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Minimization of Fraction Function Penalty
in Compressed Sensing

Haiyang Li , Qian Zhang, Angang Cui, and Jigen Peng

Abstract— In this paper, we study the minimization problem of
a non-convex sparsity-promoting penalty function, i.e., fraction
function, in compressed sensing. First, we discuss the equivalence
of �0 minimization and fraction function minimization. It is
proved that the optimal solution to fraction function minimization
solves �0 minimization and the optimal solution to the regulariza-
tion problem also solves fraction function minimization if the cer-
tain conditions are satisfied, which is similar to the regularization
problem in a convex optimization theory. Second, we study the
properties of the optimal solution to the regularization problem,
including the first-order and second-order optimality conditions
and the lower and upper bounds of the absolute value for its
nonzero entries. Finally, we derive the closed-form representation
of the optimal solution to the regularization problem and propose
an iterative F P thresholding algorithm to solve the regularization
problem. We also provide a series of experiments to assess the
performance of the F P algorithm, and the experimental results
show that the F P algorithm performs well in sparse signal
recovery with and without measurement noise.

Index Terms— Closed-form thresholding functions, compressed
sensing, fraction function minimization, iterative F P threshold-
ing algorithm, non-convex optimization.

I. INTRODUCTION

THE goal of compressed sensing (see [2], [11]) is to
reconstruct a sparse signal under a few linear measure-

ments that are far less than the dimension of the ambient
space of the signal. The following minimization is commonly
employed to model this problem:

(P0) min
x∈Rn

�x�0 s.t. Ax = b (1)

where A is an m ×n real matrix of full row rank with m < n,
b is a nonzero real vector of m dimension, and �x�0 is the so-
called �0-norm of real vector x , which counts the number of
the nonzero entries in x (see [1], [16], [29]). Sparsity problems
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can be frequently transformed into the following so-called �0
regularization problem:

�
Pλ0

�
min
x∈Rn

�Ax − b�2
2 + λ�x�0 (2)

where λ > 0, called the regularized parameter, represents a
tradeoff between error and sparsity. Thiao [30] shows that
there exists λ0 > 0, such that the minimization problems (Pλ0 )
and (P0) have the same solution set for all 0 < λ ≤ λ0.
Unfortunately, although the �0-norm characterizes the sparsity
of the vector x , the �0 optimization problem is actually
NP-hard because of the discrete and discontinuous nature of
the �0-norm. In general, the relaxation methods replace the
�0-norm by continuous sparsity promoting penalty functions
P(·). The minimization takes the form

min
x∈Rn

P(x) s.t. Ax = b (3)

for the constrained problem and

min
x∈Rn

�Ax − b�2
2 + λP(x) (4)

for the regularization problem. Convex relaxation uniquely
selects P(x) as the �1-norm. Considerable excellent theoretical
work (see [3], [13]–[15], [21]), together with some empirical
evidence (see [6]), has shown that, provided some conditions
are met, such as assuming the restricted isometric property
(RIP) [3], the �1-norm minimization can truly make an exact
recovery. According to the convex optimization theory, there
exists some λ > 0, such that the solution to the regularization
problem (4) also solves the constrained problem (3) when
P(x) = �x�1. The �1 algorithms for solving the regularization
problem include �1-magic [2], the soft thresholding algorithm
(soft algorithm in brief) (see [8], [12]), the Bregman and split
Bregman methods (see [20], [35]), and the alternating direction
algorithms [34].

There are many choices of P(x) for non-convex relaxation,
in which the �p-norm [p ∈ (0, 1)] appears to be the most
popular choice. Key work by Gribonval and Nielsen [21] on
0 < p < 1 has resulted in the above-described optimization
models gaining in popularity in the literature (see [5], [7], [10],
[17], [18], [22], [23], [26]–[28], [31], [33]). In [26], we have
demonstrated that in every underdetermined linear system
Ax = b, there corresponds a constant p∗(A, b) > 0, which
is called the N P/C M P equivalence constant (N P/C M P
equivalence means that the NP-hard optimization problem
is equivalent to the continuous minimization problem), such
that every solution to the �p-norm minimization problem
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also solves the �0-norm minimization problem whenever 0 <
p < p∗(A, b). At present, there are two main algorithmic
approaches to �p-norm minimization for 0 < p < 1. One is the
iteration reweighted least squares minimization algorithm (the
IRLS algorithm in brief) [9]. The authors proved that the rate
of local convergence of this algorithm was superlinear and the
rate was faster for smaller p and increased toward quadratic
as p → 0. Moreover, at each iteration, the solution of a
least squares problem is required, of which the computational
complexity is O(mn2). The other approach is an iterative
thresholding algorithm when p = (1/2), (2/3) (see [4], [33]).
The authors showed that �1/2 regularization could be quickly
solved by the iterative half thresholding algorithm (the half
algorithm in brief) and the algorithm was convergent when
applied to the k-sparsity problem. In addition, at every iteration
step of the half algorithm, some products between the matrix
and the vector are required; thus, the computational complexity
is O(mn).

Although the computational complexity of the half algo-
rithm is lower than that of IRLS, we do not know whether
there is any λ > 0, such that the optimal solution to the regu-
larization problem (4) also solves the constrained problem (3)
when P(x) = �x�0.5

0.5, which is different from the result when
P(x) = �x�1.

In this paper, inspired by the good performance of the
fraction function pa(x) = a|x |/1 + a|x |, called “strictly non-
interpolating” in [19], in image restoration, we take

P(x) = Pa(x) =
n�

i=1

pa(xi ) (x ∈ R
n).

In fact, the fraction function is widely used in image restora-
tion. Geman and Reynolds [19] showed that the fraction
function gave rise to a step-shaped estimate from the ramp-
shaped data. Furthermore, Nikolova [24] demonstrated that for
almost all data, the strongly homogeneous zones recovered
by the fraction function were preserved constant under any
small perturbation of the data. We will study the following
minimization problems (F Pa) and (F Pλa ) in terms of theory,
algorithms, and computation. The constrained fraction func-
tion minimization version is

(FPa) min
x∈Rn

Pa(x) s.t. Ax = b (5)

and the unconstrained fraction function regularization version
is

(FPλa) min
x∈Rn

��Ax − b�2
2 + λPa(x)

�
. (6)

This paper is organized as follows. In Section II,
we study the elementary properties of the fraction function.
In Section III, we focus on proving some theorems, which
establish the equivalence of (F Pa) and (P0). Section IV is
devoted to discussing the equivalence of (F Pλa ) and (F Pa)
and the properties of the optimal solution to the regularization
problem (F Pλa ), including the first-order and second-order
optimality conditions and the lower and upper bounds of the
absolute value for its nonzero entries. In Section V, we derive
the closed-form representation of the optimal solution to the
regularization problem (F Pλa ) by using the Cardano formula

on roots of cubic polynomials and algebraic identities and
propose an iterative F P thresholding algorithm to solve the
regularization problem (F Pλa ). In Section VI, we present the
experiments with a series of sparse signal recovery applica-
tions to demonstrate the robustness and effectiveness of the
new algorithms. We conclude this paper in Section VII.

