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Abstract—Ensemble pruning, selecting a subset of individual
learners from an original ensemble, alleviates the deficiencies of
ensemble learning on the cost of time and space. Accuracy and
diversity serve as two crucial factors while they usually conflict
with each other. To balance both of them, we formalize the
ensemble pruning problem as an objection maximization problem
based on information entropy. Then we propose an ensemble
pruning method including a centralized version and a distributed
version, in which the latter is to speed up the former. At last, we
extract a general distributed framework for ensemble pruning,
which can be widely suitable for most of the existing ensemble
pruning methods and achieve less time consuming without
much accuracy degradation. Experimental results validate the
efficiency of our framework and methods, particularly concerning
a remarkable improvement of the execution speed, accompanied
by gratifying accuracy performance.

Index Terms—ensemble learning, ensemble pruning, diversity,
composable core-sets, information entropy.

I. INTRODUCTION

THANKS to its remarkable potential, ensemble learning

has attracted an amount of interest in the machine learn-

ing community [1] and has been applied widely in many real-

world tasks such as object detection, object recognition, and

object tracking [2]–[5]. As it is also known as committee-based

learning, multiple classifier systems, or mixtures of experts

[1], [6], [7], an ensemble is a set of learned models that

make decisions collectively rather than relying on one single

model. The variety of types of individual learners categorizes

an ensemble as heterogeneous ensembles and homogeneous

ensembles. And most of the ensemble methods concentrate

on the latter such as bagging [8] and boosting [9], [10].

The success of ensemble methods is commonly attributable

to two key issues: the accuracy of individual learners and the

diversity among them [11]. For classification problems, one

classifier is accurate if its error rate is better than random

guessing on new instances; two classifiers are diverse if they

make different errors on new instances [11]. Unfortunately,

there is still no consensus in the community on the definition

or measurement for diversity, unlike the apparent accuracy.

Besides, the diversity among individual classifiers usually
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decreases when these individuals approach a higher level of

accuracy. Thus how to handle the trade-off between the two

criteria is an essential issue in ensemble learning.

Although ensemble methods are effectual, one significant

drawback here is that both the required memory and pro-

cessing time increase visibly with the number of individ-

ual learners in the ensemble. To mitigate this shortcoming

motivates ensemble pruning that aims to select a subset

of individual learners in an ensemble, named as ensemble

selection or ensemble thinning as well [12]–[19]. It could even

improve the generalization performance of an ensemble with

a smaller size [20]. There has been a numerous progression on

ensemble pruning methods in the last two decades. Most of the

existing pruning methods, however, are centralized in which

all individual classifiers have to be stored and processed on

one single machine. As the scale of data and an ensemble itself

enlarges rapidly in the context of big data, the performance of

centralized methods is becoming the bottleneck in execution

time, which is why distributed approaches need to emerge.

To deal with ensemble pruning problems fast with bal-

ancing diversity and accuracy appropriately, we firstly treat

ensemble pruning as an objection maximization problem using

information entropy to reflect diversity and accuracy. The

objective function that we aim to maximize is a trade-off

between diversity and accuracy from an information entropy

perspective. Secondly, we transform this approach to one

distributed version to speed up the execution, inspired by

the emerging concept of “composable core-sets” in recent

years. It adopts the same idea as a two-round divide-and-

conquer strategy, which is particularly suitable for distributed

settings. Thirdly, we extract a general distributed framework

for ensemble pruning from our method’s distributed version.

It could be widely applicable to various existing methods for

ensemble pruning and achieve less time consuming without

much accuracy degradation.

Our contribution in this paper is four-fold:

• We formalize the ensemble pruning problem as an objec-

tion maximization problem based on information entropy,

in order to balance diversity and accuracy.

• We propose an ensemble pruning method including a

centralized version and a distributed version, utilizing

accuracy and diversity concurrently.

• We propose a general distributed framework for ensemble

pruning, which could be widely utilized and achieve less

time consuming without much accuracy degradation.

• We design detailed experiments to validate the effective-

ness of our distributed framework and approaches.

http://arxiv.org/abs/1806.04899v3
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II. RELATED WORK

In this section, we introduce diversity (i.e., a key concept

in ensemble learning) and existing research on it firstly. Then

we describe the difficulty and existing methods in ensemble

pruning. Thirdly, we introduce a concept of “composable core-

sets” and its development which sheds some light on our

work. Finally, we explain the distinction between our proposed

methods and other existing ensemble pruning method and

summarize our contribution specifically.

A. Diversity in Ensemble Learning

Diversity, intuitively considered as the difference among

individual learners in an ensemble, is a fundamental issue

in ensemble methods [1], with several alternative names as

dependence, orthogonality or complementarity of learners [6].

Practically, individual classifiers are usually trained on the

subsets of the same training data, which drives them highly

correlated, breaks the assumption about the independence of

individual classifiers, and makes it hard to seek diversity.

Numerous ensemble methods attempt to encourage diversity

implicitly or heuristically [21]. For instance, boosting and

bagging promote diversity by re-weighting and sub-sampling

existing training samples, respectively [8]–[10], [22], [23];

neural networks (NN) ensembles also create diversity using

different initial weights, different architectures of the net-

works, and different learning algorithms.

