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Unsupervised Domain Adaptation with Adversarial
Residual Transform Networks
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Abstract—Domain adaptation is widely used in learning prob-
lems lacking labels. Recent studies show that deep adversarial
domain adaptation models can make markable improvements in
performance, which include symmetric and asymmetric archi-
tectures. However, the former has poor generalization ability
whereas the latter is very hard to train. In this paper, we
propose a novel adversarial domain adaptation method named
Adversarial Residual Transform Networks (ARTNs) to improve
the generalization ability, which directly transforms the source
features into the space of target features. In this model, residual
connections are used to share features and adversarial loss is
reconstructed, thus making the model more generalized and
easier to train. Moreover, a special regularization term is added
to the loss function to alleviate a vanishing gradient problem,
which enables its training process stable. A series of experiments
based on Amazon review dataset, digits datasets and Office-31
image datasets are conducted to show that the proposed ARTN
can be comparable with the methods of the state-of-the-art.

Index Terms—Adversarial neural networks, unsupervised do-
main adaptation, residual connections, transfer learning.

I. INTRODUCTION

EEP neural networks trained on large-scale labeled
datasets could achieve excellent performance across va-
rieties of tasks, such as sentiment analysis [1], [2]], image
classification [3]]-[5]] and semantic segmentation [6]. Yet they
usually fail to generalize well on novel tasks because the
transferability of features decreases as the distance between the
base and target tasks increases [7]]. A convincing explanation
is that there exists a domain shift between training data and
testing one [8]], [9]. To alleviate the negative effect caused
by a domain shift, domain adaptation (DA) is proposed to
utilize labeled data from a source domain to generalize models
generalize well on a target domain [[1O], [[11]].
Domain adaptation, which is a field belonging to transfer
learning, has long been utilized to make it possible to exploit

Manuscript received July 16, 2018; revised December 11, 2018, and May
19, 2019; accepted August 2, 2019. This work was supported by the National
Natural Science Foundation of China under Grant 61772369, 61773166,
61771144 and 61871004, Joint Funds of the National Science Foundation of
China (U18092006), Shanghai Municipal Science and Technology Committee
of Shanghai Outstanding Academic Leaders Plan (19XD1434000), Projects
of International Cooperation of Shanghai Municipal Science and Technology
Committee (19490712800). This paper is partially supported by the National
Key R&D Program 2018 YFB1004701, by the Fundamental Research Funds
for the Central Universities. (Corresponding author: Lianghua He).

G. Cai, Y. Wang and L. He are with the Department of Com-
puter Science and Technology, Tongji University, Shanghai 201804,
China (email: caiguanyu@tongji.edu.cn; wangyuqin@tongji.edu.cn; he-
lianghua@tongji.edu.cn).

M. Zhou is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102 USA, and also
with the Institute of Systems Engineering, Macau University of Science and
Technology, Macau 999078, China (e-mail: zhou@njit.edu).

the knowledge learned in one specific domain to effectively
improve the performance in a related but different domain.
Earlier methods of DA aim to learn domain-invariant feature
representations from data by jointly minimizing a distance
metric that actually measures the adaptability between a pair
of source and target domains, such as Transfer Component
Analysis [[12], Geodesic Flow Kernel [13]], and Transfer Kernel
Learning [14]. In order to learn transferable features well,
researchers apply deep neural networks to DA models [[15]—
[17]. A feature extractor neural network is trained by reducing
“distance” between distributions of two different domains,
on the assumption that the classifier trained by source data
also works well in a target domain. In this kind of meth-
ods, Maximum Mean Discrepancy (MMD) loss is widely
used for mapping different distributions [[18]]. For example,
Deep Adaptation Networks (DAN) [19]], Joint Adaptation
Networks [20] and Residual Transfer Networks [21] apply
MMD loss to several layers whereas Large Scale Detection
through Adaptation [22] adds a domain adaptation layer that
is updated based on MMD loss.

Recently, the idea of Generative Adversarial Networks
(GANs) [23], [24] has been widely applied to DA. The
methods of using GANSs [25]], [26] to transform source images
to target ones are proposed and their classifiers are trained
with the generated target images. However, when distributions
of source and target domains are totally different, adversarial
training has poor performance because of a gradient vanishing
phenomenon. Alternative methods train GANs on features of
source and target domains. Their generator is acted as a feature
extractor, and discriminator as a domain classifier. There are
symmetric and asymmetirc adaptation architectures in adver-
sarial domain adaptation, which can effectively adapt source
and target distributions. The former’s features in the source
and target domains are generated from the same network [27]],
[28]], while the latter’s from different networks [29]]. It is well-
recognized that the former is poor at generalization whereas
the latter is difficult to train.

To solve the above problems, in this work, we propose a
novel feature-shared model for adversarial domain adaptation,
which achieves the flexibility of asymmetric architecture and
can be easily trained. In the proposed framework as shown in
Fig. |1l a weight-shared feature extractor distills features from
different domains, and a feature-shared transform network
maps features from the source domain to the space of target
features. Adversarial learning is completed with the losses
from the label and domain classifiers. Note that we design
residual connections between the extractor and the network to
ease the learning of distribution mapping by sharing features.
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Fig. 1. The architecture of the proposed model. First feature extractor GG distills the feature representations of source and target samples. Then, transform

network 7" projects source features f*

G(x®) to the space of target features f*

G(x!). Finally, the label classifier C' is trained with the fake target

features T'(G(x*)) and predicts the labels of target features G(x*) during a test period. In addition, domain classifier D is trained to distinguish fake target
features 7'(G(x®)) and real target features G(x!), which can minimize the discrepancy between source and target domains through adversarial optimization.

The regularization term r(G(x*®), T(G(x®))) measures the distance between f*

In addition, in order to avoid getting stuck into local minima,
we construct a regularization term to ensure that the model at
least knows a vague, if not exact, direction to match different
distributions and overcome a gradient vanishing problem. The
main contributions of this work are as follows:

1) A novel adversarial model that learns a non-linear map-
ping from a source domain to a target one is proposed.
By using the features generated from the source domain,
this model owns high generalization ability in the target
domain.

During training, concise regularization that ensures the
model to select the shortest path from all the transfer
paths is constructed, thereby helping stabilize an adver-
sarial optimization process.

This work extensively evaluates the proposed method
on several standard benchmarks. The results demonstrate
that our model outperforms the state-of-the-art methods
in accuracy. Notably, our model can maintain excellent
generalization and anti-noise abilities.

2)

3)

Section [[I] reviews some related work on unsupervised
domain adaptation. In Section the proposed method is
described. Several experiments are reported in Section
Section [V] concludes this paper.

