
3400 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Robust and Communication-Efficient Federated
Learning From Non-i.i.d. Data

Felix Sattler , Simon Wiedemann, Klaus-Robert Müller, Member, IEEE,
and Wojciech Samek , Member, IEEE

Abstract— Federated learning allows multiple parties to jointly
train a deep learning model on their combined data, without
any of the participants having to reveal their local data to a
centralized server. This form of privacy-preserving collaborative
learning, however, comes at the cost of a significant communica-
tion overhead during training. To address this problem, several
compression methods have been proposed in the distributed
training literature that can reduce the amount of required
communication by up to three orders of magnitude. These
existing methods, however, are only of limited utility in the
federated learning setting, as they either only compress the
upstream communication from the clients to the server (leaving
the downstream communication uncompressed) or only perform
well under idealized conditions, such as i.i.d. distribution of the
client data, which typically cannot be found in federated learning.
In this article, we propose sparse ternary compression (STC),
a new compression framework that is specifically designed to
meet the requirements of the federated learning environment.
STC extends the existing compression technique of top-k gradient
sparsification with a novel mechanism to enable downstream
compression as well as ternarization and optimal Golomb encod-
ing of the weight updates. Our experiments on four different
learning tasks demonstrate that STC distinctively outperforms
federated averaging in common federated learning scenarios.
These results advocate for a paradigm shift in federated optimiza-
tion toward high-frequency low-bitwidth communication, in par-
ticular in the bandwidth-constrained learning environments.

Index Terms— Deep learning, distributed learning, efficient
communication, federated learning, privacy-preserving machine
learning.

Manuscript received March 6, 2019; revised June 28, 2019; accepted
September 25, 2019. Date of publication November 1, 2019; date of current
version September 1, 2020. This work was supported in part by the Fraunhofer
Society through the MPI-FhG Collaboration Project “Theory & Practice for
Reduced Learning Machines,” in part by the German Ministry for Education
and Research as Berlin Big Data Center under Grant 01IS14013A, in part by
the Berlin Center for Machine Learning under Grant 01IS18037I, in part
by DFG under Grant EXC 2046/1 and Grant 390685689, and in part
by the Information & Communications Technology Planning & Evaluation
(IITP) Grant funded by the Korea Government under Grant 2017-0-00451.
(Corresponding authors: Klaus-Robert Müller; Wojciech Samek.)

F. Sattler, S. Wiedemann, and W. Samek are with the Fraunhofer Hein-
rich Hertz Institute, 10587 Berlin, Germany (e-mail: wojciech.samek@
hhi.fraunhofer.de).

K.-R. Müller is with the Technische Universität Berlin, 10587 Berlin,
Germany, with the Max Planck Institute for Informatics, 66123 Saarbrücken,
Germany, and also with the Department of Brain and Cognitive Engineer-
ing, Korea University, Seoul 136-713, South Korea (e-mail: klaus-robert.
mueller@tu-berlin.de).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2944481

I. INTRODUCTION

THREE major developments are currently transforming the
ways how data are created and processed: First of all,

with the advent of the Internet of Things (IoT), the number of
intelligent devices in the world has rapidly grown in the last
couple of years. Many of these devices are equipped with var-
ious sensors and increasingly potent hardware that allow them
to collect and process data at unprecedented scales [1]–[3].

In a concurrent development, deep learning has revolution-
ized the ways that information can be extracted from data
resources with groundbreaking successes in areas such as com-
puter vision, natural language processing, or voice recognition,
among many others [4]–[9]. Deep learning scales well with
growing amounts of data and its astounding successes in recent
times can be at least partly attributed to the availability of
very large data sets for training. Therefore, there lays huge
potential in harnessing the rich data provided by IoT devices
for the training and improving deep learning models [10].

At the same time, data privacy has become a growing
concern for many users. Multiple cases of data leakage and
misuse in recent times have demonstrated that the centralized
processing of data comes at high risk for the end users privacy.
As IoT devices usually collect data in private environments,
often even without explicit awareness of the users, these
concerns hold particularly strong. It is, therefore, generally
not an option to share this data with a centralized entity that
could conduct training of a deep learning model. In other
situations, local processing of the data might be desirable for
other reasons such as increased autonomy of the local agent.

This leaves us facing the following dilemma: How are we
going to make use of the rich combined data of millions of IoT
devices for training deep learning models if this data cannot
be stored at a centralized location?

Federated learning resolves this issue as it allows multiple
parties to jointly train a deep learning model on their combined
data, without any of the participants having to reveal their data
to a centralized server [10]. This form of privacy-preserving
collaborative learning is achieved by following a simple
three-step protocol illustrated in Fig. 1. In the first step, all
participating clients download the latest master model W from
the server. Next, the clients improve the downloaded model,
based on their local training data using stochastic gradient
descent (SGD). Finally, all participating clients upload their
locally improved models Wi back to the server, where they
are gathered and aggregated to form a new master model

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9425-2238
https://orcid.org/0000-0002-6283-3265

SATTLER et al.: ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-I.I.D. DATA 3401

Fig. 1. Federated learning with a parameter server. Illustrated is one
communication round of distributed SGD. (a) Clients synchronize with the
server. (b) Clients compute a weight update independently based on their
local data. (c) Clients upload their local weight updates to the server, where
they are averaged to produce the new master model.

(in practice, weight updates �W = Wnew − Wold can be
communicated instead of full models W , which is equivalent
as long as all clients remain synchronized). These steps are
repeated until a certain convergence criterion is satisfied.
Observe that when following this protocol, training data never
leave the local devices as only model updates are communi-
cated. Although it has been shown that in adversarial settings
information about the training data can still be inferred from
these updates [11], additional mechanisms, such as homo-
morphic encryption of the updates [12], [13] or differentially
private training [14], can be applied to fully conceal any
information about the local data.

A major issue in federated learning is the massive commu-
nication overhead that arises from sending around the model
updates. When naively following the protocol described ear-
lier, every participating client has to communicate a full model
update during every training iteration. Every such update is
of the same size as the trained model, which can be in the
range of gigabytes for modern architectures with millions of
parameters [15], [16]. Over the course of multiple hundred
thousands of training iterations on big data sets, the total
communication for every client can easily grow to more than
a petabyte [17]. Consequently, if communication bandwidth is
limited or communication is costly (naive), federated learning
can become unproductive or even completely unfeasible.

The total amount of bits that have to be uploaded and
downloaded by every client during training is given by

bup/down ∈ O(Niter × f� �� �
updates

× |W| × (H (�Wup/down)+ η)� �� �
update size

)

(1)

where Niter is the total number of training iterations
(forward–backward passes) performed by every client, f is
the communication frequency, |W| is the size of the
model, H (�Wup/down) is the entropy of the weight updates
exchanged during upload and download, respectively, and η is
the inefficiency of the encoding, i.e., the difference between

the true update size and the minimal update size (which is
given by the entropy). If we assume the size of the model
and number of training iterations to be fixed (e.g., because
we want to achieve a certain accuracy on a given task),
this leaves us with three options to reduce communication:
1) we can reduce the communication frequency f ; 2) reduce
the entropy of the weight updates H (�Wup/down) via lossy
compression schemes; and/or 3) use more efficient encodings
to communicate the weight updates, thus reducing η.

II. CHALLENGES OF THE FEDERATED

LEARNING ENVIRONMENT

Before we can consider ways to reduce the amount of
communication, we first have to take into account the unique
characteristics, which distinguish federated learning from other
distributed training settings such as parallel training (compare
also with [10]). In federated learning, the distribution of both
training data and computational resources is a fundamental
and fixed property of the learning environment. This entails
the following challenges.

1) Unbalanced and non-i.i.d. data: As the training data
present on the individual clients is collected by the
clients themselves based on their local environment and
usage pattern, both the size and the distribution of
the local data sets will typically vary heavily between
different clients.

