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A Novel Separating Hyperplane Classification
Framework to Unify Nearest-class-model Methods

for High-dimensional Data
Rui Zhu, Ziyu Wang, Naoya Sogi, Kazuhiro Fukui, Member, IEEE, and Jing-Hao Xue

Abstract—In this paper, we establish a novel separating hyper-
plane classification (SHC) framework to unify three nearest-class-
model methods for high-dimensional data: the nearest subspace
method (NSM), the nearest convex hull method (NCHM) and
the nearest convex cone method (NCCM). Nearest-class-model
methods are an important paradigm for classification of high-
dimensional data. We first introduce the three nearest-class-
model methods and then conduct dual analysis for theoreti-
cally investigating them, to understand deeply their underlying
classification mechanisms. A new theorem for the dual analysis
of NCCM is proposed in this paper, through discovering the
relationship between a convex cone and its polar cone. We then
establish the new SHC framework to unify the nearest-class-
model methods based on the theoretical results. One important
application of this new SHC framework is to help explain
empirical classification results: why one class model has better
performance than others on certain datasets. Finally, we propose
a new nearest-class-model method, the soft NCCM, under the
novel SHC framework to solve the overlapping class model
problem. For illustrative purposes, we empirically demonstrate
the significance of our SHC framework and the soft NCCM
through two types of typical real-world high-dimensional data,
the spectroscopic data and the face image data.

Index Terms—Classification, convex cone, convex hull, dual
analysis, separating hyperplane, subspace.

I. INTRODUCTION

ACategory of popular generative classifiers to classify
high-dimensional data is the nearest-class-model meth-

ods, also known as the class modelling methods in the chemo-
metrics community or the subspace methods in the machine
learning and pattern recognition communities. In the nearest-
class-model methods, we construct a class model for each class
from the training samples of that class, independently of other
classes; a test sample is assigned to the class with the highest
similarity between the sample and the class model.

Three class models have been studied in the literature, the
principal component (PC) subspace, the convex hull model
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and the convex cone model. PC subspace is a widely-used
class subspace. The PC subspace of a class is built through
principal component analysis (PCA) of the training samples of
that class, such that a class is represented by a low-dimensional
linear subspace spanned by a small number of learning PCs
which present the most variable information in the class.
Hence the PC subspace has been widely used as a class
representation for high-dimensional data. Soft independent
modelling of class analogy (SIMCA) [1]–[6] in chemometrics
and the mutual subspace method (MSM) [7]–[10] and the
nearest subspace classifier (NSC) [11]–[14] in pattern recog-
nition are famous examples of PC-subspace-based classifiers.
In SIMCA and NSC, the dissimilarity measure is related
to the Euclidean distance between a test sample and a PC
subspace; in MSM, it is the canonical angle between them.
It is, however, not necessary to use subspaces to represent
classes. The geometric convex model representation is another
popular class representation approach for classification tasks.
The geometric convex model for a class is constructed by a
linear combination of class samples, with certain constraints
on the linear combination coefficients.

The convex hull model [15]–[19] is one geometric model
that attracts a lot of attention recently. Nalbantov et al. [15]
propose the nearest convex hull classification, which uses a
convex hull model to represent a class and classifies a test
sample to the class with the nearest convex hull. The convex
hull model of a class is constructed by the convex combination,
i.e. the linear combination with nonnegative and sum-to-one
constraints on the coefficients, of the training samples of that
class. The dissimilarity measure is the Euclidean distance from
a test sample to a convex hull [15].

The convex cone model has also been used as class repre-
sentation for face recognition [14], [20]. A convex cone model
is constructed by the conic combinations of the class samples,
i.e. the linear combinations with nonnegative coefficients.
Kobayashi et al. [20] propose the cone-restricted subspace
method, using the angle between a test sample and a convex
cone for classification.

Among these three types of models, the PC subspace is a
set of vectors that are linear combinations of the PCs with no
constraints on the coefficients. Thus the PC subspace covers
an infinite area that has weak constraints on the location of
a class within its class subspace, which is considered as a
loose representation of the class. In contrast, the two geometric
convex models provide a restricted area to represent the class
by setting constraints on the linear combination coefficients.
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The restricted area is bounded by the class samples that
are used to construct the convex models. The convex hull
model adopts the convex constraints on the linear combination
coefficients. However, the convex constraint is often too tight
in the sense that the classes often extend well beyond the
convex hulls [17]. Considering the tightness of a model, a
convex cone model lies in between a linear subspace model
and a convex hull model. A convex cone is more restricted
than a linear subspace because of the nonnegative constraints
on the coefficients, while is looser than a convex hull because
the conic combination constraint is looser than the convex
combination constraint.

The geometric convex models have shown superior classifi-
cation performances to the PC subspace [15], [20]. However,
theoretically why and when this will happen is barely studied
in literature. Therefore, in this paper, we aim to theoretically
investigate and unify three nearest-class-model classification
methods which respectively use the PC subspace, the convex
hull and the convex cone. Under the unified framework, we
are able to explain why for certain datasets one class model is
superior to the others in terms of empirical classification per-
formance. In addition, we aim to develop new nearest-class-
model methods under this framework to better classify data
with specific properties, e.g. with overlapping class models.
To make the theoretical investigation more straightforward, we
use the distance as the dissimilarity measure. In this fashion,
the PC subspace representation leads to a nearest subspace
method (NSM) [11]; the convex hull model leads to a nearest
convex hull method (NCHM) [15]; and the convex cone model
leads to a nearest convex cone method (NCCM), which is
similar to the method in [20].

We first establish the novel separating hyperplane classi-
fication (SHC) framework to unify the nearest-class-model
methods through the separating hyperplanes as a common
platform. To achieve this, we shall investigate the correspond-
ing hyperplane-based classifiers to NSM, NCHM and NCCM,
through the dual analysis of their minimum distance problems.
We first introduce the dual analysis for NSM and NCHM
in literature and then show a new theoretical result of the
dual analysis for NCCM through discovering the relationship
between a convex cone and its polar cone. This relationship
is analogous to that between a subspace and its orthogonal
complement. We shall show that the minimum distance from
a test sample to a class model is equivalent to the maxi-
mum distance from that sample to a hyperplane. Thus for
each class model, we can find one separating hyperplane
that separates the test sample from the class models. The
test sample is then classified to the class with its nearest
hyperplane. Therefore different class models are unified by
the separating hyperplanes which can be simply described
by their normal vectors and biases. However, we note that
formulating a nearest class problem using hyperplanes does
not bring advantages in computation [21].