G(x?®) and T(G(x?)).

II. RELATED WORK

DA has been extensively studied in recent years. Several
studies give theoretical analyses of error bound when training
and testing data are drawn from different distributions [8]],
[9]. This means that it is feasible to utilize the knowledge
across domains. Moreover, the most important problem in DA
is how to reduce the discrepancy between the source and
target domains. Therefore, many methods modify a classi-
fier to match different distributions [30]—[33]]. However, the
performances of these shallow methods are limited. Recently,
because deep neural networks can learn feature representations
including information identification, and these features are also
transferable [7]], they are widely used in DA methods. Most of
them focus on how to measure the distance between different
domains and how to design a network structure, and achieve
remarkable performance.

A. Traditional Domain Adaptation

A general idea is to reweight instances in the source
domain, where instances similar to the target distribution are
considered with more importance. This kind of method has
proven effective in adaptation for the differences between the
source and target distributions. In detail, the calculated weight
is taken as the loss coffiecient of each source instance. Some



methods reweight instances with direct importance estima-
tion algorithms, such as [34]-[37] and [32]. Other methods
reweight instances with noisy labels to reduce the marginal
and conditional shifts [38]], [39].

Another DA idea is to explicitly make source and target
distributions similar. Many statistic characteristics are chosen
to be the metrics to align subspaces of different distributions.
MMD, which measures expectation difference in reproducing
kernel Hilbert space (RKHS) of source and target distribu-
tions, is widely used in many methods [12], [[14], [30]], [33]].
In order to align more complex statistic characteristics, the
studies [40]-[42] calculate statistic moments of different order
to match different distributions, which are easy to implement
with low computational complexity. Instead of exploiting
statistic characteristics, some methods [[13]], [43]]-[45] utilize
manifold learning methods to transform a source distribution
to a target one. In these methods, feature spaces are refined into
low-dimensional spaces and feature distortion is thus avoided.

B. Deep Domain Adaptation

Recent, development of deep neural networks promotes
deep domain adaptation. In [46], the experimental results
demonstrate that features of deep neural networks instead of
hand-crafted ones alleviate the negative influences of a domain
shift even without any adaptations. However, a main limitation
of using pre-trained deep features is that they severaly restrict
the range of application. Later, a number of methods combine
statistic characteristics with deep neural networks to a unified
framework, which greatly improve performance on different
tasks. In [[19]-[22]], MMD is embedded in deep convolutional
neural networks. In [42] and [47], high order moments are
utilized to align feature spaces of source and target domains.

Instead of designing fancy regularizers, some methods de-
sign special architectures to minimize the discrepancy between
source and target domains. In [48], a Siamese architecture
is introduced to adapt pairs of source and target instances.
In [49], [50], auto-encoders are suggested to learn the trans-
formation from a source domain to a target one.

Some methods choose adversarial loss to learn manifest in-
variant factors underlying different populations with a domain
discriminator subnetwork. In these models, deep features are
learned to confuse a domain discriminator such that they could
capture the most discriminative information about classifica-
tion instead of characteristics of domains. Domain-Adversarial
Neural Networks (DANN) [28] consist of a symmetric feature
generator, label discriminator, and domain discriminator. The
whole model can be directly optimized via a gradient reversal
algorithm. Deep Reconstruction-Classification Networks [51]
also take adversarial learning and add a reconstruction step for
target images. Adversarial Discriminative Domain Adaptation
(ADDA) [29] uses an asymmetric feature generator that is
trained alternatively with a domain classifier.

The above-mentioned domain adversarial networks fall into
two categories. Some methods, such as domain confusion
networks [27] and DAN [28]], share weights between source
and target feature extractors. They use the same network
to learn representations from different inputs, which learns

a symmetric transformation to utilize the transferability of
features generated from deep neural networks and reduces
parameters in the model. Other methods construct two net-
works for source and target domains, respectively [25]], [26],
[29]]. They can learn an asymmetric transformation, allowing
networks to learn parameters for each domain individually. In
theory, asymmetric transformation can lead to more effective
adaptation [52].

Adversarial domain adaptation has also been explored in
generative adversarial networks (GANs). Coupled Generative
Adversarial Networks (CoGANSs) [25] apply GANs to DA.
Two GANs are trained to generate source and target im-
ages, respectively. Pixel-Level Domain Adaptation [26] uses
a conditional GAN model to synthesize target images to
facilitate training a label classifier. Methods based on GANs
can improve the performance of digits datasets, but their
downside is a difficult training process as caused by gradient
vanishing when facing more natural image datasets according
to [53]. In this work, we focus on learning the mapping of
different feature spaces instead of synthesizing target images,
and propose a discriminative model aiming to adapt distinct
domains.

III. ADVERSARIAL RESIDUAL TRANSFORM NETWORKS

In this section, we describe the details of our proposed
model. We first define unsupervised domain adaptation and
preliminary domain adversarial networks, and then demon-
strate the key innovations of our model, which can well handle
the problems encountered by the previous models. At last, we
give a complete algorithm of matching the distributions of
target and source domains using our model.

A. Definitions

When it comes to a machine learning task, a domain
D corresponds to four parts: feature space X, label space
Y, marginal probability distribution P(X) and conditional
probability distribution P(X]|Y), where X € X, Y € ).
Subscript s and t are used to denote the source and target
distributions. In a traditional machine learning task, training
data are drawn from source domain D, and testing data
are drawn from target domain D;, where their marginal and
conditional probability distributions are the same (Ps(X?) =
P,(XY), Po(X?5)Y?) = P(X*Y?")). Thus, models trained in
the source domain are feasible to the target one. However, in
unsupervised DA, these assumptions are not valid, which leads
us to a more difficult problem as follows.

Given a source domain as Dy {x},y{};"";, where ng is the
number of source domain samples, x; is the ith instance in D,
and y; is the label of x3. Similarly, a target domain is denoted
as Dy{x!},, where n; is the number of target domain
samples, x! is the ith instance in D;. The source and target
domains are drawn from distribution Ps(X?®) and P;(X?),
respectively, which are different. In most cases, conditional
probability distributions are also different (Ps(X®|Y®) #
P,(X'Y")) The goal is to learn a feature extractor G; and
a classifier C; for D;. G; distills feature representations
f! = G¢(x!) from target samples, and C; correctly predicts



the labels of target samples receiving f' = G4(x?). Because of
lacking annotations in D;, DA learns G and C; with samples
from Dy, and tries to adapt them to be useful in D;.

