
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 5, MAY 2020 1557

Neural Network-Based Information Transfer
for Dynamic Optimization

Xiao-Fang Liu , Student Member, IEEE, Zhi-Hui Zhan , Senior Member, IEEE, Tian-Long Gu,

Sam Kwong , Fellow, IEEE, Zhenyu Lu, Henry Been-Lirn Duh, and Jun Zhang , Fellow, IEEE

Abstract— In dynamic optimization problems (DOPs), as the
environment changes through time, the optima also dynami-
cally change. How to adapt to the dynamic environment and
quickly find the optima in all environments is a challenging
issue in solving DOPs. Usually, a new environment is strongly
relevant to its previous environment. If we know how it
changes from the previous environment to the new one, then
we can transfer the information of the previous environment,
e.g., past solutions, to get new promising information of the
new environment, e.g., new high-quality solutions. Thus, in this
paper, we propose a neural network (NN)-based information
transfer method, named NNIT, to learn the transfer model of
environment changes by NN and then use the learned model to
reuse the past solutions. When the environment changes, NNIT
first collects the solutions from both the previous environment
and the new environment and then uses an NN to learn the
transfer model from these solutions. After that, the NN is used
to transfer the past solutions to new promising solutions for
assisting the optimization in the new environment. The proposed
NNIT can be incorporated into population-based evolutionary
algorithms (EAs) to solve DOPs. Several typical state-of-the-
art EAs for DOPs are selected for comprehensive study and
evaluated using the widely used moving peaks benchmark. The
experimental results show that the proposed NNIT is promising
and can accelerate algorithm convergence.

Manuscript received August 28, 2018; revised March 12, 2019 and
May 28, 2019; accepted May 28, 2019. Date of publication July 19,
2019; date of current version May 1, 2020. This work was supported in
part by the Outstanding Youth Science Foundation under Grant 61822602,
in part by the National Natural Science Foundations of China (NSFC)
under Grant 61772207, Grant 61873097, and Grant 61773220, in part by
the Natural Science Foundations of Guangdong Province for Distinguished
Young Scholars under Grant 2014A030306038, in part by the Guangdong
Natural Science Foundation Research Team under Grant 2018B030312003,
in part by the Guangdong-Hong Kong Joint Innovation Platform under Grant
2018B050502006, and in part by the Hong Kong GRF-RGC General Research
Fund 9042489 (CityU 11206317). (Corresponding authors: Zhi-Hui Zhan;
Jun Zhang.)

X.-F. Liu is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510006, China.

Z.-H. Zhan is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510006, China, and also with the
State Key Laboratory of Subtropical Building Science, South China University
of Technology, Guangzhou 510006, China (e-mail: zhanapollo@163.com).

T.-L. Gu is with the School of Computer Science and Engineering, Guilin
University of Electronic Technology, Guilin 541004, China.

S. Kwong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

Z. Lu is with the School of Electronic and Information Engineering, Nanjing
University of Information Science and Technology, Nanjing 210044, China.

H. B.-L. Duh is with the Department of Computer Science and Information
Technology, La Trobe University, Melbourne, VIC 3086, Australia.

J. Zhang is with the College of Engineering and Science, Institute for
Sustainable Industries and Liveable Cities, Victoria University, Melbourne,
VIC 8001, Australia (e-mail: junzhang@ieee.org).

Digital Object Identifier 10.1109/TNNLS.2019.2920887

Index Terms— Dynamic optimization problem (DOP), infor-
mation transfer, neural network (NN).

I. INTRODUCTION

MANY real-world problems have uncertainties in objec-
tive functions, environmental parameters, constraints,

or problem representation, resulting in the dynamic change of
the optima through time [1]–[4]. These problems are called
dynamic optimization problems (DOPs). Although evolution-
ary algorithms (EAs) have successfully solved many stationary
problems [5]–[8], they still face challenges in solving DOPs
due to their convergence nature. A converged population has
lost exploration ability and is difficult to adapt to a new
environment [9], [10]. Restarting the algorithm may be simple
but not effective since it completely discards the optimization
efforts in past environments. Usually, a new environment is
strongly relevant to its previous environment, and thereby,
the large number of solutions, especially the good solutions,
obtained from the previous environment may be useful in
the new environment. Therefore, the reuse of past solutions
becomes a great potential to accelerate convergence toward
the new optima in new environments.

In the literature, some efforts have been made to reuse past
information for DOPs. They can be loosely categorized as
three types, memory scheme [11], prediction model [12], [13],
and transfer learning method [14]. Among them, memory
scheme stores good solutions in memory and reintroduces
special solutions into the population when necessary [11].
Instead, the prediction model uses the past solutions
comprehensively and extracts the change pattern of the
optima in past environments for predicting the new optima in
new environments [15], [16]. This may be helpful if the change
pattern is stable. However, in many real-world applications,
the environment usually changes stochastically [14], and
hence, the prediction model may be not applicable. To adapt
to any change pattern, transfer learning methods directly
consider the difference between a new environment and its
previous one so as to construct a transfer model to relocate
the past solutions for the new environment [14].

Recently, transfer learning methods have gained increasing
attention. For example, a recent work of transfer learning in
objective space adopts domain adaptation methods to transfer
the past optimal objective values to their new values in new
environments [14]. However, to the best of our knowledge,

2162-237X © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0862-0514
https://orcid.org/0000-0001-7484-7261
https://orcid.org/0000-0001-7835-9871
https://orcid.org/0000-0002-8137-4201

1558 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 5, MAY 2020

Fig. 1. Example of solution movements based on rankings in two successive
environments. The solid dots and hollow dots are the sampled solutions in
the previous environment and the new environment, respectively. rk represents
that the solution ranks kth in the corresponding environment.

there are still very few works that directly learn environment
changes and transfer information in search space. Thus, how to
learn the environment change from the already known data and
further utilize the obtained environment change to transfer past
solutions to new solutions is still important and challenging.

Indeed, in a new environment, as the fitness function
changes, the rankings of solutions also change. Conversely,
given a certain ranking, the corresponding solution moves
to a different position in the new environment, e.g., the
best solution moves to a new position, as shown in Fig. 1.
Considering the solutions with the same rankings in two
successive environments, the environment change presents
as the movements of the solutions from a fixed ranking’s
angle. Hence, the environment change can be expressed as
a transfer function that maps the solutions in an old (pre-
vious) environment to the solutions in a new environment.
Thus, to learn the environment change, we can treat it in
two steps: solution pairing between the two environments
and function approximation for these solution mapping pairs.
Because neural network (NN) theoretically is able to discover
the functions among the given data to any degree of accu-
racy [17]–[21], in this paper, we propose to adopt the NN
to learn the transfer function of environment changes and
then use it to reuse past solutions. NN is selected rather than
others such as traditional statistical regression methods since
NN is a universal approximator and does not require the data
to conform to some assumptions, such as linear relationship.
Moreover, NN has strong robustness and fault tolerance. Since
the relationship of data is unknown and there are noises in
the data, NN is a good choice for transfer model learning.
Following this idea, an NN-based information transfer method,
named NNIT, is developed. In NNIT, we collect the solutions
from both the previous and the new environments and then
pair these solutions to construct data for NN training. After
the NN has been trained, the good solutions in the previous
environment are reused to obtain new solutions. Practically,
the proposed NNIT can be incorporated into any EA to solve
DOPs. To test the effect of the NNIT, several typical state-
of-the-art algorithms are selected to work with the NNIT and
the resultant algorithms are evaluated on 28 instances of the
widely used moving peaks benchmark (MPB). The experimen-
tal results show that the proposed NNIT method is promising.

The rest of this paper is organized as follows. In Section II,
we present a review of the studies on DOPs and give a brief
introduction of NN. In Section III, we outline our proposed

NNIT procedure in detail. Section IV further discusses the
behavior of NNIT. The experimental studies are shown in
Section V. Finally, the conclusion is drawn in Section VI.

II. BACKGROUND

A. Related Work of DOPs

As mentioned earlier, traditional EAs face challenges on
DOPs due to the loss of population diversity in dynamic envi-
ronments. In addition, the plentiful information of past
environments may be useful for the optimization of new
environments. Therefore, in the literature, the work of DOPs
mainly focuses on diversity increase and information reuse.
They can be classified into five types: diversity maintenance,
multipopulation method, memory scheme, prediction model,
and transfer learning method.