2) Large number of clients: Federated learning environ-
ments may constitute of multiple millions of partici-
pants [18]. Furthermore, as the quality of the collab-
oratively learned model is determined by the combined
available data of all clients, collaborative learning envi-
ronments will have a natural tendency to grow.

3) Parameter server: Once the number of clients grows
beyond a certain threshold, direct communication of
weight updates becomes unfeasible because the work-
load for both communication and aggregation of updates
grows linearly with the number of clients. In federated
learning, it is, therefore, unavoidable to communicate
via an intermediate parameter server. This reduces the
amount of communication per client and communica-
tion rounds to one single upload of a local weight
update to and one download of the aggregated update
from the server and moves the workload of aggregation
away from the clients. Communicating via a parame-
ter server, however, introduces an additional challenge
to communication-efficient distributed training, as now
both the upload to the server and the download from
the server need to be compressed in order to reduce
communication time and energy consumption.

4) Partial participation: In the general federated learning
for IoT setting, it can generally not be guaranteed that
all clients participate in every communication round.
Devices might lose their connection, run out of bat-
tery or seize to contribute to the collaborative training
for other reasons.

5) Limited battery and memory: Mobile and embedded
devices often are not connected to a power grid.

3402 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

TABLE I

DIFFERENT METHODS FOR COMMUNICATION-EFFICIENT DISTRIBUTED
DEEP LEARNING PROPOSED IN THE LITERATURE. NONE OF THE

EXISTING METHODS SATISFIES ALL REQUIREMENTS (R1)–(R3)
OF THE FEDERATED LEARNING ENVIRONMENT. WE CALL

A METHOD “ROBUST TO NON-I.I.D. DATA” IF THE
FEDERATED TRAINING CONVERGES INDEPENDENT

OF THE LOCAL DISTRIBUTION OF CLIENT DATA.
WE CALL COMPRESSION RATES GREATER

THAN ×32 “STRONG” AND THOSE

SMALLER OR EQUAL TO

×32 “WEAK”

Instead, their capacity to run computations is limited
by a finite battery. Performing iterations of SGD is
notoriously expensive for deep neural networks. It is,
therefore, necessary to keep the number of gradient
evaluations per client as small as possible. Mobile and
embedded devices also typically have only very limited
memory. As the memory footprint of SGD grows lin-
early with the batch size, this might force the devices to
train on very small batch sizes.

Based on the above-mentioned characterization of the feder-
ated learning environment, we conclude that a communication-
efficient distributed training algorithm for federated learning
needs to fulfil the following requirements.
(R1): It should compress both upstream and downstream

communications.
(R2): It should be robust to non-i.i.d., small batch sizes, and

unbalanced data.
(R3): It should be robust to large numbers of clients and

partial client participation.

III. CONTRIBUTION

In this article, we will demonstrate that none of the exist-
ing methods proposed for communication-efficient federated
learning satisfies all of these requirements (see Table I). More
concretely, we will show that the methods that are able to
compress both upstream and downstream communications are
very sensitive to non-i.i.d. data distributions, while the meth-
ods that are more robust to this type of data do not compress
the downstream (see Section V). We will then proceed to
construct a new efficient communication protocol for federated
learning that resolves these issues and meets all requirements
(R1)–(R3). We provide a convergence analysis of our method
as well as extensive empirical results on four different neural
network architectures and data sets that demonstrate that the
sparse ternary compression (STC) protocol is superior to the

existing compression schemes in that it requires both fewer
gradient evaluations and communicated bits to converge to
a given target accuracy (see Section IX). These results also
extend to the i.i.d. regime.

IV. RELATED WORK

In the broader realm of communication-efficient distributed
deep learning, a wide variety of methods has been proposed
to reduce the amount of communication during the train-
ing process. Using (1) as a reference, we can organize the
substantial existing research body on communication-efficient
distributed deep learning into three different groups.

1) Communication delay methods reduce the communica-
tion frequency f . McMahan et al. [10] propose federated
averaging where instead of communicating after every
iteration, every client performs multiple iterations of
SGD to compute a weight update. McMahan et al.
observe that on different convolutional and recurrent
neural network architectures, communication can be
delayed for up to 100 iterations without significantly
affecting the convergence speed as long as the data are
distributed among the clients in an i.i.d. manner. The
amount of communication can be reduced even further
with longer delay periods; however, this comes at the
cost of an increased number of gradient evaluations.
In a follow-up work, Konečnỳ et al. [27] combine
this communication delay with random sparsification
and probabilistic quantization. They restrict the clients
to learn random sparse weight updates or force ran-
dom sparsity on them afterward (“structured” versus
“sketched” updates) and combine this sparsification with
probabilistic quantization. Their method, however, sig-
nificantly slows down convergence speed in terms of
SGD iterations. Communication delay methods automat-
ically reduce both upstream and downstream communi-
cation and are proven to work with large numbers of
clients and partial client participation.

2) Sparsification methods reduce the entropy H (�W) of
the updates by restricting changes to only a small subset
of the parameters. Strom [24] presents an approach
(later modified by [26]) in which only gradients with
a magnitude greater than a certain predefined threshold
are sent to the server. All other gradients are accumu-
lated in a residual. This method is shown to achieve
upstream compression rates of up to three orders of
magnitude on an acoustic modeling task. In practice,
however, it is hard to choose appropriate values for
the threshold, as it may vary a lot for different archi-
tectures and even different layers. To overcome this
issue, Aji and Heafield [23] instead fix the sparsity rate
and only communicate the fraction p entries with the
biggest magnitude of each gradient while also collecting
all other gradients in a residual. At a sparsity rate
of p = 0.001, their method only slightly degrades the
convergence speed and final accuracy of the trained
model. Lin et al. [25] present minor modifications to the
work of Aji and Heafield [23] that even close this small

SATTLER et al.: ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-I.I.D. DATA 3403

performance gap. Sparsification methods have been pro-
posed primarily with the intention to speed up parallel
training in the data center. Their convergence properties
in the much more challenging federated learning envi-
ronments have not yet been investigated. Sparsification
methods (in their existing form) primarily compress the
upstream communication, as the sparsity patterns on
the updates from different clients will generally differ.
If the number of participating clients is greater than the
inverse sparsity rate, which can easily be the case in
federated learning, the downstream update will not even
be compressed at all.

3) Dense quantization methods reduce the entropy of the
weight updates by restricting all updates to a reduced set
of values. Bernstein et al. [22] propose signSGD, a com-
pression method with theoretical convergence guarantees
on i.i.d. data that quantizes every gradient update to its
binary sign, thus reducing the bit size per update by
a factor of ×32. signSGD also incorporates download
compression by aggregating the binary updates from
all clients by means of a majority vote. Other authors
propose to stochastically quantize the gradients during
upload in an unbiased way (TernGrad [19], quantized
stochastic gradient descent (QSGD) [20], ATOMO [21]).
These methods are theoretically appealing, as they
inherit the convergence properties of regular SGD under
relatively mild assumptions. However, their empirical
performance and compression rates do not match those
of sparsification methods.

Out of all the above-listed methods, only federated aver-
aging and signSGD compress both the upstream and down-
stream communications. All other methods are of limited
utility in the federated learning setting defined in Section II,
as they leave the communication from the server to the clients
uncompressed.

Notation: In the following, calligraphic W will refer to
the entirety of parameters of a neural network, while regular
uppercase W refers to one specific tensor of parameters within
W and lowercase w refers to one single scalar parameter of
the network. Arithmetic operations between the neural network
parameters are to be understood elementwise.

V. LIMITATIONS OF EXISTING COMPRESSION METHODS

The related work on efficient distributed deep learning
almost exclusively considers i.i.d. data distributions among the
clients, i.e., they assume unbiasedness of the local gradients
with respect to the full-batch gradient according to

Ex∼pi [∇W l(x,W)] = ∇W R(W) ∀i = 1, .., n (2)

where pi is the distribution of data on the i th client and R(W)
is the empirical risk function over the combined training data.

