
1780 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

A Taxonomy for Neural Memory Networks
Ying Ma and Jose C. Principe, Life Fellow, IEEE

Abstract— An increasing number of neural memory networks
have been developed, leading to the need for a systematic
approach to analyze and compare their underlying memory
structures. Thus, in this paper, we first create a framework for
memory organization and then compare four popular dynamic
models: vanilla recurrent neural network, long short-term mem-
ory, neural stack, and neural RAM. This analysis helps to open
the dynamic neural networks’ black box from the memory
usage prospective. Accordingly, a taxonomy for these networks
and their variants is proposed and proved using a unifying
architecture. With the taxonomy, both network architectures
and learning tasks are classified into four classes, and a one-
to-one mapping is built between them to help practitioners
select the appropriate architecture. To exemplify each task type,
four synthetic tasks with different memory requirements are
selected. Moreover, we use some signal processing applications
and two natural language processing applications to evaluate the
methodology in a realistic setting.

Index Terms— Long short-term memory (LSTM), neural
RAM, neural stack, recurrent neural network (RNN).

I. INTRODUCTION

RECURRENT neural networks (RNNs) have been exten-
sively studied and enjoy success in a lot of sequence

learning problems. Elman [1] and Jordan [2] proposed the first
classic version of recurrent network (RNN) that introduces
memory by adding a feedback from the hidden layer to itself
for sequence recognition. They are often referred to as vanilla
RNN (vRNN) nowadays. Although vRNN is theoretically
Turing complete if well-trained [3], it is usually ineffective
when the sequence is long.

Many dynamic neural networks (recurrent, dynamic, and
memory neural network are used interchangeably in this paper)
have emerged recently to improve the vRNN architecture.
Some of them adopt internal memory, some adopt external
memory, and some adopt logic gates, while others adopt an
attention mechanism. As expected, all of them have advantages
for some specific tasks, but it is hard to decide which one is
optimal for a new task unless we have a clear understanding of
the functions of all memory networks’ components. Intuitively,
we all know that if the network possesses more components,

Manuscript received June 30, 2018; revised March 19, 2019; accepted
June 2, 2019. Date of publication August 20, 2019; date of current ver-
sion June 2, 2020. This work was supported in part by the Lifelong
Learning Machines Program of the Defense Advanced Research Projects
Agency, Microsystems Technology Office, under Grant FA9453-18-1-0039.
(Corresponding author: Ying Ma.)

The authors are with the Computational NeuroEngineering Laboratory
(CNEL), Department of Electronic and Computer Engineering, University
of Florida, Gainesville, FL 32611 USA (e-mail: mayingbit2011@gmail.com;
principe@cnel.ufl.edu).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2926466

it can make use of more information, but what kind of the
extra information they are using and how useful this extra
information is still remain not fully understood in the current
works. Thus, the major goal of this paper is to open the RNNs’
black box from the memory usage prospective. We illustrate
the role and importance of memory by first principles, which
is indispensable to continue developing better memory archi-
tectures and can also help debug these networks. At least in
this respect, we think that the message of this paper is clear
and important for the neural network community. A secondary
goal is to summarize all these popular models in a systematic
manner and employ the knowledge gained from the different
characteristics of these memory structures to help users select
the type of memory network given the type of problem. We do
so by proposing a taxonomy and connecting models’ relative
expressive power to the memory requirement of different tasks.

II. RELATED WORK

Among the abundance of recurrent network papers, a very
few papers focus on understanding and analysis. Omlin and
Giles [4] discussed how vRNN behaves like deterministic
finite-state automata, while [5]–[7] compared long short-term
memory (LSTM) [8] and vRNN’s performance on some
context-free/context-sensitive language. In [9], the capacity of
recurrent nets and how difficult they are to train is stud-
ied, while [10] visualized long-term interactions and repre-
sentations learned by recurrent networks. Greff et al. [11]
empirically studied the importance of various computational
components of LSTM, and Jozefowicz et al. [12] evaluated
a variety of RNN architectures and tried to find the best
one. Finally, [13] evaluated GRU [14] compared to LSTMs
and [15] tested and compared The performances of sequen-
tial, random access, and stack memory architectures on the
language modeling data set. These works usually study the
performance of networks based on the output error, and this
paper focuses more on how these networks encoded informa-
tion in order to solve a problem.

III. MEMORY STRUCTURE ANALYSIS

Memory analysis is not an easy issue because “memory” is
a very abstract concept and the specific memory requirements
for a specific task are implicit, which means that quantitatively
conceptualizing and analyzing memory is a hard problem.
Memory capacity is used to quantify how much information
can be stored at a specific time, but it fails to include the
time information; in other words, it cannot be used to measure
how many time steps of information can be stored. However,
memory exists in the space of events that build the collected
signal and in time; therefore, it is a spatiotemporal concept.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2487-9921

MA AND PRINCIPE: TAXONOMY FOR NEURAL MEMORY NETWORKS 1781

In order to incorporate time information in the measure of
memory, de Vries and Principe [16] proposed a methodology
to quantify memory with an analytic expression for the com-
promise between memory depth and memory resolution.

However, there are a lot of complex dynamic systems that
not only evolve in time but are also affected by useful past
events. For example, in natural language processing, if a
paragraph is given:

“John was born and raised in China. He went to the UK to
study after 18 years old and now lives in the United States.
John’s mother language is –”.

The word in – should be Chinese because of the fact that
John was raised in China. All other information is irrelevant.
Hence, instead of formulating the data generating system as

hn = f (hn−1, xn) + vn (1)

yn = g(hn) + nn (2)

where hn is the state at time n, and a more efficient formula
should be

hn = f (em1, em2 , em3 , . . . , xn) + vn (3)

where emi is a relevant event happening at time mi and
mi < n, where n is the current time. The relevant events
at each time step could be different.

Equation (1) is one popular representation of state-space
model, which describes a system with input xn and output yn

(xn and yn are also called cause and observation) in terms of
a latent Markovian state hn . f (•) is the transition model and
g(•) is the observation model.

Equation (1) can be used to describe many classic control
problems, where memory of past is encoded in the state
variable hn . However, for some real sequence learning problem
(e.g., video or language), although we can still formulate them
as a complex dynamic system, building such a state transition
model is almost impossible, and the state space would be very
large.

Thus, we decide to describe the dynamic of some complex
dynamic system with (3), which decouples state samples from
memory events. Instead of encoding the memory with a state
variable, the memory is encoded in multiple past events emi .
Hence, emi is a function of the state and input variables and
some previous extracted events E

emi = t (hmi −1, xmi , E) + n′
n (4)

where n′
n is a noise term. Since useful events do not

happen all the time, we use mi instead of i here. In the
above-mentioned example, em1 is “China.” m1 = 7 (1: Jone, 2:
was, 3: born, 4: and, 5: raised, 6: in, and 7: China).
Equation (1) can be seen as a special case of (3) when there
is only one useful event at every time step

hn = f (en−1, xn) + vn (5)

en−1 = t (hn−1, xn) + n′
n . (6)

Comparing (1) and (3), (3) brings us several advantages as
follows.

1) Avoiding the difficulty of building a state variable xt for
complex dynamic systems.

2) The working mechanism of the underlying dynamic
system is more like the way human solving with a
sequence learning problem (when humans make deci-
sions or predictions, they usually ignore useless inter-
mediate samples and recall relevant past events).

3) It provides a new framework to analyze memory struc-
ture for the memory system. When the problem is posed
in this way, we immediately can see three fundamental
steps in any memory system as follows:

a) how to select the relevant events from the flow of
time samples, i.e., extracting useful events emi from
the time series and storing them for future use;

b) how to select the time interval where relevant
events affect the current processing, i.e., at each
time step, the relevant events need to be selected
from the past stored events’ set;

c) how to effectively use this information for the
current task, i.e., how to store the least number
of events to solve a specific task.