1) Diversity Maintenance: To handle the diversity loss of
the population in new environments, there are two common
ways: increasing population diversity once the environment
changes or maintaining population diversity all the time. First,
to increase diversity when the environment changes, some
researchers propose restarting techniques that reinitialize some
part of or the whole population. For example, Yang [22] and
Yang and Li [23] proposed to use one newly generated popula-
tion to search new areas; Woldesenbet and Yen [24] relocated
solutions according to the rough relationship between fitness
changes and variable sensitivities obtained in the previous
environments. Second, different methods have been developed
to maintain population diversity along the whole evolutionary
process. For example, diversity is continuously evaluated and
will be increased if it decreases below the predefined threshold
[25]; charged particle [26], composition particle [27], and grid
topology [28] are developed to maintain the local diversity of
the swarm; particles are migrated among swarms according to
repulsive diversity [29].

2) Multipopulation Method: To track the multiple mov-
ing peaks, a multipopulation method is proposed. A parent
population is in charge of exploring new peaks and child
populations are splitting from the parent population to exploit
the found peaks [30], [31]. Instead of the splitting idea, the
populations can also be created by the division of a large
population and different populations exploit different areas.
To divide a large population, different techniques, such as
speciation-based methods [32], niching by dot product of the
individuals [33], and clustering methods [23], [34], [35], can
be adopted. Additionally, these methods require to determine
the number of populations to create. To adapt the number of
populations to dynamic environments, multiple control strate-
gies are developed based on historical experience and heuristic
information [36], [37]. Some researchers also proposed to
generate a fixed number of populations at the beginning and
create new populations afterward if necessary [38], [39].

3) Memory Scheme: Memory scheme stores the solutions
implicitly in redundant individuals [40] or explicitly in an
external archive [41] and reuses them later if necessary.
Explicit memory is commonly used. It considers two parts:
solution selection for storage and solution reuse. Solutions are
periodically chosen based on their fitness values, age, and

LIU et al.: NN-BASED INFORMATION TRANSFER FOR DYNAMIC OPTIMIZATION 1559

diversity [42], [43]. The selected solutions can be directly
stored as special independent solutions [42] or used to
construct a probability model [11]. When the environment
changes, the solutions can be reintroduced into the popu-
lation [44]–[46] or used for local search to find promising
solutions [47]. Even during the evolutionary process in an
environment, the solutions can also be used to increase popu-
lation diversity [48].

4) Prediction Model: Since the consecutive environments
are often correlative, the change pattern of the environment
can be extracted from the past information to predict new
changes. For example, Rossi et al. [15] adopted the Kalman
to model the movement of the optima and predict the possible
optima in new environments. Similarly, Simões and Costa
[16] used linear regression to estimate the time of the next
environment change and adopted Markov chains to predict new
optima according to the optima found in past environments.
Likewise, Zhou et al. [49] employed the center points of
Pareto sets in past environments as data and adopted regression
model to simulate the change pattern of the center points.
These methods have shown that the extracted knowledge
from past environments can provide effective guidance for the
optimization of new environments.

5) Transfer Learning Method: Considering the correlation
and difference between the previous environment and the
new one, a transfer learning method uses the data from
these two environments to directly construct a transfer model
of solutions/fitness. Based on the idea that the solutions of
different environments are often in different distributions,
Jiang et al. [14] proposed to adopt the transfer component
analysis technique to construct a transfer model in objective
space and then transferred the optimal objective values in past
environments to new values in new environments. However,
this paper only models the change in objective space and
requires an additional optimization method to obtain the
corresponding solutions in the search space. It is still at issue
to directly transfer information in search space.

B. Neural Network

NN is a simple abstraction of biological NN that stores
function in the neurons and in the connections between
them [50]. It learns to perform useful functions by training on
data. Particularly, a multilayer feedforward NN is a universal
approximator and is adopted in this paper. Mathematically,
the NN is a function that maps a domain RD to another domain
RN , where D and N are the numbers of dimensions of the
domains [51]. When perceiving environment changes, it inputs
the solutions from the previous environment and outputs the
solutions from the new environment. The basic structure of
NN is shown in Fig. 2. It includes multiple layers each with
multiple neurons and connections between them. The leftmost
layer uses the input vector as an input and is named the input
layer, the rightmost layer whose output is the NN output is
named the output layer, and the other layers are called hidden
layers. In the hidden layers and output layer, each neuron has a
bias b and an activation function ϕ. Each connection between
the neurons has a weight w.

Fig. 2. Basic structure of NN.

Given an input p = [p1, . . . , pD], the output of the kth
neuron in the input layer is as

a0,k = pk (1)

The output of the input layer becomes the input of the
following layer. For the kth neuron in the following layer i
(i ≥ 1), the weighted inputs are summed with the bias and
then are transferred by activation function ϕ to form the net
output ai,k as

ai,k = ϕ

⎛
⎝�

j

wi−1, j,i,k ai−1, j + bi,k

⎞
⎠ (2)

where wi−1, j,i,k is the weight of the connection between the
j th neuron of layer i − 1 and the kth neuron of layer i , bi,k

is the bias of the kth neuron of layer i , and the activation
function ϕ can be any linear or nonlinear function chosen
according to the problem to solve. The output of the output
layer M becomes the network output a = [a1, . . . , aN] as

ak = aM,k (3)

Before being a qualified approximator, the NN needs to
go through a full training on the given data to get the
optimal parameters. Generally, the data for NN training, called
training set, often include multiple training samples each
having an input vector and a target output. The most popular
back-propagation techniques are commonly used to train the
NN. After training, the NN has learned the function and can
predict new data.

III. NEURAL NETWORK-BASED INFORMATION TRANSFER

FOR DYNAMIC OPTIMIZATION

In this section, the motivations of developing the NNIT are
first introduced, followed by the complete procedure of the
NNIT. Then, the details of the NNIT are presented, including
the transfer function learning by NN and the information reuse
by NN.

A. Motivations of NNIT

The first motivation of the NNIT is the strong correlation
between a new environment and its previous one. Given
abundant solutions obtained in the previous environment,
once we know how the new environment is changed from
the previous one, we can relocate these solutions to obtain
promising solutions in the new environment. Thus, learning

1560 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 5, MAY 2020

Fig. 3. Example of environment change. The function is f (t1) = F(x) at
time t 1 and is changed to f (t) = F(x + v) at time t. The solid dots and black
star are the solutions found at time t 1, while the hollow dots are the known
solutions at time t. The dotted lines with arrow represent the movements of
the solutions from time t 1 to time t, which can be used to learn the transfer
model of the environment change, i.e., the solid line with arrow connected
the two stars means that x is moved to x−v in the new environment t .

the transfer function of the environment change can help
accelerate convergence in new environments. An example is
shown in Fig. 3, where the objective function f (t −1) = F(x)
is changed to f (t) = F(x + v) at time t . To relocate the
past solutions, we need to discover the transfer function of
the environment change x’ = x-v, where x is a solution in
the previous environment and x’ is the corresponding position
that x is moved to in the new environment.

The second motivation of the NNIT is that NN has strong
function approximation and generalization ability. On the one
hand, the environment change may be complex and cannot be
exactly formulated. On the other hand, the data observed in
the two environments are incomplete and often have noise.
Hence, it is hard to construct an accurate mathematical model
to represent the environment change. However, the NN can be
taught to recognize the function among data with noise and
used to learn the transfer function of the environment change.

Therefore, this paper aims to develop the NNIT to perceive
environment changes and reuse past information, for faster
convergence of the optimization in new environments.

B. NNIT

When the environment changes, the NNIT is performed.
In NNIT, NN first perceives the change between the new
environment and the previous one and then reuses the past
solutions to generate promising solutions to assist the opti-
mization of the new environment. The complete procedure is
shown in Fig. 4. First, solutions are collected from the previous
and the new environments. Second, the solutions of the two
environments are paired to construct data. Third, the NN is
designed and trained to learn the transfer function of the envi-
ronment change. Fourth, the trained NN reuses the solutions
in the previous environment to generate new solutions. Finally,
the new solutions are added to the population to assist EAs.
The details of the NNIT will be described in Sections III-C
and III-D. Note that the new environment is also indicated as
the current environment in the following.