B. Adversarial Domain Adaptation

To solve an unsupervised DA problem, a number of meth-
ods have been proposed. Among the most effective ones is
adversarial domain adaptation. This work aims to modify this
kind of framework to improve its generalization and anti-noise
ability. In DA problems, it is difficult to train G; and C,
for a target domain without labels. However, because there
exists a correlation between the source and target domains,
it is common to utilize G5 and C; to predict labels of target
samples. In order to make G5 and C valid in a target domain,
adversarial DA models are usually used to train a feature
extractor G, a label classifier C' and a domain classifier D
for both domains. In details, these models set G = G; = G,
and C = C; = (g, which means the feature extractor and
label classifier are used for both source and target domains.
Specifically, D also receives feature representations from G
and is trained to minimize the discrepancy between source and
target feature distributions: G(x*) and G(x'). An adversarial
training procedure is a minimax two-player game [23]. One
player D learns to distinguish whether features are from
a source or target domain, whereas the other G tries to
generate domain-invariant features. They have contradictory
optimization objectives, and their objectives are optimized
alternately in this minmax game. To train the whole network
in an end-to-end way, DANN [28]] adopts the following loss
function:

L0003, = S Lo(C(GOx))m)-

s x;€Dg
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where n = ng+ny, and L. and L4 denote losses of C and D,
respectively. A is a trade-off parameter between L. and L.
04, 84 and 6. are the parameters of D, G and C, respectively.
y; and d; denote the class and domain labels of images. After
convergence, optimal parameters 64, 0. and ég can deliver a
saddle point given as:

04 =argmin L4(0q,6,) 2)
0a

0. = arg min £.(6y, ;) 3)
0c

ég =argmin £(0q, 6, 0.) (@))
g

In such framework, a DA model can be trained in an end-to-
end way. The intuitive idea behind this model is that with the
minmax two-player game going, D and G strengthen each
other. When the training procedure converges, the features
of different domains generated from G are very hard to
distinguish by D. In this condition, features are domain-
invariant and the feature distributions of different domains are
adapted.

Theoretically, adversarial domain adaptation is based on H-
divergence in [8], [9]. However, it is almost impossible to
apply H-divergence in real-world algorithms. Because it is
defined in a binary classification problem and requires a global
search in all hypothesis. In [9]], an approximate algorithm is
given. Given a generalization error € of discriminating between
source and target instances, H-divergence is computed as:

da=2(1—2¢) (5)

The value of d_4 is called the Proxy A-distance (PAD). In
adversarial domain adaptation, the domain classifier composed
of neural networks is trained to directly decrease PAD. Coop-
erating with the domain classifier, the feature extractor learns
domain-invariant features from different domains, implying
that discrepancy between source and target distributions is de-
creased. Several models based on this kind of architecture have
achieved the top performances in different visual tasks [28],
[S1].

C. Residual Connections

The proposed method does not rely on only feature extractor
G to map different distributions. Instead, we construct an
adversarial residual transform network (ARTN) 7' to project
source features f° = G(x®) to the space of target features. The
network is trained to generate fake target features 7'(G(x?)),
which are in the same distribution as real target features
f! = G(x'). Then, we use the fake target features T'(G(x*))
and corresponding labels y® to train a classifier C' for the
target domain. After training, the labels of target samples are
predicted by C.

In previous unsupervised DA methods, the weights of fea-
ture extractor GG for source and target domains are shared [19]-
[22]. However, regarding matching different distributions, the
generalization ability of asymmetric transformation is better
than that of symmetric one [29]. If the networks are trained
to capture domain-invariant information from source features
and utilize them to classify target samples, there would be
a boost to their generalization ability. However, the asym-
metric architecture proposed in [29] is hard to obtain such
enhancement and the feature extractor for a target domain is
easy to collapse, because there exists no relationship between
the feature extractors of source and target domains. In order
to make our model learn domain-invariant information and
avoid diverging during its training, we propose a transform
network that builds connections between source and target
domain features.

The detailed architecture of residual connections between
a feature extractor and a transform network is shown in
Fig.[2] The weight-tied feature extractor G is trained to capture
representations from source samples x* and target samples x°.
The transform network stacks a few layers by using the same
architecture with a feature extractor. Unlike the symmetric
transformation, the proposed network shares features with the
feature extractor instead of parameters. Our network is also
different from asymmetric transformation where two networks
have no relationship. We add residual connections between the
feature extractor and the transform network to share features.
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Fig. 2. Residual connections between the feature extractor and transform
network. When the inputs are source samples, the feature extractor and
transform network are both activated (the solid line represents that this
network is activated, whereas the dashed line is opposite) and the features
distilled from a feature extractor would be conveyed to a transform network.
When the inputs are target samples, only the feature extractor is activated. The
features are not shared between the feature extractor and transform network.

Therefore, with a carefully designed architecture, our model
is able to alleviate the drawbacks of both symmetric and
asymmetric models, which is never seen in the literature to
our best knowledge.

Theoretically, by denoting a desired underlying mapping
between source and target distributions as M and letting
G(x!) = M(G(x*)), we intend to train transform network
T to fit a mapping of T(G(x%)) = M(G(x®)) — G(x®). In
details, for an N layer transform network, the ¢th layer of a
transform network where @ < N is defined as:

Ti(Gi(x%)) = Ti(Ti-1(Gi-1(x%))) + Gi(x%) (6)

where T;(-) and G;(-) denote the ith layer of the transform
network and feature extractor individually. The inputs of T
are original data, and the output is T (G (x*)).

Please note that residual connections in different methods
tend to realize different purposes. Firstly, the effect of residual
connections in our paper is different from others. For example,
residual connections in ResNet [3] are used to shorten their
training process by making gradients flow well. However,
residual connections in U-Net [54] are used to enable pre-

cise localization for segmentation. Although these papers all
utilize skip connections, they still make novel contributions. In
our paper, residual connections are used to capture semantic
information from a source domain. This modification has
not been seen in other domain adaptation methods and the
effect is also different from papers in other research areas.
Secondly, the detailed modification is different from skip
connections in other papers. Skip connections in ResNet and
U-Net are constructed in a single network across different
layers whereas ours are constructed in the same layer across
different networks.

D. Vanishing Gradient Problem in Adversarial Training

The detailed theoretical derivation and training process of
adversarial DA has been described in [28]]. Yet there exists
a vanishing gradient problem in adversarial training. In this
section, its theoretical analysis is presented.

Once we adopt a transform network in adversarial DA and
utilize cross entropy loss function for D, the adversarial nets-
based DA framework of D and G needs the following minmax
optimization:

r(r;n%l max L(D,G,T) =Ex~p,[logD(T(G(x)))]+
Ex~p,[log(1 — D(G(x)))]  (7)

where maximizing the loss with respect to D yields a tighter
lower bound on the true domain distribution divergence,
whereas minimizing the loss with respect to G and 7' min-
imizes the distribution divergence in the feature space.