While this assumption is reasonable for parallel training
where the distribution of data among the clients is chosen by

0We denote by VGG11* a simplified version of the original VGG11 archi-
tecture described in [28], where all dropout and batch normalization layers are
removed and the number of convolutional filters and size of all fully connected
layers is reduced by a factor of 2.

the practitioner, it is typically not valid in the federated learn-
ing setting where we can generally only hope for unbiasedness
in the mean

1

n

n�
i=1

Exi∼pi
[∇W l(xi ,W)] = ∇W R(W) (3)

while the individual client’s gradients will be biased toward
the local data set according to

Ex∼pi [∇W l(x,W)]=∇W Ri (W) �=∇W R(W) ∀i=1, .., n.

(4)

As it violates assumption (2), a non-i.i.d. distribution of
the local data renders existing convergence guarantees, as
formulated in [19]–[21] and [29], inapplicability and has dra-
matic effects on the practical performance of communication-
efficient distributed training algorithms as we will demonstrate
in the following experiments.

A. Preliminary Experiments

We run preliminary experiments with a simplified version of
the well-studied 11-layer VGG11 network [28], which we train
on the CIFAR-10 [30] data set in a federated learning setup
using ten clients. For the i.i.d. setting, we split the training
data randomly into equally sized shards and assign one shard
to every one of the clients. For the “non-i.i.d. (m)” setting,
we assign every client samples from exactly m classes of
the data set. The data splits are nonoverlapping and balanced,
such that every client ends up with the same number of data
points. The detailed procedure that generates the split of data
is described in Section B of the Appendix in the Supplemen-
tary Material. We also perform experiments with a simple
logistic regression classifier, which we train on the MNIST
data set [31] under the same setup of the federated learning
environment. Both models are trained using momentum SGD.
To make the results comparable, all compression methods use
the same learning rate and batch size.

B. Results

Fig. 2 shows the convergence speed in terms of gradient
evaluations for the two models when trained using differ-
ent methods for communication-efficient federated learning.
We observe that while all compression methods achieve com-
parably fast convergence in terms of gradient evaluations
on i.i.d. data, closely matching the uncompressed baseline
(black line), they suffer considerably in the non-i.i.d. training
settings. As this trend can be observed also for the logis-
tic regression model, we can conclude that the underlying
phenomenon is not unique to deep neural networks and also
carries over to convex objectives. We will now analyze these
results in detail for the different compression methods.

1) Federated Averaging: Most noticeably, federated aver-
aging [10] (see orange line in Fig. 2), although specifically
proposed for the federated learning setting, suffers consid-
erably from non-i.i.d. data. This observation is consistent
with Zhao et al. [32] who demonstrated that model accuracy
can drop by up to 55% in non-i.i.d. learning environments

3404 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Fig. 2. Convergence speed when using different compression methods during
the training of VGG11*2on CIFAR-10 and logistic regression on MNIST and
Fashion-MNIST in a distributed setting with ten clients for i.i.d. and non-i.i.d.
data. In the non-i.i.d. cases, every client only holds examples from exactly two
respectively one of the ten classes in the data set. All compression methods
suffer from degraded convergence speed in the non-i.i.d. situation, but sparse
top-k is affected by far the least.

compared to the i.i.d. ones. They attribute the loss in accuracy
to the increased weight divergence between the clients and
propose to side-step the problem by assigning a shared public
i.i.d. data set to all clients. While this approach can indeed cre-
ate more accurate models, it also has multiple shortcomings,
the most crucial one being that we generally cannot assume
the availability of such a public data set. If a public data set
were to exist, one could use it to pretrain a model at the server,
which is not consistent with the assumptions typically made in
federated learning. Furthermore, if all clients share (part of) the
same public data set, overfitting to this shared data can become
a serious issue. This effect will be particularly severe in highly
distributed settings where the number of data points on every
client is small. Finally, even when sharing a relatively large
data set between the clients, the original accuracy achieved in
the i.i.d. situation cannot be fully restored. For these reasons,
we believe that the data-sharing strategy proposed by [32]
is an insufficient workaround to the fundamental problem of
federated averaging having convergence issues on non-i.i.d.
data.

2) SignSGD: The quantization method signSGD [29] (see
green line in Fig. 2) suffers from even worse stability issues
in the non-i.i.d. learning environment. The method completely
fails to converge on the CIFAR benchmark, and even for the
convex logistic regression objective, the training plateaus at a
substantially degraded accuracy.

To understand the reasons for these convergence issues,
we have to investigate how likely it is for a single batch
gradient to have the “correct” sign. Let

gk
w =

1

k

k�
i=1

∇wl(xi ,W) (5)

be the batch gradient over a specific minibatch of data Dk =
{x1, . . . , xk} ⊂ D of size k at parameter w. Let, further, gw

Fig. 3. Left: distribution of values for αw(1) for the weight layer of
logistic regression over the MNIST data set. Right: development of α(k) for
increasing batch sizes. In the i.i.d. case, the batches are sampled randomly
from the training data, while in the non-i.i.d. case, every batch contains
samples from only exactly one class. For i.i.d. batches, the gradient sign
becomes increasingly accurate with growing batch sizes. For non-i.i.d. batches
of data, this is not the case. The gradient signs remain highly incongruent with
the full-batch gradient, no matter how large the size of the batch.

be the gradient over the entire training data D. Then, we can
define this probability by

αw(k) = P
�
sign

�
gk
w

	 = sign(gw)

. (6)

We can also compute the mean statistic

α(k) = 1

|W|
�

w∈W
αw(k) (7)

to estimate the average congruence over all parameters of the
network.

Fig. 3 (left) exemplary shows the distribution of values for
αw(1) within the weights of logistic regression on MNIST
at the beginning of training. As we can see, at a batch size
of 1, g1

w is a very bad predictor of the true gradient sign
with a very high variance and an average congruence of
α(1) = 0.51 just slightly higher than random. The sensitivity
of signSGD to non-i.i.d. data becomes apparent once we
inspect the development of the gradient sign congruence for
increasing batch sizes. Fig. 3 (right) shows this development
for batches of increasing size sampled from an i.i.d. and non-
i.i.d. distribution. For the latter one, every sampled batch
only contains data from exactly one class. As we can see,
for i.i.d. data, α quickly grows with increasing batch size,
resulting in increasingly accurate updates. For non-i.i.d. data,
however, the congruence stays low, independent of the size
of the batch. This means that if clients hold highly non-i.i.d.
subsets of data, signSGD updates will only weakly correlate
with the direction of steepest descent, no matter how large of
a batch size is chosen for training.

3) Top-k Sparsification: Out of all existing compression
methods, top-k sparsification (see blue line in Fig. 2) suffers
least from non-i.i.d. data. For VGG11 on CIFAR the train-
ing still converges reliably even if every client only holds
data from exactly one class, and for the logistic regression
classifier trained on MNIST, the convergence does not slow
down at all. We hypothesize that this robustness to non-i.i.d.
data is due to mainly two reasons. First of all, the frequent
communication of weight updates between the clients prevents
them from diverging too far from one another, and hence, top-k
sparsification does not suffer from weight divergence [32] as it
is the case for federated averaging. Second, sparsification does
not destabilize the training nearly as much as signSGD does

SATTLER et al.: ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-I.I.D. DATA 3405

since the noise in the stochastic gradients is not amplified by
quantization. Although top-k sparsification shows promising
performance on non-i.i.d. data, its utility is limited in the
federated learning setting as it only directly compresses the
upstream communication.

Table I summarizes our findings. None of the existing
compression methods supports both download compression
and properly works with non-i.i.d. data.

VI. SPARSE TERNARY COMPRESSION

Top-k sparsification shows the most promising performance
in distributed learning environments with non-i.i.d. client data.
We will use this observation as a starting point to construct
an efficient communication protocol for federated learning.
To arrive at this protocol, we will solve three open problems
that prevent the direct application of top-k sparsification to
federated learning.