Based on the SHC framework, we can then explain em-
pirical classification results by investigating the discriminative
abilities of the normal vectors associated with the separating
hyperplanes. We shall show that the normal vectors of the sep-
arating hyperplanes are of great importance to classification:

the more discriminative the normal vectors are, the better the
classification.

It is worth noting that our SHC framework is different from
the extensions of support vector machine (SVM) based on
a pair of separating hyperplanes in one-sided or two-sided
best fitting hyperplane classifiers [22], generalised eigenvalue
proximal SVM [23] or twin SVM [24]. In [22]–[24], the pair of
separating hyperplanes are found for the pair of class models
and fixed for all the test samples, making the classification
boundary linear for linear kernels. In contrast, the pair of
separating hyperplanes in our SHC framework vary with test
samples, making the classification boundary nonlinear.

We then propose a new classifier, the soft NCCM, under
the SHC framework by imposing proper constraints to solve
the overlapping class model problem. In real applications, it is
possible to have overlapping class models and the class mem-
berships of the test samples locating in the overlapping area
are ambiguous. The new soft NCCM utilises the discriminative
between-class information when constructing the class cones
and can eliminate the overlapping area between the cones.
The test instances locating in the overlapping area can then be
better classified unambiguously.

For illustrative purposes, we apply NSM, NCHM, NCCM
and soft NCCM to two types of typical high-dimensional data,
the spectroscopic data and the face image data. We shall show
the effectiveness of the new SHC framework in explaining the
empirical classification results on these real data. We shall also
show the superior classification performance of the new soft
NCCM classifier over other methods to classify these data.

The contributions of our work are threefold.
1) We develop new theoretical results of the dual analysis

of NCCM, by discovering the relationship between a
convex cone and its polar cone.

2) We establish a novel separating hyperplane classifica-
tion (SHC) framework to unify and easily compare
the nearest-class-model methods. Empirically, the new
SHC framework can help explain why a class model
is superior for certain datasets; and methodologically,
it can help to design more sophisticated nearest-class-
model methods with better classification performance.

3) We propose a new nearest-class-model method, the
soft NCCM, under the SHC framework to solve the
overlapping class model problem.

II. NEAREST-CLASS-MODEL METHODS

In this section we introduce the three nearest-subspace-
methods, NSM, NCHM and NCCM, with illustrative examples
in a two-dimensional feature space.

A. PC subspace model: NSM

The nearest subspace method (NSM) models each class by
a principal component (PC) subspace which can be obtained
by applying the singular value decomposition on the centred
training set of one class. A test instance is then classified to
the nearest class by comparing its Euclidean distances to the
two class subspaces. Fig. 1 shows an illustrative example of
NSM in a two-dimensional feature space. The blue and red
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2.

Fig. 1: An illustrative example of NSM in a 2D space.

straight lines are the PC class subspaces of the two classes,
respectively, which are constructed by the first PCs. The
Euclidean distances from xnew to the two class subspaces are
shown as d1 and d2, respectively. In this example, we assign
xnew to class 1 since d1 < d2. Note that we use two plots to
represent the PC subspaces of the two classes, respectively, in
order to achieve better visualisation. The technical details of
NSM are described as follows.

Definition II.1. Subspace. Suppose S = {xi}Ni=1 is a subset

of Rp. The set L(S) = {v : v =
N∑
i=1

αixi | xi ∈ S, αi ∈ R},
called the subspace generated by S, consists of all vectors in
Rp which are linear combinations of vectors in S. We also
say that the vectors in S span the subspace L(S).

In the training phase, the nearest subspace method (NSM)
builds class subspaces for the classes separately using PCA.
We denote Xk ∈ RNk×p as the training set of class k
(k = 1, 2 for two-class classification), where Nk is the number
of training samples and each row of Xk represents a p-
dimensional training sample. The PC subspace for the kth
class can be obtained from applying the reduced singular value
decomposition to the column-centred Xk: Xc

k = UkΛkV
T
k ,

where the rows of Uk ∈ RNk×qk denote the normalised PC
scores; the columns of V k ∈ Rp×qk denote the PCs; and Λk is
a diagonal matrix of singular values {λ1 ≥ λ2 ≥ . . . ≥ λqk}.
The rk-dimensional (rk ≤ qk) PC subspace L(W k) is
spanned by the first rk PCs W k ∈ Rp×rk .

In the test phase, a new sample xnew ∈ R1×p is assigned
according to the distance from xc,k

new to the class subspace
L(W k), where xc,k

new is the centred xnew by the mean vector
of Xk. The distance is defined as the minimum distance from
xc,k
new to the vectors in L(W k):

dLk = min
αLk

||xc,k
new − (W kα

L
k )

T ||2, (1)

where αLk ∈ Rrk×1 contains rk coefficients associated with
the rk PCs inW k. The minimisation problem (1) has a closed-
form solution of αL∗k = (xc,k

newW k)
T . Thus the distance

can be written as dLk = ||xc,k
new − xc,k

newP k||2, where P k =
W kW

T
k is the projection matrix of the subspace L(W k);

xc,k
newP k is the projection of xc,k

new on L(W k). NSM assigns

xnew to the class with the smallest dLk :

ŷL = argmin
k

dLk , (2)

where ŷL denotes the predicted label for xnew by NSM.