For any given GG and T, the optimal D* is obtained at:
D*(z) = —— 2" —— (8)

where z is the sample in the feature space. For z ~ Ps, z =
T(G(x)), while for z ~ P;, z = G(x). Similar to [23]], we
give the proof as follows.

Proof. For any given GG and T, the training criterion for D
is to maximize £(D,G,T):

(
P,(z)log(1 — D(z))dz )

We take the partial differential of £(D,G,T') with respect to

D, and achieve its maximum in [0, 1] at D*(z) = %'



Given D*, the minmax optimization can now be reformu-
lated as:

Esnp, [logD" (2)]+

E,~p,[log(1 — D*(z))]

min £(D*,G,T) =
G,T

= Enlon o il
Pt(Z)

Eznp, [ZOQW]

=Eqnp, [ZOQm]+

Eyp llog =202 ) olog0

P,(z) + P(z)

=2 JSD(Ps||P;) — 2log2 (10)

where JSD(-) is the Jensen-Shannon divergence. Since the
Jensne-Shannon divergence between two distributions is al-
ways non-negative, and zero if they are equal, £* = —2]og2
is the global minimum of £(D, G, T) where the only solution
is Ps = P;. In this case, the distributions of source and target
domains are the same and the goal of DA is well achieved.

However, in practice, adversarial DA remains remarkably
difficult to train. It is sensitive to the initializatoin of pa-
rameters and its training process tend to be unstable, i.e.,
L(D,G,T) does not converge. These problems are caused by
a vanishing gradient phenomenon. In theory, Jensen-Shannon
divergence measures the difference between source and target
distritbutions are different. By minimizing it, source and
target distributions in the feature space tend to be the same.
However, if we utilize a gradient descent algorithm to optimize
L(D,G,T) which is the most common algorithm for nerual
networks, Jensen-Shannon divergence is difficult to converge
because its gradient is easily stuck into zero, to be proved
next.

According to [53]], Ps and P; can be regarded as two distri-
butions that have support contained in two closed manifolds
M and N that do not have full dimension, respectively. P;
and P, are continuous in their respective manifolds, which
means that if a set A with measure 0 in M, then P;(A) = 0.
In this case, JSD(Ps||P;) = log2 for almost any P, and P;.
We need to use Lemma 3.1 [53]] to prove it:

Lemma 3.1: Let M and P be two regular submanifolds
that do not perfectly align and do not have full dimension.
Let L= MnNP.If M and P do not have boundary, then L
is also a manifold. and has strictly lower dimension than both
of M and P. If they have boundary, L is a union of at most
4 strictly lower dimensional manifolds. In both cases, L has
measure 0 in both M and P

Proof. By Lemma 3.1, we know that £ = M N P has
strictly lower dimensional than both M and P do, such that

Ps(L)=0and P,(L)=0

2. JSD(P||P,) = /P logID(Q)PJflgt(z)jL

2P (2)
Pt(z)logmdz
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where (M UN)® is the complement of (M UN). For
ze M\ L, Ps(z) = 1 and Pi(z) = 0. Similarly, for
ze€ N\ L, P(z) =1 and Ps(z) = 0. When z € (M U L)°
and z € £, P,(z) and P;(z) are equal to zero. Therefore,
JSD(P||P;) = log2.

Note that when J.SD(P;s||P;) is a constant, gradients for all
the parameters in an adversarial DA network are zeros. There-
fore, if a gradient descent algorithm is adopted, the vanishing
gradient problem appears and divergence between source and
target domains is difficult and sometimes impossible to be
minimized.

dz (11)

E. Regularizer Based on Transport Theory

Once we have parametrized G and 7', we employ adver-
sarial loss to adapt different distributions. The architecture
modification requires us to revise our loss function. Instead of
measuring the distance between source features f* = G(x?)
and target features f' = G(x') generated from one feature
extractor, the proposed model lets domain classifier D dis-
criminate source features f* = T'(G(x®)) from the transform
network and target features f! = G(x') from the feature
extractor. Thus, the loss function is modified from into:

L(04,03,00,0) = 3 LACT(Gx:))), 01~

203 (DTG, d)+
X;EDg
> LuD(G(x:))),d})) (12)
x, €Dy

where df and d! denote the domain labels of the ith source
and target samples, respectively. L5 and £, denote the domain
loss of source and target samples, respectively. 6; denotes the



parameters of 7'. This objective funtion replaces G(x;) in
with T(G(x;)), indicating that our model uses features
generated from transform network 7' to be the input of label
classifier C' and domain classifier D.

As our proof, if we optimize £(6,4, 0, 0.,0;) as general ad-
versarial DA framework, a vanishing gradient problem would
disturb us. To address this issue, we add a regularization term
to the loss function based on the optimal transport problem as
defined by Monge [44]]. DA’s goal is to find a mapping from a
source domain to a target one, while the optimal transport
problem gives a solution that transfers one distribution to
another. Therefore, that problem can be represented in the form
of Monge’s formulation of the optimal transport problem [44],
[45]). If we denote the probability measures over Ps and P; as
s and p, respectively, Monge’s formulation of the optimal
transport problem is:

Tp = arg min/ r(x, T(x))du(x), s.t.T#(ps) = pe
T xEP; (13)
where 7(-) denotes some kind of distance metric, 7' denotes
a transport mapping from P, to P, and T, is the optimal
solution of T. T#(us) denotes the push forward of us by a
measureable function 7'. x denotes the samples drawn from
P,. DA’s goal is to find a transport mapping 7y satifying
T#(us) = py, which means that a transformation from source
distribution P, to target distribution P; should be found.
Specifically, in our model, we use transform network 7' to fit
the transport mapping to meet T#(us) = p¢ via adversarial
training. By fitting 7(-), we can construct a regularization term
that measures the distance between G(x*) and T(G(x*)). In
our model, according to our empirical evaluation results, 7(-)
is the cosine distance between them:
_Gx) - T(G(x%))
G| - [T (G )

where (-) denotes an inner product, and |-| denotes Ly norm.

r(G(x°), T(G(x%)) = (14)
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Fig. 3. When transferring features from the source to target domain, the
regularization term proposed forces our model choosing the shortest path (red
line).