C. Transfer Function Learning by NN

Assume that the current environment is indexed
by i (i ≥ 2). The solutions are first collected from

Fig. 4. Flowchart of the proposed NNIT.

environments i −1 and i and then are paired to construct data.
The data will next be used by NN to learn the environment
change.

1) Collect Solutions from the Previous and Current Envi-
ronments: Assume that all the solutions found in the previous
environment i −1 (i.e., all the solutions in all the generations)
are stored in set Si−1. To preprocess these large numbers of
solutions, they are divided into multiple clusters such that each
cluster contains the solutions of a special subarea. For this
purpose, we first denote some local optimal solutions (will
be described later) to act as cluster seeds and form a set
Li−1 = {B1

i−1, . . . , B M
i−1}, where M is the number of clusters.

Next, each solution in Si−1 finds the nearest cluster seed based
on the Euclidean distance and then joins the corresponding
cluster. Finally, M clusters C1

i−1, . . . , C M
i−1 are formed. The

procedure is presented in Algorithm 1. Note that, when
incorporating NNIT into a multipopulation EA, since each
subpopulation searches a special subarea, the best solutions in
all the subpopulations are directly used to form Li−1. Herein,
the number of clusters M is the same as the number of local
optimal solutions. Likewise, when incorporating NNIT into a
single-population EA, the solutions of the final population can
be clustered first, and then, the best solutions in all clusters
are collected into Li−1 or the final population directly forms
the Li−1.

Algorithm 1 Clustering Procedure for the Collected
Solutions (S, L)

Input: solution set S = {x1, . . . , xN }, cluster seeds L =
{B1, . . . , B M }
Output: clusters C1, . . . , C M

Begin
1. For each cluster C j Do
2. C j = �
3. End for
4. For each solution xa ∈ S Do
5. find the nearest cluster seed Bk in L based on

Euclidean distance
6. Ck = Ck∪xa

7. End for
End

For the current environment i , the solutions of the initial
population (i.e., the first generation) are stored in set Ii .

LIU et al.: NN-BASED INFORMATION TRANSFER FOR DYNAMIC OPTIMIZATION 1561

Fig. 5. Example of solution pairing in a DOP with three peaks (subareas).
The solid dots are the solutions that form clusters C1

i−1, C2
i−1, and C3

i−1 of

environment i-1, and hollow dots are the solutions that form clusters C1
i , C2

i ,
and C3

i of environment i .

Since the new local optima of environment i are unknown
but may be likely near to the local optima of the previous
environment i − 1, the cluster seeds in Li−1 of the previous
environment are adopted. Using these cluster seeds, clustering
procedure Algorithm 1 is performed on Ii to get M clusters
C1

i , . . . , C M
i . The obtained clusters represent the solutions

found in each subarea.
2) Pair Solutions Between the Two Environments: As dis-

cussed earlier, the environment change presents as the move-
ments of the solutions. Hence, the next step is to pair the
solutions between the two environments to represent the
movements of the solutions. These solution pairs will form
multiple training samples each having an input vector of
one solution from the previous environment i -1 and a target
of its corresponding solution that has been moved to in
environment i .

To reduce the difficulty of solution pairing, we pair solutions
in each subarea. As the clusters in environments i − 1 and
i (e.g., C1

i−1 and C1
i) are formed by the same cluster seed,

they are likely in the same subarea before and after change.
Therefore, we pair solutions between the clusters formed by
the same cluster seed from the two environments. An example
is illustrated for a DOP with three peaks in Fig. 5. The
solutions in C1

i are paired with those in C1
i−1. Similarly, the

solutions in C2
i and C3

i are paired with those in C2
i−1 and

C3
i−1, respectively.

Then, given two clusters C j
i and C j

i−1 (1 ≤ j ≤ M), how
to pair the solutions in them? Since the fitness function may
be scaled, fitness values are not reliable to determine whether
two solutions are the ones before and after change/movement.
Indeed, it is the sameness of their rankings in the subareas
that says the movement relationship. However, since only
limited solutions are known in the subareas (i.e., the cluster
only includes some parts of the solutions in the subarea),
the rankings of the solutions in the clusters are not consistent
with their real rankings among all the solutions in the whole
subareas. Thus, in this paper, we propose to use fitness
normalization to reflect their relative rankings in subareas and
then pair solutions by the similarity of their normalized fitness.

First, we take the fitness values of the local optimum and
the available worst solution in the subarea as lower and upper
boundaries to normalize the fitness of each solution. For the
two clusters C j

i and C j
i−1, the solutions are sorted based on

their fitness values, and the minimum and maximum fitness

values are recorded as f j
i,min and f j

i,max for cluster C j
i and

as f j
i−1,min and f j

i−1,max for cluster C j
i−1. Especially, in a

maximization problem, for the cluster C j
i of environment i ,

since the new local optimum has not been found and only a
few solutions are known, the minimum and maximum fitness
values among them are not equal to those for the subarea and
hence are scaled as

f j
i,min = min

�
f j
i,min, f j

i−1,min

�
, ∀1 ≤ j ≤ M (4)

f j
i,max = f j

i,max + 	
f j
i,max − f j

i,min

 × F, ∀1 ≤ j ≤ M (5)

where F is a scale factor that controls the extension of the
upper bound since it should be larger than the maximum value
found in the cluster. Similarly, the minimum value in the sub-
area must not be larger than the minimum fitness value in the
cluster and may be closed to that in the previous environment.
Note that the situation is similar to a minimization problem.
After that, the fitness value of each solution x in the clusters
is normalized by

fn(x) = f (x) − f j
l, min

f j
l, max − f j

l, min

, ∀x ∈ C j
l , 1≤ j ≤ M, l = i −1 ∨ i

(6)

where f (x) is the fitness value of a solution x and fn(x) is its
normalized fitness value.

Later, each solution q in cluster C j
i of environment i selects

the solution p with the closest normalized fitness value to itself
from the cluster C j

i−1 of environment i -1 for pairing by

p = arg min
x∈C j

i−1

| fn(x) − fn(q)| (7)

and then, this solution pair forms a training sample (p, q),
where p is an input and q is the target output. Note that,
for the training samples constructed from the same cluster,
their inputs will keep the same relative rankings as their
outputs. Finally, the training samples form a training set T =
{(p1,q1), . . . , (p|T |, q|T |)} for learning the transfer function,
where |T | is the number of training samples. The procedure
is described in Algorithm 2.

3) Design NN Structure: With the training set, NN is then
used to learn the transfer function of the environment change
between environments i -1 and i . For this purpose, we need to
choose appropriate network architecture, i.e., number of layers,
number of neurons, and activation function. Assume that the
number of dimensions of decision space is D, and then, there
will be D elements in the input and target output. Herein,
we use D 3-layer networks each for a different dimension of
the target output. Each NN has one input layer with D neurons,
one hidden layer, and one output layer with one neuron. In this
way, each NN not only has lower complexity compared with
one single NN with D output elements but also can be trained
in parallel to reduce training time. For a training sample in
T, all the D NNs take the input vector as the input, and
then, the outputs of the D NNs will form a complete output
vector. The number of neurons in the hidden layer Shidden is

1562 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 5, MAY 2020

Algorithm 2 Solution Pairing Procedure

Input: clusters C1
i−1, . . . , C M

i−1 of environment i − 1
and clusters C1

i , . . . , C M
i of environment i

Output: Training set T
Begin
1. T = �
2. For j = 1 to M Do
3. If C j

i−1 �= � ∧ C j
i �= �

4. Sort C j
i−1 from worst to best and record f j

i−1,min

and f j
i−1,max

5. Sort C j
i from worst to best and record f j

i,min

and f j
i,max

6. Update f j
i,min and

f j
i,max using Eq. (4) and (5)

7. Normalize the fitness of the solutions in C j
i−1 and

C j
i by Eq. (6)