Actually, unlike vRNN [the underlying dynamic model of
vRNN is (1)], a lot of recent memory architectures have the
capability of extracting events from time flow. “How many
events can be stored and accessed” is an important property
of various memory network architectures and can help to
distinguish these different network architectures. The capacity
of an architecture can be enhanced a lot by hyperparameter
selection (for example, the number of neurons in vRNN), but
the “number of distinct events that can be stored” depends
upon the network architecture. Thus, in this section, we will
investigate the characteristics of memory implemented by four
popular RNNs: vRNN, LSTM, neural stack, and neural RAM
from “how many events can be stored” perspective. Attention
is paid to how their underlying memory organizations lead to
different features and expressive power.

A. vRNN

The vRNN network [2] is composed of three layers: input,
hidden recurrent, and output layers. Besides all the feed-
forward connections, there is a feedback connection from
the hidden layer to itself. The architecture of it is shown
in Fig. 1(a). The dynamics of the hidden layer can be written
as

ht = f
(
wT

xhxt + wT
hhht−1 + bh

)
(7)

ot = f
(
wT

hoht + bo
)

(8)

where xt , ht , and ot are the input, hidden state, and output
vector at time t , respectively. We use w and b to represent
weight and bias of the corresponding sizes in this paper. f (x)
is the nonlinear activation function.

vRNN induces memory by encoding the past information in
its hidden state units ht . Thus, the memory of vRNN is called
state memory or internal memory.

This memory mixed all the past events in its hidden state.
It cannot recover these distinct events from the hidden state.
Hence, the state can also be seen as one single compound
event, which is updated at each time step

hn = f (en−1). (9)

1782 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Fig. 1. vRNN.

Compared to (3), current state hn only depends on one
compound event, which happens at time n − 1.

Fig. 1(b) shows the state transition diagram of vRNN,
where s0, s1, . . . , s4 represent the state at time t0, t1, . . . , t4,
respectively. The arrows show the variables’ dependence rela-
tionship. Here, state s1 is decided only by s0, s2 is decided only
by s1, and so on. (All the memory visualization figures in this
paper ignore the current input.) As the number of hidden units
is limited in practice, there is always a compromise between
memory depth and memory resolution in the vRNN [16]. For
long memory depths’ sequences, vRNN needs a very large
number of hidden units to achieve an acceptable accuracy. If
the sequences are composed by symbols or discrete numbers,
this can also be understood from Markov transition model
prospective. To be specific, vRNN tries to learn a first-order
Markov transition model (with transition probability of 1)
where the current state is decided only by the current input
and the state at one previous step. Thus, for first-order Markov
sequences, since the state space is not very large (the number
of state is less than the size of input symbols’ alphabet), vRNN
always performs well. However, for higher order Markov
sequences or sequences that do not have Markov property,
vRNN still tries its best to build a first-order Markov state
model, which will result in a very large state space (it has to
combine several old states into a new state). The compromise
between memory depth and memory resolution (which are
related to the number and temporal resolution of the states)
would make vRNN not suitable for these kinds of sequences.

B. LSTM

LSTM was proposed to deal with the vanishing gradient
problem of vRNN. In this section, we will analyze how LSTM
provides more flexibility from the memory usage prospec-
tive. Different from vRNN, in the classical LSTM as shown
in Fig. 2(a), the feedback connection of hidden layer has to
go through an external memory mt

ct = f
(
wT

hcht−1 + bc
)

(10)

mt = gi,t ct + g f,tmt−1 (11)

Fig. 2. LSTM. Blue line (called here a belt) named M0 represents the
external memory over time. At t1, memory M00 is generated and stored, and
at time t9, M00 is updated to M01. Black dashed arrows represent the effect
of the current state on the external memory. The state index is also the time
index. (a) Network architecture. (b) Memory visualization.

rt = mt (12)

ht = f
(
wT

xhxt + wT
rh go,trt + bh

)
(13)

where ht (or ct) is the state of the network. The external
memory mt is a combination of mt−1 and current state ct .
If gi,t = 0 and g f,t = 1 for several successive time steps,
the content saved in the external memory mt would be the
long-term memory of the system.

This external memory mt adds more flexibility to the
state transition diagram, and in fact, the LSM is the first
neural memory system that was working with memory ele-
ments of (3), although this was never mentioned. As shown
in Fig. 2(b), the current state st (represented by hidden state ht)
depends on either the previous one state st−1 or the external
memory mt−1 (if forget gate g f,t = 0 and input gate gi,t = 1,
st depends on st−1, if g f,t = 1 and gi,t = 0, st depends on
mt−1, and if 0 < g f,t < 1 and 0 < gi,t < 1, st depends on
both mt−1 and st−1; The calculation details of these gates are
in Appendix A-A). For example, s1 depends on one previous
state s0 illustrated by the blue arrows, s7 and s8 depend on the
long-term memory M00 illustrated by the yellow arrows, and
s9 depends on both the previous state s8 and the long-term
memory M00. The introduced external memory circumvents
the compromise between the memory depth and memory
resolution that is always present in the state memory in vRNN.
For instance, for a tenth-order binary Markov sequence whose
state dependence relationship is st = f (st−1, st−10), vRNN
has to learn a state space with 210 state (it has to combine
ten states into a new state); however, LSTM only needs to
learn a state model with two states and an external memory
storing the state information ten steps before. By constructing

MA AND PRINCIPE: TAXONOMY FOR NEURAL MEMORY NETWORKS 1783

this short path between the long-term memory and the current
state, LSTM works much better than vRNN for sequences that
skip intermediate values of time dependences.

In other words, LSTM is capable of extracting a useful event
at a specific time and storing it in an external memory which
will not be affected by the intermediate irrelevant information.
This long-term memory can be seen as the event extracted
from the input time series

hn = f (em1). (14)

Note that here, the useful event happened at time m1 other
than n − 1 as in vRNN (9).

Although LSTM is more effective than vRNN, we have
to know its limitations. For example, if there is no skip in
time dependence, i.e., st = f (st−1, st−2, . . . , st−10), LSTM
and vRNN have the same expressive power. This also tells us
the argument that “LSTM is always better than vRNN” is not
correct. Another drawback of LSTM is its transient storage
of the long-term memory. In other words, if the long-term
memory is updated, its old value is erased. For example,
in Fig. 2(b), at time t9, when M00 is updated to M01, M00 is
erased. Thus, the future states do not have access to memory
M00 any more. According to this property, this architecture is
extremely useful when the previous states do not need to be
addressed again after they are updated.

C. Neural Stack

Neural stack refers to neural networks using a stack as
its external memory. The stack is controlled by either a
feedforward network or a vRNN. One stack property is that
only the topmost content of the stack can be read or written.
Writing to the stack is implemented by three operations: push,
adding an element to the top of the stack; pop, removing the
topmost element of the stack; and no-operation, keeping the
stack unchanged.

The diagram for the neural stack network is shown
in Fig. 3(a), where we use the architecture in [17]. Elements
in the stack would be updated as follows:

mt (i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dpush
t c + dpop

t mt−1(1) + dno-op
t mt−1(0)

if i = 0

dpush
t mt−1(i − 1) + dpop

t mt−1(i + 1)

+ dno-op
t mt−1(i), otherwise

(15)

where mt (i) is the content of the stack at time t in position i ,
mt (0) is the topmost content at time t , c is the candidate
content to be pushed onto the stack, and dpush

t , dpop
t , and dno-op

t
are push, pop, and no-operation signals, respectively. In order
to train the network with back propagation through time
(BPTT), all operations have to be implemented by continuous
functions over a continuous domain. The calculation details
of the stack contents and the corresponding operators are in
Appendix A-B. Since the recurrence is introduced by the stack
memory, the dynamics of the model are

ht = g
(
wT

xhxt + wT
rhrt + bh

)
(16)

where rt is the read vector at time t

rt = gomt (0). (17)

Fig. 3. Neural stack: the network first saves state M00 in belt M0 and
updates it to M01. At time t2, instead of replacing M01 with a new state
M10, a new belt M1 is created to save M10. In this way, both M01 and M10
are kept. Similarly, at time t5, M30 is saved in another belt M3. In time t5,
the content in the stack is M01, M11, and M30, and M30 is the topmost
element. (a) Network architecture. (b) Memory visualization.