1) We will further increase the efficiency of our method by
employing quantization and optimal lossless coding of
the weight updates.

2) We will incorporate downstream compression into the
method to allow for efficient communication from server
to clients.

3) We will implement a caching mechanism to keep
the clients synchronized in case of partial client
participation.

A. Ternarizing Weight Updates

Regular top-k sparsification, as proposed in [23] and [25],
communicates the fraction of largest elements at full precision,
while all other elements are not communicated at all. In our
previous work (Sattler et al. [17]), we already demonstrated
that this imbalance in update precision is wasteful in the dis-
tributed training setting and that higher compression gains can
be achieved when sparsification is combined with quantization
of the nonzero elements.

We adopt the method described in [17] to the federated
learning setting and quantize the remaining top-k elements
of the sparsified updates to the mean population magnitude,
leaving us with a ternary tensor containing values {−μ, 0, μ}.
The quantization method is formalized in Algorithm 1.

Algorithm 1 STC

1 input: flattened tensor T ∈ R
n , sparsity p

2 output: sparse ternary tensor T ∗ ∈ {−μ, 0, μ}n
3 · k ← max(np, 1)
4 · v ← topk(|T |)
5 · mask← (|T | ≥ v) ∈ {0, 1}n
6 · T masked ← mask� T
7 · μ← 1

k

�n
i=1 |T masked

i |
8 return T ∗ ← μ× sign(T masked)

This ternarization step reduces the entropy of the update
from

Hsparse = −p log2(p)− (1− p) log2(p)+ 32 p (8)

to

HSTC = −p log2(p)− (1− p) log2(p)+ p (9)

when compared to the regular sparsification. At a sparsity
rate of p = 0.01, the additional compression achieved by
ternarization is Hsparse/HSTC = 4.414. In order to achieve
the same compression gains by pure sparsification, one would
have to increase the sparsity rate by approximately the same
factor.

Using a theoretical framework developed by
Stich et al. [33], we can prove the convergence of STC
under standard assumptions on the loss function. The proof
relies on bounding the impact of the perturbation caused by
the compression operator. This is formalized in the following
definition.

Definition 1 (k-Contraction) [33]: For a parameter
0 < k ≤ d , a k-contraction is an operator comp : Rd → R

d

that satisfies the contraction property

E�x − comp(x)�2 ≤
�

1− k

d

�x�2 ∀x ∈ R

d . (10)

We can show that STC indeed is a k-contraction.
Lemma 2: STCk as defined in Algorithm 1 is a

k̃-contraction, with

0 < k̃ = �topk(x)�21
k�x�22

d ≤ d. (11)

The proof can be found in Appendix E in the Supplementary
Material. It then directly follows from [33, Th. 2.4] that for
any L-smooth, μ-strongly convex objective function f with
bounded gradients E��W�2 ≤ G2, the update rule

W(t+1) := W(t) − STCk
�A(t) + η�W(t)

it

	
(12)

A(t+1) := A(t) +�W(t+1)
it
− STCk

�
�Wit

(t+1)
	

(13)

converges according to

E[f (WT)]− f ∗≤O
�

G2

μT

+O

⎛
⎝ d2

k̃2 G2 L
μ

μT 2

⎞
⎠+O

⎛
⎝ d3

k̃3 G2

μT 3

⎞
⎠ .

(14)

This means that for T ∈ O((d/k̃)((L/μ))1/2), STC converges
at rate O((G2/μT)), which is the same as for regular SGD!

Preliminary experiments are in line with our theoretical
findings. Fig. 4 shows the final accuracy of the VGG11* model
when trained at different sparsity levels with and without
ternarization. As we can see, additional ternarization does
only have a negligible effect on the convergence speed and
sometimes does even increase the final accuracy of the trained
model. It seems evident that a combination of sparsity and
quantization makes more efficient use of the communication
budged than pure sparsification.

B. Extending to Downstream Compression

Existing compression frameworks that were proposed for
distributed training (see [19], [20], [23], [25]) only compress
the communication from clients to the server, which is suffi-
cient for applications where aggregation can be achieved via

3406 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

an all-reduce operation. However, in the federated learning
setting, where the clients have to download the aggregated
weight-updates from the server, this approach is not feasible,
as it will lead to a communication bottleneck.

To illustrate this point, let STCk : Rn → R
n,�W �→ ˜�W

be the compression operator that maps a (flattened) weight
update �W to a sparsified and ternarized weight update ˜�W
according to Algorithm 1. For local weight updates �W(t)

i ,
the update rule for STC can then be written as

�W(t+1) = 1

n

n�
i=1

STCk
�
�W(t+1)

i + A(t)
i

	
� �� �

˜�Wi
(t+1)

(15)

A(t+1)
i = A(t)

i +�W(t+1)
i − ˜�W(t+1)

i (16)

starting with an empty residual A(0)
i = 0 ∈ R

n on all clients.

While the updates ˜�W(t+1)
i that are sent from clients to the

server are always sparse, the number of nonzero elements in
the update �W(t+1) that is sent downstream grows linearly
with the amount of participating clients in the worst case. If the
participation rate exceeds the inverse sparsity 1/p, the update
�W(t+1) essentially becomes dense.

To resolve this issue, we propose to apply the same com-
pression mechanism that is used on the clients also at the
server side to compress the downstream communication. This
modifies the update rule to

˜�W(t+1) = STCk

⎛
⎜⎜⎝1

n

n�
i=1

STCk
�
�W(t+1)

i + A(t)
i

	
� �� �

˜�Wi
(t+1)

+A(t)

⎞
⎟⎟⎠
(17)

with a client-side and a server-side residual updates

A(t+1)
i = A(t)

i +�W(t+1)
i − ˜�Wi

(t+1)
(18)

A(t+1) = A(t) +�W(t+1) − ˜�W(t+1)
. (19)

We can express this new update rule for both upload and
download compression (17) as a special case of pure upload
compression (15) with generalized filter masks. Let Mi , i =
1, .., n be the sparsifying filter masks used by the respective
clients during the upload and M be the one used during
the download by the server. Then, we could arrive at the

same sparse update ˜�W(t+1)
if all clients use filter masks

M̃i = Mi � M , where � is the Hadamard product. We, thus,
predict that training models using this new update rule should
behave similar to regular upstream-only sparsification but with
a slightly increased sparsity rate. We experimentally verify this
prediction:

Fig. 5 shows the accuracies achieved by VGG11 on
CIFAR10, when trained in a federated learning environment
with five clients for 10 000 iterations at different rates of
upload and download compression. As we can see, for as long
as download and upload sparsity are of the same order, spar-
sifying the download is not very harmful to the convergence
and decreases the accuracy by at most 2% in both the i.i.d.
and the non-i.i.d. case.

Fig. 4. Effects of ternarization at different levels of upload and download
sparsities. Displayed is the difference in final accuracy in % between a model
trained with sparse updates and a model trained with sparse binarized updates.
Positive numbers indicate better performance of the model trained with pure
sparsity. VGG11 trained on CIFAR10 for 16 000 iterations with five clients
holding i.i.d. and non-i.i.d. data.

Fig. 5. Accuracy achieved by VGG11* when trained on CIFAR in a
distributed setting with five clients for 16 000 iterations at different levels
of upload and download sparsity. Sparsifying the updates for downstream
communication reduces the final accuracy by at most 3% when compared to
using only upload sparsity.

C. Weight Update Caching for Partial Client Participation

This far we have only been looking at scenarios in which all
of the clients participate throughout the entire training process.
However, as elaborated in Section II, in federated learning,
typically only a fraction of the entire client population will
participate in any particular communication round. As clients
do not download the full model W(t), but only compressed
model updates �W̃(t); this introduces new challenges when it
comes to keeping all clients synchronized.