8. k = 0, v = 0
9. For each q∈ C j

i Do
10. If |C j

i−1|<|C j
i |

11. l = 1, r = |C j
i−1|

12. Else
13. l = v + 1, r = |C j

i−1| - |C j
i | + k + 1

14. End if
15. p = arg minxa∈C j

i−1∧l≤a≤r
| fn(q) − fn(xa)|

16. v = the index of p in C j
i−1

17. T = T∪{(p, q)}
18. k = k+ 1
19. End for
20. End if
21.End for
End

determined following the suggestion in [52] by

S hidden = max

�
|T|	

S input + S ourput

 × 10

, 1

�
(8)

where |T | is the number of training samples in training
set T, and Sinput = D and Soutput = 1 are the number of
neurons in input and output layers, respectively. The activation
function ϕ for the neurons in the hidden layer is a tan-sigmoid
function [52] as

ϕ(x) = ex − e−x

ex + e−x
(9)

and ϕ for the neurons in the output layer is a linear
function [52] as

ϕ(x) = x (10)

4) Train NN: Before training, the training set of each NN
is first constructed. For the dth NN, its training set Td has
the same inputs as the training set T but only takes the dth
dimension of the target outputs of T as target outputs. The
performance indicator for the network training (training error)

is the mean-squared error over the output targets in the training
set Td

E = 1

Q

Q�
q=1

eT
q eq = 1

Q

Q�
q=1

(tq − aq)T (tq − aq) (11)

where Q is the number of samples in the training set, eq is
the error for the qth input/target pair, tq is the target output
for the qth input, and aq is the network output for the qth
input.

Each NN adopts the typical Levenberg–Marquardt algo-
rithm [53] with 30 iterations for training. The Levenberg–
Marquardt algorithm is adopted since it can quickly find
good parameters [52]. This can reduce training time, being
promising for dynamic optimization.

D. Information Reuse by NN

1) Generate New Solutions: Once the NN has finished
training, it has learned and stored the transfer function of
the environment change in itself. The NN can relocate the
solutions found in the previous environment to obtain new
solutions. Herein, we take the best solution found in each
subarea (stored in Li−1) as NN inputs and use the NN outputs
to form new solutions.

2) Add New Solutions Into Population: The obtained new
solutions can be added to the initial population of EA. Espe-
cially, if the NNIT is incorporated into a single-population
EA, the new solutions are added to the population directly.
However, when incorporating NNIT into a multipopulation
EA, each solution calculates its distances to the best solution
in each subpopulation and then selects the closest subpop-
ulation to add. After a solution has been added, no matter
the EA is a single-population or a multipopulation algo-
rithm, the population size control mechanism of the EA
is performed. Note that if there is no any population size
control strategy in the EA, then the worst individual in the
population is deleted to avoid a rapid increase in population
size.

IV. DISCUSSION OF NNIT

In this section, we discuss the scale factor F and NN
structure in the proposed NNIT. In order to analyze NNIT’s
ability of learning transfer function, we adopt the famous and
widely used MPB [43] as the test example and implement the
NNIT using the data constructed from the MPB instances.

A. Test Problem

The MPB [43] has multiple peaks, and the height,
width, and position of each peak dynamically change every
time the environment changes. The function is defined
as

F(x, t) = max
i=1,.,P

Hi(t)

1 + Wi (t)
D

j=1(x j (t) − Xij (t))2
(12)

where x= [x1, . . . , xD] is a vector in the D-dimensional search
space, P is the number of peaks, and Hi(t) and Wi (t) are the

LIU et al.: NN-BASED INFORMATION TRANSFER FOR DYNAMIC OPTIMIZATION 1563

TABLE I

SPECIATION OF MPB

height and width of the i th peak at time t , respectively, and
are changed by a random Gaussian variable σ as

Hi(t) = Hi(t − 1) + sH × σ (13)

Wi (t) = Wi (t − 1) + SW × σ (14)

σ = Gaussian(0, 1) (15)

where sH and sW are the severity parameters of the height
and width, respectively, and Xi (t) = [Xi1, . . . , Xi D] is the
position of the i th peak and is shifted with a random vector v
of length sX as

Xi (t) = Xi (t − 1) + vi (t) (16)

vi (t) = sX

|(1−λ)×r+λ × vi (t−1)|((1−λ)×r+λ×vi(t − 1))

(17)

where r is a random vector, and λ is the correlated parameter
and is set as 0, representing that the peak movements of
different environments are uncorrelated. The shift length sX

controls the change severity of the environment. The speciation
setting of the MPB problem is listed in Table I. Multiple MPB
instances can be constructed by setting the number of peaks
(P) and shift length (sX) as different values.

In this section, we construct ten MPB instances for test,
where the number of peaks P is set as 10, 30, 50, 150, and 200,
and the shift length sX is set as 2 and 5 following [37]. The
change frequency is set as 5000 in all instances, which means
that the maximum function evaluation (FE) time is 5000 in
each environment.

B. NNIT Implementation Using Sampled Data of MPB

To give a comprehensive analysis, we do not integrate the
NNIT with a special algorithm to get data but construct data
according to the problem instances. In each MPB instance,
each peak is considered as a subarea and its position is a local
optimum. The local optima are collected in Li for environment
i . For each environment i (i ≥ 2), we construct two solution
sets Si−1 and Ii as follows.

1) Set Si−1 of the Previous Environment: Since Si−1 col-
lects the solutions found by EA in the previous environment
i -1, it is constructed before the environment change. Accord-
ing to the gradually convergence behavior of EA, Si−1 must

include four parts: initial random solutions (rs) in the whole
search space, the past local optima of its last environment
i -2 (plo), multiple solutions with different distances to each
peak (ps), and the local optima found (clo) for each peak
(solutions in Li−1). Particularly, rs and plo simulate the initial
population, while clo and ps simulate the evolutionary process
of the EA toward the local optima. Especially, ps is the
position randomly distributed around each peak in different
radii and they are constructed as follows. First, we define a
maximum radius rk of each peak k. We calculate the Euclidean
distances d between any two peaks in environment i -1, and
each peak k finds its closest peak and defines the half of
their distance as rk . Second, the number of solutions n for
each peak is defined. Assume that the change frequency of
the problem is u, and then, n = (u – nrs – nplo – nclo)/P ,
where nrs = 100, nplo = P , and ncol = P are the number
of the solutions of the other three parts. Finally, we define n
values in the range of (0, rk] with a step size of rk /n and then
randomly generate n positions with these distances to each
peak.

2) Set Ii for the Current Environment i: Ii often includes
the initial population that is worse than the new optima in
environment i . We construct it with two parts: the past local
optima in Li−1 and four solutions around each peak. For each
peak, we first select four positions, which are more than sX

away from the old peak position, sequentially from ps in Si−1
and then take their moved positions in environment i as the
four solutions. Thus, all the solutions are more than sX away
from the new local optima.

After that, the two solution sets Si−1 and Ii are clus-
tered according to Algorithm 1 using the positions in Li−1
as clustering seeds, and then, we construct a training set
T = {(p1, q1), . . . , (pQ , qQ)} according to Algorithm 2,
where Q is the size of T. Additionally, to test the predic-
tion ability of the NNs, a test set is constructed as U =
{(p1, t1), . . . , (pq , tq), . . . , (pV , tV)}, where pq is a position
from Li−1, tq is the corresponding moving position from
Li , and V is the size of set U. Next, we determine the
number of neurons of hidden layers of the D NNs and
train the NNs. Later, we use the NNs to predict the test
set.

To evaluate the perception ability of the NNIT, we adopt two
indicators: training error ET and prediction error E P over all
environments as

ET = 1

C − 1

C�
i=2

⎛
⎝ 1

Q

Q�
q=1

eq

⎞
⎠ (18)

E P = 1

C − 1

C�
i=2

⎛
⎝ 1

V

V�
q=1

eq

⎞
⎠ (19)

eq = ((tq − aq)T(tq − aq))1/2 (20)

where aq is the NN output and tq is the target output for
an input pq . In addition, the estimation error E f of the
optimal objective value (fitness of the local optimum) in (5)

1564 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 5, MAY 2020

TABLE II

PERFORMANCE OF NNIT WITH DIFFERENT SCALE FACTOR F IN TERMS OF ESTIMATION ERROR OF THE OPTIMAL OBJECTIVE VALUE E f , TRAINING
ERROR ET , PREDICTION ERROR EP , AND TRAINING TIME

is calculated as

E f = 1

C − 1

C�
i=2

⎛
⎝ 1

P

P�
j=1

�� f j
i,max − f j

i,peak

��
⎞
⎠ (21)

where f j
i,max and f j

i,peak are the estimated value and real fitness
value of the j th peak position in environment i , respectively.

