
1

Major-Minor Long Short-Term Memory
for Word-Level Language Model

Kai Shuang, Rui Li, Mengyu Gu, Jonathan Loo, and Sen Su

Abstract—Language model plays an important role in natural
language processing (NLP) systems like machine translation,
speech recognition, learning token embeddings, natural language
generation and text classification. Recently, the multi-layer Long
Short-Term Memory (LSTM) models have been demonstrated to
achieve promising performance on word-level language modeling.
For each LSTM layer, larger hidden size usually means more
diverse semantic features, which enables the language model to
perform better. However, we have observed that when a certain
LSTM layer reaches a sufficiently large scale, the promotion
of overall effect will slow down as its hidden size increases. In
this paper, we analyze that an important factor leading to this
phenomenon is the high correlation between the newly extended
hidden states and original hidden states, which hinders diverse
feature expression of the LSTM. As a result, when the scale
is large enough, simply lengthening the LSTM hidden states
will cost tremendous extra parameters but has little effect. We
propose a simple yet effective improvement on each LSTM
layer consisting of a large-scale Major LSTM and a small-
scale Minor LSTM to break the high correlation between the
two parts of hidden states, which we call Major-Minor LSTMs
(MMLSTMs). In experiments, we demonstrate the language
model with MMLSTMs surpasses the existing state-of-the-art
model on Penn Treebank (PTB) and WikiText-2 (WT2) datasets,
and outperforms the baseline by 3.3 points in perplexity on
WikiText-103 dataset without increasing model parameter counts.

Index Terms—language model, Long Short-Term Memory
(LSTM), Natural Language Processing (NLP), shortcut connec-
tions.

I. INTRODUCTION

LANGUAGE model (LM) is a foundational component
of natural language processing (NLP) tasks, which es-

timates the probability distribution of a sequence of tokens
(w0, ..., wn) by modeling the probability of the next token
(wi) given preceding tokens (w0, ..., wi−1), i.e.

P (w0, ..., wn) = P (w0)
n∏
i=1

P (wi|w0, ..., wi−1)

Language model plays an important role of systems for
machine translation [1], speech recognition [2], learning token
embeddings [3], [4], natural language generation [5], [6] and
text classification [7].

This work was supported in part by the National Key Research and
Development Program of China (No. 2017YFB1400603).

K. Shuang is with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing
100876, China (e-mail: shuangk@bupt.edu.cn).

R. Li, M. Gu and S. Su are with the State Key Laboratory of Networking
and Switching Technology, Beijing University of Posts and Telecommunica-
tions, Beijing 100876, China (e-mail: lirui@bupt.edu.cn).

J. Loo is with the School of Computing and Engineering, University of
West London, London W5 5RF, U.K. (e-mail: jonathan.loo@uwl.ac.uk).

Language models can operate at various granularities, with
these tokens formed from either words (i.e. word-level lan-
guage models [8], [9], sub-words (e.g. syllable-level language
models [10]), or characters (i.e. character-level language
models [11]). The main difference between the above three
types of language models is the granularity of the prediction
tokens (i.e., word/sub-word/character-level language models
respectively predict the probability distribution of the next
word/sub-word/character). In linguistics, a word is the smallest
element that can be uttered in isolation with objective or
practical meaning, so word-level language model, as a direct
method to extract the dependency between each word and its
contexts is more widely used in various downstream tasks [1],
[3], [7], because they can extract semantic features directly
from the original corpus. In this paper, we focus on word-
level language modeling 1.

For word-level language model, the vanilla Long Short-
Term Memory (LSTM) networks have been demonstrated to
achieve state-of-the-art performance [6], [12]. As one of the
most successful variants of Recurrent Neural Network (RNN),
LSTM [13] can not only process word sequences of any length,
but also effectively alleviate the issue of gradient vanishing.
Since the probability distribution to be predicted is complex,
existing LSTM language models often leverage LSTMs with
high-dimensional hidden states to extract semantic features as
comprehensive as possible. In [14]–[16], the LSTM language
models with larger scale always exceeded the smaller ones
under the same architecture, which means the scale of LSTMs
ought to be large enough so that the language model has
sufficient generalization capabilities. But in the other hand, we
have observed in experiments that when a LSTM layer reaches
a sufficiently large scale, the promotion of overall effect will
slow down as its hidden sizes increase, even the changes within
a certain interval will not cause any improvement in the final
results. In other words, when the scale of LSTM is large
enough, simply lengthening the hidden states will introduce
tremendous extra parameters, but have little effect.