For a transport problem, there are usually a few practical
paths as shown in Fig. |3| The optimal transport theory seeks
the most efficient way of transforming one distribution of
mass to another, just like the red line in Fig. 3] In detail,

[ r(x,T(x))du(x) in , which indicates the expected cost
of transportation, is to be minimized. If it reaches the min-
imum, the most efficient path would be found. Once we
refine the optimal transport theory into unsupervised DA, the
regularization term r(G(x®), T(G(x®))) leads our model to
select the most efficient way of transforming a source to target
distribution. Specifically, the term attempts to constrain the
distance between the features before and after the transforma-
tion. If we regard the distance as the cost of transformation,
similar to the cost of transportation, the term attempts to select
the shortest path from a number of transfer paths that map a
source to target distribution.

On one hand, when the distributions of source and target
domains are totally different, domain classifier D can so
easily distinguish samples from different domains that L
and L£; backpropagate very small gradients. In this situation,
the regularization term r(G(x*), T(G(x*))) can still provide
gradients to the target mapping. On the other hand, when
D directs updating parameters, the term would constrain the
range of updating to prevent features from changing too
rapidly, because it constrains differences between the features
before and after the transformation. Thus, the stability of a
training procedure of the proposed model is guaranteed via
such added regularization term.

Consequently, our objective function becomes

L0 00,00,00) = 3 L(CT(Gx)),50)~

% x;€D;

)\ S
2030 LDT(GE)), )+
x; €D

Y LiD(G(xy)), b))+
x; €Dy
p-r(G(x), T(G(x%))) (15)
where ( denotes the coefficient parameter of a regularization
term. In addition, the optimization problem is to find param-
eters 04, 04, 0. and 0;, where 0., 0,, 64 and 0, satisty:

éd =arg min(ﬁs(ad,@g, 0:) + ﬁt(‘gd,eg)) (16)
04

0. =argmin L.(0,, 0., 0;) (17)
0.

ég =argmin £(04,0,,0.,6;) (18)
0

g

0; = argmin(L,(0y, 0., 0:) + Ls(0a,0,,0:) +1(8,,6:))
04
(19)

In this case, (I0) is reformulated into:

Gi%l L(D*,G,T)=2-JSD(Ps||P;) — 2log2 + r(04, 0;)
(20

)

or(64,0) Or(64,60:)
0 0

where and - would not be zeros. Since,
JSD(Ps| |Pi) = 0 appears easily, this regularization term pro-
vides gradients for parameters in G and 7', thereby alleviating
the adverse effects of the vanishing gradient problem.



FE. Framework of Proposed Method

In a training period for our model, we have two stages. In
the first one, feature extractor G and transform network T
receive labeled source samples from D {x7,y?,d;};;, and
outputs £ and T'(f?). With class labels y° and domain labels
d®, L. is computed by label classifier C, and L, is computed
by domain classifier D. At the same time, the regularization
term r(G(x*), T(G(x?))) is also obtained according to £* and

T'(f?). In the second stage, G receives unlabeled samples from
D {x!,ds}7,, and outputs f*. Similarly, £; is computed by
domain classifier D. At last, all the above losses are multiplied
by their corresponding coefficients, and then the model is
optimized using these losses.

As for optimizing adversarial networks, previous studies
have carried out a number of explorations [28], [29]. In [29],
an iterative optimization strategy is proposed, where a feature
extractor and domain classifier update their parameters itera-
tively. Specifically, it alternates between k steps of optimizing
a domain classifier and one step of optimizing a feature
extractor. This is the most common training strategy which is
also widely used in GANs [23[], [24]]. One of the obstacles to
it is that tuning the hyperparameter k. Unsuitable £ may cause
a failure of model training. As a result we have to tune this
hyperparameter for each model carefully. Instead, in [28], the
proposed gradient reversal layer (GRL) replaces iterative opti-
mization. During forward propagation, GRL has no difference
from normal layers, whereas during backpropagation, GRL
reverses the gradient from the subsequent layer, multiplies it
by a coefficient v and passes it to the previous layer. Based
on a large number of experiments, [28|] adjusts 7 using the
following formula: v = H_e%mp — 1, where p is the training
progress linearly changing from O to 1. In the implementation
of ARTN, we choose GRL to optimize our model. With this
strategy, there is no need to tune the hyperparameter k, and
parameters of the feature extractor and domain classifier are
updated in one backpropagation.

Algorithm |I| provides the pseudo-code of our proposed
learning procedure. With stochastic gradient descent (SGD),
parameters 04, 0. and 0, are updated. When the loss converges,
the training stops.

If G, T and D have enough capacity, and at each loop of
Algorithm[I] D is allowed to reach its optimal D* given G and
T, and P; is updated so as to improve the following criterion:

Ex~p, [logD*(T(G(x)))] + Ex~p, [log(1 — D*(G(X)))(]ZI)

Then P, converges to P;. Similar to [23]], we give a brief proof
as follows.

Proof. Consider that U(P;, D |, Ps(z)logD(z) +
P(z)log(1—D(z))dz as a functlon of Pt Note that U(P;, D)
is convex in P;. The subderivatives of a supremum of convex
functions include the derivative of the function at the point
where the maximum is attained. In other words, if f(z) =
supaeafa(x) and fo(x) is convex in z for every «, then
Ofp(x) € Of if B = argsupacafo(z). This is equivalent
to computing a gradient descent update for P, at D* given
the corresponding G and T. suppU(P;, D) is convex in P;

Algorithm 1 Learning Procedure of ARTN
Input:
Labeled source samples D {x?,y7,d;}7=
Unlabeled target samples Dy {x!, d$}" "’
Learning rate «, Coefficient parameters A B
Output:
Model parameters {64,0,4,0..,0; }
1: while not converge do
2 for ¢ from 1 to n, do
3 =G
4: L. = crossentropy(C(T(f?)), y:)
5: Ly = crossentropy(D(T(ff)),ds)
6
7
8
9

reg = r(f,T(£))
end for
for ¢ from 1 to n; do
=Gk
10: £t = crossentropy(D(f}), dt)
11:  end for
12: Lo+ Lo+ Ly
13: 04 04— -
14: 0.+ 60.—«-

150 0405 —a-

a0,
a(ﬁc —ALg+Breg)
a0,
O(Lc—NLs+Breg)
5]

g

16: Gt — et — Q-
17: end while

with a unique global optimum as proven in (I0). Hence, with
sufficiently small updates of P;, P, converges to P;.