Although the architecture of neural stack looks very different
from vRNN and LSTM, there are some underlying similarities
between them from the memory organization prospective.
Fig. 3(b) shows the memory space for the neural stack.
Different from LSTM, neural stack can store more than one
useful content in its external memory bank. For example,
at time t0, M00 is saved in memory belt M0, and at time t2,
M10 is saved in belt M1. A black arrow on the left of the
memory content is used to point the top of stack at each
time step. All these contents can be addressed when they
are needed. For example, M10 is used again at time t4 after
popping out M20 in belt M2. With this external memory,
all the useful information of the input is retained. Different
from the state memory, the content of past is not altered, and
it is stored in its original form or the transformation form.
As the content and the operations on the past are separate,
we can efficiently select the useful content from this structured
memory other than using the mixture of all the content before.
Hence, the realization of state update of neural stack is

hn = f (em1, em2, . . . , emi−1 ,︸ ︷︷ ︸
not accessible at step n

emi) (18)

where emi is the event stored on the top of stack. Compar-
ing (14) and (18), LSTM can be seen as a special case of the
neural stack.

LSTM can be seen as a special case of the neural stack.
In the neural stack, if all the contents in the stack below
the topmost element will never be addressed again, only one
memory belt is enough. In this case, neural stack degrades to

1784 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Fig. 4. Neural RAM. (a) Network architecture. (b) Memory visualization.

LSTM as shown in Fig. 3(b) with a green dashed box. The
stack operators (push, pop, and no-op) in the neural stack have
the same function as the input and forget gates in LSTM:
deciding how to revise the memory contents. The problem
for LSTM is that the previous memories are erased after
they are updated, which also happens continuously with the
vRNN state. Hence, both learning models have difficulties to
accomplish some simple memorization tasks, such as reversing
a sequence. However, the external memory bank in the neural
stack can help to solve this problem by online storing and
extracting more than one content.

Although the neural stack can go back to the previous
memory, it has two constraints. First, it cannot jump to any
memory position, the previous memory should be addressed
and updated sequentially. For example, as shown in the second
line in Fig. 3(b), if we want to go back to the memory in the
belt M1, we have to pass memory in belt M2 first. Second,
after the memory content is popped out of the stack, it will
be forgotten. For example, at time t4, memory in belt M2 is
popped out, and therefore, in the future time steps, content in
belt M2 cannot be accessed and updated anymore.

From the state transition analysis mentioned earlier, we can
draw the conclusion that for the tasks where the previous
memory needs to be addressed sequentially (first in last out),
the stack neural network is our first choice.

D. Neural RAM

Recently, some dynamic neural networks with an external
random access memory have been studied. In these networks,
all the contents in the memory bank can be randomly accessed.
Neural Turing Machine (NTM) [18] is one example. Its net-
work architecture is shown in Fig. 4(a).

The challenge of this network is that all the memory
addresses are discrete in nature. In order to learn read and write
addresses by error backpropagation, they have to be extended
to continuous domain.

A solution to this difficulty is to read from and write to all
the memory slots with different strengths. These strengths can
also be explained as the probabilities of each slot to be read
from and written to. To be specific, the reading vector at time
step t is

rt =
M−1∑
i=0

wr
t (i)mt (i) (19)

where m is the memory bank with M memory slots and wr
t (i)

is the normalized reading weight for the i th slot at time t
which satisfying

∑
i wr

t (i) = 1, 0 ≤ wr
t (i) ≤ 1. In the writing

process, each memory slot is updated as

ct = f
(
wT

hcht + bc
)

(20)

mt (i) = ww
t (i)ct (i) + et (i)mt−1(i). ∀i (21)

where wr
t (i) is the writing weight and et (i) is the erasing

weight for memory slot i at time t . The calculation details
of these weights are in Appendix A-C. The dynamics of the
hidden layer are

ht = f
(
wT

xhxt + wT
rhrt−1 + bh

)
. (22)

Fig. 4(b) shows its memory structure. The RAM network can
be seen as an improvement of the neural stack in the sense
that all the contents in the memory bank can be read from and
written to multiple times, and there is no requirement for the
order of storing, updating, and accessing memory elements.
Realization of the state update formula (3) of neural RAM is

hn = f (em1, em2 , em3 . . .). (23)

It is not hard to see that neural RAM is more powerful
compared to all other architectures.

For example, in Fig. 4(b), at time t0, memory M00 is stored
in belt M0, and at time t1, system control can directly jump to
belt M2 to store M20. What is more, the reading and writing
slots can be different. For example, at t1, the network writes to
belt M2 and reads the content in M0. The black arrows on the
left of the contents in external memory represent the reading
contents. This neural RAM network can degrade to neural
stack if the memory accessing order is restricted. Similarly,
it can degrade to LSTM if only one memory belt is used. From
the above-mentioned analysis, it is not hard to see that neural
RAM is the most powerful network among all the models
discussed in this paper.

IV. MEMORY NETWORK TAXONOMY

From the analysis in Section III, we can draw a conclusion
that the innovation of LSTM versus the vRNN is the incorpo-
ration of an external memory and three gates to balance the
external memory and internal memory, the innovation of neural
stack is to extend one external memory to several external
memories and to propose a method to visit the memory slots in
a certain order, and the innovation of neural RAM is to remove

MA AND PRINCIPE: TAXONOMY FOR NEURAL MEMORY NETWORKS 1785

Fig. 5. Memory network taxonomy.

the constraint of the memory slots visiting order, which allows
any memory slot to be visited at any time and any number
of times. The different memory organizations make these
networks to have a different expressive power. In this section,
a taxonomy of RNN is proposed to classify all these popular
models into four classes ordered by a rigorous inclusion
relationship, as shown in Fig. 5, i.e., vRNN⊆ LSTM⊆neural
stack⊆neural RAM. Some classes are named after a typical
model. For example, vRNN class also includes an RNN that
is composed of ReLUs and initialized with the identity matrix
(IRNN) [19] and highway network [20], LSTM class also
includes GRU [14] and peephole network [21]. Neural stack
class includes the architecture in [17] and [22]–[24]; neural
RAM class includes NTM [18], differentiable neural com-
puters (DNC) [25], enhanced LSTM [26], [27], and attention
model [28]. The classification of these four types of networks
is based on the their memory characteristics, i.e., internal
memory, one external memory slot, external memory slots with
a restricted visiting order, and external memory slots without
restricted visiting order. For instance, LSTM and GRU belong
to the same class since both of them have one external memory
slot, though their gate calculations are different. NTM [18] and
attention model [28] belong to the same class since both of
them have multiple external memory slots without restricted
visiting order, although NTM [18] uses the continuous read
and write head to access the memory and attention model [28]
stores all past contents and train a weight to pay attention to
the useful past content.

In Sections IV-A and IV-B, we will first prove the inclu-
sion relationship mathematically and then show how to link
the property of different memory structures to the memory
requirement of different tasks, which can help practitioners
select the most parsimonious model for a specific task.

A. Inclusion Relationship Derivations

Theorem 1: theorem]lkofbknbg Neural RAM can be
degraded to a neural stack if the following holds.

1) All the reading weights except that for the topmost
memory slot are set to zeros, wr

t (i) = 0, i f i �= 0.
2) Only the writing weight for the topmost memory

slot is learned, and all others are copied from it,
wr

t (i) = wr
t (0), if i �= 0.

3) In the writing process, instead of learning all the contents
to be written to the stack as in (20), only the content of
M0 is learned as ct (0) = t (w

′T
hcht−1 + bc) + γ mt−1(1)

and all others are calculated as ct (i) = mt−1(i − 1) +
γ mt−1(i + 1), if i �= 0.