Unfortunately, researchers still have not reached a consensus

yet on an official measure of diversity. Several measures

have been proposed to represent diversity, which could be

generally divided into pairwise and non-pairwise diversity

measures [6], while no superior exists [7]. Based on coin-

cident errors between a pair of individual classifiers, pairwise

diversity represents the behavior whether both of them predict

an instance identically or disagree with each other, including

Q-statistic [24], κ-statistic [25], disagreement measure [26],

[27], correlation coefficient [28], and double-fault [29]. In

contrast, non-pairwise diversity is the average of all possi-

ble pairs, directly measuring a set of classifiers using the

variance, entropy, or the proportion of individual classifiers

that fail on instances chosen randomly. It includes interrater

agreement [30], Kohavi-Wolpert variance [31], the entropy

of the votes [32], [33], the difficulty index [6], [34], the

generalized diversity [35], and the coincident failure diver-

sity [35]. Besides, there are also two other measures that

do not fall into these two mentioned categories previously:

One is the correlation penalty function [36], measuring the

diversity of each member against the entire ensemble in the

negative correlation learning (NCL) [37], [38]; The other is

ambiguity [39], measuring the average offset of each member

against the entire ensemble output.

Moreover, few researchers could tell how diversity works

exactly although the crucial role of diversity has been widely

accepted in ensemble methods. In the last decade or so,

Brown [40] claimed that from an information theoretic per-

spective, diversity within an ensemble existed indeed on

numerous levels of interaction between the classifiers. His

work inspired Zhou and Li [41] to propose that the mutual

information should be maximized to minimize the prediction

error of an ensemble from the view of multi-information.

Subsequently, Yu et al. [21] claimed that the diversity among

individual learners in a pairwise manner, used in their diversity

regularized machine (DRM), could reduce the hypothesis

space complexity, which implied that controlling diversity

played the role of regularization in ensemble methods.

B. Ensemble Pruning

Ensemble pruning deals with the reduction of an en-

semble while improving its efficiency and predictive per-

formance [42]. Margineantu and Dietterich [43] showed the

possibility to obtain nearly the same level of performance

as the entire set by selecting a subset of learners from an

ensemble in the first study on ensemble pruning. Zhou et

al. [20] provided the bias-variance decomposition of error as

the principal factor of the success of their approach named as

“Genetic Algorithm based on Selective Ensemble (GASEN)”,

and claimed that pruning could lead to smaller ensembles

with better generalization performance. It is difficult, how-

ever, to select the sub-ensembles with the best generalization

performance. One trouble is to estimate the generalization

performance of a sub-ensemble, and the other is that finding

the optimal subset is a combinatorial search problem with

exponential computational complexity [44]. Note that selecting

the best combination of classifiers from an ensemble is NP-

complete hard and even intractable to approximate [45].

Numerous ensemble pruning methods have been proposed

to overcome shortcomings of ensemble learning over the last

two decades, which could be categorized into three general

families: ranking-based, clustering-based, and optimization-

based. Ranking-based pruning methods, the simplest conceptu-

ally, order the learners in the ensemble and select the first few

of them according to different evaluation functions [42], in-

cluding minimizing the error (e.g., Orientation Ordering [46]),

maximizing the diversity (e.g., KL-divergence Pruning and

Kappa Pruning [43]), or combining them both (e.g., Diversity

Regularized Ensemble Pruning [44]). Clustering-based prun-

ing methods employ a clustering algorithm to detect groups

of learners that make similar predictions initially and then

prune each cluster separately to increase the overall diversity

of the ensemble [42]. Note that an intrinsic property that those

methods could be executed in a parallel manner is ignored

frequently in the second phase. Optimization-based pruning

methods pose ensemble pruning as an optimization problem

which is to find the subset of the original ensemble that

optimizes a measure indicating its generalization performance.

Searching exhaustively in the space of ensemble subsets is

unfeasible even for a moderate ensemble size since this prob-

lem is NP-complete hard [44], [45]. Thus various techniques

are utilized to alleviate this predicament including genetic

algorithm [47], greedy algorithm [48], hill climbing [49], and

bi-objective evolutionary optimization [50].

C. Composable Core-sets

Over the last few years, an effective technique, captured

via the concept of “composable core-sets”, arises in order
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to solve optimization problems over large data sets in the

distributed computing literature. Its effectiveness has been

confirmed empirically for many machine learning applications,

such as diverse nearest neighbor search [51], diversity maxi-

mization [52], and feature selection [53].

The notion of “composable core-sets” is introduced explic-

itly by Indyk et al. [51] for the very first time, while the

notion of “core-sets” can be dated back to [54]. A core-set

for an optimization problem, informally, is a subset (with a

guaranteed approximation factor) of that data on which solving

the underlying problem could yield an approximate solution

for the original data. Composable core-sets are a collection of

core-sets in which the union of them gives a core-set for the

union of the original data subsets [51]. Besides, a composable

core-set with α approximate factor yields a solution which is

an approximation of the optimal solution for the optimization

problem, and the approximation is guaranteed by a factor α,

which is 1/12 [52] and could be improved to 8/25 [53].

D. Our Contribution

An essential distinction between our proposed methods and

other existing ensemble pruning methods is that our meth-

ods could tackle the ensemble pruning task in a distributed

way, accelerating the pruning process substantially. Instead

of using any previous measure of diversity, our methods

utilize the concept of the mutual information I(·; ·) [55], the

normalized mutual information MI(·, ·), and the normalized

variation information VI(·, ·) [53] from an information entropy

perspective, to conduct an objective function and take diversity

and accuracy into consideration implicitly and simultaneously.

Besides, our proposed framework (EPFD) could be widely

applied to various existing ensemble pruning methods, to

achieve less time consuming without much accuracy degra-

dation, which is an impressive advantage of our method.

III. METHODOLOGY

In this section, we firstly elaborate our objection maxi-

mization based on information entropy for ensemble pruning

in a centralized way, then attain a distributed version by

introducing the concept of composable core-sets, and finally

extract a general distributed framework for ensemble pruning.