C. Scale Factor F in NNIT

The scale factor F in (5) is used to estimate the opti-
mal objective values in new environments for normalization.
To investigate its effect, we test F in the range of [0, 0.125]
with a step size of 0.025. The performance is measured by
four indicators: estimation error of the optimal objective value
E f , training error ET , prediction error E P , and training time
(from solution collection to the finishing of NN training).

The results are reported in Table II. Since the training time
is mostly related to the size of the two solution sets, we only
report the time obtained by F = 0 as an example due to
space limit. We can see that when the size of the two data
sets Si−1 and Ii increases to 5000 and 1000, the required
time is still less than 23 s. Note that the experiments are
implemented in C++ language and ran on a computer with
Intel Core i7-7700 CPU (3.60 GHz), 8-GB memory, and
Ubuntu 16.04.2. Since the reported training time has included
the most expensive parts in NNIT, solution collection, solution
pairing, and NN training, it shows that the proposed NNIT
can perform in a reasonable time.

From Table II, we can see that different F values have
different performances on different instances, and the value
of 0.05 generally performs well.

As for the estimation error E f in the normalization level,
we can see that a relatively medium value in the range of [0.05,
0.10] for F is better for few peaks (10 and 30 peaks) and small
shift length (sX = 2), while a large value 0.125 is preferred
for a large number of peaks (50, 150, and 200 peaks) and large
shift length (sX = 5). This is because when the environment
drastically changes, the solutions are farther away from the
new optima and, hence, the error of the known maximum value
to the real optimum objective is larger, and thereby, larger F
can scale better. On the contrary, a relatively medium value
can scale well on the instances with small fluctuation.

For the training error ET and prediction error E P , it is
interesting to find that, as F increases, ET decreases on 10
peaks but increases on 50, 150, and 200 peaks. However,
E P presents different changing trends. As F increases, E P

increases on 10 peaks; decreases first but increases later on
30 and 50 peaks; while continuously decreasing on 150 and
200 peaks. Thus, to obtain good prediction ability, as the
number of peaks increases, the required F value increases.
However, since the medium value of 0.05 can get relatively
medium E P values on all the tested instances and E P even is
less than sX on seven out of ten instances, 0.05 is a promising
value for F .

Taking E f , ET , and E P together, we can see that the
changing trends of E f and ET may be not consistent with
the prediction error E P . The reason is on two sides. On the
one hand, E f only shows the error of the upper bound for
normalization, while the prediction error E P also depends on
the training set and NN training at a higher level. On the other
hand, there is noise in the data, and large ET but small E P are
preferred since they show that the NN has good generalization
to learn the environment change. Overall, E P comprehensively
shows NNIT’s perception ability for environment changes and
is the indicator that we most concern about.

In general, the value of 0.05 performs stable and can get
good performance on most instances. Therefore, we set the
scale factor F as 0.05 in the following experiments.

D. Comparisons of Different NN Structures in NNIT

In the NNIT, we use D three-layer NNs each for one
different output dimension. In this section, we compare the
adopted NNs with one single three-layer NN with D elements
in the output layer. Note that only the three-layer network
structure is used for comparisons since a simple three-layer
network can perform well. In the compared NN structures
using only one single NN, there are D elements in the input
layer and D elements in the output layer, and the number of
neurons in the hidden layer is set in the range of [1, 15].
They are tested on five problem instances, where the shift
length is set as 2 and the number of peaks is set as 10, 30, 50,
100, and 200. The training error ET , prediction error E P , and
training time are reported in Table III. It can be seen that all
the NN structures with only one single NN perform poorly,

LIU et al.: NN-BASED INFORMATION TRANSFER FOR DYNAMIC OPTIMIZATION 1565

TABLE III

PERFORMANCE OF NNIT WITH DIFFERENT NN STRUCTURES IN TERMS OF TRAINING ERROR ET , PREDICTION ERROR EP , AND TRAINING TIME

getting significantly worse training errors and prediction errors
than the D three-layer NNs. This may be due to that training
is more difficult when there are D elements in the output layer.
In contrast, the D three-layer NNs have only one element in
the output layer, leading to fewer parameters in each NN and
easier training when using the same number of neurons in
the hidden layer. The adopted D three-layer NNs can well
fit training sets with different sizes. The training time of
the adopted structures is acceptable and even can be further
reduced by training all the D NNs in parallel. In general,
the adopted NN structure with D three-layer NNs obtains the
smallest training errors and prediction errors in acceptable time
on all tested instances. Hence, the adopted NN structure can
be believed to be a good choice.

V. EXPERIMENTAL RESULTS AND

COMPARISON STUDIES

In this section, we present the experimental results of the
NNIT assisted EAs. They are compared with the original
EAs to observe the performance improvement brought by
NNIT. Five typical state-of-the-art algorithms based on par-
ticle swarm optimization (PSO) [54] and differential evo-
lution [55] are selected for comprehensive study, including
clustering PSO (CPSO) [23], CPSO without change detec-
tion (CPSOR) [25], adaptive multipopulation framework with
PSO (AMP/PSO) [37], cluster-based dynamic DE with exter-
nal archive (CDDE_Ar) [34], and dynamic DE with Brownian
and quantum individuals (DDEBQ) [56]. The experiments are
done on the well-known MPB. Multiple MPB instances are
constructed for test.

A. Algorithms for Study

The five algorithms adopt different techniques to deal with
the diversity loss in new environments. Among them, both of
CPSO [23] and CDDE_Ar [34] restart when the environment
changes and divide the population into multiple subpopulations
by clustering methods to track the moving optima. On the

contrary, CPSOR [25], AMP/PSO [37], and DDEBQ [56]
maintain population diversity along the whole evolutionary
process and do nothing when the environment changes. Partic-
ularly, CPSOR keeps detecting population diversity and adds
new individuals when diversity decreases below a predefined
threshold, and AMP/PSO adaptively updates the number of
subpopulations, while DDEBQ adopts aging mechanism and
quantum and Brownian individuals.

These EAs integrate with the NNIT to form CPSO-NNIT,
CPSOR-NNIT, AMP/PSO-NNIT, CDDE_Ar-NNIT, and
DDEBQ-NNIT. In the NNIT variants, the EA searches the
optima in each environment, while NNIT transfers past
information to assist the EA when the environment changes.
Once the environment changes, the initial population in CPSO
and CDDE_Ar is generated and the existing populations in
CPSOR, AMP/PSO, and DDEBQ are reevaluated. Then,
the NNIT procedure is performed to generate new solutions
and adds them to the initial population. In the NNIT
procedure, the solutions found in the previous environment
are collected as the set S, while the initial population of the
EA in the new environment is used as the set I . After that,
the population is evolved by EA to find the new optima.

B. Experimental Configuration

1) Parameter Settings: The parameters of each algorithm
are set following their original papers. The population size
for CPSO, AMP/PSO, CDDE_Ar, and DDEBQ is set as
100, 100, 80, and 60, respectively. Especially, in CPSOR,
the population size is set as 300 × (1-e−0.33×P0.5

) according
to the number of peaks. For the PSO parameters, the inertia
weight is set as 0.6 and 0.7298 in CPSOR [25] and AMP/PSO
[37], respectively, while it linearly decreases from 0.6 to 0.3 in
CPSO [23]; the acceleration coefficients c1 and c2 are set as
1.7 in CPSO and CPSOR, while they are set as 1.496 for
AMP/PSO. The DE operators (i.e., mutation and crossover)
are used in both of CDDE_Ar and DDEBQ. The crossover
rate is set as 0.9 for both. The scale factor is set as 0.5 in
CDDE_Ar [34], while it is adaptively updated in DDEBQ [56].

1566 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 5, MAY 2020

TABLE IV

RESULTS OF DIFFERENT ALGORITHMS ON MPB INSTANCES WITH A DIFFERENT NUMBER OF PEAKS

Noted that all these EAs are based on multiple populations,
therefore, the cluster number M is the same as the number
of local optima collected by the EAs and the population size
is controlled by their corresponding mechanisms.