B. Geometric convex models: NCHM, NCCM

Besides the PC subspace, we can also model a class by using
a geometric convex model in the training phase. There are
two major differences between the PC subspace representation
and the geometric convex model representation. First, the PC
subspace is spanned by PCs which are the linear combinations
of the original features, while the geometric convex model is
constructed by the linear combinations of the class samples.
To be more specific, the PC subspace is spanned by a set of
vectors in W k, which are linear combinations of the original
features in Xk, i.e. the columns of Xk. In contrast, the
geometric convex model is for the linear combinations of the
rows of Xk. Second, since there are no constraints on the
linear combination, the PC subspace representation has weak
information about the location of the class samples. However,
the geometric convex model representation imposes constraints
on the linear combination of the training samples, providing
more restricted areas for class representation.

Here we introduce the nearest convex hull method (NCHM)
and the nearest convex cone method (NCCM), both based on
the geometric convex model representation.

x1

x2

X1

X2

xnew
d2

d1

(a) NCHM

x1

x2

X1

X2

xnew
d2

d1

(b) NCCM

Fig. 2: An illustrative example of NCHM and NCCM in a
2D space.

1) Nearest convex hull method (NCHM): Nalbantov et
al. [15] propose the NCHM, which models each class as a
convex hull by using the training instances in that class. An
illustrative example of NCHM is shown in a 2D space in
Fig. 2(a). The convex hulls of the two classes are shown as
the blue and red polygons, respectively. Since d1 < d2, we
assign xnew to class 1 in this example. In NCHM, we first
define convex hull as follows.

Definition II.2. Convex hull. Let S = {xi}Ni=1 be an arbitrary
set in a linear vector space. The convex hull, ch(S) = {z :

z =
N∑
i=1

αixi | xi ∈ S, 0 ≤ αi ≤ 1,
N∑
i=1

αi = 1}, is the

smallest convex set containing S. In other words, ch(S) is the
intersection of all convex sets containing S.
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Given the training samples Xk ∈ RNk×p of class k, the
convex hull built by Xk is the set of vectors z ∈ Rp:
ch(Xk) = {z : z = XT

kα
CH
k | 0 ≤ αCHk ≤

1, 1TαCHk = 1}, where αCHk ∈ RNk×1 is a vector containing
the coefficients associated with the Nk training samples in
Xk, 0 ≤ αCHk ≤ 1 means each element are in [0, 1], and
1 ∈ RNk×1 has all elements of one.

Given a new sample xnew ∈ R1×p, the distance from xnew

to the convex hull ch(Xk) of the kth class is

dCHk = min
αCHk

||xnew − (XT
kα
CH
k )T ||2,

s.t. 0 ≤ αCHk ≤ 1, 1TαCHk = 1. (3)

Then xnew is assigned to the class with the smallest dCHk :

ŷCH = argmin
k

dCHk , (4)

where ŷCH denotes the predicted label for xnew by NCHM.
2) Nearest convex cone method (NCCM): NCCM models

each class as a convex cone by using the training instances
in that class. We show an illustrative example of NCCM in a
2D space in Fig. 2(b). The convex cones for the two classes
are shown as the blue and red triangular area, respectively.
Since d1 < d2, we assign xnew to class 1 in this example. In
NCCM, we first define convex polyhedral cone as follows.

Definition II.3. Convex polyhedral cone. A convex polyhedral
cone is a convex cone that is generated by a finite number of
generators. Let S = {xi}Ni=1 be an arbitrary set in a linear

vector space. The set, cc(S) = {z : z =
N∑
i=1

αixi | xi ∈

S, αi ≥ 0}, is the convex polyhedral cone generated by S.

Given the training samples Xk ∈ RNk×p of class k, the
convex polyhedral cone built by Xk is defined as a set of
vectors z ∈ Rp: cc(Xk) = {z : z = XT

kα
CC
k | αCCk ≥ 0},

where αCCk ∈ RNk×1 and αCCk ≥ 0 means each element in
αCCk is nonnegative. Thus each vector in cc(Xk) is a conical
combination of the samples in Xk.

To assign a new sample xnew ∈ R1×p to one of the classes,
we calculate the distance from xnew to cc(Xk):

dCCk = min
αCCk

||xnew − (XT
kα
CC
k )T ||2, s.t. αCCk ≥ 0. (5)

Then xnew is assigned to the class with the minimum dCCk :

ŷCC = argmin
k

dCCk , (6)

where ŷCC denotes the predicted label for xnew by NCCM.

III. DUAL ANALYSIS OF THE MINIMUM DISTANCE
PROBLEMS

Here we aim to establish a common platform to unify
and compare the nearest-class-model methods through dual
analysis of the minimum distance problems (1), (3) and (5).
By studying the nearest-class-model methods together, we will
have better understanding of the classification mechanisms of
this important category of classification methods.

Dual analysis of the minimum distance problems enables
us to find the separating hyperplanes, making finding the

minimum distance from a sample to a class model equivalent
to finding the maximum distance from that sample to a
separating hyperplane. Different from the Euclidean distances
used in the previous section, we discuss more general cases
in the normed linear vector space with arbitrary norm in this
section. Examples and illustrations for the Hilbert space are
also presented for a better geometric understanding.

We first introduce some important theoretical settings in
preliminary. Then we show the dual analysis for the three
minimum distance problems (1), (3) and (5). The dual analysis
for the subspace and the convex hull can be found in [25]
and we only show their results in Theorems III.2 and III.3,
respectively. In contrast, we provide a novel dual analysis and
its proof for the convex cone in Theorem III.4, based on the
relationship between a convex cone and its polar cone.

A. Preliminary

Definition III.1. Normed linear vector space. A normed linear
vector space is a vector space X , on which a real-valued
function is defined to map each element x in X into a real
number ||x|| called the norm of x. The norm satisfies the
following axioms: 1) ||x|| ≥ 0 for all x ∈ X , ||x|| = 0 if and
only if x = 0; 2) ||x+ y|| ≤ ||x||+ ||y|| for each x,y ∈ X ;
and 3) ||αx|| = |α|||x|| for all scalar α and each x ∈ X .

Definition III.2. Linear functional. A transformation from a
vector space X into the space of real scalars is said to be a
functional on X . A functional f on a vector space X is linear
if for any two vectors x,y ∈ X and any two scalars α, β
there holds f(αx+ βy) = αf(x) + βf(y).