IV. EXPERIMENTS

In order to evaluate the effectiveness of the proposed
method, we test the proposed ARTN for unsupervised DA
in several experiments that are recognized to be difficult.
For the first experiment, we test our model in a sentiment
analysis task. Second, to test its performance when source and
target domains are relatively similar, the model is evaluated
on several digits datasets. Third, to test it when facing a large
discrepancy between source and target domains, the model is
evaluated on a natural image dataset. Fourth, to test its anti-
noise and generalization abilities, we test it when target images
are added with varying noise. Fifth, to test the effectiveness
of regularization in the proposed method, we compare the
performance of ARTN with and without regularization on a
natural image dataset. Finally, we investigate the effects of
parameter A on the performance of the proposed method. In all
experiments, we implement models with Pytorch, and employ
the learning strategy GRL mentioned in Section [[II which
reverses and propagates gradients to the feature extractors.

A. Sentiment Analysis

We use the Amazon reviews dataset with the same pre-
processing used in mSDA [55] and DANN [28]. It contains
reviews of four different categories of products: Books,
DVDs, Kitchen Appliances and Electronics, which
means that this dataset includes four domains and we can set
up twelve domain adaptation tasks across them. Reviews are



encoded in 5 000 dimensional feature vectors of unigrams
and bigrams, and labels are binary: O if a product is ranked
up to 3 stars, and 1 if it is ranked 4 or 5 stars. In all
twelve tasks, we use 2000 labeled source samples and 2000
unlabeled target samples to train our model. In a testing
period, we test our model on separate target test sets (between
3000 and 6000 examples). To evaluate the effectiveness of
our model, we compare it with DANN [28], DAN [19],
Central Moment Discrepancy (CMD) for Domain-Invariant
Representation Learning [47]], Variational Fair Autoencoder
(VFAE) and the model with no adaptation. The results
are directly cited from the original pulication [28§].

In this experiment, we use the same neural network as
DANN [28]. Both domain and label classifiers consist of
just one layer with 100 hidden units followed by the final
output layer. Because there is only one hidden layer in the
neural network, we build just one residual connection. ReLU
activation function and batch normalization are employed. We
choose SGD as the optimizer with its learning rate 0.001 and
momentum 0.9. Parameters A is set to 0.5, and [ is set to 0.1.
The batch size is set to 128. All the results are recorded after
convergence.

Results are shown in Table [} The accuracy of ARTN is the
highest in three out of twelve domain adaptation tasks. The
accuracy of CMD-based model is the highest in six tasks and
VFAE achieves the highest accuracy in three tasks. Therefore,
in the experiment of sentiment analysis, ARTN is comparable
with VFAE and slightly worse than CMD.

B. Digits

Eg
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Fig. 4. Samples of digits dataset. The first to last rows correspond to MNIST,
MNIST-M, SVHN and SYN NUMS.

O

In order to evaluate the performance when the discrepancy
between source and target domains is relatively small, we
experimentally test ARTN in several pairs of unsupervised
domain adaptation tasks whose images are from the MNIST,
MNIST-M, SVHN and SYN NUMS digits datasets. All these
datasets consist of 10 classes, and we use the full training
sets in all datasets. Example images from each dataset are
shown in Fig. @] In this experiment, we set three trans-
fer tasks: MNIST—MNIST-M, SVHN—MNIST, and SYN
NUMS—SVHN. As is shown in Fig.[d] images in SYN NUMS
and SVHN are similar, whereas images in MNIST are much
different from the other digits datasets.

We choose several unsupervised DA approaches to compare
with the proposed one. CORAL [42], CMD and DAN
rely on the distance metric between source and target distribu-
tions. DANN [28], CoGAN [25]], Domain Transfer Network

(DTN) [57], CYCADA [58] and ADDA [29] are based on
adversarial learning.

For MNIST—MNIST-M, we use a simple modified
LeNet []3_@[] As for a domain classifier, we stack two fully
connected layers: one layer with 100 hidden units followed by
the final output layer. Each hidden unit uses a ReLU activation
function. For SVHN—MNIST and SYN NUMS—SVHN, we
use a three-layer convolutional network as a feature extractor,
and a three-layer fully connected network as a domain classi-
fier. In all tasks, batch normalization is employed. We employ
SGD with 0.01 learning rate and the momentum 0.9. X is set
to 1, and S is set to 0.2. The batch size is set to 128. Prediction
accuracy in the target domain is reported after convergence.

Results of our digits experiment are shown in Table [
Note that the basic networks for DTN and CYCADA are
different from others, and the accuracy with no adaptation is
included in the bracket. In MNIST—MNIST-M, the proposed
model’s accuracy is 85.6% which outperforms the best of
other methods by 0.6%. In SYN NUMS—SVHN, its accuracy
achieves 89.1%, which is comparable to DANN’s. In SYN
NUMS—SVHN, the accuracy of ARTN is 85.8%, which is
just lower than CYCADA'’s. Note that, CYCADA achieves the
higher accuracy with better basic networks. For a fair com-
parison, the improvements compared with the adaptation-free
models of ARTN, DTN, CyCADA pixel only and CyCADA
pixel+feat are 30.9%, 8.3%, 3.2% and 23.3%, respectively. It is
obvious that ARTN brings a bigger boost to the adaptation-free
model. Totally, in two of three tasks, our approach outperforms
other methods, and in the task whose source and target datasets
are similar, it can achieve the same competitive results as the
others.

C. Image Classification

Fig. 5. Samples of Office-31 dataset. The first to last rows correspond to
AMAZON, DSLR and WEBCAM.

We further evaluate our model in a more complex setting.
The proposed model is tested on a natural image dataset
Office-31, which is a standard benchmark for visual do-
main adaptation, comprising 4,110 images and 31 categories
collected from three domains: AMAZON (A, images down-
loaded from amazon.com) with 2,817 images, DSLR (D, high-
resolution images captured by a digital SLR camera) with



TABLE I
CLASSIFICATION ACCURACY PERCENTAGE OF SENTIMENT ANALYSIS EXPERIMENT AMONG ALL TWELVE TASKS. THE FIRST COLUMN CORRESPONDS TO
THE PERFORMANCE IF NO ADAPTION IS IMPLEMENTED. THE PROPOSED METHOD OUTPERFORMS THE OTHERS IN THREE OF TWELVE TASKS.

