function and training strategy. The results are obtained on all the images in 

Set14 with the scale factor 3. Blue curve is the convergence analysis on the network without the inception-residual structure and the 

proposed loss function. Coffee curve is the convergence analysis for our network with the MSE loss function. Red curve is the 

proposed network trained with the random initializing method. Yellow curve is the convergence analysis on the fine-tuning of the 

proposed network. 
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 (a)                     (b)                               (c)            

    

 (d)                                (e)                              (f)                  

Fig.4 Visual comparison of reconstructed results by the different components in the proposed network. (scaling factor × 3). (a) input 

LR image. (b) Bicubic HR image. (c) w/o inception-residual structure. (d) w/o the proposed loss function. (e) the proposed network 

(full model). (f) ground truth HR image. 

    

(a) LR        (b) Bicubic/27.01dB          (c) FSRCNN/31.83dB       (d) SelfExSR/31.46dB    

    

(e) VDSR/33.04dB         (f) LapSR/32.87dB          (g) Proposed/33.13dB        (h) Ground-truth HR       

Fig.5 Visual comparison of reconstructed results on “ppt3” image (SET14) by the baseline and proposed methods (scaling factor ×

2). 
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(a) LR        (b) Bicubic/21.96dB       (c) FSRCNN/23.12dB        (d) SelfExSR/22.97dB    

    

(e) VDSR/23.45dB          (f) DRCN/23.44dB        (g) Proposed/23.62dB         (h) Ground-truth HR       

Fig.6 Visual comparison of reconstructed results on “148026” image (BSD100) by the baseline and proposed methods (scaling 

factor × 3). 

    

(a) LR     (b) Bicubic/23.58dB         (c) FSRCNN/27.21dB        (d) SelfExSR/26.79dB    
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(e) VDSR/28.02dB         (f) LapSR/28.29dB          (g) Proposed/28.45dB        (h) Ground-truth HR     

Fig.7 Visual comparison of reconstructed results on “DualJustice” image (Manga109) dataset by the baseline and proposed methods 

(scaling factor × 4). 

   
(a) LR                  (b) Bicubic                           (c) FSRCNN            

   

 (d) VDSR                          (e) LapSRN                         (f) Proposed            

Fig.8 Visual comparison of reconstructed results on real-world historical image by the baseline and proposed methods (scaling 

factor × 2). 

   

(a) LR                (b) Bicubic                          (c) SCN               
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 (d) FSRCNN                        (e) VDSR                            (f) Proposed           

Fig.9 Visual comparison of reconstructed results on real-world historical image by the baseline and proposed methods (scaling 

factor × 3). 

   

(a) LR                (b) Bicubic                       (c) FSRCNN             

   

(d) VDSR                          (e) LapSRN                        (f) Proposed           

Fig.10 Visual comparison of reconstructed results on real-world historical image by the baseline and proposed methods (scaling 

factor × 4). 

 

Fig.11 Average execution time versus PSNR between the proposed and baseline methods. The results are evaluated on all the images 

in Set14 with the scaling factor of 4. Our method provides the best quality in comparison with other state-of-the-art SR methods and 

preserves the execution time of SelfExSR, SCN, and DRCN. 
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Table 1 Average PSNR and SSIM results of reconstructed HR images by the proposed method and our network with the random 

initialization method (scaling factor × 3). 

Datasets 

 Random initialization Proposed  

PSNR SSIM PSNR SSIM 

Set5 34.01 0.9365 34.22 0.9431 

Set14 29.98 0.8352 30.16 0.8374 

 

Table 2 Trade-off between performance and average execution time for the different number of pyramid level in the proposed network. 

(scaling factor × 3). 

𝑳 

Set5 Set14 

PSNR                Second PSNR                Second 

1 32.88 0.1820 29.40 0.4616 

2 33.36 0.4047 29.64 0.9822 

3 33.61 0.4354 29.76 1.0462 

4 33.88 0.4911 29.89 1.1596 

5 33.97 0.5672 29.93 1.4396 

 

Table 3 Trade-off between performance and average execution time for the different number of inception-residual block on each 

pyramid level of the proposed network (scaling factor × 3). 