A. Objection Maximization Based on Information Entropy for

Ensemble Pruning

Given a large data set D with the size d of labeled

instances obtained gradually from stream data, and their labels

represented by a d-dimensional vector c. A set of n trained

individual classifiers H = {hi}
n
i=1 is considered as the original

ensemble, in which each one maps the feature space of

instances to the label space. The classification result vector

of any individual classifier hi from the ensemble H on the

data set D, similar to the class label vector c, is represented

by a d-dimensional vector hi. The ensemble pruning task aims

to find a compact subset of the original ensemble which will

predict the labels with high accuracy. These chosen individual

classifiers need to be diverse and accurate simultaneously to

achieve this goal. To this end, we select some diversified

individual classifiers from the original ensemble which are

relevant to the vector of class labels. Hence we strive to define

a metric distance between individual classifiers in considera-

tion of diversity and accuracy concurrently inspired by [53]

so that the ensemble pruning problem would be reduced to an

objection maximization problem.

Given two discrete random variables X and Y , Cover and

Thomas [55] defined the mutual information I(·; ·) between

them, i.e.,

I(X;Y ) = H(X)− H(X|Y )

=
∑

x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
,

(1)

and then Zadeh et al. [53] defined the normalized mutual in-

formation MI(·, ·) and the normalized variation of information

VI(·, ·) of them, i.e.,

MI(X,Y ) =
I(X;Y )

√

H(X)H(Y )
, (2)

VI(X,Y ) = 1−
I(X;Y )

H(X,Y )
, (3)

wherein p(·, ·), H(·), and H(·, ·) are the joint probability, the

entropy function, and the joint entropy function, respectively.

Consider the class label vector c and two classification result

vectors (hi and hj) generated over the data set D by any two

individual classifiers (hi and hj). In this case, the normalized

mutual information MI(hi, c) exhibits the relevance between

this individual classifier hi and the class label vector c, im-

plying the accuracy of this individual classifier on the training

data set; the normalized variation of information VI(hi,hj) re-

veals the redundancy between these two individual classifiers,

indicating the diversity between them. Since class labels have

already been discrete values and these values are only relevant

to the number of classes in those used data sets, we do not need

to discretize continuous variables to calculate the probabilities

used in MI(·, ·) and VI(·, ·), while Zadeh et al. [53] have to

deal with it.

In order to take both diversity and accuracy into considera-

tion concurrently, the objective function between two individ-

ual classifiers (a trade-off between diversity and accuracy of

two individual classifiers, TDAC) is defined naturally as

TDAC(hi, hj)

=

{

λVI(hi,hj) + (1− λ)
MI(hi,c)+MI(hj ,c)

2
, if hi 6= hj ;

0, otherwise ,

(4)

where a regularization factor λ is introduced to balance

between these two criteria, indicating their importance as well.

The first criterion is to raise diversity by avoiding redundancy,

and the second one is to promote accuracy by maximizing

their relevance. Note that VI(·, ·) is metric [56] and MI(·, c)
is non-negative [53]. Consequently TDAC(·, ·) is metric

as well, which means TDAC(hi, hj) + TDAC(hj , hk) >

TDAC(hi, hk).

Subsequently, for an ensemble H that is a set composed

of n individual classifiers, the objection (a trade-off between
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diversity and accuracy of a set of an ensemble, TDAS) is

defined naturally as

TDAS(H) =
1

2

∑

hi∈H

∑

hj∈H

TDAC(hi, hj) . (5)

Note that TDAS(H) in Eq. (5) could be reformulated as

TDAS(H)

=
1

2
λ

∑

hi∈H

∑

hj∈H

VI(hi,hj) +
n− 1

2
(1− λ)

∑

hi∈H

MI(hi, c) , (6)

where VI(·, ·) of two similar individual classifiers will be near

to zero. The first term in Eq. (6) prevents to select similar

individual classifiers, and the second term ensures that those

selected individual classifiers are relevant to the class labels.

Therefore the ensemble pruning task is reformulated as an

objective function maximization problem, which aims to find

a subset P ⊂ H with a specified condition |P| = k to restrict

the size of the pruned sub-ensemble,

max
P⊂H,

|P|=k

TDAS(P) = max
P⊂H,

|P|=k

1

2

∑

hi∈P

∑

hj∈P

TDAC(hi, hj) . (7)

It is a bi-objective optimization problem to combine diver-

sity and accuracy concurrently for ensemble pruning tasks,

but we could manage to reformulate it as a single-objective

optimization problem by introducing TDAC(·, ·) in Eq. (4).

That is one way to solve the problem by using the objective

weighting [57]. Another way could be introducing a concept

of domination [50], [58] to obtain a Pareto optimal solution,

which we will leave it for future work. Besides, our solution

manages to fix the size of the pruned sub-ensemble while the

latter solution cannot, which usually leads to oversize sub-

ensembles and affects the space cost.

Algorithm 1 Centralized Objection Maximization for Ensemble
Pruning (COMEP)

Input: Set of an original ensemble H, threshold k as the size of the
pruned sub-ensemble.

Output: Set of the pruned sub-ensemble P satisfying that P ⊂ H
and |P| 6 k.

1: P ← an arbitrary individual classifier hi ∈ H.
2: for 2 6 i 6 k do
3: h∗ ← argmaxhi∈H\P

∑

hj∈P TDAC(hi, hj).

4: Move h∗ from H to P .
5: end for

Up to now, we have modeled the ensemble pruning task

through an objective function maximization problem as shown

in Eq. (7), which is enough to form a centralized algorithm

to accomplish this goal of ensemble pruning. This centralized

method, named as “Centralized Objection Maximization for

Ensemble Pruning (COMEP)” shown in Algorithm 1, selects

greedily the current optimal classifier at each step, and could

achieve a 1/2 approximation factor for objective function

maximization problem according to [59].