To solve the synchronization problem and reduce the work-
load for the clients, we propose to use a caching mechanism
on the server. Assume that the last τ communication rounds
have produced the updates { ˜�W(t)|t = T−1, . . . , T−τ }. The
server can cache all partial sums of these updates up until a

certain point {P(s) = �s
t=1

˜�W(T−t)|s = 1, .., τ } together

with the global model W(T) =W(T−τ−1) +�τ
t=1

˜�W(T−t)
.

Every client that wants to participate in the next communica-
tion round then has to first synchronize itself with the server
by either downloading P(s) or W(T), depending on how many
previous communication rounds it has skipped. For general
sparse updates, the bound on the entropy

H (P(τ)) ≤ τ H (P(1)) = τ H (˜�W(T−1)
) (20)

SATTLER et al.: ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-I.I.D. DATA 3407

can be attained. This means that the size of the download will
grow linearly with the number of rounds a client has skipped
training. The average number of skipped rounds is equal to the
inverse participation fraction 1/η. This is usually tolerable as
the downlink typically is cheaper and has far higher bandwidth
than the uplink, as already noted in [10] and [19]. Essentially,
all compression methods that communicate only parameter
updates instead of full models suffer from this same problem.
This is also the case for signSGD although here the size of the
downstream update only grows logarithmically with the delay
period according to

H (P(τ)
signSG D) ≤ log2(2τ + 1). (21)

Partial client participation also has effects on the conver-
gence speed of federated training, both with delayed and
sparsified updates. We will investigate these effects in detail
in Section VII-C.

D. Lossless Encoding

To communicate a set of sparse ternary tensors produced
by STC, we only need to transfer the positions of the nonzero
elements in the flattened tensors, along with one bit per
nonzero update to indicate the mean sign μ or −μ. Instead of
communicating the absolute positions of the nonzero elements,
it is favorable to communicate the distances between them.
Assuming a random sparsity pattern we know that for big
values of |W | and k = p|W |, the distances are approximately
geometrically distributed with success probability equal to
the sparsity rate p. Therefore, we can optimally encode the
distances using the Golomb code [34]. The Golomb encoding
reduces the average number of position bits to

b̄pos = b∗ + 1

1− (1− p)2b∗ (22)

with b∗ = 1 + �log2((log(φ − 1)/ log(1 − p)))� and φ =
(
√

5+ 1/2) being the golden ratio. For a sparsity rate of e.g.,
p = 0.01, we get b̄pos = 8.38, which translates to ×1.9 com-
pression, compared to a naive distance encoding with 16 fixed
bits. Both the encoding and the decoding scheme can be found
in Section A of the Appendix (Algorithms A1 and A2) in the
Supplementary Material. The updates are encoded both before
upload and before download.

The complete compression framework that features
upstream and downstream compression via sparsification,
ternarization, and optimal encoding of the updates is described
in Algorithm 2.

VII. EXPERIMENTS

We evaluate our proposed communication protocol on four
different learning tasks and compare its performance to feder-
ated averaging and signSGD in a wide a variety of different
federated learning environments.

Models and Data Sets: To cover a broad spectrum of
learning problems, we evaluate on differently sized con-
volutional and recurrent neural networks for the relevant
federated learning tasks of image classification and speech
recognition:

Algorithm 2 Efficient Federated Learning With Parameter
Server Via STC

1 input: initial parameters W
2 output: improved parameters W
3 init: all clients Ci , i = 1, .., [Number of Clients] are

initialized with the same parameters Wi ←W . Every
Client holds a different data set Di , with
|{y : (x, y) ∈ Di }| = [Classes per Client] of size
|Di | = ϕi | ∪ j D j |. The residuals are initialized to zero
�W,Ri ,R← 0.

4 for t = 1, .., T do
5 for i ∈ It ⊆ {1, .., [Number of Clients]} in parallel do
6 Client Ci does:
7 · msg← downloadS→Ci (msg)
8 · �W ← decode(msg)
9 · Wi ←Wi +�W

10 · �Wi ← Ri + SGD(Wi , Di , b)−Wi

11 · ˜�Wi ← STCpup(�Wi)

12 · Ri ← �Wi − ˜�Wi

13 · msgi ← encode(˜�Wi)
14 · uploadCi→S(msgi)
15 end
16 Server S does:
17 · gatherCi→S(˜�Wi), i ∈ It

18 · �W ← R+ 1
|It |

�
i∈It

˜�Wi

19 · ˜�W ← STCpdown (�W)

20 · R← �W − ˜�W
21 · W ←W + ˜�W
22 · msg← encode(˜�W)
23 · broadcastS→Ci (msg), i = 1, .., M
24 end
25 return W

VGG11* on CIFAR: We train a modified version of the
popular 11-layer VGG11 network [28] on the CIFAR [30]
data set. We simplify the VGG11 architecture by reducing the
number of convolutional filters to [32, 64, 128, 128, 128, 128,
128, 128] in the respective convolutional layers and reducing
the size of the hidden fully-connected layers to 128. We also
remove all dropout layers and batch-normalization layers as
the regularization is no longer required. Batch normalization
has been observed to perform very poorly with both small
batch sizes and non-i.i.d. data [35], and we do not want
this effect to obscure the investigated behavior. The result-
ing VGG11* network still achieves 85.46% accuracy on the
validation set after 20 000 iterations of training with a constant
learning rate of 0.16 and contains 865 482 parameters.

CNN on KWS: We train the four-layer convolutional neural
network (CNN) from [27] on the speech commands data
set [36]. The speech commands data set consists of 51 088 dif-
ferent speech samples of specific keywords. There are 30 dif-
ferent keywords in total, and every speech sample is of 1-s
duration. Like [32], we restrict us to the subset of the ten most
common keywords. For every speech command, we extract
the Mel spectrogram from the short-time Fourier transform,

3408 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

TABLE II

MODELS AND HYPERPARAMETERS. THE LEARNING RATE
IS KEPT CONSTANT THROUGHOUT TRAINING

which results in a 32×32 feature map. The CNN architecture
achieves 89.12% accuracy after 10 000 training iterations and
has 876 938 parameters in total.

LSTM on Fashion-MNIST : We also train an Long Short-
Term Memory (LSTM) network with two hidden layers of
size 128 on the Fashion-MNIST data set [37]. The Fashion-
MNIST data set contains 60 000 train and 10 000 validation
greyscale images of ten different fashion items. Every 28×28
image is treated as a sequence of 28 features of dimensionality
28 and fed as such in the many-to-one LSTM network.
After 20 000 training iterations with a learning rate of 0.04,
the LSTM model achieves 90.21% accuracy on the validation
set. The model contains 216 330 parameters.

Logistic Regression on MNIST : Finally, we also train a sim-
ple logistic regression classifier on the MNIST [31] data set.
The MNIST data set contains 60 000 training and 10 000 test
greyscale images of handwritten digits of size 28 × 28. The
trained logistic regression classifier achieves 92.31% accuracy
on the test set and contains 7850 parameters.

The different learning tasks are summarized in Table II.
In the following, we will primarily discuss the results for
VGG11* trained on CIFAR; however, the described phenom-
ena carry over to all other benchmarks and the supporting
experimental results can be found in the Appendix in the
Supplementary Material.

Compression Methods: We compare our proposed STC
method at a sparsity rate of p = 1/400 with federated
averaging at an “equivalent” delay period of n = 400 iterations
and signSGD with a coordinatewise step size of δ = 0.0002.
At a sparsity rate of p = 1/400, STC compresses updates both
during upload and download by roughly a factor of ×1050.
A delay period of n = 400 iterations for federated averaging
results in a slightly smaller compression rate of ×400. Further
analysis on the effects of the sparsity rate p and delay period
n on the convergence speed of STC and federated averaging
can be found in Section C of the Appendix in the Supplemen-
tary Material. During our experiments, we keep all training
related hyperparameters constant for the different compression
methods. To be able to compare the different methods in a
fair way, all methods are given the same budged of training
iterations in the following experiments (one communication
round of federated averaging uses up n iterations, where n is
the number of local iterations).