II. PRELIMINARIES AND THE PROPERTIES OF

THE FRACTION FUNCTION

We consider the fraction function

pa(t) = a|t|
1 + a|t|

where the parameter a ∈ (0,+∞). It is easy to verify that
pa(t) is symmetric, pa(t) = 0 if t = 0, and lim

a→+∞ pa(t) = 1

if t �= 0. Clearly, with the adjustment of parameter a, pa(t)
can approximate �0 well. Moreover, pa(t) is increasing and
concave for t ∈ [0,+∞).

It is also easy to check that the triangle inequality
holds for the fraction function pa(t). That is, the following
Lemma holds.

Lemma 1: For any a > 0 and any real number xi , x j ,
the following inequalities hold:

pa(xi + x j ) ≤ pa(|xi | + |x j |)
≤ pa(xi )+ pa(x j )

≤ 2 pa

� |xi | + |x j |
2

�
. (7)

In addition, because

pa(t) ≥ 0 and pa(t) = 0 ⇔ t = 0

the fraction function pa(t) acts almost like a norm. However,
it lacks homogeneity, i.e., pa(ct) = |c|pa(t), in general.
In fact, the following Lemma is obvious.

Lemma 2: For the fraction function pa(t), we have

pa(ct) < |c|pa(t) if |c| > 1

and

pa(ct) ≥ |c|pa(t) if |c| ≤ 1.

III. EQUIVALENCE OF THE MINIMIZATION

PROBLEM (F Pa) AND (P0)

We shall establish the equivalence (Theorems 1 and 2) of
the minimization problem (F Pa) and (P0) in this section.

Lemma 3: Let x∗ be the optimal solution to (F Pa). Then,
the columns in matrix A corresponding to the support of vector
x∗ are linearly independent, and hence, �x∗�0 = k ≤ m.

Proof: See the Appendix.
We denote by � the set of solutions to Ax = b with

�x�0 ≤ m, that is

� = {x |Ax = b and �x�0 ≤ m}.
Obviously, the cardinality of � is finite.

Theorem 1: There exists some constant â > 0, such that
the optimal solution to the minimization problem (F Pâ) also
solves the minimization problem (P0).
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Proof: Let {ai |i = 1, 2, . . . , n, . . .} be the increasing
infinite sequence with lim

i→∞ ai = ∞ and a1 = 1. For each

ai , by Lemma 3, the optimal solution x̂ai to (F Pai ) belongs
to the set �. Since � is a finite set, one element, named x̂ ,
will repeatedly solve (F Paik

) for some subsequence
{aik |k = 1, 2, . . .} of {ai }. For any aik ≥ ai1 , x with Ax = b,
we have

Paik
(x̂) = Paik

(x̂aik
) = min

Ax=b
Paik

(x) ≤ �x�0.

Letting k → ∞ in the equality earlier, we have

lim
k→∞ Paik

(x̂) ≤ �x�0

that is, �x̂�0 ≤ �x�0. Hence, x̂ is the optimal solution to (P0),
which means that the optimal solution x̂ to (F Paik

)
solves (P0). In general, we denote the smallest number ai1
of the infinite subsequence {aik |k = 1, 2, . . .} by â. The proof
is completed.

It should be pointed out that the constant â in Theorem 1
may be very small. Before the following theorem is proved,
a constant r(A, b) needs to be defined. Let

r(A, b) = min
z∈�,zi �=0,1≤i≤n

|zi |. (8)

Clearly, the defined constant r(A, b) is finite and positive due
to the finiteness of �.

Theorem 2: There exists a constant a∗ > 0, such that
whenever a > a∗, every optimal solution to (F Pa) also
solves (P0), where a∗ depends on A and b.

Proof: Let x∗ be the optimal solution to (F Pa) and x0

be the optimal solution to (P0). By Lemma 3, we know that
x∗ ∈ �.

Therefore, we have

min
Ax=b

�x�0 = �x0�0

≥
�

i∈supp(x0)

a
		x0

i

		

1 + a
		x0

i

		

≥
�

i∈supp(x∗)

a
	
	x∗

i

	
	

1 + a
	
	x∗

i

	
	

≥ �x∗�0
ar(A, b)

1 + ar(A, b)

which implies that

�x∗�0 ≤
�

1 + 1

ar

�
�x0�0 =

�
1 + 1

ar

�
min
Ax=b

�x�0.

Because �x∗�0 is an integer number, it follows from the
aforementioned inequality that �x∗�0 = min

Ax=b
�x�0 (that is,

x∗ solves (P0)) when:
�

1 + 1

ar(A, b)

�
min
Ax=b

�x�0 < min
Ax=b

�x�0 + 1. (9)

Obviously, inequality (9) is true whenever

a >
min
Ax=b

�x�0

r(A, b)
. (10)

Therefore, with a∗ denoting the right-hand side of inequal-
ity (10), we conclude that when a > a∗, every solution x∗
to (F Pa) also solves (P0). The proof is thus completed.

Although both Theorems 1 and 2 describe the equivalence
of the minimization problem (F Pa) and (P0), the constant
â in Theorem 1 may be very small, and the constant a∗ in
Theorem 2 is generally very large. Therefore, Theorem 2 is
mainly used in theoretical analysis; however, when conducting
the experiments, we often choose a smaller a value by Theo-
rem 1. In Section VI, we take a = 2, and the F P algorithm
performs well.

IV. EQUIVALENCE OF THE MINIMIZATION

PROBLEM (F Pa) AND (F Pλa )

In this section, we first discuss the properties of the optimal
solution to the regularization problem (F Pλa ), including the
first-order and second-order optimality conditions and the
lower and upper bounds of the absolute value for its nonzero
entries. Second, based on these lemmas, we demonstrate the
equivalence of the regularization problem (F Pλa ) and the
constrained problem (F Pa).

Before we embark on the discussion, we should mention
that the results derived in this section are worst case ones,
implying that the kind of guarantees we obtain are overly
pessimistic, as they are supposed to hold for all signals and
for all possible supports of a given cardinality.

Lemma 4: Suppose that x∗ is the optimal solution
to (F Pλa ). Then, the following statements hold.

1) If λ > �b�2
2, then

�x∗�∞ ≤ �b�2
2

a
�
λ− �b�2

2

� .

2) Let B be the submatrix of A corresponding to the
support of vector x∗. Thus, the columns of B are linearly
independent, and hence, �x∗�0 ≤ m.