Definition III.3. The normed dual space. Let X be a normed
linear vector space. The space of all bounded linear functionals
on X is called the normed dual of X and is denoted by X ∗.
The norm of an element f ∈ X ∗ is ||f || = sup||x||≤1 |f(x)|.

Following [25], we use x∗ to denote the linear functionals
and write 〈x,x∗〉 to denote f(x).

Definition III.4. Real inner space. A real inner space is a
real linear vector space X together with an inner product,
which is a map from X × X to R and denoted by 〈x,y〉
where x,y ∈ X . The inner product satisfies the following
axioms: 1) 〈x,y〉 = 〈y,x〉; 2) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉;
3) 〈λx,y〉 = λ〈x,y〉; and 4)〈x,x〉 ≥ 0; 〈x,x〉 = 0 if and
only if x is the origin.

Definition III.5. Real Hilbert space. A complete real inner
space is called a real Hilbert space.

A Hilbert space has the following nice property. If x∗

is a bounded linear functional on a Hilbert space H, there
exists a unique vector w ∈ H such that for all x ∈ H,
〈x,x∗〉 = 〈x,w〉. Moreover, we have ||x∗|| = ||w|| and every
w determines a unique bounded linear functional in this way.

B. Hyperplane

Based on the above definitions, we define a hyperplane as
follows and show some properties of a hyperplane that relates
the primal problem with the dual problem.
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Definition III.6. Hyperplane. A hyperplane H in a linear
vector space X is a maximal proper linear variety, that is,
a linear variety H such that H 6= X , and if V is any linear
variety containing H , then either V = X or V = H .

Proposition 1 ( [25]). Let H be a hyperplane in a linear
vector space X . Then there is a linear functional x∗ on X and
a constant c such that H = {x : 〈x,x∗〉 = c}. Conversely, if
x∗ is a nonzero linear functional on X , the set {x : 〈x,x∗〉 =
c} is a hyperplane in X . H is closed for every c if and only
if x∗ is continuous.

As shown in Proposition 1, hyperplanes have a close rela-
tionship with linear functionals. Thus the primal problem can
be transformed to the dual problem by using the hyperplane
as a media.

For a closed hyperplane H , we define two closed half-
spaces: the negative half-space {x : 〈x,x∗〉 ≤ c} and the
positive half-space {x : 〈x,x∗〉 ≥ c}. The distance from a
point to a hyperplane is of great importance in dual analysis,
thus we introduce it in Theorem III.1.

Theorem III.1 ( [26]). Let xe be an element in a real
normed linear space X and let d denote its distance from the
hyperplane H: {x : 〈x,x∗〉 = c}. Then, d = infh∈H ||xe −
h|| = |〈xe,x

∗〉−c|
||x∗|| .

C. Dual analysis for NSM, NCHM and NCCM

1) Dual analysis of the minimum distance problem in NSM:
In NSM, the separating hyperplane between an instance xe and
a subspace M is found based on the orthogonal complement
M⊥ ofM, which is stated in Theorem 7. To make the theoret-
ical settings clear, we first define the orthogonal complement
of a subspace as follows.

Definition III.7. Orthogonal complement. LetM be a subset
of a normed linear space X . The orthogonal complementM⊥
of M consists of all elements x∗ ∈ X ∗ orthogonal to every
vector in M.

Theorem III.2 ( [25]). Let xe be an element in a real normed
linear space X and let d denote its distance from the subspace
M. Suppose the orthogonal complement of M is M⊥. Then,

d = inf
m∈M

||xe −m|| = max
||x∗||≤1,x∗∈M⊥

〈xe,x
∗〉, (7)

where the maximum on the right is achieved for some x∗0 ∈
M⊥.

If the infimum on the left is achieved for some m0 ∈ M,
then x∗0 is aligned with xe−m0, i.e. 〈xe−m0,x

∗
0〉 = ||xe−

m0||||x∗0||.

Based on Theorem III.1, the right-hand side of (7) can be
explained as the maximum distance from xe to the hyperplane
Hsub = {x : 〈x,x∗〉 = 0 | x∗ ∈ M⊥}, since the maximum
is achieved when ||x∗|| = 1. Thus Theorem III.2 can be
understood as: The minimum distance from a point xe to the
subspace M is equivalent to the maximum distance from xe

to the hyperplane Hsub.
For a better geometric understanding, we discuss Theo-

rem III.2 in the Hilbert space. For each x∗, we can find a

unique w ∈ H which is the normal vector of Hsub. Replace
x∗ by w, the right-hand side of (7), i.e. 〈xe,w〉, still denotes
the distance from xe to Hsub since the maximum is achieved
for ||w|| = ||x∗|| = 1. We also have 〈xe−m0,w0〉 = ||xe−
m0||||w0||, thus xe −m0 = µw0 (µ > 0). For any vector
m ∈ M, 〈xe −m0,m〉 = 〈µw0,m〉 = µ〈w0,m〉 = 0, as
w0 ∈M⊥. This indicates that xe−m0 has the same direction
as w0 and xe −m0 is perpendicular to M.

x1

x2

x3

xe

m0

d
M

w0

M

Hsub

(a) Theorem III.2 of NSM

Kk0

xe

d

w0

HCH

(b) Theorem III.3 of NCHM

xe

c0

d

w0

uw0

Cp

C

HCC

(c) Theorem III.4 of NCCM

Fig. 3: Illustrative examples of (a) Theorem III.2 of NSM,
(b) Theorem III.3 of NCHM and (c) Theorem III.4 of

NCCM.

Fig. 3(a) illustrates an example of Theorem III.2. Suppose
x1, x2 and x3 are the orthogonal bases for R3. Assume M
is the subspace spanned by x2. Thus M⊥ is the subspace
spanned by x1 and x3. Suppose xe lies in the subspace
spanned by x2 and x3. Then the minimum distance from
xe to M is achieved at the point m0; and the maximum
distance from xe to any subspaces with their normal vectors
inM⊥ is attained when w0 has the same direction as x3; the
subspace associated with this maximum distance is denoted by
Hsub, which is a plane spanned by x1 and x2, as illustrated in
Fig. 3(a). That is, we can find that these two distances are the
same, both equal to d. The hyperplane with the normal vector
w0 is actually the subspace spanned by x1 and x2. The vector
xe−m0 has the same direction as w0. This result is clear with
simple geometry, if we treat m0 as the orthogonal projection
of xe on the subspace M.