4) Only the writing and erasing weights for the topmost
element are learned, and all others are just a copy of the
topmost′ s values, wr

t (i) = wr
t (0), et (i) = et (0).

Theorem 2: The neural stack can be degraded to the LSTM
if the pop signal is zero, dpop

t = 0. dpush
t in neural stack works

as the input gate in LSTM, and dno-op
t in neural stack works

as the forget gate in LSTM.
Theorem 3: The LSTM is degraded to the vRNN if the

following holds.
1) All three gates are set as constants, go = 0, gi = 1, and

g f = 0.
2) Weight whc and bias bc are set as constants whc = I

and bc = 0.
3) The activation function t (x) is set as linear activation

function t1(x) = x .
Proof: All the proofs are in Appendix B.

B. Mapping From Network Types to Task Types

It is not hard to see that the proposed taxonomy
resembles, but it is different from, the hierarchical
organization of automata: vRNN⇔Finite state machine,
neural stack⇔Deterministic pushdown automaton, and neural
RAM⇔Turing machine. In fact, notice that all these neural
models are all universal machines, unlike the automata. The
fundamental issue is that we have to find the appropriate
architecture to simplify the enormous problem of learning
from data efficiently. For instance, if our task is sequence
recognition or classification, the recognizable sequences for
each network can be illustrated by the Chomsky hierarchy.
However, these networks can also do some more sequence
learning tasks, such as prediction. In this case, sequences
do not need to satisfy the restrictive grammars, which will
depend upon the time structure of the signal and it is unknown
a priori. Hence, in order to make our taxonomy fit into
these more general applications, we divide all the sequence
learning tasks into four classes according to their memory
requirements, as summarized in Table I. This mapping can
help practitioners select the most parsimonious architecture
(we can always go for the most powerful model, but it needs
more resources to train) for all sequence learning tasks if they
know the memory requirement. In order to exemplify each
task type, four tasks employing synthetic symbol sequences
are selected: counting, counting with interference, reversing,
and repeat copying. We will analyze the memory requirements
of them one by one.

1) Counting: For the counting task, the input sequences are
composed of a′, b′, and c′. The output sequence is trying to
count the number of a′. For instance, when the input sequence
is aaabcaa, the output sequence would be 1233345. For this
kind of sequences, a state variable is needed to remember the
number of a′. Once receiving an a, there is a state transition.
In this problem, the state space is not very large. A first-order
Markov state model is more than enough to describe it. Hence,
as long as the network has one feedback loop, the counting
task can be completed. “Task can be completed” in this paper
means that the output error is almost zero.

1786 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

TABLE I

MAPPING FROM NETWORK TYPES TO TASK TYPES

2) Counting With Interference: For the counting with the
interference task, the input sequences are the same as the
counting task. We still want to count the number of a, but
if encountering b or c, the output should also be b or c.
For example, if the input is aabbaca, the output sequence is
12bb3c4. For this kind of problem, an external memory cache
is required, because when b or c is encountered, the hidden
layer’s output (internal memory) will be over-written. If we
want to recall the number of a′, this value needs to be stored
in an external memory for future use, and an input gate will be
needed to keep the external memory unaffected when inputting
b and c (gi = 1 when input a and gi = 0 when inputs b and
c). Thus, LSTM, neural stack, and neural RAM are capable
of solving this problem. However, in vRNN, since the only
memory is the state memory and the output is forced to be
a function of this state memory, the interference of b and c
would make vRNN unable to accomplish this task.

3) Reversing: The third task reverses the order of the
symbols in time. For example, if the input sequence
is abacdeδxxxxxx , the output sequence should be
xxxxxxxedcaba. δ is the delimiter symbol and x means
any symbol. When encountering δ in the input sequence,
no matter what the following symbols are, the output would
be the input symbols before δ in a reverse order. For this
task, all the useful past information should be stored and then
retrieved in a reverse order. Hence, the memory should have
the ability to store more than one element and the reading
order is related to the writing order. Since vRNN does not
have any memory bank and LSTM’s memory is forgotten
after it is updated, these two networks fail for this task.
On the other hand, both neural stack and neural RAM can
store more than one content and the task satisfies the “first-in
last-out” principle, and thus, they can solve this task.

4) Repeat Copying: The hardest task is repeat copying,
by which we mean that the output sequence is several times
repeated version of the input sequences. For example, if the
input sequence is adbcεxxxxxxxxxxxxxx , the output should
be xxxxxxxadbcadbcadbc, that is, when encountering the
repeating number symbol ε, the output will be the previous
input sequence for ε times. For this kind of task, not only
more than one past content need to be stored, but also they
should be retrieved more than one time, and here, the number
is 3. Since all the saved information in the neural stack is
forgotten after being popped out, it is unable to learn the task.
Thus, neural RAM is the only network that can handle this
task.

This classification of tasks is very meaningful since it can
guide the users in the right direction. If we select the wrong
type of network, there will be an error and/or speed penalty

no matter how we adjust the hyperparameters. As shown in
Section V, for sequence reversing (which belongs to the third
type of task), neural stack and neural RAM with 6 hidden
neurons will converge to near zero error, but for vRNN and
LSTM, even if we set the number of hidden neurons to 1000,
their output will always fluctuate around a non-zero value.

V. EXPERIMENTS

In order to illustrate the impact of different memory orga-
nizations, we test the performance of the four networks on
the synthetic tasks described in Section IV. We also use them
to visualize how each network encodes information in order
to solve a problem in the Supplementary Material. Then,
we analyze how to implement some basic signal processing
operations with neural memory networks, and the details are in
Section V-B. Finally, we used two natural language processing
applications to elaborate how to employ the knowledge gained
from the different characteristic of the memory structures to
help users select the right type of network.

A. Synthetic Tasks

1) Experiment Parameters’ Setting:
a) Counting and counting with interference: In the exper-

iment, the activation function is Relu in vRNN. In LSTM, the
external memory’s content is initialized as zero. In the neural
stack, the push, pop, and no-op operations are initialized as
random numbers with mean 0 and variance 1. At first, there
is only one content in the stack which is initialized as zero.
The depth of the stack can increase to any number as required.
In neural RAM, memory depth is set as M = 3. In LSTM,
neural stack, and neural RAM, memory width is set as N = 3,
the nonlinear activation functions for all the gates are sigmoid
functions, and others are tanh. The number of input neurons,
hidden neurons, and output neurons is 3. All the weights are
initialized as random numbers with mean 0 and variance 1, and
all the bias are initialized as 0.1. For counting task, the model
is trained with the synthetic sequences up to length 20. When
the input is a, the first elements in the output vector would
add one; otherwise, the output vector is unchanged. After
encoding, the input and output vectors are as follows.

MA AND PRINCIPE: TAXONOMY FOR NEURAL MEMORY NETWORKS 1787

Fig. 6. Learning curve for four synthetic tasks. (a) Counting. (b) Counting
with interference. (c) Reversing. (d) Repeating.

For counting with the interference task, after encoding,
the input and output vectors are as follows.

b) Reversing and repeat copying: Some network settings
are different from the first two experiments. In vRNN, the acti-
vation function in the hidden layer is sigmoid function since
we use entropy instead of mean square error (mse) as the cost
function. In neural RAM, the word size and memory depth are
set as 16. The length of read and write vectors is also set as
16. The number of input neurons, hidden neurons, and output
neurons is 6, 64, and 6, respectively. The model is trained
with sequences up to the length 20. In the repeat copying
experiment, the training sequences are composed of a starting
symbol ε, some symbols in set {a, b, c, d, e} followed by
a repeating number symbol δ, and some random symbols.
ε, a, b, c, d, and e are one-hot encoded with on-value 1and
off-value 0; δ is encoded with on-value n and off-value 0, and
n is the repeating number.