3) Denote by λ̄ the constant

�b�2
2 +

�AT b�∞ +



�AT b�∞ + 2a�b�2
2�AT b�∞

a
.

Then, for all λ ≥ λ̄, x∗ = 0.
Proof: See the Appendix.

Lemma 5 (First-Order Optimality Condition): Let x∗ be the
solution to (F Pλa ). Then, the following statements hold.

1) For any h ∈ R
n with supp(h) ⊆ supp(x∗)

2�b − Ax∗, Ah
 = λ
�

i∈supp(x∗)

ahi sgn(x∗
i )�

1 + a
		x∗

i

		�2 .

(11)

2) For any h ∈ R
n with supp(h) ⊆ Csupp(x∗)

|�b − Ax∗, Ah
| ≤



�Ah�2
2λ�h�0 (12)

where Csupp(x∗) is the complementary of supp(x∗).
Proof: See the Appendix.
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Choosing h as the i th base vector ei for each i = 1, 2, . . . , n
in (11) and (12), respectively, we can derive the following
corollary.

Corollary 1: Suppose that x∗ is the solution to (F Pλa ).
Then, for i ∈ supp(x∗)

2(AT (b − Ax∗))i = λ
asgn

�
x∗

i

�

�
1 + a

	
	x∗

i

	
	�2 (13)

and for i ∈ Csupp(x∗)

|(AT (b − Ax∗))i | ≤


λ�ai�2

2.

Furthermore, letting λ > �b�2
2 and replacing |x∗

i | with �x∗�∞
in (13), we have

�AT (b − Ax∗)�2
2 ≥ a2

�
λ− �b�2

2

�4

4λ2 . (14)

Following the above-adopted analysis, we can further estab-
lish the following optimality condition.

Lemma 6 (Second-Order Optimality Condition): Every
solution x∗ to (F Pλa ) satisfies the following conditions.

1) For all h ∈ R
n with supp(h) ⊆ supp(x∗)

�Ah�2
2 ≥ λ

�

i∈supp(x∗)

2a2h2
i�

1 + a
	
	x∗

i

	
	�3 . (15)

2) Moreover, it holds for all i ∈ supp(x∗) that

	
	x∗

i

	
	 ≥

√
λ

�ai�2
− 1

a
. (16)

Proof: See the Appendix.
In the following, we discuss the equivalence of the regular-

ization problem (F Pλa ) and the constrained problem (F Pa).
We denote by σmin the minimal one of all the smallest singular
values of As , where As is an arbitrary submatrix of A with
full column rank. That is

σmin = min{σs |σs is the smallest singular value of As,

where As is an arbitrary submatrix of A with

full column rank}. (17)

Clearly, σmin > 0.
Theorem 3: If there exists a constant λ ∈ (�b�2

2, λ̄), such
that

4m�A�4
2

λa2

�
λ

λ− �b�2
2

�4

< σmin (18)

then the optimal solution to (F Pλa ) solves (F Pa), where λ̄ is
defined in Lemma 4.

Proof: See the Appendix.
Moreover, if the constant a in Theorem 3 satisfies a > a∗

(a∗ is the one in Theorem 2), then we have the following
corollary by Theorems 2 and 3.

Corollary 2: If the constant a in (F Pλa ) satisfies a > a∗
and there exists a constant λ ∈ (�b�2

2, λ̄), such that (18) holds,
then the optimal solution to (F Pλa ) also solves (P0), where λ̄
is defined in Lemma 4.

Theorem 3 and Corollary 2 show that it is possible to obtain
the exact solution to (P0) by solving the problem (F Pλa ).
In Section V, we will discuss the algorithms to solve (F Pλa ).

V. THRESHOLDING ALGORITHMS FOR THE

REGULARIZATION PROBLEM (F Pλa )

In this section, we mainly derive the closed-form repre-
sentation of the optimal solution to the regularization prob-
lem (F Pλa ) (see Theorem 4), which underlies the algorithm to
be proposed. Before giving the closed-form representation of
the optimal solution, we need to prove Lemmas 8–10.

Let us define three parameters t∗1 , t∗2 , and t∗3 for our follow-
ing derivation, where:

t∗1 =
3



27
8 λa2 − 1

a
t∗2 = λ

2
a and t∗3 = √

λ− 1

2a
.

Obviously, we have the following lemmas.
Lemma 7: For any positive parameters λ and a,

t∗1 ≤ t∗3 ≤ t∗2 holds. Furthermore, they are equal to
1/2a when λ = 1/a2.

Lemma 8: For any given t , the two polynomials of x
defined in the following satisfy the following conditions.

1) If t > t∗1 , then the polynomial

2x(ax + 1)2 − 2t (ax + 1)2 + λa = 0 (19)

has three different real roots, and the largest root x0 is
obtained by x0 = gλ(t), where

gλ(t) = sgn(t)

⎛

⎝
1+at

3

�
1 + 2 cos

�
φ(t)

3 − π
3

��
− 1

a

⎞

⎠

φ(t) = arccos

�
27λa2

4(1 + a|t|)3 − 1

�
.

Clearly, |gλ(t)| ≤ |t|.
2) If t < −t∗1 , then

2x(1 − ax)2 − 2t (1 − ax)2 − λa = 0 (20)

has three different real roots, and the smallest root x0 is
obtained by x0 = gλ(t).

Proof: See the Appendix.
We define a function of y as

fλ(y) = (y − x)2 + λpa(|y|).
Lemma 9: The optimal solution to miny∈R fλ(y) is the

threshold function defined as

y∗ =
�

0, |x | ≤ t

gλ(x), |x | > t
(21)

where gλ(x) is the one in Lemma 8, and the parameter t
satisfies

t =

⎧
⎪⎨

⎪⎩

t∗2 , if λ ≤ 1

a2

t∗3 , if λ >
1

a2 .

Proof: See the Appendix.
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For any λ, μ ∈ (0,+∞) and z ∈ R
n , let

Cλ(x) = �Ax − b�2
2 + λPa(x) (22)

Cμ(x, z) = μ
�
Cλ(x)− �Ax − Az�2

2

� + �x − z�2
2 (23)

and

Bμ(x) = x + μAT (b − Ax). (24)

Lemma 10: For any fixed parameter μ, a, λ, and z,
if xs = (xs

1, xs
2, . . . , xs

n)
T is a local minimizer to Cμ(x, z),

then

xs
i = 0 ⇔ |(Bμ(z))i | ≤ t∗

and

xs
i = gλμ((Bμ(z))i ) ⇔ |(Bμ(z))i | > t∗

where

t∗ =

⎧
⎪⎨

⎪⎩

λμa

2
, if λ ≤ 1

μa2

√
λμ− 1

2a
, if λ >

1

μa2

and gλμ(·) is obtained by replacing λ with λμ in gλ(·).
Proof: We first notice that Cμ(x, z) can be rewritten as

Cμ(x, z) = �x − ((I − μAT A)z + μAT b)�2
2

+ λμPa(x)+ μ�b�2
2 + �z�2

2 − μ�Az�2
2

− �(I − μAT A)z + μAT b)�2
2

=
n�

i=1

(xi − (Bμ(z))i )
2 + λμ

n�

i=1

pa(|xi |)

+μ�b�2
2 + �z�2

2 − μ�Az�2
2

− �(I − μAT A)z + μAT b)�2
2

which implies that minimizing Cμ(x, z) for any fixed μ, λ,
and z is equivalent to

min
x∈Rn

n�

i=1

(xi − (Bμ(z))i )
2 + λμ

n�

i=1

pa(|xi |).