2) Dual analysis of the minimum distance problem in
NCHM: In NCHM, the maximum distance between xe and
a separating hyperplane that separates xe and a convex hull
K is achieved when the separating hyperplane is a supporting
hyperplane of K. The details are shown in Theorem 8.

Theorem III.3 ( [25]). Let xe be a point in a real normed
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vector space X and let d > 0 denote its distance from the
convex set K having support functional h, i.e. h(x∗) =
supk∈K〈k,x∗〉. Then

d = inf
k∈K
||xe − k|| = max

||x∗||≤1
[〈xe,x

∗〉 − h(x∗)], (8)

where the maximum on the right is achieved by some x∗0 ∈ X ∗.
If the infimum on the left is achieved by some k0 ∈ K,

then x∗0 is aligned with xe − k0, i.e. 〈xe − k0,x∗0〉 = ||xe −
k0||||x∗0||.

The right-hand side of (8) can be understood as the max-
imum distance from xe to the hyperplane HCH = {x :
〈x,x∗〉 = h(x∗)}. Thus Theorem III.3 indicates that the
minimum distance from xe to the convex hull is equivalent
to the maximum distance from xe to the hyperplane HCH.

In the Hilbert space, we can find a unique w0 ∈ H for x∗0.
Since x∗0 is aligned with xe − k0, xe − k0 = µw0 (µ > 0)
and xe − k0 has the same direction as w0.

Fig. 3(b) shows an intuitive example of Theorem III.3 in
R2. The minimum distance from xe to K is achieved at point
k0, which lies on the nearest face of K to xe. The maximum
distance between xe and HCH that separates xe and K is
achieved when the nearest face of K to xe is in HCH. The
normal vector w0 is perpendicular to HCH and has the same
direction as xe − k0.

3) Dual analysis of the minimum distance problem in
NCCM: Inspired by the relationship between M and M⊥
used in Theorem III.2, we apply the relationship between a
convex cone and its polar cone to the dual analysis of (5) to
obtain the separating hyperplane for NCCM in Theorem III.4.
We first introduce the definition of a polar cone and then show
Theorem III.4 and its proof.

Definition III.8. Polar cone. Given a convex polyhedral cone
C in a normed space X , the set Cp = {x∗ ∈ X ∗ : 〈x,x∗〉 ≤
0, ∀x ∈ C} is called the polar cone of C.

If xe is an interior point of C, then d = 0, which is a trivial
case. Thus in the following theorem, we discuss the case when
xe is not an interior point of C with d > 0.

Theorem III.4. Let xe be an element in a real normed linear
space X . Let d > 0 denote the distance from xe to the convex
cone C. Then,

d = inf
c∈C
||xe − c|| = max

||x∗||≤1,x∗∈Cp
〈xe,x

∗〉,

where the maximum on the right is achieved for some x∗0 ∈
Cp.

If the infimum on the left is achieved for some c0 ∈ C, then
x∗0 is aligned with xe−c0, i.e. 〈xe−c0,x∗0〉 = ||xe−c0||||x∗0||.

Proof. We first show that there exist some x∗ ∈ Cp with the
hyperplane {x : 〈x,x∗〉 = 0} being able to separate xe and
C. The two closed half-spaces associated with the hyperplane
{x : 〈x,x∗〉 = 0} are {x : 〈x,x∗〉 ≥ 0} and {x : 〈x,x∗〉 ≤
0}. When x∗ ∈ Cp, 〈c,x∗〉 ≤ 0 for c ∈ C, and C is in the
negative half-space. Since xe is not an interior point of C,
we can find some x∗ ∈ Cp such that 〈xe,x

∗〉 ≥ 0 and xe

is in the positive half-space. Thus xe and C lie in opposite
half-spaces determined by the hyperplane {x : 〈x,x∗〉 = 0}
with x∗ ∈ Cp.

Let S(ε) be the sphere centred at xe of radius ε. For
x∗ ∈ Cp having 〈xe,x

∗〉 ≥ 0 and ||x∗|| = 1, let ε∗ be the
supremum of the ε’s for which the hyperplane {x : 〈x,x∗〉 =
0} separates C and S(ε). It is clear that 0 ≤ ε∗ ≤ d. Also
〈xe,x

∗〉 = ε∗ when ||x∗|| = 1. Thus, for every x∗ ∈ Cp

having 〈xe,x
∗〉 ≥ 0 and ||x∗|| = 1, we have 〈xe,x

∗〉 ≤ d.
On the other hand, since C contains no interior point of

S(d), there is a hyperplane separating C and S(d), and thus
an x∗0 ∈ Cp such that 〈xe,x

∗〉 = d.
To prove the alignment statement, suppose c0 ∈ C and

||xe − c0|| = d. Since c0 ∈ C, 〈c0,x∗0〉 ≤ 0 and 〈xe −
c0,x

∗
0〉 ≥ 〈xe,x

∗
0〉 = d. However, according to the Cauchy-

Schwarz inequality, 〈xe − c0,x∗0〉 ≤ ||xe − c0||||x∗0|| = d.
Thus 〈xe − c0,x∗0〉 = ||xe − c0||||x∗0|| = d and x∗0 is aligned
with xe − c0.

Theorem III.4 indicates that the minimum distance between
xe and C is equivalent to the maximum distance between
xe and the hyperplane HCC = {x : 〈x,x∗〉 = 0 | x∗ ∈
Cp, ||x∗|| = 1} that separates xe and C.