SOURCE—TARGET SOURCE ONLY DAN[19] DANN 28] ARTN CMD [47] VFAE [56]
BOOKS—DVD 78.7 79.6 78.4 81.4 80.5 79.9
BOOKS—ELECTRONICS 71.4 75.8 73.3 77.5 78.7 79.2
BOOKS—KITCHEN 74.5 78,7 77.9 78.8 81.3 81.6
DVD—BOOKS 74.6 78.0 72.3 78.8 79.5 75.5
DVD—ELECTRONICS 72.4 76.6 75.4 77.0 79.7 78.6
DVD—KITCHEN 76.5 79.6 78.3 79.3 83.0 82.2
ELECTRONICS—BOOKS 71.1 73.3 71.3 72.4 74.4 72.7
ELECTRONICS—DVD 71.9 74.8 73.8 73.9 76.3 76.5
ELECTRONICS—KITCHEN 84.4 85.7 85.4 86.4 86.0 85.0
KITCHEN—BOOKS 69.9 74.0 70.9 73.8 75.6 72.0
KITCHEN—DVD 73.4 76.3 74.0 75.7 77.5 73.3
KITCHEN—ELECTRONICS 83.3 84.4 84.3 86.1 85.4 83.8
TABLE II

CLASSIFICATION ACCURACY PERCENTAGE OF DIGITS CLASSIFICATIONS AMONG MNIST, MNIST-M, SVHN AND SYN NUMS. THE FIRST ROW
CORRESPONDS TO THE PERFORMANCE IF NO ADAPTION IS IMPLEMENTED. THE PROPOSED METHOD OUTPERFORMS THE OTHERS IN TWO OF THREE
TASKS WHEN IT COMES TO IMPROVEMENT COMPARED WITH THE BASIC NETWORK. IN ADDTIONT, THE RESULTS ARE CITED FROM LITERATURE.

METHOD MNIST—MNIST-M SYN NUMS—SVHN SVHN—MNIST
SOURCE ONLY 51.4 86.7 54.9
CORAL [42] 57.7 85.2 63.1
DAN [|19] 76.9 88.0 71.1
DANN [28]] 76.7 91.1 73.9
CMD [[47]] 85.0 85.5 84.5
CoGAN [25]] - - DIVERGE
ADDA [29] - - 76.0
DTN [57]] - - 84.4(76.1)
CYCADA PIXEL ONLY [58]] - - 70.3(67.1)
CYCADA PIXEL+FEAT [58]] - - 90.4(67.1)
ARTN 85.6 89.1 85.8
TABLE III

CLASSIFICATION ACCURACY PERCENTAGE OF EXPERIMENT ON THE OFFICE-31 DATASET. THE FIRST COLUMN CORRESPONDS TO THE PERFORMANCE IF
NO ADAPTION IS IMPLEMENTED. THE SECOND TO LAST COLUMNS CORRESPOND TO THE PERFORMANCE OF DIFFERENT DA METHODS AND THE
PROPOSED METHOD.

Method DSLR—AMAZON WEBCAM—AMAZON AMAZON—WEBCAM AMAZON—DSLR
AlexNet 51.1 49.8 61.6 63.8
DDC [27] 52.1 522 61.8 64.4
Deep CORAL [42] 52.8 51.5 66.4 66.8
DAN [19] 54.0 53.1 68.5 67.0
InceptionBN 60.1 57.9 70.3 70.5
LSSA [60] 57.8 57.8 67.7 71.3
CORAL [42] 59.0 60.2 70.9 71.9
AdaBN [61] 59.8 574 74.2 73.1
VGG16 58.2 57.8 67.6 73.9
CMD [47] 63.8 63.3 77.0 79.6
ResNet34 57.5 55.5 68.4 68.9
DANN [128]] 58.1 56.3 73.7 75.3
ARTN 60.9 61.0 76.2 76.1

498 images and WEBCAM (W, low-resolution images captured
by a Web camera) with 795 images. Samples of Offfice-31
dataset are shown in Fig. [5] In order to test the generalization
ability of different methods, we focus on the most difficult

four tasks [19]: A—D, A—»W, D—A and W—A. In A—>W
and A—D, models are easier to train because images in source
domain A are adequate. In W—A and D—A, there are only
hundreds of images in the source domain but about 2,900



images in the target one. Thus models are very difficult to
train. In addition, we test our model without regularization to
analyze how the regularization term of our model affects its
performance. In this experiment, we evaluate the effectiveness
of our approach by comparing it with different models trained
on the Office-31 dataset. Note that some of the methods,
such as DDC [27], Deep CORAL [42]] and DAN [19], are
based on AlexNet, some of the methods, such as LSSA [60]],
CORAL [42] and AdaBN [61]], are based on InceptionBN,
and CMD [47] is based on VGG16. Results of these meth-
ods are cited from original papers. Moreover, we implement
DANN [28] and the model with no adaptation to be the
baselines.

Because of lacking sufficient images, we implement our
model based on ResNet34 [3]] which is pre-trained on an Ima-
geNet dataset, and fine-tune the model on Office-31. Different
from the digits experiment, we build a residual connection
for every three layers in ResNet34 instead of every layer.
As for the domain classifier, we use a network with three
fully connected layers. In addition, we replace the last layer
of ResNet34 with a three-layer fully connected network, and
use it to predict the labels of inputs. In all tasks, we employ
the same SGD and parameter setting as before except that A
is set to 0.6 and batch size is 40. All the prediction accuracy
results are recorded after training for 30 epochs.

Results of the experiment on Office-31 are shown in Ta-
ble In D—A, W—A, A—W and A—D, the proposed
model achieves the accuracy of 60.9%, 61.0%, 76.2% and
76.1%, respectively. Thus, in all four tasks, the proposed
model achieves the second highest accuracy. Note that these
methods are based on different basic networks, besides the
accuracy, improvement compared with the corresponding basic
network is a fairer metric. The improvements of ARTN in four
tasks are 3.4%, 5.5%, 7.8% and 7.2%, respectively. CMD,
which outperforms all the related state-of-the-art methods on
all four tasks, achieves 5.6%, 5.5%, 9.4% and 5.7% improve-
ments. ARTN achieves a higher improvement in A—D and
same improvement in W—A compared with the state-of-art
method, CMD. The intuitive interpretation of CMD’s excellent
performance is that it minimizes the sum of differences of
higher order central moments of the corresponding activation
distributions. Higher-order statistics describe the differences
between distributions more comprehensively, but they also
incur significantly more computational overhead than such
methods as our proposed one. In practice, the number of
moments is pre-set to be no more than five. In summary, ARTN
outperforms all the other methods except CMD.

D. Generalization Analysis

A generalization test is taken by adding Gaussian noise
to images in a target domain. In this way, the discrepancy
between source and target domains is larger and discriminative
information in a target domain is more difficult to capture. In
this experiment, we test the anti-noise and generalization abili-
ties of our model based on the digits experiment. For images in
the source domain, we follow the settings in MNIST—MNIST-
M, SYN NUMS—SVHN and SVHN—MNIST respectively,

however, for images in the target domain, we add vary-
ing Gaussian noise. For MNIST—MNIST-M and SYN
NUMS—SVHN, the standard deviation of Gaussian noise
is selected from {0.4,0.5,0.6,0.7,0.8,0.9,1.0}. That in
SVHN—MNIST is from {1.0,1.5,2.0,2.5,3.0}. The means
of Gaussian noise in all tasks are 0. Results are plotted in
Fig. [6] The baseline method is a model without adaptation.
We also compare the proposed method with DANN [28]].