Learning Environment: The federated learning environment
described in Algorithm 2 can be fully characterized by five
parameters. For the base configuration, we set the number
of clients to 100, the participation ratio to 10%, and the

TABLE III

BASE CONFIGURATION OF THE FEDERATED LEARNING
ENVIRONMENT IN OUR EXPERIMENTS

Fig. 6. Robustness of different compression methods to the non-i.i.d.-ness
of client data on four different benchmarks. VGG11* trained on CIFAR. STC
distinctively outperforms federated averaging on non-i.i.d. data. The learning
environment is configured as described in Table III. Dashed lines signify that
a momentum of m = 0.9 was used.

Fig. 7. Maximum accuracy achieved by the different compression methods
when training VGG11* on CIFAR for 20 000 iterations at varying batch sizes
in a federated learning environment with ten clients and full participation.
Left: Every client holds data from exactly two different classes. Right: Every
client holds an i.i.d. subset of data.

local batch size to 20 and assign every client an equally
sized subset of the training data containing samples from ten
different classes. In the following experiments, if not explicitly
signified otherwise, all hyperparameters will default to this
base configuration summarized in Table III. We will use the
short notations “Clients: ηN /N” and “Classes: c” to refer to a
setup of the federated learning environment in which a random
subset of ηN out of a total of N clients participates in every
communication round and every client is holding data from
exactly c different classes.

A. Momentum in Federated Optimization

We start out by investigating the effects of momentum
optimization on the convergence behavior of the different
compression methods. Figs. 6–9 show the final accuracy
achieved by federated averaging (n = 400), STC (p = 1/400),
and signSGD after 20 000 training iterations in a variety of
different federated learning environments. In Figs. 6–9, dashed

SATTLER et al.: ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-I.I.D. DATA 3409

Fig. 8. Validation accuracy achieved by VGG11* on CIFAR after 20 000 iter-
ations of communication-efficient federated training with different compres-
sion methods. The relative client participation fraction is varied between 100%
(5/5) and 5% (5/100). Left: Every client holds data from exactly two different
classes. Right: Every client holds an i.i.d. subset of data.

Fig. 9. Validation accuracy achieved by VGG11* on CIFAR after 20 000 iter-
ations of communication-efficient federated training with different compres-
sion methods. The training data are split among the client at different degrees
of unbalancedness with γ varying between 0.9 and 1.0.

lines refer to experiments where the momentum of m = 0.9
was used during training, while solid lines signify that classical
SGD was used. As we can see, momentum has a significant
influence on the convergence behavior of the different meth-
ods. While signSGD always performs distinctively better if
momentum is turned on during the optimization, the picture
is less clear for STC and federated averaging. We can make
out three different parameters of the learning environment
that determine whether momentum is beneficial or harmful
to the performance of STC. If the participation rate is high
and the batch size used during training is sufficiently large
(see Fig. 7 left), momentum improves the performance of
STC. Conversely, momentum will deteriorate the training
performance in situations where training is carried out on small
batches and with low client participation. The latter effect is
increasingly strong if clients hold non-i.i.d. subsets of data
[see Fig. 6 (right)]. These results are not surprising, as the
issues with stale momentum described in [25] are enhanced
in these situations. Similar relationships can be observed for
federated averaging where again the size (see Fig. 7) and the
heterogeneity (see Fig. 6) of the local minibatches determine
whether the momentum will have a positive effect on the
training performance or not.

When we compare federated averaging, signSGD and STC
in the following, we will ignore whichever version of these
methods (momentum “on” or “off”) performs worse.

B. Non-i.i.d.-ness of the Data

Our preliminary experiments in Section V have already
demonstrated that the convergence behavior of both federated
averaging and signSGD is very sensitive to the degree of i.i.d.-
ness of the local client data, whereas sparse communication
seems to be more robust. We will now investigate this behavior
in some more detail. Fig. 6 shows the maximum achieved
generalization accuracy after a fixed number of iterations for
VGG11* trained on CIFAR at different levels of non-i.i.d.-
ness. Additional results on all other benchmarks can be found
in Fig. A2 in the Appendix in the Supplementary Material.
Both at full (left plot) and partial (right plot) client participa-
tions, STC outperforms federated averaging across all levels
of i.i.d.-ness. The most distinct difference can be observed in
the non-i.i.d. regime, where the individual clients hold less
than five different classes. Here, STC (without momentum)
outperforms both federated averaging and signSGD by a wide
margin. In the extreme case where every client only holds data
from exactly one class, STC still achieves 79.5% and 53.2%
accuracy at full and partial client participations, respectively,
while both federated averaging and signSGD fail to converge
at all.

C. Robustness to Other Parameters of
the Learning Environment

We will now proceed to investigate the effects of other
parameters of the learning environment on the convergence
behavior of the different compression methods. Figs. 7–9 show
the maximum achieved accuracy after training VGG11* on
CIFAR for 20 000 iterations in different federated learning
environments. Additional results on the three other bench-
marks can be found in Section D in the Appendix in the
Supplementary Material.

We observe that STC (without momentum) consistently
dominates federated averaging on all benchmarks and learning
environments.

1) Local Batch Size: The memory capacity of mobile and
IoT devices is typically very limited. As the memory footprint
of SGD is proportional to the batch size used during training,
clients might be restricted to train on small minibatches only.
Fig. 7 shows the influence of the local batch size on the
performance of different communication-efficient federated
learning techniques exemplary for VGG11* trained on CIFAR.
First of all, we notice that using momentum significantly
slows down the convergence speed of both STC and federated
averaging at batch sizes smaller than 20 independent of the
distribution of data among the clients. As we can see, even if
the training data is distributed among the clients in an i.i.d.
manner (see Fig. 7 right) and all clients participate in every
training iteration, federated averaging suffers considerably
from small batch sizes. STC, on the other hand, demonstrates
to be far more robust to this type of constraint. At an extreme
batch size of one, the model trained with STC still achieves
an accuracy of 63.8%, while the federated averaging model
only reaches 39.2% after 20 000 training iterations.

2) Client Participation Fraction: Fig. 8 shows the conver-
gence speed of VGG11* trained on CIFAR10 in a federated

3410 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

learning environment with different degrees of client partici-
pation. To isolate the effects of reduced participation, we keep
the absolute number of participating clients and the local batch
sizes at constant values of 5 and 40, respectively, throughout
all experiments and vary only the total number of clients (and
thus the relative participation η). As we can see, reducing the
participation rate has negative effects on both federated aver-
aging and STC. The causes for these negative effects, however,
are different. In federated averaging, the participation rate is
proportional to the effective amount of data that the training
is conducted on in any individual communication round. If a
nonrepresentative subset of clients is selected to participate
in a particular communication round of federated averag-
ing, this can steer the optimization process away from the
minimum and might even cause catastrophic forgetting [38]
of previously learned concepts. On the other hand, partial
participation reduces the convergence speed of STC by causing
the clients residuals to go out sync and increasing the gradient
staleness [25]. The more rounds a client has to wait before
it is selected to participate during training again, the more
outdated its accumulated gradients become. We can observe
this behavior for STC most strongly in the non-i.i.d. situation
(see Fig. 8 left), where the accuracy steadily decreases with the
participation rate. However, even in the extreme case where
only 5 out of 400 clients participate in every round of training,
STC still achieves higher accuracy than federated averaging
and signSGD. If the clients hold i.i.d. data (see Fig. 8
right), STC suffers much less from a reduced participation
rate than federated averaging. If only 5 out of 400 clients
participate in every round, STC (without momentum) still
manages to achieve an accuracy of 68.2% while federated
averaging stagnates at 42.3% accuracy. signSGD is affected the
least by reduced participation, which is unsurprising, as only
the absolute number of participating clients would have a
direct influence on its performance. Similar behavior can be
observed on all other benchmarks, and the results can be found
in Fig. A3 in the Appendix in the Supplementary Material. It is
noteworthy that in federated learning, it is usually possible
for the server to exercise some control over the rate of client
participation. For instance, it is typically possible to increase
the participation ratio at the cost of a long waiting time for
all clients to finish.