2) Quality Indicators: To evaluate the performance of the
algorithms, we adopt two widely used quality indicators,
i.e., offline error Eo and best-before-change error EB . Both
of the two indicators are calculated based on the assumption
that the real optima of the problem in different environments
are known, that is, the error is calculated as the difference
between the found solutions and the real optima. Especially,
the offline error Eo is calculated based on the data during
the whole evolutionary process, while the best-before-change
error EB is calculated based on the final best solution of
each environment. Therefore, Eo is in fact an online indicator
to reflect the convergence speed of the algorithm to some
extent, while EB represents the global search ability of the
algorithm.

For Eo, we use the best solution in every two FEs along
the whole evolutionary process to calculate the average value
as

Eo = 1

C × num_sample

C�
i=1

num−sample�
j=1

Eij (22)

where C is the number of environments; num_sample
is the number of samples in each environment and it is
sampled every two FEs following [37]; and Eij is the error
of the best solution found at the j th sampling in the i th
environment.

For EB , we calculate the average error of the best solutions
found in all environments as

EB = 1

C

C�
i=1

EBest
i (23)

where EBest
i is the error of the best solution found at the

end of the i th environment. These two indicators give a
comprehensive evaluation on both of convergence speed and
solution quality.

In the experiments, all algorithms and their corresponding
NNIT variants independently run 20 times and the aver-
age results are reported. The better algorithm is marked in
bold. In addition, Wilcoxon’s signed rank test is performed
between the algorithms and their NNIT variants at a 0.05
significance level.

C. Experimental Results

To test the effect of the NNIT on a different number of peaks
and a different severity of environment changes, we perform
the comparison experiments on ten instances with a different
number of peaks and 18 instances with different shift lengths.

1) Results on Instances With a Different Number of Peaks:
The number of peaks is set as 10, 20, 30, 40, 50, 80, 100, 120,
150, and 200, and the shift length is fixed at 5. The results on
these instances are reported in Table IV.

From Table IV, we can see that all the NNIT variants can
get smaller Eo and EB values on most instances, showing
that NNIT can help EAs accelerate convergence and improve
solution quality on instances with a different number of peaks.
In detail, in terms of the Eo indicator, according to the signifi-
cance test, the NNIT variants perform significantly better than
CPSO, CPSOR, AMP/PSO, CDDE_Ar, and DDEBQ on 8,
10, 9, 4, and 5 out of 10 instances, respectively. This shows
that the NNIT can accelerate algorithm convergence on most
instances for the selected algorithms. As for the EB indicator
of solution quality, there is no significant difference on most
instances for all the algorithms. This is because the NNIT
only reuses the past solutions for convergence acceleration
but not exploring new areas. On the other hand, the NNIT
only provides the solutions for guidance, and the final solution
quality depends on the search ability of the EAs. Hence,

LIU et al.: NN-BASED INFORMATION TRANSFER FOR DYNAMIC OPTIMIZATION 1567

TABLE V

RESULTS OF DIFFERENT ALGORITHMS ON MPB WITH DIFFERENT VALUES OF SHIFT LENGTH

the NNIT variants may obtain a similar solution quality as
the original algorithms. Nevertheless, the NNIT variants can
still obtain significantly better EB values than CPSO, CPSOR,
AMP/PSO, and CDDE_Ar on 1, 6, 1, and 1 instances, while
none instances are worse. Thus, the NNIT helps EAs find good
solutions faster on most instances and allows it to use more
FEs for exploring new areas to get better solutions.

In general, the NNIT can reuse past solutions to speed up
the convergence of EAs in new environments.

2) Results on Instances With Different Shift Lengths: To test
the response ability of the proposed NNIT to different change
severity, the shift length is tested in the range of [1, 6] with a
step size of 1. The number of peaks is set as three values 10,
80, and 200, and thereby, totally, 18 instances are constructed
for testing. The results are reported in Table V.

From Table V, we can see that all the NNIT variants can
obtain smaller Eo and EB values than the corresponding orig-
inal algorithms on most of instances, showing that the NNIT
can strongly response to different change severity and can
accelerate algorithm convergence even improve solution qual-
ity. For example, on the instances with ten peaks, in terms of
Eo metric, the NNIT variants for CPSO, CPSOR, AMP/PSO,
CDDE_Ar, and DDEBQ can obtain significantly better values
than the original algorithms on 4, 5, 4, 2, and 2 out of 6
instances, respectively, while getting equal performance on all
the other instances; as for the EB metric, the NNIT variants of
CPSO perform significantly better on four out of six instances,

and the NNIT also significantly improves the solution quality
on one instance for both of AMP/PSO and DDEBQ. Similar
situations can be seen on the instances with 80 and 200
peaks. Therefore, the NNIT can perceive environment changes
under different change severity to accelerate convergence and
enhance the global search ability of EAs.

D. Discussion on Computational Effort

The above-mentioned experiments show that the NNIT
variants can obtain generally better results than the original
optimization algorithms. In this section, we discuss the com-
putational effort involving in solving problems based on the
number of FEs since FE in DOPs usually consumes most of the
time in the optimization process. For an optimization algorithm
and its NNIT variant, they only differ on that the NNIT variant
has an additional NNIT procedure for information transfer.
The NNIT procedure only uses the solutions collected from
optimization algorithms for training, including the solutions
found in previous environments and the initial population in
new environments, and generates new solutions that will be
used by optimization algorithms. The solutions for training
have been evaluated by optimization algorithms, and the newly
generated solutions would be evaluated when they are used
by optimization algorithms, that is, the NNIT procedure does
not consume any more FEs and only the optimization part
consumes FEs. Hence, all algorithms and their NNIT variants

1568 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 5, MAY 2020

consume the same number of FEs in the compared experi-
ments. Using the same FEs, the NNIT variants can obtain
generally better results compared with original algorithms.
Additionally, the running time of the external NNIT procedure
only depends on the size of the training set (the population size
of the optimization algorithm) and is acceptable according to
the discussion in Section IV-C. Thus, the NNIT variants per-
form better than original optimization algorithms when using
similar computational resources with the same number of FEs.

VI. CONCLUSION

To track the information reuse issue in DOPs, this paper
proposes an NN-based information transfer method, named
NNIT, to reuse past solutions for the optimization of new
environments. Solutions are collected from a new environment
and its last environment to construct data. Then, the NN
perceives the environment change from the data to learn a
transfer model and further use the transfer model to reuse
past solutions for generating new solutions to assist EAs in
new environments. Several state-of-the-art EAs for DOPs are
selected to incorporate the proposed NNIT, and the resultant
algorithms are tested on the well-known MPB. The exper-
imental results show that the EAs based on the NNIT can
converge faster than the original algorithms. The NNIT method
is promising. The proposed NNIT method provides a new way
to directly learn the transfer function of environment change
and transfer information in DOPs. In the future work, we will
investigate the performance of reinforcement learning on the
involved DOPs and apply the NNIT-assisted EAs to solve
DOPs in practical applications.

REFERENCES

[1] O. K. Oyedotun and A. Khashman, “Prototype-incorporated emotional
neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8,
pp. 3560–3572, Aug. 2018.

[2] I. Salgado and I. Chairez, “Adaptive unknown input estimation by sliding
modes and differential neural network observer,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 8, pp. 3499–3509, Aug. 2018.

[3] H. Rezaee and F. Abdollahi, “Adaptive consensus control of nonlinear
multiagent systems with unknown control directions under stochastic
topologies,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8,
pp. 3538–3547, Aug. 2018.

[4] F. Song, Y. Liu, J.-X. Xu, X. Yang, and Q. Zhu, “Data-driven iterative
feedforward tuning for a wafer stage: A high-order approach based
on instrumental variables,” IEEE Trans. Ind. Electron., vol. 66, no. 4,
pp. 3106–3116, Apr. 2019.

[5] X.-F. Liu, Z.-H. Zhan, J. D. Deng, Y. Li, T. L. Gu, and J. Zhang,
“An energy efficient ant colony system for virtual machine placement
in cloud computing,” IEEE Trans. Evol. Comput., vol. 22, no. 1,
pp. 113–128, Feb. 2018.

[6] Z.-J. Wang et al., “Dual-strategy differential evolution with affinity
propagation clustering for multimodal optimization problems,” IEEE
Trans. Evol. Comput., vol. 22, no. 6, pp. 894–908, Dec. 2018.