In the Hilbert space, we can find a unique w0 ∈ H for
x∗0. Substituting w0 with x∗0, we can get 〈xe,w0〉 = d. Also
〈xe−c0,w0〉 = ||xe−c0||||w0|| = d. The equality holds when
xe − c0 = µw0 (µ > 0). Thus we can get the following two
conclusions. First, 〈c0,w0〉 = 0, which indicates that c0 and
w0 are orthogonal. Second, xe = c0 + µw0, which indicates
that xe can be decomposed to c0 ∈ C and µw ∈ Cp. These
two conclusions indicates that the orthogonal decompositions
of xe to C and Cp are c0 and µw0, respectively. Based on the
Moreau’s theorem in the Hilbert space [27], c0 and µw ∈ Cp

are the projections of xe on C and Cp, respectively.
Fig. 3(c) illustrates Theorem III.4 in R2. The minimum

distance d from xe to C is achieved by c0, which is the
orthogonal projection of xe to the nearest face of C to xe.
The maximum distance from xe to HCC is achieved when
HCC contains the nearest face of C to xe. It is obvious that
the distance from xe to this HCC is also d. The normal vector
associated with this hyperplane is w0, which has the same
direction as xe−c0; the point µw0 is the orthogonal projection
of xe to Cp.

IV. UNIFY THE NEAREST-CLASS-MODEL METHODS

In Section IV-A, we propose the novel separating hyper-
plane classification (SHC) framework based on the theoretical
discussion in Section III. The nearest-class-model methods
can be unified under the SHC framework with different set
of constraints on the normal vectors w and the bias b.

The SHC framework has two advantages. First, we can
explain the empirical classification performance by analysing
the discriminative abilities of the normal vectors. Second,
we can design new nearest-class-model methods by imposing
appropriate constraints to the framework based on the prop-
erties of the data. We show an example of designing a new
soft NCCM classifier under the SHC framework, to solve the
overlapping class model problem in Section IV-B.



A MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

A. A novel separating hyperplane classification (SHC) frame-
work

xnew

d1 d2
X1 X2

H1 H2

Fig. 4: The separating hyperplane classification framework.

The dual analysis enables us to explain the classification
schemes of NSM, NCCM and NCHM from the separating
hyperplane point of view. Theorems III.2, III.3 and III.4
indicate that the three methods all classify a test sample by
using separating hyperplanes associated with each class. We
illustrate a binary classification case in Fig. 4. The red and
blue ellipses represent the two class models, respectively, and
the red and blue lines represent the separating hyperplanes
between a new instance xnew and the class models, respec-
tively. xnew is classified by comparing its distance to the two
separating hyperplanes.

Based on the separating hyperplanes, we can derive a
new separating hyperplane classification (SHC) framework
for different class representation models and distances with
arbitrary norms: First, for the kth class, we obtain

max
ck,||x∗k||=1

dk = 〈xnew,x
∗
k〉 − ck

s.t. constraint(x∗k, ck), (9)

where x∗k and ck are the two parameters to define the separat-
ing hyperplane Hk = {x : 〈x,x∗k〉 = ck} between xnew and
the kth class model, and constraint(x∗k, ck) denotes constraints
on x∗k and ck. Then, xnew is assigned to the class k with the
minimum dk.

This SHC framework for two-class classification can be
explained as follows. For each test sample, we find a pair
of separating hyperplanes that separate the test sample and
the two class models, respectively. The test sample is then
assigned to the class with the minimum distance from that
sample to the corresponding hyperplane.

In the SHC framework, the normal vectors of the sep-
arating hyperplanes play important roles in classification.
Theorems III.2, III.3 and III.4 suggest that the dual function x∗0
that determines the separating hyperplane is aligned with the
vector xnew−x0, where x0 is the nearest point to xnew in the
class model. In the Hilbert space, this means that the normal
vector of the separating hyperplane is parallel with xnew−x0.
The norm of xnew − x0 is defined as the distance from
xnew to the class model. Thus the discriminative information
contained in the direction of xnew − x0, which is also the
direction of the associated normal vector of the hyperplane, is
vital to classification. The more the discriminative information

contained in the normal vector, the higher the classification ac-
curacy. In other words, to get better classification, constraints
should be specified to make the normal vector contain more
discriminative information.

In NSM, NCHM and NCCM, the Euclidean norm || · ||2 is
used. We summarise constraint(x∗k, ck) for NSM, NCHM and
NCCM in Table I. Note that x∗k is replaced by wk. For NSM,
wk has a closed-form solution of xc,k

new − xc,k
newP k, where

xc,k
new is the centred xnew by the column mean of Xk.

TABLE I: constraint(x∗k, ck) for NSM, NCHM and NCCM.

NSM NCHM NCCM
〈xc,k

newP k,wk〉 = 0 〈xnew,wk〉 ≥ ck 〈xnew,wk〉 ≥ 0
ck = 0 〈xk

i ,wk〉 ≤ ck 〈xk
i ,wk〉 ≤ 0
ck = 0

P k denotes the projection matrix for class k.
xk
i ∈ R1×p denotes the ith row in Xk .

B. A novel soft nearest-convex-cone method (soft NCCM)

Besides the constraints listed in Table I, other constraints
can also be specified based on the properties of the dataset
and the requirements from the user, to extend further. In this
section, we show an example of designing a new nearest-class-
model method under the SHC framework, to better classify
data with overlapping class models.

x1

x2

X1

X2

xnew
d2

d1

c11

c12

c21

c22

s12
s21

Fig. 5: An illustrative example of soft NCCM in a 2D space.

When the class models overlap, the class memberships of
the test instances locating in the overlapping area are am-
biguous and cannot be determined by the nearest-class-model
methods. This is because the distances from those instances to
class models are all zeros and we cannot find a hyperplane to
separate them with the class models. We illustrate this situation
in Fig. 5. The original convex cone models are shown by the
triangular areas constructed by the solid lines: the blue solid
lines c11 and c12 form the convex cone for the first class while
the red solid lines c21 and c22 form the convex cone for the
second class. We can observe a large overlapping area between
the two convex cones. The instances located between c21 and
c12 cannot be clearly classified to a specific class because of
the overlapping problem.