2) Experiment Result: Learning curves for the four tasks
using different networks are shown in Fig. 6. The performance
is measured in mse for first two tasks and output entropy
for the other two tasks. We use the same number of units in
all these architectures for a fair comparison. From the result,
we can observe that for counting, all the four networks can
achieve an almost zero error; for counting with interference,
all the networks except for vRNN can complete the task;
for sequence reversing, neural stack and neural RAM are the
suitable networks; and for repeat copying, neural RAM is
the only network to solving the problem. We also tried some

Fig. 7. Time delay network.

different parameter settings, for instance, setting the number
of hidden units from 5 to 1000, the performances are the same
as in Fig. 6 except for a different non-zero error value when
the network is not capable to accomplish the task.

B. Signal Processing

In this section, we will test how different memory net-
works realize basic signal processing operations: addition,
multiplication, time shifting, time scaling, time reversing, and
signal generating. The purpose is to show the capabilities
of different memory networks which are consistent with the
taxonomy proposed in this paper. We use the low-dimensional
signals: sine waves and cosine waves to conduct all the
experiments in this section. Since realization of addition and
multiplication does not need memories, we leave the analysis
and experiments for them in Appendix C and save the main
body of this paper for memory networks.

1) Time Shifting: In order to realize time shifting, the sys-
tem should have access to The previous samples. Hence, either
a TDNN or all the memory networks introduced in this paper
can implement it, i.e., the mse is less than a specified threshold,
here 0.01. In experiments, when we input sin(ft), the network
is expected to output cos(ft). The frequencies of the input
sine waves are in the range [π, 4π]. The sampling rate is
32 Hz. The mse of different networks is shown in Table II.
The result is the average of 20 runs. Fig. 7 shows a realization
for vRNN (A), TDNN (B), and feedforward network (C).
In Figs. 7, 8, and 10–12, the black arrow denotes weighted
connection and the bias is omitted in figures. From the results,
we can see that when the network has memory (vRNN and
feedforward network), time shifting can be implemented.

2) Time Scaling: For time scaling, we will talk about time
contraction and expansion.

For a periodic signal, contraction is realized by the com-
bination of time-shifting network and multiplication network.
For example, in order to generate sin2t given sint, a signal con-
taining component cost should be generated by time-shifting
network, and then, multiplication, sin2t = 2sintcost, should
be implemented with a multiplication network (explained in
Appendix C). Hence, a network without the capability of time
shifting, such as feedforward network or signal multiplication,

1788 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

TABLE II

MSE FOR SIGNAL PROCESSING OPERATORS

Fig. 8. Time scaling network: double frequency.

can never finish this job no matter how many hidden neurons
and layers are included. In Fig. 8, we show an example for
frequency doubling of a sine wave with RNN (A), LSTM (B),
and feedforward network (C). In RNN and LSTM, the number
of hidden units is set to 2, and the results are pretty good. The
output of the network and the desired signal sin2ft are almost
overlapped. However, in the feedforward network, even if we
increase the number of hidden neurons to 200, it still cannot
do frequency doubling.

In order to see the working details of RNN, we draw
the outputs of the two hidden units in Fig. 9. The three
subfigures are with different initialization for all weights and
bias. From these figures, we can see that in all of them,
at least one of the hidden units has a delayed version of the
input signal: the orange line in the first figure and the green
line in the second and third figures. Although the delayed
signal does not have the exact same shape as the input signal,
as long as it has cost, the filter in the multiplication network
(explained in the appendix) can filter the useless components
out. Hence, we can draw the conclusion that memory networks
implement signal contraction for periodic signal by adopting
a time-shifting network and multiplication network. It means
that all the memory network with at least two hidden layers
can do periodic signal contraction, as shown in Table II.

Fig. 9. Hidden units output for RNN.

Fig. 10. Time scaling network: half frequency.

Frequency division is a much harder problem since the com-
bination of time-shifting and multiplication networks cannot
generate terms with lower frequency. Thus, signal expansion
should be realized by function approximation. Since the input
(sinft) and output [sin(ft/2)] are one-to-many mapping, correct
prediction can only be made if the network is considering all
the input points from the very first one if we use vRNN. Due
to the compromise of memory depth and memory resolution,
RNN with a limited number of hidden neurons cannot accom-
plish this task. However, LSTM can easily solve this problem
since it has an external memory to help it differentiate the
odd and the even input period, which makes the input/output
mapping a one-to-one mapping. Fig. 10 shows an example for
vRNN (A) and LSTM (B). In LSTM, the number of hidden
neurons is 10, and in vRNN, the number of hidden neurons is
set to 500. From Fig. 10, we can see that the output of LSTM
(orange line) is overlapped with the desired signal sin(ft/2),
but the vRNN cannot learn the pattern. The results of all other
networks are in Table II. From the results, we can see that the
mse for all the networks with external memories can finish
this task with small errors.

For signal with low correlation in their time structure (the
lower limit is white noise, i.e., no correlation in time) within
one period, the architectures introduced before do not apply.
The only way to perform time scaling for white noise is

MA AND PRINCIPE: TAXONOMY FOR NEURAL MEMORY NETWORKS 1789

Fig. 11. Time scaling with neural RAM.

Fig. 12. Frequency generator.

to use multiple memory slots to save the waveform in a
period and then output it with another frequency based on
the decimation and interpolation. According to our analysis of
different memory networks, neural RAM is the only network
that can solve this problem. Fig. 11 shows an example of
frequency doubling and dividing of the white Gaussian noise.
The left figure is a randomly generated Gaussian noise x(t)
with length 30. The right two figures show the output of
the neural RAM for desire x(2t) and x(t/2), respectively.
From the result, we can see that neural RAM learned how to
output signal with either double or half input signal frequency.
Although neural RAM does not have high accuracy if the
frequency change is a rational number, it is the only network
that does time scaling for uncorrelated signal according to our
knowledge.

3) Signal Generating: The idea to generate periodic signals
with neural networks is to make the network oscillate at some
resonant frequency. As long as there are at least two neurons
connected with each other, the energy can flow back and forth
between the neurons with a certain frequency. It can be seen
as an analog of LC circuit to gain physical intuition. The
difference in neural networks is that there is no resistance,
so there is no dissipation of energy. Hence, the network
can oscillate forever without damping if one uses infinite
precision. Practically, for finite precision arithmetic, there will
be a very slow degradation of the waveform characteristics.
Fig. 12 shows an example of generating sine wave at a certain
frequency with zero input using vRNN (A) and LSTM (B).
In this example, we only use two neurons in the hidden layer
to make the network oscillate. From the results, we can see
that the output of both of these two networks can give good
results. We also test the performance after 40 000, and the
phase shift is still less than one sample. Since neural RAM
and neural stack also have these interconnected neurons, they
can also do signal generating with this mechanism.

4) Time Reversing: Neural stack and neural RAM are the
networks suitable for time reversing since they have the

external memory bank to save the input samples and output
them in the reverse order. The experiment is similar to the one
in Section IV-B3, and hence, we leave out the details and only
present the results in Table II.

From all the experiments for signal processing operators in
this section, we can verify our taxonomy.

C. Natural Language Processing

For synthetic problems, it was clear cut to design problems
that exemplify the expressive power of the different memory
networks. For real-world problems, this task is more com-
plex because sometimes it is hard to pin point the memory
requirements or the problem may be a blend of classes.
In this case, all the networks may solve the problem to a
certain extent, which can be expected because all the networks
are universal machines, with different constraints created by
the architectures. Hence, we will illustrate how to select the
minimum network resources to accomplish the task with a
relatively better performance in this section.

1) Sentiment Analysis: The first experiment is a sentiment
analysis problem that will infer emotional tone of the text as
negative or positive.

An example from the lmdb movie review data set [29] with
negative emotion is:

“Outlandish premise that rates low on plausibility and
unfortunately also struggles feebly to raise laughs or interest.
Only Hawn’s well-known charm allows it to skate by on very
thin ice. Goldie’s gotta be a contender for an actress who’s
done so much in her career with very little quality material at
her disposal.”