B. Distributed Objection Maximization for Ensemble Pruning

“Distributed Objection Maximization for Ensemble Pruning

(DOMEP)”, the distributed version of COMEP shown in

Algorithm 2, adopts a two-round divide-and-conquer strategy

and composable core-sets [60] as guidelines, which are par-

ticularly suitable for distributed settings. It partitions a set

of individual classifiers of an ensemble into smaller pieces,

solves the ensemble pruning problem on each piece separately,

and eventually obtains a subset from the union of these

representative subsets for all pieces.

Consider a set of n trained individual classifiers H =
{hi}

n
i=1 as the original ensemble. In the first phase, a primary

machine partitions all individual classifiers in the original

ensemble into m groups {Hi}
m
i=1 randomly and allocates them

to different machines. Note that ∪m
i=1Hi = H where m is the

number of machines, and that the primary machine could be

any one of these available machines. For each i (1 6 i 6 m),
machine i runs COMEP on its allocated set Hi independently

and selects a subset Pi from it in parallel. In the second phase,

the primary machine gathers all subsets, runs COMEP on their

union ∪m
i=1Pi to produce a subset P ′, and eventually outputs

the best one of them by comparing P ′ with Pi (1 6 i 6 m)
according to Eq. (7). It suffices to output the satisfying subset

P after these two phases (Lines 1–5 in Algorithm 2) in

practice and the additional comparison purposes to get a higher

approximation factor which is 1/4 theoretically and could even

reach 8/25 under some special conditions [53].

Algorithm 2 Distributed Objection Maximization for Ensemble
Pruning (DOMEP)

Input: Set of an original ensemble H, threshold k as the size of the
pruned sub-ensemble, number of machines m.

Output: Set of the pruned sub-ensemble P meeting that P ⊂ H
and |P| 6 k.

1: Partition H randomly into m groups as equally as possible, i.e.,
H1, ...,Hm.

2: for 1 6 i 6 m do
3: Pi ← COMEP(Hi, k).
4: end for
5: P ′ ← COMEP(∪m

i=1Pi, k).
6: P ← argmaxT ∈{P1,...,Pm,P′} TDAS(T ).

At last, there might be some confusion over how to partition

n individual classifiers in H randomly into m groups as

equally as possible. The first step is to shuffle these individual

classifiers with a different random order, and the second step

is to arrange them to get m groups. There would be no doubt

when n is a multiple of m in which each group would contain

n/m individual classifiers. But if n is not a multiple of m,

there would be (n mod m) groups of them that each contains

⌈n/m⌉ individual classifiers and (nmumblem) groups of

them that each contains ⌊n/m⌋ individual classifiers. Notice

that nmumblem = m⌈n/m⌉ − n according to [61].

C. A General Distributed Framework for Ensemble Pruning

A general distributed framework is extracted from DOMEP,

named as “Ensemble Pruning Framework in a Distributed

Setting (EPFD)” shown in Algorithm 3, which likewise adopts

the two-round divide-and-conquer strategy and composable

core-sets [60]. It enables the ensemble pruning problem to be

solved fast in a distributed way. Ensemble pruning is usually

described as a process to acquire the optimum subset from the

original ensemble. Let ALG denote an arbitrary algorithm to
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M1 M1

M2 M3 · · · Mm M1

P1 = ALG(H1)

P2 = ALG(H2) P3 = ALG(H3) Pi = ALG(Hi) Pm = ALG(Hm)

P ′ = ALG(∪m
i=1Pi)

P = Best(P1, ...,Pm,P ′)

Partition

Gather

Compare

(a) The First Phase (b) The Second Phase

Fig. 1. Diagram of Algorithm 3: Ensemble Pruning Framework in a Distributed Setting (EPFD). (a) In the first phase, a primary machine (e.g., M1) partitions
all individual classifiers in the original ensemble into m groups {Hi}

m
i=1 randomly and allocates them to different machines. For each i (1 6 i 6 m), the

machine Mi runs ALG on its allocated set Hi independently and selected a subset Pi from it in parallel. (b) In the second phase, the primary machine
(e.g., M1) gathers all subsets, runs ALG on their union ∪m

i=1Pi to produce a subset P ′, and eventually outputs the best one of them by comparing P ′ with
Pi (1 6 i 6 m). Remark: (1) ALG could be any one of existing pruning method, including COMEP. (2) The final P is chosen by Best(·) according to some
certain criteria such as accuracy or TDAS(·) in DOMEP.

Algorithm 3 Ensemble Pruning Framework in a Distributed Setting
(EPFD)

Input: Set of an original ensemble H, number of machines m, a
pruning method ALG.

Output: Set of the pruned sub-ensemble P meeting that P ⊂ H.
1: Partition H into {Hi}

m
i=1 randomly.

2: for 1 6 i 6 m do
3: Pi ← output from any pruning method ALG on Hi.
4: end for
5: P ′ ← output from ALG on ∪m

i=1Pi.
6: P ← the best one among Pi, ...,Pm, and P ′ according to some

certain criteria such as accuracy.

perform this task and H the original ensemble. EPFD consists

of two main phases just like DOMEP that could be regarded

as a special case of EPFD where COMEP is chosen as the

used pruning method (Lines 3,5 in Algorithm 3). Another key

difference is that the criterion (Line 6 in Algorithm 3) here is

not limited to Eq. (7). For instance, it could use accuracy or

any other measures corresponding to data to compare different

subsets. EPFD is a simple yet powerful tool to accelerate

the original methods for ensemble pruning without much

performance degradation, which is elaborated in Section IV-C.

IV. EXPERIMENTS

In order to evaluate our proposed methods, in this section,

we elaborate our experiments on 17 binary and 12 multi-class

data sets including an image data set with 12,500 pictures

(Dogs vs. Cats1) and 28 data sets from UCI repository [62].