Therefore, xs = (xs
1, xs

2, . . . x
s
n)

T is a local minimizer
of Cμ(x, z) if and only if, for any i, xs

i solves the problem

min
x∈Rn

(xi − (Bμ(z))i )
2 + λμpa(|xi |).

Therefore, the proof is completed by Lemma 9.
Now, we show that the optimal solution to the prob-

lem (F Pλa ) can be expressed as a thresholding operation.
Theorem 4: If x∗ = (x∗

1 , x∗
2 , . . . x

∗
n )

T is an optimal solution
to (F Pλa ), a and λ are positive, and parameter μ satisfies
0 < μ < �A�−2

2 , then the optimal solution x∗ is

x∗
i =

�
gλμ((Bμ(x∗))i ), |(Bμ(x∗))i | > t∗

0, otherwise
(25)

where parameter t∗ is defined in Lemma 10.
Proof: The condition 0 < μ < �A�−2

2 implies that

Cμ(x, x∗) = μ
��b − Ax�2

2 + λPa(x)
�

+ � − μ�Ax − Ax∗�2
2 + �x − x∗�2

2

�

≥ μ
��b − Ax�2

2 + λPa(x)
�

≥ Cμ(x
∗, x∗)

for any x ∈ R
n , which shows that x∗ is a local minimizer

of Cμ(x, x∗) as long as x∗ is a solution to (F Pλa ). Following
directly from Lemmas 9 and 10, we finish the proof.

In the following, we present an iterative thresholding algo-
rithm for performing the regularization problem (F Pλa ) based
on the previous theoretical analysis.

With the thresholding representation (25), a thresholding
algorithm for the regularization problem (F Pλa ) can be natu-
rally defined as

xn+1
i =

�
gλμ((Bμ(xn))i ), |(Bμ(xn))i | > t∗

0, otherwise
(26)

where gλμ(·) is the thresholding operator defined in
Lemma 10. We call this method the iterative F P thresholding
algorithm, or briefly, the F P algorithm.

It is known that the quality of the solutions of a regu-
larization problem depends seriously on the setting of the
regularization parameter λ. However, the selection of proper
regularization parameters is a very hard problem. In most gen-
eral cases, a “trial and error” method, for example, the cross-
validation method, is still an accepted, or even unique, choice.
Nevertheless, when some prior information is known for a
problem, it is realistic to set the regularization parameter more
reasonably and intelligently.

To make it clear, let us suppose that the solutions to the
regularization problem F Pλa are of k-sparsity. Thus, we are
required to solve the regularization problem F Pλa restricted to
the subregion �k = {x = (x1, x2, . . . , xn)|supp(x) = k} of R

n .
Assume that x∗ is the solution to the regularization problem
F Pλa , and without loss of generality, |Bμ(x∗)|1 ≥ |Bμ(x∗)|2 ≥
· · · ≥ |Bμ(x∗)|n . Then, by Theorem 4, the following inequal-
ities hold:

|Bμ(x∗)|i > t∗ ⇔ i ∈ 1, 2, . . . , k

|Bμ(x∗)| j ≤ t∗ ⇔ j ∈ k + 1, k + 2, . . . , n

where t∗ is our threshold value that was defined earlier.
According to t∗3 ≤ t∗2 , we have

⎧
⎪⎨

⎪⎩

|Bμ(x∗)|k > t∗ ≥ √
λμ− 1

2a
|Bμ(x∗)|k+1 ≤ t∗ ≤ λμa

2

(27)

which implies

2|Bμ(x∗)|k+1

aμ
≤ λ <

(2a|Bμ(x∗)|k + 1)2

4a2μ
. (28)

For convenience, we denote by λ1 and λ2 the left- and right-
hand side of the above-mentioned inequality, respectively.

The aforementioned estimate helps to set an optimal
regularization parameter. A choice of λ is

λ =

⎧
⎪⎨

⎪⎩

λ1, λ1 ≤ 1

a2μ

(1 − 	)λ2, λ1 >
1

a2μ

where 	 is a small positive number, such as 0.1, 0.01, or 0.001.
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Algorithm 1 Iterative FP Thresholding Algorithm—
Scheme 1

Initialization: Choose x0, μ = μ0 = 1−ε
�A�2 and a;

while not converged do
zn := Bμ(xn) = xn + μAT (b − Axn);
λ = λ0;
if λ ≤ 1

a2μ
, then

t∗ = λμa
2

for i = 1 : length(x)
1.|zn

i | > t∗, then xn+1
i = gλμ(zn

i )

2.|zn
i | ≤ t∗, then xn+1

i = 0
else

t∗ = √
λμ− 1

2a
for i = 1 : length(x)

1.|zn
i | > t∗, then xn+1

i = gλμ(zn
i )

2.|zn
i | ≤ t∗, then xn+1

i = 0
end
n → n + 1

end while
return xn+1

In practice, we approximate x∗ by xn in (28). Suppose we
take

λ∗ =

⎧
⎪⎪⎨

⎪⎪⎩

λ1 = 2|Bμ(xn)|k+1

aμ
, λ1 ≤ 1

a2μ

(1 − 	)λ2 =(1 − 	)
(2a|Bμ(xn)|k +1)2

4a2μ
, λ1>

1

a2μ
(29)

in applications. When doing so, an iteration algorithm will
be adaptive and free from the choice of the regularization
parameter. Note that (29) is valid for any μ satisfying 0 <
μ < �A�−2

2 . In general, we can take μ = μ0 = 1 − ε/�A�2
2

with any small ε ∈ (0, 1) below.
Incorporated with different parameter-setting strategies, (26)

defines different implementation schemes of the F P algo-
rithm. For example, we can have the following.

Scheme 1: μ = μ0; λn = λ0 ∈ (�b�2
2, λ̄) and a = a0.

Scheme 2: μ = μ0; λn = λ∗ defined in (29) and a = a0.