And a positive text is:
“I absolutely loved this movie. I bought it as soon as I could

find a copy of it. This movie had so much emotion, and felt so
real, I could really sympathize with the characters. Every time
I watch it, the ending makes me cry. I can really identify with
Busy Phillip’s character, and how I would feel if the same
thing had happened to me. I think that all high schools should
show this movie, maybe it will keep people from wanting
to do the same thing. I recommend this movie to everybody
and anybody. Especially those who have been affected by any
school shooting. It truly is one of the greatest movies of all
time.”

In our experiments, the number of input neurons, hidden
neurons, and output neurons is 50, 64, and 2, respectively,
for all the four network architectures. After encoding all the
words into vectors, they are fed into the network one by one.
Here, we use a pretrained model: GloVe [29] to create our
word vector. The matrix contains 400 000 word vectors, each
with a dimensionality of 50. The matrix is created in a way
that words having similar definitions or context reside in the
relatively same position in the vector space. The decision about
the paragraph’s tone will be made at the end. The output is
[1, 0] for the positive text and [0, 1] for the negative text.
The data set adopted here is the lmdb movie review data [30],
which has 12 500 positive reviews and 12 500 negative reviews.
Here, we use 11 500 reviews for training and 1000 data for
testing. In our experiments, the nonlinear activation functions

1790 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

TABLE III

ERROR RATE FOR MOVIE REVIEW

for all the gates are sigmoid. The activation functions at the
output layer are sigmoid and others are tanh. In neural RAM,
the word size and memory depth are set as 64. The number of
read and write head is 4 and 1, respectively. The results are
the average of 20 runs with random initializations.

In order to judge the emotional tone of the text at its end,
an external memory whose value would be affected by some
key words is useful. Since the goal is to classify the emotional
tone as either 1 or 0, the specific contents of the text are
not very important here, so there is no need to store all of
them. Hence, a network with an external memory slot should
perform better than the one without. However, the memory
bank that can store multiple contents does not show more
advantages here. We test these networks’ performance on the
lmdb movie review data set [29]. The results are in Table III,
which shows that vRNN performs worst. LSTM, neural stack,
and neural RAM have similar performances. Thus, our analysis
is verified.

2) Question Answering: Next, we investigate the perfor-
mance of these four networks on three question answering
tasks from the bAbI data set [31]. The target is to give an
answer after reading a little story followed by a question. For
example, the story is, “Mary got the milk there. John moved to
the bedroom. Sandra went back to the kitchen. Mary traveled
to the hallway.” And the question is, “Where is the milk?”
The machine is expected to give the answer “hallway.” For
this problem, in order to give the right answer, the machine
should memorize the facts that Mary got the milk and traveled
to the hallway. What is more, since the machine does not know
the question when reading the story, it has to store all the
potential useful facts. Thus, an external memory bank whose,
whichever, content can be visited is useful here. According
to our memory capability analysis, the neural RAM should
perform the best here.

For each task, we use the 10 000 questions to train and
report the error rates on the test set. The experimental settings
for LSTM and neural RAM are the same as in [25], and
the results for these two networks are from [25]. In vRNN
and neural stack, the nonlinear activation functions for all
the gates are sigmoid. The activation functions at the output
layer are sigmoid and others are tanh. The number of input
neurons, hidden neurons, and output neurons is 150, 64, and
150, respectively. The memory width for the neural stack is 64.

From the results in Table IV, we can see that neural RAM
achieves the best performance. One thing to be mentioned here
is that the variance is larger than all others, although the mean
error rate of the neural RAM is the lowest. We believe that
the reason for this is the complexity of the NTM, which leads
to too many local minima. Since the point here is to check the
capabilities of different neural memory networks, we should
understand that architectures suitable for this problem should
always belong to neural RAM class. References [32]–[34]
show the results for some other architectures from this class.

TABLE IV

ERROR RATE FOR THREE TASKS FROM BABI TASKS

VI. CONCLUSION

In this paper, we analyze the memory structure for several
recurrent networks and propose a taxonomy of them. We
use four synthetic tasks and two natural language processing
problems to illustrate the utility of the taxonomy. Although
we showed differences in performance in the experiments,
it is too early to say that we presented all the tools to
select parsimoniously the memory architecture for a given
application. Because the user has to analyze the requirements
of the application, which may not be trivial, more work is
needed to create rules of thumb to help practitioners.

APPENDIX A
NETWORK ARCHITECTURE COMPONENTS

A. LSTM

The three gates are in LSTM are calculated as follows:
gi,t = s

(
wT

hgi
ht−1 + wT

xgi
xt + bgi

)
(24)

g f,t = s
(
wT

hg f
ht−1 + wT

xg f
xt + bg f

)
(25)

go,t = s
(
wT

hgo
ht−1 + wT

xgo
xt + bgo

)
(26)

where whgi , whg f , and whgo are Kh × 1 weights, whgi , whg f ,
and whgo are Ki × 1 weights, and bgi , bgi , and bgi are bias.
These three gates give flexibility to operate on memories.

B. Neural Stack

Neural network interacts with the stack memory by dpush
t ,

dpop
t , dno-op

t , ct , and rt . According to [22], the domain of the
operations is relaxed to any real value in [0, 1]. This extension
adds a continuous amplitude dimension to the operations. For
example, if the push signal dpush = 1, the current vector will
be pushed into the stack as it is, if dpush = 0.8, the current
vector is first multiplied by 0.8 and then pushed into the stack.

dpush
t , dpop

t , dno-op
t , and ct are decided by the hidden layer

outputs and the corresponding weights

d = [
dpush

t , dpop
t , dno-op

t
]T = s

(
wT

hdht + bop
)

where whd is the Kh × 3 weights and bop is the 3 × 1 bias.

ct = g
(
wT

hcht + bc
)

where whc is the Kh × N weights and bop is the N × 1 bias.
Here, we assume that all the elements saved in the stack are
N × 1 vectors.

C. Neural RAM

In the neural RAM, the read weighting wr
t (i) is learned as

wr
t = f

(
wT

haht−1 + br
)

(27)

MA AND PRINCIPE: TAXONOMY FOR NEURAL MEMORY NETWORKS 1791

where wha is the Kh × M weight and ba is M × 1 bias,
wr

t = [wr
t (0),wr (1), . . . , wr (M − 1)]T . The nonlinear activa-

tion function f is usually set as softmax function. The write
weighting is learned as

ww
t = s

(
wT

hbht−1 + wT
xbxt + bw

)
(28)

where whb is Kh × M weight, wxb are Ki × M weight, and
bb is M × 1 bias.

The erase weighting is learned as

et = s
(
wT

heht−1 + wT
xext + be

)
(29)

where et = [et (1), et (2), . . . , et (M)]T , whe is Kh × M
weights, wxe is Ki × M weight, and be are M × 1 bias.
In practice, instead of learning the read and write head from
scratch, some methods were proposed to simplify the learning
process. For example, in NTM [18], et (i) is coupled with
write weight ww

t (i), et (i) = 1 − ww
t (i), and reading weight

wr
t and writing weight ww

t are obtained by content-addressing
and location-addressing mechanisms. The content-addressing
mechanism gives the weights wr

t (i) [or ww
t (i)] by checking

the similarity of the key d with all the contents in the memory,
and the normalized version is

wr
t (i) = exp(αK [d, mt (i)])∑

j (exp(αK [d, mt (j)]))
where α is the parameter to control the precision of the focus
and K is a similarity measure. Then, the weights will be
further adapted by the location-addressing mechanism. For
example, the weights obtained by content addressing can first
blend with the previous weight and then shifted for several
steps

wr
t (i) = gtw

r
t−1(i) + (1 − gt)w

r
t (i) (30)

wr
t (i) = wr

t ([i − n]M) (31)

where gt is the gate to balance the previous weight and
current weight, n is the shifting steps, and [i − n]M means
the circular shift for M entities. Since the shifting operation
is not differentiable, the method in [18] should be utilized as
an approximation.