Standard 5-fold cross-validation is used in these experiments

where the entire data set is split into three parts in each

iteration, with 60% as the training set, 20% as the validation

set, and 20% as the test set. Besides, we construct homoge-

neous ensembles using Bagging on various types of classifiers

including decision trees (DT), naive Bayesian (NB) classifiers,

k-nearest neighbors (KNN) classifiers, linear model (LM)

1http://www.kaggle.com/c/dogs-vs-cats

classifiers, and linear SVMs (LSVM). An ensemble is firstly

trained on the training set, then pruned by a pruning method on

the validation set, and finally tested on the test set. The base-

lines that we consider are a variety of ranking-based methods

as well as optimization-based methods. These ranking-based

methods include KL-divergence Pruning (KL), Kappa Pruning

(KP) [43], Orientation Ordering Pruning (OO) [46], Reduce-

Error Pruning (RE) [63], Diversity Regularized Ensemble

Pruning (DREP) [44], and Ordering-based Ensemble Pruning

(OEP); These optimization-based methods are Single-objective

Ensemble Pruning (SEP) and Pareto Ensemble Pruning (PEP)

[50]. Note that several methods cannot fix the number of

learners after ensemble pruning (such as OO, DREP, SEP,

OEP, and PEP), while others could fix it by giving a pruning

rate which is the up limit of the percentage of those discarded

individual classifiers in the original ensemble. Those methods

that cannot fix the size might lead to oversize or undersize sub-

ensembles and affect their space cost. Due to space constraints,

we only report the comparisons of the time cost and the test

accuracy hereinafter.

A. Comparison of COMEP and DOMEP to the State-of-the-

art Ensemble Pruning Methods

In this subsection, we compare the quality of various

ensemble pruning methods (the original centralized version)

including KL, KP, OO, RE, DREP, SEP, OEP, and PEP with

our proposed centralized (COMEP) and distributed (DOMEP)

methods.

Experimental results reported in Table I contain the average

test accuracy of each method and the corresponding standard

deviation under 5-fold cross-validation on each data set. Each

row in Table I compares the classification accuracy using

bagging with the same type of individual classifiers. The

results with higher accuracy and lower standard deviation are

indicated with bold fonts for each data set (row). Besides,

we examine the significance of the difference in the accuracy
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TABLE I
COMPARISON OF THE STATE-OF-THE-ART METHODS WITH COMEP AND DOMEP USING BAGGING TO PRODUCE AN ENSEMBLE WITH DTS AS

INDIVIDUAL CLASSIFIERS.

Dataset KL KP OO RE DREP SEP OEP PEP COMEP DOMEP

Iono 89.43±3.44 90.29±3.41 90.57±4.69 88.57±3.03 89.71±3.70 90.86±2.96 89.71±4.33 91.71±3.41 91.14±3.41 91.71±3.56
Liver 61.45±8.24 62.32±5.12 64.06±7.35 61.16±4.96‡ 56.23±8.41 60.87±4.35‡ 64.64±4.54 62.32±4.23 62.90±4.18 64.64±4.30

Spam 93.28±1.13 93.21±0.93 93.30±1.43 93.54±1.16 92.08±1.48 93.43±0.82 93.56±1.24 93.38±0.80 93.41±0.90 93.45±1.00
Wisconsin 94.37±3.58 94.67±3.25‡ 95.56±4.06 95.41±3.25 93.93±3.68 94.96±3.86‡ 95.26±3.50 95.41±3.79 95.56±3.70 95.70±3.45

Credit 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
Landsat 97.34±0.45 97.22±0.66 97.29±0.37 97.31±0.28 96.08±1.06‡ 97.26±0.26 97.34±0.35 97.29±0.56 97.15±0.43 97.42±0.34

Wilt 98.24±0.32 98.24±0.26 98.37±0.42 98.28±0.32 98.01±0.51 98.37±0.51 98.16±0.18 98.39±0.53 98.41±0.33 98.35±0.38
Shuttle 99.96±0.03 99.96±0.03 99.97±0.02 99.97±0.02 99.97±0.02 99.96±0.03 99.96±0.03 99.97±0.02 99.96±0.03 99.97±0.03
Ecoli 94.55±3.14 94.85±2.03 93.64±2.71 95.15±2.49 91.52±3.49‡ 94.85±2.75 93.03±2.30 94.24±2.71 95.15±2.49 95.15±1.98

SensorReadings 99.25±0.40 99.19±0.50 99.41±0.47 99.52±0.24 99.28±0.25 99.45±0.23 99.50±0.19 99.36±0.43 99.43±0.33 99.38±0.41

t-Test (W/T/L) 0/10/0 1/9/0 0/10/0 1/9/0 2/8/0 2/8/0 0/10/0 0/10/0 0/10/0 —
Average Rank 7.15 7.20 4.80 4.60 8.40 5.55 5.20 4.75 4.40 2.95

1 The reported results are the average test accuracy of each method and the corresponding standard deviation under 5-fold cross-validation on each data
set. The best results with higher accuracy and lower standard deviation are highlighted in boldface.

2 By two-tailed paired t-test at 5% significance level, ‡ and † denote that the performance of DOMEP is superior to and inferior to that of the comparative
method, respectively.

3 The last two rows show the results of t-test and average rank, respectively. The “W/T/L” in t-test indicates that DOMEP is superior to, not significantly
different from, or inferior to the corresponding comparative methods. The average rank is calculated according to the Friedman test [64].

TABLE II
COMPARISON OF THE STATE-OF-THE-ART METHODS WITH COMEP AND DOMEP USING BAGGING TO PRODUCE AN ENSEMBLE WITH SVMS AS

INDIVIDUAL CLASSIFIERS.