[7] Z.-H. Zhan et al., “Cloudde: A heterogeneous differential evolution
algorithm and its distributed cloud version,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 3, pp. 704–716, 2018.

[8] Z.-G. Chen et al., “Multiobjective cloud workflow scheduling: A mul-
tiple populations ant colony system approach,” IEEE Trans. Cybern.,
vol. 49, no. 8, pp. 2912–2926, Aug. 2019.

[9] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in dynamic
environments: A survey on problems, methods and measures,” Soft
Comput., vol. 15, no. 7, pp. 1427–1448, 2011.

[10] S. Q. Qian, Y. Ye, B. Jiang, and G. Xu, “A Micro-cloning dynamic
multiobjective algorithm with an adaptive change reaction strategy,” Soft
Comput., vol. 21, no. 13, pp. 3781–3801, 2017.

[11] S. Yang and X. Yao, “Population-based incremental learning with
associative memory for dynamic environments,” IEEE Trans. Evol.
Comput., vol. 12, no. 5, pp. 542–561, Oct. 2008.

[12] P. D. Stroud, “Kalman-extended genetic algorithm for search in nonsta-
tionary environments with noisy fitness evaluations,” IEEE Trans. Evol.
Comput., vol. 5, no. 1, pp. 66–77, Feb. 2001.

[13] X.-F. Liu, Z.-H. Zhan, and J. Zhang, “Neural network for change
direction prediction in dynamic optimization,” IEEE Access, vol. 6,
pp. 72649–72662, 2018.

[14] M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. G. Yen, “Transfer
learning-based dynamic multiobjective optimization algorithms,” IEEE
Trans. Evol. Comput., vol. 22, no. 4, pp. 501–514, Aug. 2018.

[15] C. Rossi, M. Abderrahim, and J. C. Díaz, “Tracking moving optima
using Kalman-based predictions,” Evol. Comput., vol. 16, no. 1,
pp. 1–30, 2008.

[16] A. Simões and E. Costa, “Evolutionary algorithms for dynamic environ-
ments: Prediction using linear regression and Markov chains,” in Proc.
Parallel Problem Solving Nature (PPSN X). Berlin, Germany: Springer,
2008, pp. 306–315.

[17] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[18] M. G. Carneiro and L. Zhao, “Organizational data classification based on
theimportanceconcept of complex networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 8, pp. 3361–3373, Aug. 2018.

[19] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri,
“Cost-sensitive learning of deep feature representations from imbal-
anced data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8,
pp. 3573–3587, Aug. 2018.

[20] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” in Proc. Int. Conf.
Learn. Represent., 2017, pp. 1–15.

[21] J. Yu, C. Zhu, J. Zhang, Q. Huang, and D. Tao, “Spatial
pyramid-enhanced NetVLAD with weighted triplet loss for place recog-
nition,” IEEE Trans. Neural Netw. Learn. Syst., to be published. doi:
10.1109/TNNLS.2019.2908982.

[22] S. Yang, “Genetic algorithms with memory- and elitism-based immi-
grants in dynamic environments,” Evol. Comput., vol. 16, no. 3,
pp. 385–416, 2008.

[23] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Trans.
Evol. Comput., vol. 14, no. 6, pp. 959–974, Dec. 2010.

[24] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm
with variable relocation,” IEEE Trans. Evol. Comput., vol. 13, no. 3,
pp. 500–513, Jun. 2009.

[25] C. Li and S. Yang, “A general framework of multipopulation methods
with clustering in undetectable dynamic environments,” IEEE Trans.
Evol. Comput., vol. 16, no. 4, pp. 556–577, Aug. 2012.

[26] T. M. Blackwell and P. J. Bentley, “Dynamic search with charged
swarms,” in Proc. 4th Annu. Conf. Genetic Evol. Comput., 2002,
pp. 19–26.

[27] L. Liu, S. Yang, and D. Wang, “Particle swarm optimization with
composite particles in dynamic environments,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 40, no. 6, pp. 1634–1648, Dec. 2010.

[28] X. Li and K. H. Dam, “Comparing particle swarms for tracking
extrema in dynamic environments,” in Proc. Congr. Evol. Comput., 2003,
pp. 1772–1779.

[29] M. Daneshyari and G. G. Yen, “Dynamic optimization using cul-
tural based PSO,” in Proc. IEEE Congr. Evol. Comput., Jun. 2011,
pp. 509–516.

[30] H. Wang, N. Wang, and D. Wang, “Multi-swarm optimization algorithm
for dynamic optimization problems using forking,” in Proc. Chin.
Control Decis. Conf., 2008, pp. 2415–2419.

[31] R. I. Lung and D. Dumitrescu, “Evolutionary swarm cooperative opti-
mization in dynamic environments,” Natural Comput., vol. 9, no. 1,
pp. 83–94, 2010.

[32] A. M. Turky and S. Abdullah, “A multi-population harmony search
algorithm with external archive for dynamic optimization problems,”
Inf. Sci., vol. 272, pp. 84–95, Jul. 2014.

[33] I. Schoeman and A. Engelbrecht, “Niching for dynamic
environments using particle swarm optimization,” in Simulated
Evolution and Learning. Berlin, Germany: Springer, 2006,
pp. 134–141.

[34] U. Halder, S. Das, and D. Maity, “A cluster-based differential evolution
algorithm with external archive for optimization in dynamic environ-
ments,” IEEE Trans. Cybern., vol. 43, no. 3, pp. 881–897, Jun. 2013.

http://dx.doi.org/10.1109/TNNLS.2019.2908982

LIU et al.: NN-BASED INFORMATION TRANSFER FOR DYNAMIC OPTIMIZATION 1569

[35] Z. J. Wang et al., “Automatic niching differential evolution with contour
prediction approach for multimodal optimization problems,” IEEE Trans.
Evol. Comput., to be published. doi: 10.1109/TEVC.2019.2910721.

[36] M. C. du Plessis and A. P. Engelbrecht, “Differential evolution for
dynamic environments with unknown numbers of optima,” J. Global
Optim., vol. 55, no. 1, pp. 73–99, 2013.

[37] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang,
“An adaptive multipopulation framework for locating and tracking mul-
tiple optima,” IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 590–605,
Aug. 2016.

[38] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi,
“A novel multi-swarm algorithm for optimization in dynamic envi-
ronments based on particle swarm optimization,” Appl. Soft Comput.,
vol. 13, no. 4, pp. 2144–2158, 2013.

[39] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, M. Meybodi, and
M. Akbarzadeh-Totonchi, “mNAFSA: A novel approach for optimiza-
tion in dynamic environments with global changes,” Swarm Evol.
Comput., vol. 18, pp. 38–53, Oct. 2014.

[40] J. Lewis, E. Hart, and G. Ritchie, “A comparison of dominance
mechanisms and simple mutation on non-stationary problems,” in Proc.
Parallel Problem Solving Nature (PPSN V). Berlin, Germany: Springer,
1998, pp. 139–148.

[41] W. Zhong, J. Xing, Y. Liang, and F. Qian, “Dynamic optimization with
an improved θ -PSO based on memory recall,” in Proc. 8th World Congr.
Intell. Control Automat., 2010, pp. 3225–3229.

[42] H. Nakano, M. Kojima, and A. Miyauchi, “An artificial bee colony
algorithm with a memory scheme for dynamic optimization prob-
lems,” in Proc. IEEE Congr. Evol. Comput. (CEC), May 2015,
pp. 2657–2663.

[43] J. Branke, “Memory enhanced evolutionary algorithms for chang-
ing optimization problems,” in Proc. Congr. Evol. Comput., 1999,
pp. 1875–1882.

[44] T. Zhu, W. Luo, and L. Yue, “Combining multipopulation evo-
lutionary algorithms with memory for dynamic optimization prob-
lems,” in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2014,
pp. 2047–2054.

[45] X. Yu and X. Wu, “A multi-point local search algorithm for continuous
dynamic optimization,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Jul. 2016, pp. 2736–2743.

[46] Y. Cao and W. Luo, “Novel associative memory retrieving
strategies for evolutionary algorithms in dynamic environments,”
in Proc. Adv. Comput. Intell. Berlin, Germany: Springer, 2009,
pp. 258–268.