Another example is [25], which improves the performance
even more. To be specific, for reading, a matrix to remember
the order of memory locations that they are written to can be
introduced. With this matrix, the read weight is a combination
of the content lookup and the iterations through the memory
location in the order that they are written to. For writing,
a usage vector is introduced, which guides the network to write
more likely to the unused memory. With this modification, the
neural RAM gets flexibility similar to the working memory of
human cognition, which makes it more suitable to intelligent
prediction. With these modifications, the training time for the
neural RAM is also reduced.

APPENDIX B
THEOREM PROOFS

A. Proof of Theorem 1

Neural RAM is more powerful than neural stack because
it has access to all the contents in the memory bank. If we

restrict the read and write vector, neural RAM is degraded to
neural stack. To be specific, for the read head wr

t , all the read
weights except the topmost are set to zeros

wr
t (i) =

{
0, if i �= 0

t
(
w

′T
haht−1 + ba

)
, if i = 0

(32)

where w′
ha is Kh ×1 vector and ba is the scalar. Equation (32)

is a special case of (27)

ct (0) = t
(
w

′T
hcht−1 + bc

) + γ mt−1(1) (33)

and all others are calculated as

ct (i) = mt−1(i − 1) + γ mt−1(i + 1), if i �= 0. (34)

In the writing process, (33) and (34) can be seen as a
special case of (20) because ht−1 in (20) is a function of mt−1.
Substituting (33) and (34) into the memory update equation
of neural RAM (21), we get

mt (i)

= ww
t (i)ct (i) + et (i)mt−1(i)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ww
t (i)t (w

′T
hcht−1 + bc)+

γww
t (i)mt−1(1) + et (i)mt−1(i), if i = 0

ww
t (i)mt−1(i − 1)+

γww
t (i)mt−1(i + 1)ct (i) + et (i)mt−1(i), otherwise

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ww
t (i)t (w

′T
hcht−1 + bc)+

γww
t (i)mt−1(1) + et (i)mt−1(i), if i = 0

ww
t (i)mt−1(i − 1)+

γww
t (i)mt−1(i + 1)ct (i) + et (i)mt−1(i), otherwise.

(35)

Finally since (4) and (4) can be seen as a special case of (28)
and (29), the neural stack can be treated as a special case
of neural RAM. Comparing the memory writing operation
of neural stack (15) and neural RAM (35), we can see
that ww

t (0), γww
t (0), and et (0) work as the push, pop, and

no-operate operations, respectively. Comparing the memory
reading operation of neural stack and neural RAM, we can
see that wr

t (0) in neural RAM (32) works as the output gate
in neural stack (17).

B. Proof of Theorem 2

The dynamic of LSTM is

ht = f
(
wT

xhxt + wT
rh go,trt + bh

)
(36)

and the dynamic of neural stack is

ht = g
(
wT

xhxt + wT
rhrt + bh

)
. (37)

According to (36) and (37), the dynamics of the neural stack
have a similar form as LSTM except for the reading vector,
i.e., the reading vector is rt = gomt (0). If we set the pop
signal as zero, dpop

t = 0, and no operation on the stack contents
except for the topmost elements is available, then

mt (0) = dpush
t c + dno-op

t mt−1(0)

mt (i) = 0, if i �= 0.

1792 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Fig. 13. Multiplication neural network.

Since dpush
t and dno-op

t are calculated in the same way that the
input gate gi,t and forget gate g f,t are calculated in LSTM as
shown in (24) and (25), the read vector would be

rt = gomt (0)

= go
(
dpush

t c + dno-op
t mt−1(0)

)
.

In this manner, this is exactly how the LSTM organizes its
memory

rt = go(gi,t c + g f,tmt−1(0))

dpush
t can be seen as the input gate and dno-op

t can be seen as
the forget gate. Hence, it is proven that LSTM can be seen as
a special case of neural stack.

C. Proof of Theorem 3

Compared to vRNN, LSTM introduces an external memory
and the gate operation mechanism. Thus, if we set the output
gate go = 0, input gate gi = 1, and the forget gate g f = 0
instead of learning from the sequences, the dynamics of LSTM
is degraded to vRNN as follows:

ht = t
(
wT

xhxt + wT
rh gort + bh

)
(38)

= t
[
wT

xhxt + wT
rhrr + bh

]
(39)

= t
[
wT

xhxt + wT
rhmt + bh

]
= t

[
wT

xhxt + wT
rh(gi ct + g f mt−1) + bh

]
= t

(
wT

xhxt + wT
rhct + bh

)
(40)

= t
[
wT

xhxt + wT
rht1

(
wT

hcht−1 + bc
) + bh

]
(41)

= t
(
wT

xhxt + wT
rhht−1 + bh

)
. (42)

Here, (39) is due to go = 0, (40) is due to gi = 1 and
g f = 0, and (42) is because the weight whc and bias bc are
set as constants and the activation function t (x) is set as linear
activation function

whc = I

bc = 0

t1(x) = x .

Since (38) is the dynamic of LSTM and (42) is the dynamic
of vRNN, the argument that vRNN is a special case of LSTM
is proven.

APPENDIX C
ADDITION AND MULTIPLICATION

By addition of signals, we mean if the two sources of
the input of the network are x1 and x2, the expected output
is y = c1x1 + c2x2, where c1 and c2 are coefficients and
n is the time index. Since there is an addition operator in
each neuron in all the memory networks, the addition of
signals can be easily realized. However, there is no explicit
multiplication operator in neural networks, the multiplication
(y = x1x2) should be implemented through the nonlinear
activation function and a weighted summation in the following
layer. To be specific, in the first step, the multiplication term
is generated by the nonlinear activation function. For example,
the output of neuron 1 in the first hidden layer is

y1 = f (c1x1 + c2x2 + b) (43)

= f (x0) + f ′(x0)(c1x1 + c2x2 − x0)

+ f ′′(x0)(c1x1 + c2x2 − x0)
2︸ ︷︷ ︸

x1x2

+ f ′′′(x0)(c1x1 + c2x2 − x0)
3︸ ︷︷ ︸

x1x2

+ · · · (44)

= c0′
1 + c1′

1 x1 + c2′
1 x2 + c3′

1 x1x2 + c4′
1 x2

1 x2 + · · · (45)

c0′
1 , c1′

1 , . . . , are the coefficient after combining of like terms.
The product appears in all the higher order (more than first)
derivative terms. Next, in order to filter out all other terms
except for c3′

1 x1x2, a weighted combination of the outputs of
different neurons is implemented

w1c0′
1 + w2c0′

2 + · · · + wnc0′
n = 0

w1c1′
1 + w2c1′

2 + · · · + wnc1′
n = 0
... (46)

w1c3′
1 + w2c3′

2 + · · · + wnc3′
n = 1

w1c4′
1 + w2c4′

2 + · · · + wnc4′
n = 0
...

where n is the number of hidden neurons in the first hidden
layer. Equation (46) is underdetermined (it includes infinite
number of equations but n unknowns). Since we cannot reduce
the number of equations, we have to increase the number of
unknowns which means increasing the number of neurons,
which leads to better solutions. Fig. 13 shows a multiplication
example. The input to the network is x1 = sint and x2 = cost.
The desired network output is y = sin2t, which is the product
of the two input signals. We are trying to test the capabilities
of the feedforward network only with one nonlinear active
function in the hidden layer, with two nonlinear activation
functions and a weighted sum of them, and with 20 nonlinear
activation functions and a weighted sum of them. Fig. 13
shows the results.