3) Unbalancedness: Up until now, all experiments were
performed with a balanced split of data in which every client
was assigned the same amount of data points. In practice,
however, the data sets on different clients will typically vary
heavily in size. To simulate different degrees of unbalanced-
ness, we split the data among the clients in a way such that
the i th out of n clients is assigned a fraction

ϕi (α, γ) = α

n
+ (1− α)

γ i�n
j=1 γ j

(23)

of the total data. The parameter α controls the minimum
amount of data on every client, while the parameter γ controls
the concentration of data. We fix α = 0.1 and vary γ between
0.9 and 1.0 in our experiments. To amplify the effects of
unbalanced client data, we also set the client participation
to a low value of only 5 out of 200 clients. Fig. 9 shows

the final accuracy achieved after 20 000 iterations for different
values of γ . Interestingly, the unbalancedness of the data does
not seem to have a significant effect on the performance of
either of the compression methods. Even if the data are highly
concentrated on a few clients (as is the case for γ = 0.9),
all methods converge reliably, and for federated averaging,
the accuracy even slightly goes down with increased balanced-
ness. Apparently, the rare participation of large clients can
balance out several communication rounds with much smaller
clients. These results also carry over to all other benchmarks
(see Fig. A5 in the Appendix in the Supplementary Material).

D. Communication Efficiency

Finally, we compare the different compression methods
with respect to the number of iterations and communicated
bits they require to achieve a certain target accuracy on a
federated learning task. As we saw in Section V, both federated
averaging and signSGD perform considerably worse if clients
hold non-i.i.d. data or use small batch sizes. To still have a
meaningful comparison, we, therefore, choose to evaluate this
time on an i.i.d. environment where every client holds ten
different classes and uses a moderate batch size of 20 during
training. This setup favors federated averaging and signSGD
to the maximum degree possible! All other parameters of the
learning environment are set to the base configuration given
in Table III. We train until the target accuracy is achieved or a
maximum amount of iterations is exceeded and measure the
amount of communicated bits both for upload and download.
Fig. 10 shows the results for VGG11* trained on CIFAR, CNN
trained on keyword spotting (KWS), and the LSTM model
trained on Fashion-MNIST. We can see that even if all clients
hold i.i.d. data, STC still manages to achieve the desired target
accuracy within the smallest communication budget out of
all methods. STC also converges faster in terms of training
iterations than the versions of federated averaging with com-
parable compression rate. Unsurprisingly, we see that both for
federated averaging and STC, we face a tradeoff between the
number of training iterations (“computation”) and the number
of communicated bits (“communication”). On all investigated
benchmarks, however, STC is Pareto-superior to federated
averaging in the sense for any fixed iteration complexity,
it achieves a lower (upload) communication complexity.

Table IV shows the amount of upstream and downstream
communications required to achieve the target accuracy for
the different methods in megabytes. On the CIFAR learning
task, STC at a sparsity rate of p = 0.0025 only communicates
183.9 MB worth of data, which is a reduction in commu-
nication by a factor of ×199.5 as compared to the baseline
with requires 36696 MB and federated averaging (n = 100),
which still requires 1606 MB. Federated averaging with a
delay period of 1000 steps does not achieve the target accuracy
within the given iteration budget.

VIII. LESSONS LEARNED

We will now summarize the findings of this article and
give general suggestions on how to approach communication-
constrained federated learning problems (see our summarizing
Fig. 11).

SATTLER et al.: ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-I.I.D. DATA 3411

Fig. 10. Convergence speed of federated learning with compressed com-
munication in terms of training iterations (left) and uploaded bits (right) on
three different benchmarks (top to bottom) in an i.i.d. federated learning
environment with 100 clients and 10% participation fraction. For better
readability, the validation error curves are average-smoothed with a step size
of five. On all benchmarks, STC requires the least amount of bits to converge
to the target accuracy.

Fig. 11. Left: accuracy achieved by VGG11* on CIFAR after 20 000 iter-
ations of federated training with federated averaging and STC for three
different configurations of the learning environment. Right: upstream and
downstream communication necessary to achieve a validation accuracy of 84%
with federated averaging and STC on the CIFAR benchmark under i.i.d. data
and a moderate batch-size.

1) If clients hold non-i.i.d. data, sparse communication
protocols such as STC distinctively outperform federated
averaging across all federated learning environments
[see Figs. 6, 7 (left), and 8 (left)].

2) The same holds true if clients are forced to train on
small minibatches (e.g., because the hardware is mem-
ory constrained). In these situations, STC outperforms
federated averaging even if the client’s data are i.i.d.
[see Fig. 7 (right)].

TABLE IV

BITS REQUIRED FOR Upload and/ Download TO ACHIEVE A CERTAIN
TARGET ACCURACY ON DIFFERENT LEARNING TASKS IN AN I.I.D.

LEARNING ENVIRONMENT. A VALUE OF “n.a.” IN THE TABLE

SIGNIFIES THAT THE METHOD HAS NOT ACHIEVED THE

TARGET ACCURACY WITHIN THE ITERATION BUDGET.
THE LEARNING ENVIRONMENT IS CONFIGURED

AS DESCRIBED IN TABLE III

3) STC should also be preferred over federated averaging
if the client participation rate is expected to be low, as it
converges more stable and quickly in both the i.i.d. and
non-i.i.d. regime [see Fig. 8 (right)].

4) STC is generally most advantageous in situations where
the communication is bandwidth-constrained or costly
(metered network, limited battery), as it does achieve a
certain target accuracy within the minimum amount of
communicated bits even on i.i.d. data (see Fig. 10 and
Table IV).

5) Federated averaging in return should be used if the
communication is latency-constrained or if the client
participation is expected to be very low (and 1–3 do
not hold).

6) Momentum optimization should be avoided in federated
learning whenever either clients are training with small
batch sizes or the client data are non-i.i.d. and the
participation rate is low (see Figs. 6–8).

IX. CONCLUSION

Federated learning for mobile and IoT applications is a
challenging task, as generally little to no control can be exerted
over the properties of the learning environment.

In this article, we demonstrated that the convergence
behavior of current methods for communication-efficient
federated learning is very sensitive to these properties.
On a variety of different data sets and model architectures,
we observe that the convergence speed of federated averaging
drastically decreases in learning environments where the
clients either hold non-i.i.d. subsets of data are forced to
train on small minibatches or where only a small fraction
of clients participates in every communication round.
To address these issues, we propose STC, a communication
protocol that compresses both the upstream and downstream
communications via sparsification, ternarization, error

3412 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

accumulation, and optimal Golomb encoding. Our experiments
show that STC is far more robust to the above-mentioned
peculiarities of the learning environment than federated
averaging. Moreover, STC converges faster than federated
averaging both with respect to the number of training iterations
and the amount of communicated bits even if the clients hold
i.i.d. data and use moderate batch sizes during training.

Our approach can be understood as an alternative paradigm
for communication-efficient federated optimization that relies
on high-frequent low-volume instead of low-frequent high-
volume communication. As such, it is particularly well suited
for federated learning environments that are characterized by
low latency and low bandwidth channels between clients and
server.

REFERENCES

[1] R. Taylor, D. Baron, and D. Schmidt, “The world in 2025: 8 Predictions
for the next 10 years,” in Proc. 10th Int. Microsyst., Packag., Assembly
Circuits Technol. Conf. (IMPACT), 2015, pp. 192–195.

[2] S. Wiedemann, K.-R. Müller, and W. Samek, “Compact and com-
putationally efficient representation of deep neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., to be published. doi: 10.1109/TNNLS.
2019.2910073.