Importantly, it should be noted that the threshold value
t∗ = λμa/2 when the parameter λn = λ1, and the threshold
value t∗ = (λμ)1/2 −1/2a when the parameter λn = (1−	)λ2
in Scheme 2. Our analysis leads to the algorithm in Algo-
rithms 1 and 2.

In Algorithm 2, λ is tuned with Scheme 2; the others are
the same as Algorithm 1.

At the end of the section, we discuss the convergence of the
F P algorithm to a stationary point of the iteration (26) under
some certain conditions.

Theorem 5: Let {xk} be the sequence generated by the
F P algorithm with 0 < μ < �A�−2

2 . Then, the following
statements hold.

1) The sequence Cλ(xk) = �Axk − b�2
2 + λPa(xk) is

decreasing.
2) {xk} is asymptotically regular, i.e., limk→∞

�xk+1 − xk�2 = 0.

Fig. 1. How few measurements (samples) by three algorithms are required
to exactly recover a given signal x0.

3) {xk} converges to a stationary point of the iteration (26).

Proof: The proof is similar to [25, Proof of Lemma 2],
so it is omitted here.

VI. EXPERIMENTAL RESULTS

In this section, we carry out a series of simulations to
demonstrate the performance of the F P algorithm. All the
simulations here are conducted by applying our algorithm
(see Scheme 2) to a typical compressed sensing problem,
i.e., signal recovery. In the experiments, the soft algorithm,
the half algorithm, and the F P algorithm are simulated from
three aspects. For each experiment, we repeatedly perform
100 tests, present the average results, and take a = 2.

The simulations are all conducted on a personal computer
(3.60 GHz, 4-GB RAM) with MATLAB 8.0 programming
platform (R2012b).

The first simulation tests how few measurements (samples)
are required to exactly recover a given signal x0 using the three
algorithms. It is obvious that the fewer the measurements that
are used by an algorithm, the better it is. Consider a real-
valued N-length (N = 512) signal x0 without noise, which
is randomly generated under a Gaussian distribution of zero
mean and unit variance, N(0, 1), and its sparsity is fixed at
k = 100. The simulations then aim to recover x ∈ R

512

through M measurements determined by the measurement
matrix AM×512, where AM×512 is a random matrix with entries
independently drawn at random from a Gaussian distribution
of zero mean and unit variance, N(0, 1), and M ranges from
50 to 370. The three algorithms are applied with a variable
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Fig. 2. Success rate of the three algorithms in the recovery of a signal x0
with a different cardinality for a given measurement matrix A.

number M of measurements. The results of the simulations
are shown in Fig. 1.

Turning to the noisy case, we use the same signal
x0 but with noise, for example, with the white noise
ε ∈ N(0, σ 2) (σ = 0.1). Such a noise signal is designed
to simulate a real measurement in which noise is inevitably
involved. Our simulations aim to assess the capability of
all three algorithms in recovering the signal from a noisy
circumstance and with fewer samplings. The results of the
simulations are shown in Fig. 1.

From Fig. 1, we can see that the three algorithms can
accurately recover the signal x0 when M ≥ 350, and when the
measurements are deduced to 260, there is no other algorithm
except the F P algorithm that can accurately recover the signal
x0. The simulation results show that the F P algorithm requires
the least number of samplings among the three algorithms.
The graph presented in Fig. 1 shows that the F P algorithm in
recovering the signal from a noisy circumstance also requires
the least number of samplings among the three algorithms.

The second simulation tests the success rate of the three
algorithms in the recovery of a signal with a different cardi-
nality for a given measurement matrix A. Consider a random
matrix A of size 128 × 512, with entries independently drawn
by random from a Gaussian distribution of zero mean and unit
variance, N(0, 1). By randomly generating such sufficiently
sparse vectors x0 [choosing the nonzero locations uniformly
over the support randomly, and their values from N(0, 1)],
we generate vector b. This way, we know the sparsest solu-
tion to Ax0 = b, and we are able to compare it to the

Fig. 3. Relative �2-error between the solution x̂ and the given signal x0.

algorithmic results. The success is measured by computing
(�x̂ − x0�2

2/�x0�2
2) and checking that is below a negligible

value (in our experiments, it is set to 1e−5), to indicate a
perfect recovery of the original sparse vector x0.

Turning to the noisy case, we use the same matrix A and
generate a random vector x0 with a pre-specified cardinality
of nonzeros. We compute b = Ax0 + ε, where ε ∈ N(0, σ 2)
(σ = 0.1). Thus, the original vector x0 is a feasible solution
and close to the optimal solution. Due to the presence of noise,
it becomes harder to accurately recover the original signal x0.
Therefore, we tune down the requirement for a success to the
relative error (�x∗ − x0�2

2/�x0�2
2 ≤ 10−5).

The graphs presented in Fig. 2 show the success rate of the
soft algorithm, the half algorithm, and the F P algorithm in
recovering the true (sparsest) solution. From Fig. 2, we can
see that the F P algorithm can exactly recover the ideal
signal until k is approximately 39, and the soft algorithm and
half algorithm’s counterpart is approximately slightly higher
than 21. The results in the noisy state are consistent with the
above-said one. As we can see, the F P algorithm again has
the best performance, with the half algorithm as the second
best.

Next, we consider the relative �2-error between the solution
x̂ and the given signal x0. The �2-error is computed as the
ratio (�x̂ − x0�2

2/�x0�2
2), indicating the �2-proximity between

the two solutions, and we measured this distance as relative to
the energy in the true solution. The results of the simulations
are shown in Fig. 3.

From Fig. 3, we can see that the F P algorithm always has
the smallest relative �2-error value.
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VII. CONCLUSION

As is well known, (P0) is combinatorial and NP-hard in gen-
eral. Therefore, it is important to choose suitable substitution
models for �0 minimization. In this paper, we take the fraction
function as the substitution for the �0-norm and study the
fraction function minimization in terms of theory, algorithms,
and computation. In the beginning, we discuss the equivalence
of �0 minimization and fraction function minimization. In par-
ticular, we consider the regularization model (F Pλa ) and prove
that under certain conditions, the optimal solution to (F Pλa )
also solves (P0).

The above-mentioned conclusions demonstrate that we can
obtain the exact solution to (P0) by solving the regularization
model (F Pλa ). Hence, it is necessary to study the algorithm
for solving the regularization problem (F Pλa ). We derive
the closed-form representation of the optimal solution to the
regularization problem (F Pλa ). Based on this representation,
we calculate its analytic expression and propose an itera-
tive F P thresholding algorithm to solve the regularization
problem (F Pλa ).