Dataset KL KP OO RE DREP SEP OEP PEP COMEP DOMEP

Liver 58.84±1.65 58.84±1.65 58.26±1.21 58.84±1.65 58.84±1.65 58.55±1.65 58.84±1.65 58.55±1.65 58.84±1.65 58.84±1.65

Ringnorm 98.43±0.37 98.53±0.30† 98.51±0.36† 98.47±0.29 98.43±0.29 98.47±0.36 98.39±0.25 98.44±0.31 98.43±0.31 98.43±0.31
Waveform 91.45±1.60 91.23±1.50 91.35±1.58 91.17±1.67 90.83±1.52‡ 91.27±1.53 91.13±1.61 91.37±1.63 91.45±1.49 91.23±1.63

Credit 78.02±0.07 78.01±0.11 78.03±0.08 78.02±0.08 77.96±0.12 78.04±0.12 78.02±0.11 78.02±0.13 78.00±0.09 78.01±0.11
Landsat 65.24±0.00 65.24±0.00 65.24±0.00 65.24±0.00 65.24±0.00 65.24±0.00 65.24±0.00 65.24±0.00 65.24±0.00 65.24±0.00

Page 91.26±0.41 91.26±0.45 91.28±0.44 91.24±0.46 91.28±0.52 91.22±0.32 91.24±0.44 91.30±0.53 91.26±0.45 91.22±0.44
Wilt 94.68±0.09 94.68±0.09 94.68±0.09 94.68±0.09 94.68±0.09 94.68±0.09 94.68±0.09 94.68±0.09 94.68±0.09 94.68±0.09

SensorReadings 89.17±0.78 89.24±0.88 89.28±0.52 89.35±0.51 88.91±0.60 89.11±0.91‡ 89.26±0.50 89.51±0.94 89.42±0.83 89.37±1.04
EEGEyeState 55.13±0.00 55.13±0.00 55.13±0.00 55.13±0.00 55.13±0.00 55.13±0.00 55.13±0.01 55.13±0.00 55.13±0.00 55.13±0.00

WaveformNoise 86.35±0.74 86.11±0.83 86.37±0.79 86.21±0.94 85.99±0.83 86.49±1.02 86.11±0.98 86.29±0.77 86.55±0.68 86.43±0.81

t-Test (W/T/L) 0/10/0 0/9/1 0/9/1 0/10/0 1/9/0 1/9/0 0/10/0 0/10/0 0/10/0 —
Average Rank 5.20 5.60 4.60 5.50 7.05 5.50 6.60 4.55 4.65 5.75
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Fig. 2. Comparison of the state-of-the-art methods with COMEP and
DOMEP on the test accuracy. (a) Friedman test chart (non-overlapping means
significant difference) [64]. (b) The aggregated rank for each method (the
smaller the better) [50].

performance between two ensemble pruning methods by two-

tailed paired t-test at 5% significance level to tell whether these

two methods have significantly different results. Two methods

end in a tie if there is no significant statistical difference;

otherwise, the one with higher values of accuracy will win.

In the last two rows of Table I, the average rank of each

method is calculated based on the Friedman test [64], and

the performance of each method is compared with DOMEP

in terms of the number of data sets that DOMEP has won,

tied, or lost, respectively. It can be inferred that DOMEP

does not underperform centralized methods in many data

sets even though it only utilizes local information unlike

others, which confirms the reasonableness of DOMEP (and

COMEP) utilizing accuracy and diversity simultaneously. De-

spite slightly lower values of accuracy in some cases, DOMEP

remains acceptable results. Similar results are reported in

Table II and Table III using different individual classifiers.

Moreover, Figure 2 reports the comparison of the state-of-the-

art methods with COMEP and DOMEP on the test accuracy

using statistical test methods [50], [64]. Figure 2(a) shows

that COMEP and DOMEP have significant superiority over

other compared centralized methods, utilizing the Friedman

test chart [64]; Figure 2(b) represents the aggregated rank for

each method, depicting the same results.

B. DOMEP vs. COMEP over the Time Cost

In this subsection, we give the complexity analysis of the

proposed methods and present the corresponding experimental

results. According to the Algorithm 1, the computational

complexity of COMEP is analyzed as follows:



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , MONTH YEAR 7

TABLE III
COMPARISON OF THE STATE-OF-THE-ART METHODS WITH COMEP AND DOMEP USING BAGGING TO PRODUCE AN ENSEMBLE WITH KNNS AS

INDIVIDUAL CLASSIFIERS.

Dataset KL KP OO RE DREP SEP OEP PEP COMEP DOMEP

Ames 58.83±5.48 58.54±7.20 60.29±7.45 57.81±7.14 57.52±7.29 59.71±6.18 59.56±6.96 58.69±5.90 60.15±6.90 59.12±5.95
Card 67.59±2.10 66.86±1.68 66.72±1.68 67.01±2.27 64.38±2.27 67.88±2.87 65.99±1.22 65.55±2.39‡ 68.32±3.33 68.03±3.44
Sonar 80.98±7.98 80.00±8.52 81.95±7.03 81.95±5.62 79.02±5.62 81.46±5.87 80.00±5.29 78.05±5.72 82.44±7.19 80.98±8.69
Page 95.87±0.35 95.87±0.49 95.81±0.45 95.76±0.35 95.76±0.39 95.80±0.57 95.87±0.55 95.81±0.46 95.87±0.64 95.89±0.64
Wilt 97.93±0.28 97.89±0.32 98.01±0.24 97.99±0.20 97.77±0.36 97.93±0.35 97.89±0.40 98.01±0.32 97.97±0.19 98.01±0.26