We analyze that one of the most important factors leading
to this phenomenon is that LSTM as a recursive model, has
a high correlation between its newly extended hidden states
and original hidden states, which hinders the diverse semantic
feature expression of it. Therefore, even with a larger hidden
size, the vanilla LSTM is still hard to extract comprehensive
semantic features from input. At the same time, a larger
amount of useless parameters will be consumed.

1Unless otherwise specified, the language models mentioned later all refers
to the word-level language models.

2

Although some existing regularization methods (e.g. recur-
rent dropout) can eliminate the negative impacts of the cor-
relation between LSTM hidden state features to some extent,
they cannot break the shackles of the recursive pattern of the
single LSTM, and the effect is quite limited. In this paper, we
propose a simple yet efficient improvement on each LSTM
in the LSTM language model called Major-Minor LSTMs
(MMLSTMs), which employs two LSTMs of different scales
to generate the output features independently. Concretely, we
carefully reduce the hidden size of each LSTM in original
language model without impairing the overall performance sig-
nificantly, and use the cut LSTM as the Major LSTM to extract
main semantic features in each layer. At the same time, the
saved parameters are used to build another small-scale Minor
LSTM, whose hidden states can be seen as a set of auxiliary
features of the Major LSTM hidden states. In this way, the
structure of MMLSTMs can break the correlation between
features in individual LSTM hidden state, so that the gener-
ated auxiliary features can better extract the diverse semantic
features. In addition, MMLSTMs can effectively prevent the
meaningless parameters introduced by simply lengthening a
certain LSTM layer hidden state in original language model.
We evaluate our MMLSTMs language model on three widely
used language datasets Penn Treebank (PTB), WikiText-2
(WT2) and WikiText-103 (WT103). The experimental results
show that the MMLSTM language model surpasses existing
state-of-the-art language model on two small datasets PTB and
WT2 and exceed the baseline 3.3 points in perplexity on the
larger WT103.

The contributions and innovations of this work are summa-
rized as follows:

1) We analyzed the operation of LSTM and revealed that
there is a high correlation between different features
in each hidden state, which can be a factor limiting
the performance improvement of the large-scale LSTM
language model;

2) We proposed a simple architecture called Major-Minor
LSTMs (MMLSTMs), as the substitution of LSTM in
vanilla LSTM language models, which is intuitively
proven to effectively weaken the output feature correla-
tions compared with the single LSTM by experiments;

3) We designed the Minor LSTM as a variant of the
shortcut connections, and we demonstrate that the Minor
LSTM as a new form of shortcut connections can
significantly enhance the performance of the language
model without sacrificing extra parameters;

4) Our experimental results showed that language model
with MMLSTMs surpasses the existing state-of-the-art
model on PTB and WT2 datasets, and outperforms the
baseline by 3.3 points in perplexity on WT103 dataset
without increasing model parameter counts.

II. RELATED WORK

A. Word-level language model

In addition to the general word-level language model that
directly using the word embeddings to represent each word, the
recent works have proposed character-aware language model

[17], [18] and subword-aware language model [3], [19] to
incorporate the character and subword information into the
word representations, thereby integrating the morphological
properties of words. Like the general model, the subword-
aware and the character-aware models are both word-level lan-
guage models, but their model architectures add the part that
using subword or character information to generate word rep-
resentations. Therefore, the general model can be seen as the
common part of different types of word-level language models,
which is also the focus of the following discussion.

Word-level language modeling has gone through significant
development from conventional N-gram language models [20],
[21] to neural language models [22]–[24] in these decades.
These classical N-gram models suffer from data sparsity,
which makes it difficult to represent large contexts and thus,
long-range dependencies. The LSTM-based language models
effectively alleviate the problem of long-range dependency,
so their performance greatly exceed other neural network
language models. [14] applied dropout in the non-recurrent
connections in LSTM language models with medium and large
sizes, and achieved the best results with the large one at that
time. [15] used the large LSTM language model with a dropout
variation to surpass the result of [14]. [16] introduced a novel
theoretical framework leads to tying together the input em-
bedding and the output projection matrices, greatly reducing
the number of trainable parameters. [6] proposed a weight-
dropped LSTM, which used DropConnect on hidden-to-hidden
weights as a form of recurrent regularization. Further, they
introduced a variant of averaged stochastic gradient method
named NT-AvSGD, which is a successful improvement in the
language model optimization method. [25] proposed to train
two identical copies of an RNN (that share parameters) with
different dropout masks while minimizing the difference be-
tween their predictions. [12] identified the Softmax bottleneck
by formulating language modeling as a matrix factorization
problem, and proposed a method called Mixture of Softmax
to address it.