Network A has the nonlinear activate function, and hence,
it can generate the higher order derivative terms. Since it only
has one unit in the next layer, the product term x1x2 cannot be
filtered through it. Hence, it cannot successfully generate sin2t.
Compared with A, network B has two hidden neurons, which

MA AND PRINCIPE: TAXONOMY FOR NEURAL MEMORY NETWORKS 1793

means that there are two unknowns in (46). Since the coordi-
nates of the higher order derivative terms are relatively small,
the output of network B can follow the trend of sin2t, even
though outputs around peaks are not well learned. Network C
tries to improve the filter performance by increasing the num-
ber of hidden neurons to 20. Since there are more unknowns
in (46), the solution can be approximated better as shown in
the output. From the earlier analysis along with the results
in Fig. 13, we can draw the conclusion that multiplication
can be realized by the nonlinear activation function and the
weighted combination of the hidden layer neurons. The more
hidden neurons involved, the better the performance we get.

REFERENCES

[1] J. L. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2,
pp. 179–211, Apr./Jun. 1990.

[2] M. I. Jordan, “Attractor dynamics and parallelism in a connectionist
sequential machine,” in Proc. 8th Annu. Conf. Cogn. Sci. Soc. Hillsdale,
NJ, USA: Erlbaum, 1986, pp. 531–546.

[3] K. Doya, “Universality of fully connected recurrent neural networks,”
Dept. Biol., Univ. California San Diego, San Diego, CA, USA, Tech.
Rep., 1993.

[4] C. W. Omlin and C. L. Giles, “Constructing deterministic finite-
state automata in recurrent neural networks,” J. ACM, vol. 43, no. 6,
pp. 937–972, Nov. 1996.

[5] F. A. Gers and E. Schmidhuber, “ LSTM recurrent networks learn simple
context-free and context-sensitive languages,” IEEE Trans. Neural Netw.,
vol. 12, no. 6, pp. 1333–1340, Nov. 2001.

[6] P. Rodriguez, “Simple recurrent networks learn context-free and context-
sensitive languages by counting,” Neural Comput., vol. 13, no. 9,
pp. 2093–2118, Sep. 2001.

[7] J. Schmidhuber, F. Gers, and D. Eck, “Learning nonregular languages:
A comparison of simple recurrent networks and LSTM,” Neural Com-
put., vol. 14, no. 9, pp. 2039–2041, 2002.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[9] J. Collins, J. Sohl-Dickstein, and D. Sussillo, “Capacity and trainability
in recurrent neural networks,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2017.

[10] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding
recurrent networks,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016.

[11] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: A search space odyssey,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[12] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Proc. 32nd Int. Conf. Mach.
Learn. (ICML), Jun. 2015, pp. 2342–2350.

[13] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” Dec. 2014,
arXiv:1412.3555. [Online]. Available: https://arxiv.org/abs/1412.3555

[14] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” Jun. 2014, arXiv:1406.1078.
[Online]. Available: https://arxiv.org/abs/1406.1078

[15] D. Yogatama et al., “Memory architectures in recurrent neural net-
work language models,” in Proc. Int. Conf. Learn. Representa-
tions, (ICLR), 2018, pp. 1–10. [Online]. Available: https://openreview.
net/forum?id=SkFqf0lAZ

[16] B. de Vries and J. C. Principe, “The gamma model—A new
neural model for temporal processing,” Neural Netw., vol. 5, no. 4,
pp. 565–576, Jul./Aug. 1992.

[17] A. Joulin and T. Mikolov, “Inferring algorithmic patterns with stack-
augmented recurrent nets,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), 2015, pp. 190–198.

[18] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
Oct. 2014, arXiv:1410.5401. [Online]. Available: https://arxiv
.org/abs/1410.5401

[19] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way to initialize recur-
rent networks of rectified linear units,” Apr. 2015, arXiv:1504.00941.
[Online]. Available: https://arxiv.org/abs/1504.00941

[20] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
May 2015, arXiv:1505.00387. [Online]. Available: https://arxiv.org/abs/
1505.00387

[21] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,” in
Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw., Jul. 2000, vol. 3,
pp. 189–194.

[22] G.-Z. Sun, “Learning context-free grammar with enhanced neural net-
work pushdown automaton,” in Proc. IEE Colloq. Grammatical Infer-
ence, Theory, Appl. Alternatives, Apr. 1993, pp. P6-1–P6-13.

[23] G. Z. Sun, C. L. Giles, H. H. Chen, and Y. C. Lee, “The neural
network pushdown automaton: Model, stack and learning simulations,”
Nov. 2017, arXiv:1711.05738. [Online]. Available: https://arxiv.org/abs/
1711.05738

[24] E. Grefenstette, K. M. Hermann, M. Suleyman, and P. Blunsom,
“Learning to transduce with unbounded memory,” in Proc. Adv. Neural
Inf. Processing Syst. (NIPS), 2015, pp. 1828–1836.

[25] A. Graves et al., “Hybrid computing using a neural network with
dynamic external memory,” Nature, vol. 538, no. 7626, pp. 471–476,
Oct. 2016.

[26] A. Graves, “Generating sequences with recurrent neural networks,”
Aug. 2013, arXiv:1308.0850. [Online]. Available: https://arxiv.org/abs/
1308.0850

[27] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” Oct. 2014,
arXiv:1410.3916. [Online]. Available: https://arxiv.org/abs/1410.3916

[28] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory
networks,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2015,
pp. 2440–2448.

[29] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proc. Empirical Methods Natural Lang.
Process. (EMNLP), Oct. 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[30] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and
C. Potts, “Learning word vectors for sentiment analysis,” in Proc.
49th Annu. Meeting Assoc. Comput. Linguistics, Hum. Lang. Technol.,
Portland, Oregon, USA, Jun. 2011, pp. 142–150. [Online]. Available:
http://www.aclweb.org/anthology/P11-1015

[31] J. Weston et al., “Towards ai-complete question answering: A set of pre-
requisite toy tasks,” Feb. 2015, arXiv:1502.05698. [Online]. Available:
https://arxiv.org/abs/1502.05698

[32] A. Kumar et al., “Ask me anything: Dynamic memory networks for
natural language processing,” in Proc. Int. Conf. Mach. Learn. (ICML),
Jun. 2016, pp. 1378–1387.

[33] M. Hu, Y. Peng, Z. Huang, X. Qiu, F. Wei, and M. Zhou, “Reinforced
mnemonic reader for machine reading comprehension,” May 2017,
arXiv:1705.02798. [Online]. Available: https://arxiv.org/abs/1705.02798

[34] B. Pan, H. Li, Z. Zhao, B. Cao, D. Cai, and X. He, “Memen:
Multi-layer embedding with memory networks for machine
comprehension,” Jul. 2017, arXiv:1707.09098. [Online]. Available:
https://arxiv.org/abs/1707.09098

Ying Ma received the B.E. degree in electronic
engineering from the Changchun Institute of Tech-
nology, Changchun, China, in 2011. She is currently
pursuing the Ph.D. degree with the Department of
Electronic and Computer Engineering, University of
Florida, Gainesville, FL, USA, under the supervision
of Prof. J. Principe.

From July 2015 to July 2016, she visited the
Department of Electrical and Computer Engineer-
ing, University of Southampton, Southampton, U.K.
as a Visiting Student under the supervision of

Prof. L. Hanzo and Prof. S. Chen. She was a Summer Intern at Apple Siri
understanding in 2019. Her current research interests include machine learning
and deep learning, especially sequence learning with application in NLP and
video games.

Jose C. Principe (M’83–SM’90–LF’00) received
the Ph.D. degree in electrical and computer engi-
neering from the University of Florida, Gainesville,
FL, USA, in 1979.

He is currently a Distinguished Professor of elec-
trical and computer engineering with the University
of Florida, where he is also the Don D. and Ruth
S. Eckis Chair with the Department of Electrical
and Computer Engineering and the Department of
Biomedical Engineering. He is also the Founding
Director of the Computational NeuroEngineering

Laboratory, University of Florida. His current research interests include
advanced signal processing and machine learning, brain machine interfaces,
and the modeling and applications of cognitive systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