To address this problem, we propose a novel nearest-
class-model method, the soft NCCM classifier, by imposing
proper constraints into the optimisation problem (9). In Fig. 5,
by using the soft NCCM, we expect to get two separating
hyperplanes shown by the two dashed lines, s12 and s21, for
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the first class and the second class, respectively. It is clear
that we actually reduce the areas of the convex cones by
pushing the overlapping boundaries c12 and c21 towards xnew

and obtain the new boundaries s12 and s21, respectively. The
resulting ‘soft’ convex cones of the two classes are constructed
by the blue lines c11 and s12 for the first class and the red
lines c22 and s21 for the second class. Thus xnew can be
then classified by comparing d1 and d2 to the two separating
hyperplanes s12 and s21, respectively.

In soft NCCM, we design the constraints to achieve the
following two aims: first, the test instances in the overlap-
ping area can be classified unambiguously, and second, the
discriminative between-class information is utilised to make
separating hyperplanes better for classification. The optimisa-
tion problem is written as follows:

max
||wk||2=1

dSCCk = wT
k xnew,

s.t. wT
k xnew ≥ 0,

wT
k x

k
i ≤ ξi, i = 1, 2, . . . , Nk,

wT
k x
−k
j ≥ −ξj , j = 1, 2, . . . , N−k,

ξi ≥ 0 ∀i, ξj ≥ 0 ∀j,
∑
i

ξi +
∑
j

ξj ≤ C, (10)

where the subscript k denotes the kth class while −k denotes
all other classes, i.e. Nk is the number of training samples in
the kth class and N−k is the number of training samples in
all classes except for the kth class.

To achieve the first aim, we introduce slack variables ξi,
allowing some of the training instances from the kth class
to locate on the same side of the separating hyperplane as
xnew. In this way, we can find a hyperplane that can separate
xnew and the convex cone class model with tolerance of errors,
even when xnew locates in the convex cone. Thus there is no
overlapping area when we use the separating hyperplanes to
classify xnew, and an unambiguous class membership can be
obtained. To achieve the second aim, we propose the third
constraint which utilises the discriminative information from
other classes and makes the training instances from the kth
class and those from all other classes locate on different sides
of the separating hyperplane corresponding to the kth class.

V. EXPERIMENTS

For illustration, we apply NSM, NCHM, NCCM and soft
NCCM to two types of high-dimensional data, the spectro-
scopic data and the face image data, in Sections V-A and V-B,
respectively. For each type of data, we first show the classi-
fication results of the four nearest-class-model methods. The
classification performances of a popular classification method
for high-dimensional data, support vector machine (SVM), are
also recorded to show the effectiveness of the nearest-class-
model methods. We then analyse why a class model performs
better than others, by exploring the discriminative abilities of
the normal vectors based on the SHC framework.

A. The spectroscopic data
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Fig. 6: The spectroscopic datasets.

1) Datasets: We use two high-dimensional spectroscopic
datasets, the fat dataset and the meat dataset, in the following
experiments.

The fat dataset [28] measures the spectra of finely chopped
meat, which can be downloaded from http://lib.stat.cmu.edu/
datasets/tecator. Each spectrum is measured at 100 wave-
lengths. The dataset contains 193 spectra, with 122 meat
samples of less than 20% fat and 71 samples of larger than
20% fat. Fig. 6(a) shows the spectra of the fat dataset.

For the fat dataset, a training set contains 100 randomly
selected samples, with 35 samples of less than 20% fat and
35 samples of larger than 20% fat, and a test set contains the
remaining samples.

The meat dataset contains 55 chicken and 54 turkey meat
spectra measured at 1051 wavelengths. We use the first 350
wavelengths ranging from 400 to 1100 nm, following the
suggestion in Arnalds et al. [29]. Fig. 6(b) shows the spectra
of the meat dataset.

For the meat dataset, a training set contains 27 chicken
samples and 27 turkey samples, and a test set contains 28
chicken samples and 27 turkey samples.

2) Experiment settings: In NSM, the dimensions of the
two class subspaces are tuned by 10-fold cross-validation
on the training set. The dimensions are chosen to minimise
the classification error. In NCHM, the optimisation prob-
lem (3) is solved using the ‘cvx’ package in MATLAB.
In NCCM, the optimisation problem (5) is solved using
the ‘lsqnonneg’ function in MATLAB. In soft NCCM, the
optimisation problem (10) and the parameter C is tuned by
10-fold cross-validation from [10−1, 1, 10]. In SVM, the linear
kernel is adopted, because it is usually recommended for high-
dimensional data [30]. We randomly split the data to a training
set and a test set 100 times and the experiments are performed
on all training/test splits. The classification accuracies of all
the experiments are recorded and depicted in boxplots.

3) Classification results: The classification accuracies of
SVM, NSM, NCHM, NCCM and soft NCCM for the two
datasets are shown in Fig. 7. It is clear that soft NCCM can
provide the best classification performances for both datasets.
In both cases, NCHM performs worse than NCCM, which
suggests that the convex hull class model might be too tight
for the spectroscopic data and the convex cone class model
can be a better choice. In addition, soft NCCM can provide
better classification accuracies than NCCM, which suggests

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator
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Fig. 7: The classification accuracies of SVM, NSM, NCHM,
NCCM and soft NCCM on the two spectroscopic datasets.

the effectiveness of the constraints that we propose in (10).
For the fat data, SVM and soft NCCM have the best median

accuracies. However, it is obvious that soft NCCM has a much
smaller variance in classification accuracies than SVM. The
classification performances of NSM, NCHM are worse than
that of NCCM, which suggests that convex cone is a better
class model than PC subspace and convex hull for this dataset.

For the meat data, SVM performs the worst with a large
variation. Soft NCCM has a similar median to NSM while
less extreme low accuracies than NSM. Comparing the clas-
sification performances of NSM, NCHM and NCCM, we can
state that PC subspace is a better class model for this dataset
compared with the geometric class models.
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Fig. 8: The discriminative abilities, denoted by wS , wCH ,
wCC and wSCC , of the normal vectors of NSM, NCHM,

NCCM and soft NCCM, respectively, for the two
spectroscopic datasets.

4) Analysis of classification results: Section V-A3 shows
that different data prefer different class models. To understand
this pattern, we compare the normal vectors of pairs of
separating hyperplanes of the four methods. As discussed in
Section IV-A, the more discriminative the normal vectors are,
the higher the classification accuracy.