𝒅 

Set5 Set14 

PSNR                Second PSNR                Second 

1 33.88 0.4911 29.89 1.1596 

2 34.13 0.7317 30.07 1.7422 

3 34.22 0.9625 30.16 2.2726 

4 34.29 1.2381 30.19 2.7915 

 

Table 4 Average PSNR and SSIM for scaling factor ×2 on datasets set5, set14, urban100, manga109 and bsd100 among different 

methods. 

Methods Scale 
Set5 Set14 BSD100 Urban100 Manga109 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

Bicubic ×2 33.65/0.929 30.34/0.868 29.56/0.843 26.88/0.841 30.84/0.935 

FSRCNN ×2 36.99/0.955 32.73/0.909 31.51/0.891 29.87/0.901 36.62/0.971 

SelfExSR ×2 36.49/0.954 32.44/0.906 31.18/0.886 29.54/0.897 35.78/0.968 

SCN ×2 36.52/0.953 32.42/0.904 31.24/0.884 29.50/0.896 35.47/0.966 

VDSR ×2 37.53/0.958 32.97/0.913 31.90/0.896 30.77/0.914 37.16/0.974 

DRCN ×2 37.63/0.959 32.98/0.913 31.85/0.894 30.76/0.913 37.57/0.973 

LapSRN ×2 37.52/0.959 33.08/0.913 31.80/0.895 30.41/0.910 37.27/0.974 

Proposed ×2 37.83/0.969 33.18/0.924 32.01/0.902 30.86/0.919 37.71/0.986 
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Table 5 Average PSNR and SSIM for scaling factor ×3 on datasets set5, set14, urban100, manga109 and bsd100 among different 

methods. 

Methods Scale 
Set5 Set14 BSD100 Urban100 Manga109 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

Bicubic ×3 30.39/0.868 27.55/0.774 27.21/0.739 24.46/0.735 26.96/0.856 

FSRCNN ×3 32.71/0.907 29.23/0.821 28.52/0.790 26.42/0.807 31.12/0.920 

SelfExSR ×3 32.58/0.909 29.16/0.820 28.29/0.784 26.44/0.809 30.95/0.918 

SCN ×3 33.26/0.917 29.55/0.827 28.58/0.791 26.20/0.808 30.25/0.913 

VDSR ×3 33.66/0.921 29.77/0.831 28.82/0.798 27.14/0.828 32.01/0.933 

DRCN ×3 33.82/0.923 29.76/0.831 28.80/0.796 27.15/0.827 32.24/0.934 

LapSRN ×3 - - - - - 

Proposed ×3 34.22/0.943 30.16/0.847 29.21/0.816 27.58/0.832 32.61/0.949 

 

Table 6 Average PSNR and SSIM for scaling factor ×4 on datasets set5, set14, urban100, manga109 and bsd100 among different 

methods. 

Methods Scale 
Set5 Set14 BSD100 Urban100 Manga109 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

Bicubic ×4 28.42/0.810 26.10/0.704 25.96/0.669 23.15/0.659 24.92/0.789 

FSRCNN ×4 30.71/0.865 27.70/0.756 26.97/0.714 24.61/0.727 27.89/0.859 

SelfExSR ×4 30.33/0.861 27.54/0.756 26.84/0.712 24.82/0.740 27.82/0.865 

SCN ×4 30.39/0.862 27.48/0.751 26.87/0.710 24.52/0.725 27.39/0.856 

VDSR ×4 31.35/0.882 28.03/0.770 27.29/0.726 25.18/0.753 28.82/0.886 

DRCN ×4 31.53/0.884 28.04/0.770 27.24/0.724 25.14/0.752 28.97/0.886 

LapSRN ×4 31.54/0.885 28.19/0.772 27.32/0.728 25.21/0.756 29.09/0.890 

Proposed ×4 31.94/0.902 28.49/0.791 27.70/0.748 25.61/0.776 29.49/0.902 

 

 