We also provide a series of experiments to assess the perfor-
mance of the F P algorithm, and the experimental results show
that the F P algorithm performs well, although the solution to
(F Pλa ) by the F P algorithm is a stationary point and may not
be the minimal solution in theory because the fraction function
is non-convex. Therefore, in the future, we will investigate the
sufficient conditions, such that the solution to (F Pλa ) by the
F P algorithm is the minimal one.

APPENDIX

PROOFS OF THEOREMS AND LEMMAS

Proof of Lemma 3: Let us assume that the k-sparsity vector
x∗ is the optimal solution to (F Pa) and the k columns com-
bined linearly by x∗ are linearly dependent. Without loss of
generality, we assume that x∗ = (x∗

1 , x∗
2 , . . . , x∗

k , 0, 0, . . . , 0).
Then, there exists a non-trivial vector h∗ that combines these
columns to zero (i.e., the support of h∗ is contained within the
support of x∗), Ah∗ = 0. It is obvious that A(x∗+h∗) = b and
A(x∗ − h∗) = b. Without loss of generality, we assume that
max

1≤ j≤k
h∗

j ≤ min
1≤ j≤k

x∗
j . Hence, for every j, x∗

j + h∗
j , x∗

j − h∗
j ,

and x∗
j have the same sign. Because the function f (t) =

(at/1 + at)(t > 0) is strictly concave, we have, for every j

a
	
	x∗

j + h∗
j

	
	

1 + a
	
	x∗

j + h∗
j

	
	 + a

	
	x∗

j − h∗
j

	
	

1 + a
	
	x∗

j − h∗
j

	
	 < 2

a
	
	x∗

j

	
	

1 + a
	
	x∗

j

	
	 .

Furthermore

k�

j=1

a
	
	x∗

j + h∗
j

	
	

1 + a
	
	x∗

j + h∗
j

	
	 +

k�

j=1

a
	
	x∗

j − h∗
j

	
	

1 + a
	
	x∗

j − h∗
j

	
	 < 2

k�

j=1

a
	
	x∗

j

	
	

1 + a
	
	x∗

j

	
	

which implies that

k�

j=1

a
	
	x∗

j + h∗
j

	
	

1 + a
	
	x∗

j + h∗
j

	
	 <

k�

j=1

a
	
	x∗

j

	
	

1 + a
	
	x∗

j

	
	

or
k�

j=1

a
	
	x∗

j − h∗
j

	
	

1 + a
	
	x∗

j − h∗
j

	
	 <

k�

j=1

a
	
	x∗

j

	
	

1 + a
	
	x∗

j

	
	 .

That is

Pa(x
∗ + h∗) < Pa(x

∗) or Pa(x
∗ − h∗) < Pa(x

∗).

This is a contraction.
Proof of Lemma 4:

1) Let x∗ be the optimal solution to (F Pλa ). Then, we have

f (x∗) = �Ax∗ − b�2
2 + λPa(x

∗) ≤ f (0) = �b�2
2.

Hence, λPa(x∗) ≤ �b�2
2, which implies that

a�x∗�∞
1 + a�x∗�∞

≤ �b�2
2

λ
.

If λ > �b�2
2, then

�x∗�∞ ≤ �b�2
2

a
�
λ− �b�2

2

� .

2) Let B be the submatrix of A corresponding to the
support of vector x∗. By inequality (15) in Lemma 6,
for any y �= 0

�By�2
2 ≥ λ

k�

i=1

2a2y2
i�

1 + a
	
	x∗

i

	
	�3 > 0

which implies that the matrix BT B is positive definite.
Thus, the columns of B are linearly independent, and
hence, �x∗�0 ≤ m.

3) Suppose that x∗ �= 0 and �x∗�0 = k. Without loss of
generality, we assume

x∗ = �
x∗

1 , . . . , x∗
k , 0, . . . , 0

�T
.

Let z∗ = (x∗
1 , . . . , x∗

k )
T and B ∈ R

m×k be the submatrix of
A, whose columns are the first k columns of A.

We define a function g : R
k → R by

g(z) = �Bz − b�2
2 + λPa(z).

Then

f (x∗) = �Ax∗ − b�2
2 + λPa(x

∗)
= �Bz∗ − b�2

2 + λPa(z
∗) = g(z∗).

Since |z∗
i | > 0, i = 1, 2, . . . , k, g is continuously differen-

tiable at z∗, and moreover, in a neighborhood of x∗

g(z∗) = f (x∗) ≤ min{ f (x)|xi = 0, i = k + 1, . . . , n}
= min{g(z)|z ∈ R

k}
which implies that z∗ is a local minimizer of the function g.
Hence, the first-order necessary condition for

min
z∈Rk

g(z)

at z∗ gives

2BT (Bz∗ − b)+ diag(sgn(z))
λa

(1 + a|z|)2 = 0
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where sgn(·) is the sign function. Multiplying by z∗T both the
sides of the above-mentioned equality yields

2z∗T BT Bz∗ − 2z∗T BT b + z∗T diag(sgn(z))
λa

(1 + a|z|)2 = 0.

Because the columns of B are linearly independent, BT B
is positive definite, and hence

−2z∗T BT b + z∗T diag(sgn(z∗)) λa

(1 + a|z∗|)2 < 0.

Equivalently

k�

i=1

�
λa

	
	z∗

i

	
	

�
1 + a

	
	z∗

i

	
	�2 − 2(BT b)i z

∗
i

�

< 0. (30)

Since

λ ≥ �b�2
2+

�AT b�∞+



�AT b�∞+2a�b�2
2�AT b�∞

a

we obtain

aλ2 − 2
�
a�b�2

2 + �AT b�∞
�
λ+ a�b�4

2 ≥ 0 (31)

which implies that

a
�
λ− �b�2

2

�2

λ
≥ 2�AT b�∞. (32)

Together with

λa
�
1 + a|z∗

i |
�2 ≥ a

�
λ− �b�2

2

�2

λ
and 2|(BT b)i | ≤ 2�AT b�∞

we obtain that

λa
�
1 + a

	
	z∗

i

	
	�2 − 2|(BT b)i | ≥ 0. (33)

Hence, for any i ∈ supp(z∗)

λa
		z∗

i

		
�
1 + a

	
	z∗

i

	
	�2 − 2(BT b)i z

∗
i ≥ 0

which is a contraction with (30), as claimed.
Proof of Lemma 5: Let x∗ be any solution to (F Pλa ). Then,

for all t ∈ R and h ∈ R
n , the following inequality holds:

�Ax∗ − b�2
2 + λPa(x

∗) ≤ �A(x∗ + th)

− b�2
2 + λPa(x

∗ + th).

Equivalently

t2�Ah�2
2 + 2t�Ax∗ − b, Ah


+ λ(Pa(x
∗ + th)− Pa(x

∗)) ≥ 0. (34)

1) If supp(h) ⊆ supp(x∗), then for all t ∈ R

Pa(x
∗ + th)− Pa(x

∗)

=
�

i∈supp(x∗)

�
a
		x∗

i + thi
		

1 + a
	
	x∗

i + thi
	
	 − a

		x∗
i

		

1 + a
	
	x∗

i

	
	

�

.