[47] M. Mavrovouniotis, F. Neri, and S. Yang, “An adaptive local search
algorithm for real-valued dynamic optimization,” in Proc. IEEE Congr.
Evol. Comput. (CEC), May 2015, pp. 1388–1395.

[48] S. Yang, “Memory-based immigrants for genetic algorithms in dynamic
environments,” in Proc. 7th Annu. Conf. Genetic Evol. Comput.,
Washington DC, USA, 2005, pp. 1115–1122.

[49] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strategy
for evolutionary dynamic multiobjective optimization,” IEEE Trans.
Cybern., vol. 44, no. 1, pp. 40–53, Jan. 2014.

[50] C. Li, H. Wu, Z. Yang, Y. Wang, and Z. Sun, “A novel SHLNN
based robust control and tracking method for hypersonic vehicle under
parameter uncertainty,” Complexity, vol. 2017, Oct. 2017, Art. no.
6034786.

[51] E. da la Rosa and W. Yu, “Data-driven fuzzy modeling using restricted
boltzmann machines and probability theory,” IEEE Trans. Syst., Man,
Cybern., Syst., to be published. doi: 10.1109/TSMC.2018.2812156.

[52] H. B. Demuth, M. H. Beale, O. D. Jess, and M. T. Hagan, Neural
Network Design, 2nd ed. Stillwater, OK, USA: Martin Hagan, 2014.

[53] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6,
pp. 989–993, Nov. 1994.

[54] X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,
“Coevolutionary particle swarm optimization with bottleneck
objective learning strategy for many-objective optimization,” IEEE
Trans. Evol. Comput., to be published. doi: 10.1109/TEVC.2018.
2875430.

[55] X.-F. Liu et al., “Historical and heuristic-based adaptive differential
evolution,” IEEE Trans. Syst., Man, Cybern., Syst., to be published. doi:
10.1109/TSMC.2018.2855155.

[56] S. Das, A. Mandal, and R. Mukherjee, “An adaptive differential evolu-
tion algorithm for global optimization in dynamic environments,” IEEE
Trans. Cybern., vol. 44, no. 6, pp. 966–978, Jun. 2014.

Xiao-Fang Liu (S’14) received the B.S. degree
in computer science from Sun Yat-sen University,
Guangzhou, China, in 2015, where she is currently
pursuing the Ph.D. degree.

Her current research interests include artificial
intelligence, evolutionary computation, swarm intel-
ligence, and their applications in design and opti-
mization, such as cloud computing resources’
scheduling.

Zhi-Hui Zhan (M’13–SM’18) received the bach-
elor’s and Ph.D. degrees from the Department
of Computer Science, Sun Yat-sen University,
Guangzhou, China, in 2007 and 2013, respectively.

From 2013 to 2015, he was a Lecturer and an
Associate Professor with the Department of Com-
puter Science, Sun Yat-sen University. Since 2016,
he has been a Professor with the School of Computer
Science and Engineering, South China University
of Technology, Guangzhou, where he is also the
Changjiang Scholar Young Professor and the Pearl

River Scholar Young Professor. His current research interests include evo-
lutionary computation algorithms, swarm intelligence algorithms, and their
applications in real-world problems and in environments of cloud computing
and big data.

Dr. Zhan’s doctoral dissertation was awarded the China Computer Federa-
tion (CCF) Outstanding Dissertation and the IEEE Computational Intelligence
Society (CIS) Outstanding Dissertation. He was a recipient of the Outstanding
Youth Science Foundation from the National Natural Science Foundations of
China (NSFC) in 2018 and the Wu Wen Jun Artificial Intelligence Excellent
Youth from the Chinese Association for Artificial Intelligence in 2017. He is
listed as one of the most cited Chinese researchers in computer science. He is
currently an Associate Editor of Neurocomputing.

Tian-Long Gu received the M.Eng. degree from
Xidian University, Xi’an, China, in 1987, and the
Ph.D. degree from Zhejiang University, Hangzhou,
China, in 1996.

From 1998 to 2002, he was a Research Fellow
with the School of Electrical and Computer Engi-
neering, Curtin University of Technology, Perth,
WA, Australia, and a Post-Doctoral Fellow with the
School of Engineering, Murdoch University, Perth.
He is currently a Professor with the School of Com-
puter Science and Engineering, Guilin University of

Electronic Technology, Guilin, China. His current research interests include
formal methods, data and knowledge engineering, software engineering, and
information security protocol.

Sam Kwong (F’13) received the B.Sc. degree from
The State University of New York at Buffalo,
Buffalo, NY, USA, in 1983, the M.A.Sc. degree
in electrical engineering from the University of
Waterloo, Waterloo, ON, Canada, in 1985, and the
Ph.D. degree from the University of Hagen, Hagen,
Germany, in 1996.

From 1985 to 1987, he was a Diagnostic Engi-
neer with Control Data Canada, Ottawa, ON, where
he designed the diagnostic software to detect the
manufacture faults of the VLSI chips in the Cyber

430 machine. He later joined Bell Northern Research Canada, Ottawa, as a
Member of Scientific staff. In 1990, he joined the Department of Electronic
Engineering, City University of Hong Kong, Hong Kong, as a Lecturer, where
he is currently a Professor with the Department of Computer Science. His cur-
rent research interests include pattern recognition, evolutionary computations,
and video analytics.

Dr. Kwong was elevated to the IEEE Fellow for his contributions on
optimization techniques for cybernetics and video coding in 2014. He was
appointed as an IEEE Distinguished Lecturer for the IEEE Systems, Man and
Cybernetics (SMC) Society in 2017. He is also the Vice President of the IEEE
SMC on Cybernetics.

http://dx.doi.org/10.1109/TEVC.2019.2910721
http://dx.doi.org/10.1109/TSMC.2018.2812156
http://dx.doi.org/10.1109/TSMC.2018.2855155
http://dx.doi.org/10.1109/TEVC.2018.2875430
http://dx.doi.org/10.1109/TEVC.2018.2875430

1570 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 5, MAY 2020

Zhenyu Lu received the B.Sc. degree in electricity
and the M.Sc. degree in information and communi-
cation from the Nanjing Institute of Meteorology,
Nanjing, China, in 1999 and 2002, respectively,
and the Ph.D. degree in optics engineering from
the Nanjing University of Science and Technology,
Nanjing, in 2008.

He was a Research Associate with the Department
of Mathematics and Statistics, University of Strath-
clyde, Glasgow, U.K., from 2012 to 2013. He is
currently a Professor with the School of Electronic

and Information Engineering, Nanjing University of Information Science and
Technology, Nanjing. He has published 15 international journal papers. His
current research interests include neural networks, stochastic control, and
artificial intelligence.

Henry Been-Lirn Duh received the Ph.D. degree
in engineering from the University of Washington,
Seattle, WA, USA, in 2001. He did his postdoctoral
training in the NASA-JSC involved in a virtual
reality project.

He is currently the Head of the Department
of Computer Science and Information Technology,
La Trobe University, Melbourne, VIC, Australia.
He has published more than 150 conference and
journal papers in HCI area. His current research
interests include behavioral issues and design in

augmented/virtual reality environments.
Mr. Duh is a fellow of the British Computer Society and the Institution of

Engineering and Technology, a Companion of Engineer Australia, an ACM
Distinguished Speaker, and the Co-Chair of the IEEE Systems, Man and
Cybernetics TC on Visual Analytics and Communication.

Jun Zhang (F’17) received the Ph.D. degree from
the City University of Hong Kong, Hong Kong,
in 2002.

He is currently a Visiting Scholar with Victoria
University, Melbourne, VIC, Australia. His current
research interests include computational intelligence,
cloud computing, high-performance computing,
operations research, and power electronic circuits.

Dr. Zhang was a recipient of the Changjiang Chair
Professor from the Ministry of Education, China,
in 2013, the China National Funds for Distinguished

Young Scientists from the National Natural Science Foundation of China
in 2011, and the First-Grade Award in Natural Science Research from the
Ministry of Education, China, in 2009. He is currently an Associate Editor of
the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, the IEEE
TRANSACTIONS ON CYBERNETICS, and the IEEE TRANSACTIONS ON

INDUSTRIAL ELECTRONICS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