Landsat 90.28±0.88 90.22±1.18 90.30±0.95 90.40±0.83 90.31±0.94 90.47±0.78 90.37±0.85 90.37±0.76 90.47±1.21 90.44±0.87
Shuttle 99.82±0.03 99.81±0.03 99.82±0.04 99.82±0.02 99.82±0.04 99.81±0.04 99.81±0.03 99.81±0.03 99.80±0.03‡ 99.82±0.04
Ecoli 95.15±2.91 94.55±3.14 95.76±2.91 95.45±3.03 93.33±3.14 94.85±2.95 94.24±3.11 94.85±3.65 95.45±3.03 95.76±2.91

WaveformNoise 84.34±1.05 84.20±1.46 84.48±2.09 84.36±2.24 83.54±0.74 84.36±1.33 84.48±2.24 84.16±1.58 84.48±1.81 84.62±1.77

EEGEyeState 95.99±0.55 96.06±0.52 96.16±0.50 95.98±0.59 95.03±0.37‡ 96.11±0.50 96.08±0.66 96.28±0.55 96.19±0.62 96.01±0.46
SensorReadings 96.29±0.47 96.11±0.39 96.33±0.62 96.37±0.53 96.00±0.51 96.29±0.64 96.39±0.42 96.28±0.60 96.42±0.64 96.31±0.31

t-Test (W/T/L) 0/11/0 0/11/0 0/11/0 0/11/0 1/10/0 0/11/0 0/11/0 1/10/0 1/10/0 —
Average Rank 5.82 7.45 3.77 5.27 8.95 5.09 5.77 6.55 3.05 3.27
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Fig. 3. Comparison of speedup and efficiency between COMEP and
DOMEP. (a) Speedup with two machines. (b) Speedup with three machines.
(c) Efficiency with two machines. (d) Efficiency with three machines.

• Firstly, the complexity of an essential term of

TDAC(hi, hj) is O(d2n2
c), where d and nc are the

number of instances and labels, respectively.

• Secondly, the chosen individual classifier is obtained with

the complexity of O(− 1

3
k3 + 1

2
nk2) times that of the

TDAC(hi, hj) term since
∑k

i=2
(i − 1)(n − i + 2) =

− 1

3
k3+ n+2

2
k2− 3n+4

6
k, where k is the size of the pruned

sub-ensemble.

Therefore, the overall computational complexity of COMEP is

O
(

(− 1

3
k3+ 1

2
nk2)d2n2

c

)

. Besides, since H is partitioned into

m groups in DOMEP, the overall computational complexity

of DOMEP is O
(

(− 1

3
k3 + n

2m
k2)d2n2

c

)

.

In this experiment, we employ different numbers of ma-

chines in DOMEP in order to test its speedup in comparison

with COMEP. Under the ideal conditions, Zadeh et al. [53]

pointed that the speedup between the distributed and central-

ized version was almost linear in terms of the number of

used machines since there was no overhead of information-

sharing between those machines. To verify whether DOMEP
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Fig. 4. Comparison between the state-of-the-art ensemble pruning methods
and their distributed versions on the SensorReadings dataset using Bagging
with DTs as individual classifiers for binary classification. (a) Accuracy. (b)
Time Cost.
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Fig. 5. Comparison between the state-of-the-art ensemble pruning methods
and their distributed versions on the SensorReadings dataset using Bagging
with KNNs as individual classifiers for binary classification. (a) Accuracy. (b)
Time Cost.

could achieve competitive performance faster than COMEP or

not, we introduce two performance indicators from parallel

processing, i.e., speedup and efficiency2, where speedup is

defined as a quotient of the execution time of COMEP and

that of DOMEP, to report how much speedup of DOMEP over

COMEP. Constrained by the capability of machines on which

we test, several experiments for ensemble pruning conducted

on two or three machines are used as a typical example to

present the performance of DOMEP. The results using various

2Efficiency is a measure of how effectively parallel computing could be used
to solve a particular problem. A parallel algorithm is considered cost efficient
if its asymptotic running time multiplied by the number of processing units
involved in the computation is comparable to the running time of the best
sequential algorithm [65].
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Fig. 6. Comparison between the state-of-the-art ensemble pruning methods
and their distributed versions on the SensorReadings dataset using Bagging
with DTs as individual classifiers for multi-class classification. (a) Accuracy.
(b) Time Cost.

KL KP OO RE
DREP SEP

OEP PEP

86

88

90

92

94

96

A
cc

ur
ac

y 
(%

)

Centralized
Distributed

(a)

KL KP OO RE
DREP SEP

OEP PEP0

20

40

60

80

T
im

e 
C

os
t (

s)

Centralized
Distributed

(b)

Fig. 7. Comparison between the state-of-the-art ensemble pruning methods
and their distributed versions on the SensorReadings dataset using Bagging
with KNNs as individual classifiers for multi-class classification. (a) Accuracy.
(b) Time Cost.

settings of this experiment are summarized in Figure 3, which

indicates that DOMEP runs faster than COMEP even reaching

super-linear speedup3 on a tiny minority of experiments.

C. Comparison Between the State-of-the-art Ensemble Prun-

ing Methods and Their Corresponding Distributed Versions

Generated with EPFD

In this subsection, to verify the effectiveness of EPFD, we

compare the quality of various centralized ensemble pruning

methods and their respective distributed versions that are

generated using EPFD in terms of accuracy and time cost. To

test the quality of the selected sub-ensembles of each method,

we control them under the same conditions (including the em-

ployed ensemble methods or types of individual classifiers) in

each experiment. Figure 4 shows the comparison results when

individual classifiers are designated as DTs and assembled

by bagging for binary classification. It can be inferred that,

for each pruning method (each group on the horizontal axis),

the accuracy of the distributed version is superior or equal to

that of its corresponding centralized version. In consideration

of the less time cost it takes, we believe that the distributed

version of each method outperforms its original centralized

version. Besides, we can tell that the effectiveness of EPFD

is exceptionally evident on PEP, i.e., a complicated method

utilizing an evolutionary Pareto optimization combined with

a local search subroutine. Moreover, Figure 5 reports similar

results of that with KNNs as individual classifiers for binary

3Sometimes a speedup of more than m when using m processors is
observed in parallel computing, which is called super-linear speedup [65].