Therefore, dividing by t > 0 on both the sides of
inequality (34) and letting t → 0 yield

2�Ax∗ − b, Ah
 + λ
�

i∈supp(x∗)

ahi sgn
�
x∗

i

�

�
1 + a

		x∗
i

		�2 ≥ 0.

Obviously, the above-mentioned inequality also holds
for −h, which leads to equality (11).

2) If supp(h) ⊆ Csupp(x∗), then for all t ∈ R

Pa(x
∗ + th)− Pa(x

∗) =
�

i∈Csupp(x∗)

a|thi |
1 + a|thi | .

Hence, it follows from inequality (34) that:
t2�Ah�2

2 + 2t�Ax∗ − b, Ah

+ λ

�

i∈Csupp(x∗)

a|thi |
1 + a|thi | ≥ 0.

Therefore, for all t > 0, we have

2|�Ax∗ − b, Ah
|
≤ �Ah�2

2t + λ

t

�

i∈Csupp(x∗)

a|thi |
(1 + a|thi |)

≤ �Ah�2
2t + λ�h�0

t
.

Thus

2|�Ax∗ − b, Ah
| ≤ min
t>0

�Ah�2
2t + λ�h�0

t

= 2



�Ah�2
2λ�h�0

as claimed.
Proof of Lemma 6:

1) Let supp(h) ⊆ supp(x∗). Then, incorporating equal-
ity (11) into inequality (34) yields that, for all t ∈ R

t2�Ah�2
2 − λ

�

i∈supp(x∗)

tahi sgn
�
x∗

i

�

�
1 + a

	
	x∗

i

	
	�2

+ λ(Pa(x
∗ + th)− Pa(x

∗)) ≥ 0

or equivalently

�Ah�2
2 ≥ λ

t2

⎛

⎝
�

i∈supp(x∗)

tahi sgn
�
x∗

i

�

�
1 + a

		x∗
i

		�2

⎞

⎠

− (Pa(x
∗ + th)− Pa(x

∗)). (35)

Hence, letting t → 0 on the right-hand side of the above-
mentioned inequality, we have inequality (15).

2) If we replace h in inequality (35) with the base vector
ei for every i ∈ supp(x∗), then we have the component-
wise inequality

�ai�2
2 ≥ λ

t2

�
atsgn

�
x∗

i

�

�
1 + a

		x∗
i

		�2 − a
	
	x∗

i + t
	
	

1 + a
	
	x∗

i + t
	
	

+ a
		x∗

i

		

1 + a
	
	x∗

i

	
	

�

.
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Particularly, the above-mentioned inequality is available
for t = −x∗

i . Therefore, we have

�ai�2
2 ≥ λ

x2
i

�

− a
	
	x∗

i

	
	

�
1 + a

	
	x∗

i

	
	�2 + a

	
	x∗

i

	
	

1 + a
	
	x∗

i

	
	

�

.

It follows that:

�ai�2
2 ≥ λa2

�
1 + a

	
	x∗

i

	
	�2 .

From the above-mentioned inequality, inequality (16) imme-
diately follows.

Proof of Theorem 3: Assume that λ ∈ (�b�2
2, λ̄) and (18)

holds. If the optimal solution xλ to (F Pλa ) is not the optimal
solution to (F Pa), then Axλ = bλ �= b. Let yλ be the sparsest
solution to Ay = b − bλ. Then, A(xλ + yλ) = b, �yλ�0 =
k ≤ m, and the column submatrix B∗ of A consisting of the
columns indexed by the set of supp(yλ) is full column rank.
By the definition of σmin

σmin ≤ �B∗yλ�2
2

�yλ�2
2

. (36)

Using the inequality of the matrix-norm, we obtain

�yλ�2
2 ≥ 1

�A�2
2

�Ayλ�2
2

= 1

�A�2
2

�Axλ − b�2
2

≥ 1

�A�4
2

�AT (Axλ − b)�2
2

≥ λ2a2

4�A�4
2

�
λ− �b�2

2

λ

�4

(37)

where the last inequality holds by inequality (14).
Because λPa(yλ) ≤ λm, we have

λPa(yλ)

�yλ�2
2

≤ 4m�A�4
2

λa2

�
λ

λ− �b�2
2

�4

. (38)

Combining it with inequalities (18) and (36), we obtain

λPa(yλ)

�yλ�2
2

<
�B∗yλ�2

2

�yλ�2
2

= �Ayλ�2
2

�yλ�2
2

which implies that

λPa(y
λ) < �Ayλ�2

2 = �Axλ − b�2
2.

Therefore, we obtain

�A(xλ + yλ)− b�2
2 + λPa(x

λ + yλ)

≤ λPa(x
λ)+ λPa(y

λ)

< λPa(x
λ)+ �Axλ − b�2

2

= f (xλ) (39)

which leads to a contradiction that xλ is the optimal solu-
tion to (F Pλa ). Hence, the optimal solution to (F Pλa ) also
solves (F Pa).

Proof of Lemma 8:
1) Define the new variable η = ax + 1 and substitute it

into equality (19); then, the equality can be rewritten as

2η3 − 2(1 + at)η2 + λa2 = 0.

Due to t > t∗1 and Cardano’s root-finding formula
expressed in terms of hyperbolic functions (see [32]),
the equation has three distinct real roots

η0 = 1 + at

3

�
1 + 2 cos

�
φ(t)

3
− π

3

��

η1 = 1 + at

3

�
1 − 2 cos

φ(t)

3

�

and

η2 = 1 + at

3

�
1 + 2 cos

�
φ(t)

3
+ π

3

��
(40)

where

φ(t) = arccos

�
27λa2

4(1 + at)3
− 1

�
.

It is obvious that η0 > η2 > η1. For xi = (ηi − 1/a),
we can also prove x0 > x2 > x1. Then, the largest root
is x0, i.e., x0 = (η0 − 1/a) = gλ(t).

2) We set η = 1 − ax in equality (20), so x = 1 − η/a.
Then, we can obtain the smallest root with a similar
deduction process as the first part

x0 =
1 − 1−at

3

�
1 + 2 cos

�
φ(t)

3 − π
3

��

a
where

φ(t) = arccos

�
27λa2

4(1 − at)3
− 1

�
.

Therefore, x0 = gλ(t) and x0 < 0.
Proof of Lemma 9: We discuss x > 0, x = 0, and x < 0 in

the following.
1) x = 0: In this case, fλ(y) = y2 +λpa(|y|). It is true that

y2 and λpa(|y|) are increasing with y > 0, and they are
decreasing with y < 0. Thus, f (0) is the least value of
fλ(y), i.e., the optimal solution y∗ = 0 if x = 0.