Here we measure the discriminative ability of the normal
vectors by the classification accuracies of linear discriminant
analysis (LDA). More specifically, for each test instance, we
have two normal vectors associated with the two separating
hyperplanes for the two classes, respectively. We project all
the instances to each normal vector and apply LDA on the
projected instances based on 100 random training/test splits.
The mean classification accuracies are recorded for the two
normal vectors. We repeat this procedure for all test instances
from one training/test split in the previous section.

We show in Fig. 8 the mean classification accuracies for the
normal vectors of NSM, NCHM, NCCM and soft NCCM,wS ,
wCH ,wCC andwSCC . The horizontal line indices the normal
vectors for the test instances and the vertical line denotes
the discriminative abilities. The black solid line shows the
classification accuracy of 0.5, which is a threshold indicating
with and without discriminative ability.

Obviously, the normal vectors of soft NCCM, wSCC , has
the best discriminative abilities with the highest curves for
both classes and both datasets, which is consistent with its
best classification performances on the two datasets. For
the fat data, wS of NSM has much lower discriminative
abilities in most cases, which is also consistent with its worst
classification performance compared with other methods. For
the meat data, NSM has better classification performance than
NCHM and NCCM and this is also shown in the turkey meat
class in Fig. 8(d): wS has a higher curve than wCH and wCC .

B. The face image data

1) Dataset: To further show the effectiveness of the pro-
posed SHC framework and the new soft NCCM, we also
apply the methods to another popular type of high-dimensional
data, the face image data. We use the extended Yale face
database B [11] as an exemplar. The database contains 38
individuals, each with around 64 near frontal images under
different illuminations. Each image has a frontal face cropped
from the original image and is resized to 32×32 pixels. Fig. 9
shows the 64 face images of one individual. Here we take the
first ten individuals in the experiments for illustration.

Fig. 9: Example face images in the Yale face database B.

2) Experiment settings: We randomly split the dataset to a
training set containing 80% of the data and a test set containing
20% of the data. We repeat all experiments for 20 random
training/test splits and record the corresponding classification
accuracies. The experiment settings for the classification meth-
ods are the same as those for the spectroscopic data.
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Fig. 10: The classification accuracies of SVM, NSM,
NCHM, NCCM and soft NCCM on the face image data.

3) Classification results: Fig. 10 shows the boxplots for
the classification accuracies of the five classifiers. All methods
have median accuracies over 0.9, which shows their effective-
ness to classify face image data. NSM has the lowest box and
the largest variation among all methods. SVM is competitive
with NCHM, while NCHM has a higher median accuracy.

The two cone-based methods, NCCM and soft NCCM, show
the best classification accuracies. This is reasonable because
the frontal face images under various illumination conditions
can be effectively represented by an illumination cone [11].
Soft NCCM performs even better than NCCM, which shows
the advantage of considering the between-class information.

4) Analysis of classification results: To show the discrim-
inative ability of the normal vector, we make a slight change
to the multi-class case here compared with the binary case
in the spectroscopic data. We first project all the data to the
direction of the normal vector and then apply LDA to do
binary classification: one is for the class associated with that
normal vector and the other is for other classes. Given one
normal vector, we repeat this process nine times for all other
nine classes and take the average of the mean classification
accuracies as the discriminative ability of that normal vector.
The reason for this is that, based on the separating hyperplane
corresponding to one class, it is hard to achieve multi-class
classification. It is natural to use this separating hyperplane
to distinguish between the corresponding class and the other
classes. All other settings to analyse the classification results
are the same as those for the spectroscopic data.

For the ten classes tested in the experiments, we can find the
discriminative abilities of the ten normal vectors. Figs. 11(a)
and 11(b) show the discriminative abilities of the normal
vectors corresponding to the first and sixth individuals in
one training/test split, respectively, for example. The normal
vectors of soft NCCM have the highest discriminative abilities.
We can also observe that the curves forwCC are slightly above
those forwS andwCH in most cases. To visualise the ten plots
together, we also plot the means of the discriminative abilities
of the ten normal vectors in Fig. 11(c). The pattern is roughly
the same as that in Figs. 11(a) and 11(b).

To sum up, we can draw two conclusions from the exper-
iments on both the high-dimensional spectroscopic and face
image datasets. First, the new soft NCCM that solves the
overlapping class model problem has the best classification
performances over all compared methods. Second, the discrim-
inative ability of the normal vector is associated with the clas-
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(b) Yale B: the sixth individual
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(c) Yale B: the mean
discriminative abilities

Fig. 11: The discriminative abilities of two normal vectors
and the mean discriminative abilities of NSM, NCHM,
NCCM and soft NCCM for the Yale face database B.

sification performance of nearest-class-model methods, which
demonstrates the effectiveness of the new SHC framework in
explaining the classification results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we establish a new separating hyperplane
classification (SHC) framework to unify three nearest-class-
model methods for high-dimensional data: NSM, NCHM and
NCCM. The SHC framework is established on the theoretical
results from the dual analysis of the three methods. We show
a new theorem for the dual analysis of NCCM by discovering
the relationship between a convex cone and its polar cone.

Based on this novel SHC framework, we can explain why
one class model is good to classify a specific dataset by
showing the discriminative ability of the normal vectors of the
separating hyperplanes. The higher the discriminative abilities
of the normal vectors, the higher the classification accuracy
of one method. The experiment results also demonstrate this
argument. In addition, we propose a new soft NCCM under the
SHC framework to solve the overlapping class model problem.
The experiments on both spectroscopic data and face image
data show the superior classification performance of the new
soft NCCM over other nearest-class-model methods.

Our future work includes: 1) investigating and unifying
more class models, such as the affine hull [31] and hyper-
disk [17], [32] class models; 2) unifying the nearest-class-
model methods based on the transformation applied on the
convex sets; 3) solving the overlapping class model problem
for NCHM under the SHC framework; and 4) designing more
powerful discriminative ability measures to better visualise the
difference between the normal vectors of diffrent methods.
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