1.45 1.5 1.55 1.6
Objective Function Value

55

60

65

70

A
cc

ur
ac

y 
(%

)

Correlation = 0.7349

(a)

2.9 2.95 3 3.05 3.1 3.15 3.2
Objective Function Value

50

55

60

65

70

75

A
cc

ur
ac

y 
(%

)

Correlation = 0.7271

(b)

Fig. 8. Relation of binary classification accuracy and objective function value
for 3-combinations and 4-combinations in the Ames dataset using Bagging
with DTs as individual classifiers for binary classification. (a) 3-combinations.
(b) 4-combinations.
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Fig. 9. Relation of binary classification accuracy and objective function
value for 3-combinations and 4-combinations in the Waveform dataset using
Bagging with DTs as individual classifiers for binary classification. (a) 3-
combinations. (b) 4-combinations.
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Fig. 10. Relation of multi-class classification accuracy and objective function
value for 3-combinations and 4-combinations in the Waveform dataset using
Bagging with DTs as individual classifiers for multi-classification. (a) 3-
combinations. (b) 4-combinations.

classification; Figures 6–7 report similar results of that with

DTs and KNNs as individual classifiers for multi-class classi-

fication, respectively.

D. Validating the Objective Function

Regarding a new objective function, its relation with clas-

sification accuracy is one of the fundamental questions. We

select two small-sized ensembles (small in the number of

individual classifiers) and evaluate all possible combinations

of these individual classifiers in order to test this issue. In this

experiment, we compare the classification accuracy for all the

3-combinations and 4-combinations of individual classifiers in

the original ensemble against their corresponding objective

value with the λ parameter equal to 0.5, which means that



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , MONTH YEAR 9

1 2 3 4 5 6 7 8 9
Size of the Pruned Sub-Ensemble

97

97.5

98

98.5

A
cc

ur
ac

y 
(%

)

 = 0.1
 = 0.5
 = 0.9

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
97.8

98

98.2

98.4

98.6

A
cc

ur
ac

y 
(%

)

3
5
7
9

(b)

Fig. 11. Effect of λ value on the classification accuracy in the Ringnorm
dataset using Bagging with SVMs as individual classifiers for binary classi-
fication. (a) Accuracy of each criterion individually. (b) Slight differences of
λ value while selecting the different size of the pruned sub-ensemble (3, 5,
7, 9).
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Fig. 12. Effect of λ value on the classification accuracy in the Heart dataset
using Bagging with KNNs as individual classifiers for binary classification.
(a) Accuracy of each criterion individually. (b) Slight differences of λ value
while selecting the different size of the pruned sub-ensemble (3, 5, 7, 9).
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Fig. 13. Effect of λ value on the classification accuracy in the Waveform
dataset using Bagging with DTs as individual classifiers for multi-class
classification. (a) Accuracy of each criterion individually. (b) Slight differences
of λ value while selecting the different size of the pruned sub-ensemble (3,
5, 7, 9).

two criteria in Eq. (4) are equally important. Each small blue

dot in Figure 8 represents the classification accuracy on a

3-combination or 4-combination of the individual classifiers

with the size 8 of an ensemble in the Ames dataset for binary

classification, and the line is the regression line. Similar results

are shown in Figures 9–10 in the Waveform dataset for binary

classification and multi-class classification, respectively. We

observe that the objective value and the classification accuracy

are highly correlated from Figures 8–10, which means that

maximizing this objective function leads to our target (i.e.,

the highly accurate sub-ensembles).

E. Effect of λ Value

Crucial as other issues, the relation of two criteria needs to

be investigated in the defined objective function. To reveal how

the classification results are affected with the regularization

factor λ , different λ values (from 0.1 to 0.9 with 0.2 steps)

are tested in the experiments of this part. Figure 11 exemplifies

the effect of λ on the Ringnorm dataset. Figure 11(a) illustrates

that the linear combination concurrently considering them both

performs better than focusing more on MI term (λ = 0.1)

or VI term (λ = 0.9) in Eq. (6) individually, although

finding the optimal value of the λ is another challenge.

Figure 11(b) presents that a global maximum around the

optimal λ exists indeed regardless of the size of the pruned

sub-ensemble, which suggests that it might be related to the

intrinsic properties of the data set. Similar results are reported

in Figures 12–13 for binary classification and multi-class

classification, respectively. Although proper results for all data

sets have been brought with λ being set to 0.5 (in Tables I–III)

for convenience, DOMEP would achieve a better performance

in practice when the λ is adjusted for each data set separately.

V. CONCLUSION

In this work, we formalize the ensemble pruning problem

as an objection maximization problem based on information

entropy to consider diversity and accuracy simultaneously.

Then, we propose an ensemble pruning method according to

this objection maximization problem (including two versions,

COMEP and DOMEP) for ensemble pruning. We also present

that our methods (COMEP and DOMEP) are consistently com-

petitive with various existing methods for ensemble pruning,

which could handle large-scale ensembles fast yet efficiently

through handling the accuracy and diversity of the ensembles

properly. At last, we propose a general distributed framework

(EPFD) for ensemble pruning, which could be widely applied

to various existing methods for ensemble pruning, to achieve

less time consuming without much accuracy degradation. The

remarkable effectiveness of EPFD is positively valuable for

enormous data in the real world. For future work, it seems

like a promising direction to explore the deeper theoretical

basis and to try other objective functions to achieve better

performance.
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