Comparing the proposed model with the adaptation-free
model, we can see that although noises are added to the test
images, the proposed model exhibits a great advantage over
the adaptation-free model. In MNIST—MNIST-M, when the
standard deviation is 0.4, the accuracy of the adaptation-free
model is 45.83%, whereas ours improves it by 36.6%. When
standard deviation is 1.0, the accuracy of the adaptation-free
model is 24.55%, whereas ours improves is by 76.4%. Similar
results appear in SYN NUMS—SVHN and SVHN—MNIST,
where the rate of improvement generally shows an upward
trend in the case of a gradual increase of noise. Therefore, as
the discrepancy between source and target domains increases,
the performance advantage of the proposed model is becoming
more and more obvious in comparison with a adaptation-free
model. At the same time, the improvement percentage of our
model is higher than DANN in almost all tasks, which means
that the proposed method has better anti-noise abilities than
DANN. This result demonstrates that even if there exists noise
in a target domain, the proposed model can maintain excellent
generalization and anti-noise abilities.

E. Regularization Analysis

We next analyze how the regularization term of our model
affects the performance of our model. We test our model
without regularization on Office-31 by setting 5 = 0. In
this way, £ consists of L., L and L; only. Except for the
regularization term, this experiment has same settings as the
image classification experiment does.

Results of this experiment are shown in Fig. [/l In D—A,
W—A, A—W and A—D, the proposed model without reg-
ularization achieves the accuracy of 59.5%, 59.8%, 76.0%
and 75.9%, which is lower by 1.4%, 1.2%, 0.2% and 0.2%
of the proposed one with such term, respectively. The model
with regularization outperforms DANN and the model without
regularization in all tasks, which demonstrates the effective-
ness of regularization. In another word, the regularization term
strengthens the generalization ability of the proposed model. It
should be noted that in D—A, W—A and A—W, the proposed
model without regularization still outperforms DANN. This
means that the improvement is not only from the regularization
but also the modification of its architecture.

Besides performance improvement, we analyze how the reg-
ularization term affects the gradients during training. Because
displaying every gradient of a parameter is impossible, we
calculate ||[VgL(6)|| to capture the overall statistics which is
a metric adopted in [53]. We record ||VoL(0)|| of the model
with and without a regularization term on Office-31. Moreover,
we record the minimum, maximum and standard deviation of
[|VoL(0)|| during the training period. ||VoL(0)|| in D—A,
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Fig. 7. Classification accuracy percentage of experiment on the Office-31
dataset.The red line corresponds to the proposed method with regularization
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TABLE IV
STATISTICAL DATA OF ||V £(6)|| ARE RECORDED. BOTH THE MODELS
WITH AND WITHOUT REGULARIZATION TERM ARE EVALUATED ON
OFFICE-31. FOR EACH ROW, THE UPPER LINE CORRESPONDS TO ARTN
WITH REGULARIZATION AND THE LOWER LINE CORRESPONDS TO ARTN
WITHOUT REGULARIZATION.

Method A—-W A—-D W—A D—A
14.51 15.88 4.64 6.16
max
18.50 20.35 4.81 7.02
. 3.24 2.96 2.07 2.32
min
3.17 3.04 2.20 2.32
. 11.27 12.92 2.57 3.84
max-min
15.33 17.31 2.61 4.70
std 1.25 1.36 0.38 0.59
1.30 1.37 0.40 0.61
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Fig. 6. Accuracy of the adaptation-free method and improvement of
DANN and our model in MNIST—MNIST-M, SYN NUMS—SVHN and
SVHN—MNIST, where we add gaussian noise to images in the target domain.
X-axis represents the standard deviation of noise, and Y-axis represents the
accuracy of adaptation-free method and improvement percentage of DANN
and our model in the target domain.

W—A, A—-W and A—D are drawn in Fig. |§| and related
statistical data are shown in Table [Vl Please note that even if
the gradient vanishing issue occurs during training, ||V¢L(6)||
would not be very close to zero because it involves gradients
of all parameters.

According to Fig. [ especially in Fig. (b) and (d),
we can see that gradients of ARTN without a regularization
term are easier to be unstable. There are more extreme large
gradients in ARTN without a regularization term. The results
are shown in Table [V} In all four tasks, ARTN with a
regularization term gets smaller standard deviation than ARTN

without it. This directly indicates that a regularization term
promotes the stability of adversarial training in our model. In
detail, the maximum and minimum gradients are also recorded.
We find that maximum gradient of ARTN with a regularization
term in four tasks are smaller than that of ARTN without it.
Meanwhile, except in W—A, the gap between maximum and
minimum gradients suggests that ARTN with a regularization
term is more stable than ARTN without it with a large margin.
This fact can also be observed in Fig. @ Thus, the effect of the
proposed regularization term to stabilize adversarial training
in our model is considered being verified in this experiment.
The reason why the W—A case is an exception needs to be
explored as future research.

F. Parameter Sensitivity

In this experiment, we investigate how parameter \ affects
the performance of our model. In order to make the results
convincing, we test our model on tasks A—W, A—D, W—A,
and D—A to acquire the variation of transfer classification per-
formance as A € {0.4,0.5,0.6,0.7,0.8,0.9}. Note that other
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lines show results of adaptation-free method.

settings are the same with those of the image classification
experiment. In Fig. 0] a detailed illustration is given.

The results in three of four tasks, A—W, A—D and W—A
exhibit the same trend that the accuracy of ARTN is almost
stable as A varies. Only in W—A, the accuracy fluctuates
slightly with the variation of A\. Moreover, in the range of
our settings, ARTN is always better than the model without
adaptation and also better than most methods in Table [T}
This confirms the belief that ARTN is robust as A changes,
which means the proposed method is no need for tuning hyper
parameters subtly.

V. CONCLUSION

We propose a novel unsupervised domain adaptation model
based on adversarial learning. Different from previous adver-
sarial adaptation models which rely on extracting domain-
invariant representations, our model adds a feature-shared
transform network to directly map features from a source
domain to the space of target features. Furthermore, we add a
regularization term to help strengthen its performance. Experi-
mental results clearly demonstrate that the proposed model can
match different domains effectively and is comparable with the
state-of-the-art methods.
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