[3] S. Wiedemann, A. Marban, K.-R. Müller, and W. Samek, “Entropy-
constrained training of deep neural networks,” in Proc. IEEE Int. Joint
Conf. Neural Netw. (IJCNN), 2019, pp. 1–8.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[5] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2015, pp. 3128–3137.

[6] S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and W. Samek,
“Deep neural networks for no-reference and full-reference image quality
assessment,” IEEE Trans. Image Process., vol. 27, no. 1, pp. 206–219,
Jan. 2018.

[7] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2014, pp. 1725–1732.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[9] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial
intelligence: Understanding, visualizing and interpreting deep learning
models,” ITU J., ICT Discoveries, vol. 1, no. 1, pp. 39–48, 2018.

[10] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” 2016, arXiv:1602.05629. [Online]. Available:
https://arxiv.org/abs/1602.05629

[11] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” 2018, arXiv:1807.00459. [Online].
Available: https://arxiv.org/abs/1807.00459

[12] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2017, pp. 1175–1191.

[13] S. Hardy et al., “Private federated learning on vertically partitioned data
via entity resolution and additively homomorphic encryption,” 2017,
arXiv:1711.10677. [Online]. Available: https://arxiv.org/abs/1711.10677

[14] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308–318.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[16] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proc. IEEE CVPR, vol. 1,
Jun. 2017, no. 2, p. 3.

[17] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Sparse binary
compression: Towards distributed deep learning with minimal commu-
nication,” in Proc. IEEE Int. Joint Conf. Neural Netw. (IJCNN), 2019,
pp. 1–8.

[18] K. Bonawitz et al., “Towards federated learning at scale: System
design,” 2019, arXiv:1902.01046. [Online]. Available: https://arxiv.
org/abs/1902.01046

[19] W. Wen et al., “TernGrad: Ternary gradients to reduce communication in
distributed deep learning,” 2017, arXiv:1705.07878. [Online]. Available:
https://arxiv.org/abs/1705.07878

[20] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1707–1718.

[21] H. Wang, S. Sievert, Z. Charles, D. Papailiopoulos, S. Liu, and
S. Wright, “ATOMO: Communication-efficient learning via atomic spar-
sification,” 2018, arXiv:1806.04090. [Online]. Available: https://arxiv.
org/abs/1806.04090

[22] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signSGD: Compressed optimisation for non-convex problems,” 2018,
arXiv:1802.04434. [Online]. Available: https://arxiv.org/abs/1802.04434

[23] A. F. Aji and K. Heafield, “Sparse communication for distributed gradi-
ent descent,” 2017, arXiv:1704.05021. [Online]. Available: https://arxiv.
org/abs/1704.05021

[24] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. 16th Annu. Conf. Int. Speech Commun.
Assoc., 2015, pp. 1488–1492.

[25] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep
gradient compression: Reducing the communication bandwidth for
distributed training,” 2017, arXiv:1712.01887. [Online]. Available:
https://arxiv.org/abs/1712.01887

[26] Y. Tsuzuku, H. Imachi, and T. Akiba, “Variance-based gradient compres-
sion for efficient distributed deep learning,” 2018, arXiv:1802.06058.
[Online]. Available: https://arxiv.org/abs/1802.06058

[27] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving com-
munication efficiency,” 2016, arXiv:1610.05492. [Online]. Available:
https://arxiv.org/abs/1610.05492

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: https://arxiv.org/abs/1409.1556

[29] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar,
“signSGD with majority vote is communication efficient and byzan-
tine fault tolerant,” 2018, arXiv:1810.05291. [Online]. Available:
https://arxiv.org/abs/1810.05291

[30] A. Krizhevsky, V. Nair, and G. Hinton. (2014). The CIFAR-10 Dataset.
[Online]. Available: http://www.cs.toronto.edu/kriz/cifar.html

[31] Y. LeCun. (1998). The MNIST Database of Handwritten Digits. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[32] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” 2018, arXiv:1806.00582. [Online]. Avail-
able: https://arxiv.org/abs/1806.00582

[33] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4447–4458.

[34] S. Golomb, “Run-length encodings (corresp.),” IEEE Trans. Inf. Theory,
vol. 12, no. 3, pp. 399–401, Jul. 1966.

[35] S. Ioffe, “Batch renormalization: Towards reducing minibatch depen-
dence in batch-normalized models,” in Proc. Adv. Neural Inf. Process.
Syst., 2017, pp. 1945–1953.

[36] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” 2018, arXiv:1804.03209. [Online]. Available:
https://arxiv.org/abs/1804.03209

[37] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747. [Online]. Available: https://arxiv.org/abs/1708.07747

[38] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and
Y. Bengio, “An empirical investigation of catastrophic forgetting
in gradient-based neural networks,” 2013, arXiv:1312.6211. [Online].
Available: https://arxiv.org/abs/1312.6211

Felix Sattler received the B.Sc. degree in mathe-
matics, the M.Sc. degree in computer science, and
the M.Sc. degree in applied mathematics from the
Technische Universität Berlin, Berlin, Germany, in
2016, 2018, and 2018, respectively.

He is currently with the Machine Learning Group,
Fraunhofer Heinrich Hertz Institute, Berlin. His cur-
rent research interests include distributed machine
learning, neural networks, and multitask learning.

http://dx.doi.org/10.1109/TNNLS.2019.2910073
http://dx.doi.org/10.1109/TNNLS.2019.2910073

SATTLER et al.: ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-I.I.D. DATA 3413

Simon Wiedemann received the M.Sc. degree in
applied mathematics from the Technische Univer-
sität Berlin, Berlin, Germany, in 2017.

He is currently with the Machine Learning Group,
Fraunhofer Heinrich Hertz Institute, Berlin. His cur-
rent research interests include machine learning,
neural networks, and information theory.

Klaus-Robert Müller (M’12) received the Ph.D.
degree in computer science from the Technische
Universität Karlsruhe, Karlsruhe, Germany, in 1992,
where he studied physics from 1984 to 1989.

He has been a Professor of computer science with
the Technische Universität Berlin, Berlin, Germany,
since 2006, where he is currently co-directing the
Berlin Big Data Center. After completing a post-
doctoral position at GMD FIRST, Berlin, he was
a Research Fellow with The University of Tokyo,
Tokyo, Japan, from 1994 to 1995. In 1995, he

founded the Intelligent Data Analysis Group, GMD-FIRST (later Fraunhofer
FIRST), and directed it until 2008. From 1999 to 2006, he was a Professor
with the University of Potsdam, Potsdam, Germany. His current research
interests include intelligent data analysis, machine learning, signal processing,
and brain–computer interfaces.

Dr. Müller was elected to be a member of the German National Academy of
Sciences-Leopoldina in 2012, the Berlin Brandenburg Academy of sciences
in 2017, and an External Scientific Member of the Max Planck Society
in 2017. He received the 1999 Olympus Prize by the German Pattern
Recognition Society, DAGM. He received the SEL Alcatel Communication
Award in 2006, the Science Prize of Berlin awarded by the Governing Mayor
of Berlin in 2014, and the Vodafone Innovation Award in 2017.

Wojciech Samek (M’13) received the Diploma
degree in computer science from the Humboldt
University of Berlin, Berlin, Germany, in 2010, and
the Ph.D. degree in machine learning from the
Technische Universität Berlin, Berlin, in 2014.

In 2014, he founded the Machine Learning Group,
Fraunhofer Heinrich Hertz Institute, where he is
currently the Director. He was a Scholar of the
German National Academic Foundation and a Ph.D.
Fellow with the Bernstein Center for Computational
Neuroscience Berlin, Berlin, where he is also with

the Berlin Big Data Center. He was visiting with Heriot-Watt University,
Edinburgh, U.K., and The University of Edinburgh, Edinburgh, from 2007 to
2008. In 2009, he was with the Intelligent Robotics Group, NASA Ames
Research Center, Mountain View, CA, USA. His current research interests
include interpretable machine learning, neural networks, federated learning,
and computer vision.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