2) x > 0: It is obvious that (y − x)2 and λpa(|y|) are
decreasing with y < 0, so the optimal solution is non-
negative. We just need to consider y ≥ 0.
In the case y ≥ 0, we obtain

f �
λ(y) = 2(y − x)+ λa

(1 + ay)2

and

f ��
λ (y) = 2 − 2λa2

(1 + ay)3
.

It is clear that f ��
λ (y) is increasing. Then, we consider

parameter λ since it controls the convexity of fλ(y).
a) λ ≤ 1/a2: Because of lim

y→0
f ��
λ (y) = f ��

λ (0) =
2 − 2λa2 ≥ 0, f �

λ(y) is increasing for y ≥ 0, and
hence, the least value is obtained at y = 0 and
f �
λ(0) = λa − 2x = 2(λa/2 − x) = 2(t∗2 − x).
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i) If 0 ≤ x ≤ t∗2 , then fλ(y) is positive; thus,
the minimum point y∗ = 0.

ii) If x > t∗2 , then fλ(y) is first negative, then
positive, and x > t∗2 > t∗1 . The minimum point
y∗ of fλ(y) satisfies

f �
λ(y

∗) = 0 ⇔ 2y∗(1 + ay∗)2

−2x(1 + ay∗)2 + λa = 0.

Then, the optimal solution is obtained as
y∗ = y0 = gλ(x) by Lemma 8.
Specifically, the value of y∗ is

y∗ =
�

0, 0 ≤ x ≤ t∗2
gλ(x), x > t∗2

when λ ≤ 1/a2.

b) λ > 1/a2: f �
λ(y) is first decreasing and then

increasing, and the minimum point of f �
λ(y) is

y = (
3
√
λa2 − 1/a). Therefore, the least value

f �
λ(y) = 2(y − x)+ λa

(1 + ay)2
= 2

�
t∗1 − x

�
.

Then, it is true that f �
λ(y) ≥ 2(t∗1 − x) with y ≥ 0.

i) If 0 ≤ x ≤ t∗1 , then fλ(y) is increasing with a
minimum at y∗ = 0.

ii) If x ≥ t∗2 , then f �
λ(0+) ≤ 0, and thus,

the function fλ(y) is first decreasing and then
increasing, with just one positive optimal point,
which is y∗ = gλ(x) by Lemma 8.

iii) If t∗1 < x < t∗2 , then f �
λ(0+) > 0, and

thus, the function fλ(y) is first increasing, then
decreasing, and finally increasing. Hence, f �

λ(y)
has two positive roots, and the largest root is the
minimum point we want. Moreover, the largest
root is obtained as y∗ = y0 = gλ(x) by
Lemma 8. Thus, we just need to compare fλ(0)
with fλ(y0).

Since a variant of 2(y0 − x) + (λa/(1 + ay0)
2) = 0 is

(λa/(1 + ay0)) = 2(x − y0)(1 + ay0), we have

fλ(y0)− fλ(0) = y2
0 − 2y0x + λ

ay0

1 + ay0

= y0

�
y0 − 2x + λa

1 + ay0

�

= y2
0(2ax − 1 − 2ay0)

= 2y2
0

�
ax − 1

2
− ay0

�
.

Define a function ψ(x) = ax − (1/2)− agλ(x).
First, we prove that x = t∗3 is a solution to ψ(x) = 0.
Due to λ > (1/a2) and t∗3 = √

λ− (1/2a) > 0, there is

cos(φ(t∗3 )) = 27λa2

4
�
1 + at∗3

�3 − 1 = 27λa2

4
�

1
2 + a

√
λ
�3 − 1.

Moreover, we can obtain the following result by formula:
cos(φ) = 4 cos3

�
φ

3

�
− 3 cos

�
φ

3

�

�
0 ≤ φ

3
≤ π

3

�

cos

�
φ

3

�
= 3

�
8a

√
λ+ 1 + 4a

√
λ− 1

4(2a
√
λ+ 1)

.

It is immediate that gλ(t∗3 ) = (λ)1/2 − 1/a = t∗3 − 1/2a
after substituting the above-mentioned equation into
gλ(t∗3 ); therefore, t∗3 is also a solution to ψ(x) in (t∗1 , t∗2 ).
Second, we state that function ψ(x) will change its sign
at point x = t∗3 . We prefer to discuss it in two cases.
Case 1 [x ∈ (t∗3 , t∗2 )]: By Lemma 8, we know that gλ(x)
is the largest root of the cubic polynomial 2y(1+ay)2−
2x(1+ay)2+λa = H (y) under the condition of x > t∗1 .
For function H (y), we have H (x) = λa > 0 and

H

�
x − 1

2a

�
= λa − 1

a

�
ax + 1

2

�2

.

Due to x > t∗3 = √
λ− (1/2a) and H (x − (1/2a)) < 0,

there is a root y = gλ(x), such that gλ(x) ∈
(x − (1/2a), x) for the equation H (y) = 0. That is,
x − gλ(x) < (1/2a), and thus, ψ(x) < 0.
Case 2 [x ∈ (t∗1 , t∗3 )]: H (x −(1/2a)) > 0 and H (x) > 0
hold in this situation. As in Lemma 8, one possible state
is that there are two roots y0 and y2 in (x − (1/2a), x).
However, we will declare that this is false as follows.
With formula (40), there is

y0 − y2 = 2(1 + ax)

3

�
cos

�
φ(x)− π

3

�

− cos

�
φ(x)+ π

3

��

= 4(1 + ax)

3
sin

φ(t)

3
sin

π

3
.

Furthermore, y0 − y2 > (1/2a) holds for x > t∗1 >
(3/2a2)− (1/a) and λ > (1/a2). This is a contradiction
of our assumption that y0 and y2 are in (x − 1/2a, x).
Thus, H (y) = 0 has no root in (x − (1/2a), x).
Therefore, inequality y0 = gλ(x) < x − (1/2a) holds
by |gλ(x)| ≤ |x |, i.e., ψ(x) > 0.
From the discussion earlier, it is true that the optimal
solution y∗ = 0 if 0 < x ≤ t∗3 and y∗ = y0 = gλ(x) if
x > t∗3 .
To sum up, we have

y∗ =
�

0, 0 < x ≤ t∗3
gλ(x), x > t∗3

when λ > (1/a2).
3) x < 0: Because

inf
y∈R

fλ(y) = inf
y∈R

fλ(−y) = inf
y∈R

{(y + x)2 + λpa(|y|)}
the status of x > 0 can be extended to the status of
x < 0 and formula (21) holds.

According to the results from all cases, the proof is
completed.
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