For these large-scale LSTM language models, they mainly
leveraged the regularization methods to handle the over-fitting
of the models, so that the LSTM language model can achieve
an ideal result on a large scale. In addition, the use of NT-
AvSGD is also one of the key factors to greatly enhance the
effect of the models [6], [12], [25]. However, the introduction
of NT-AvSGD increases the training epochs of AWD-LSTM,
so some sophisticated improvements on the AWD-LSTM
will require a lot of extra training time and computational
resources.

Different from these existing work, our goal is to over-
comethis drawback caused by the correlation between the
newly added hidden states and original hidden states of a
certain single LSTM, which lead to a slower improvement of
overall effect. Besides, in order to enable our improvements
to work on models with NT-AvSGD optimization method, we
design a simple but effective method: appropriately reduce the
hidden size of each LSTM in original language model, then
construct several Minor LSTMs with the saved parameters,
and apply them in extracting a set of auxiliary features for
each layer. Due to the scale of Minor LSTMs are small, our

3

method does not introduce extra parameters. Furthermore, the
existing regularization methods can be combined with our
method to further enhance the final effect. We will describe the
motivation and the method in detail in the following Section
III.

B. Shortcut connection

Formally, the Minor LSTM we proposed (in Section IV)
can be seen as a variation of Shortcut connection [26],
[27]. An early practice of training multi-layer perceptrons
(MLPs) was to add a linear layer connected from the network
input to the output [26]. In [28], a few intermediate layers
were directly connected to auxiliary classifiers for address-
ing vanishing/exploding gradients. [29] proposed methods for
centering gradients and propagated errors, implemented by
shortcut connections. In recent years, many works on shortcut
connections have achieved great success in fields of computer
vision and natural language processing. [27] constructed a
deep Residual Network with identity shortcut connections,
which won the 1st place on the ILSVRC 2015 classification
task. [30] designed a Highway Network and presented shortcut
connections with gating function. [31] introduced the shortcut
connections into convolutional network and named it Dense
Convolutional Network (DenseNet). In task of language mod-
eling, [30] proposed a Recurrent Highway Network, which
extended the LSTM architecture to allow step-to-step transi-
tion depths larger than one by a set of shortcut connection
between hidden layers. [32] compared the multi-layer LSTM
and NAS with shortcut connections, and demonstrated the
LSTM language model with skip connections can achieve the
state-of-the-art performance.

Different from existing shortcut connections in deep net-
works, our proposed Minor LSTM is applied in shallow LSTM
language models (no more than 5 layers), and used to extract
auxiliary features for the Major LSTM, not to facilitate model
optimization. In sum, our Minor LSTM is essentially different
from the existing shortcut connections, and more detailed
comparisons are in Section III and Section V.

III. THE VANILLA LSTM LANGUAGE MODEL

In this section, we firstly introduce the propagation pro-
cesses in forward and backward of the vanilla LSTM language
model shown in Fig. 1. Then we explore the impact of different
LSTM hidden sizes on the overall model performance, the
experimental results demonstrate that when the scale of a
certain LSTM is large enough, simply lengthening the hidden
states will introduce tremendous extra parameters, but has little
effect.

A. Overview of the vanilla LSTM language model

A vanilla K-layer LSTM language model can be simply
divided into three components: the input of word embeddings,
the model of LSTMs, and the Softmax layer. We will describe
the overall model from its propagation processes in the forward
and backward respectively.

LSTM1

LSTM2

LSTM3

Softmax

output

Word Embedding

 𝒆𝟏 𝒆𝒏

Fig. 1. The architectures of a K-layer vanilla LSTM language model (K=3).

Major LSTM2

Major LSTM1

Major LSTM3

Minor

LSTM1

Minor

LSTM2

Minor

LSTM3

+

+

+

Softmax

 𝒆𝒏
Word Embedding

output

𝒆𝟏

Fig. 2. The proposed architecture of a K-layer MMLSTMs language model
(K=3). This architecture is an improvement from the vanilla LSTM language
model shown in Fig. 1 where each LSTM layer is replaced by our proposed
MMLSTM layer.

In the forward propagation, assume that S =
[w1..., wi..., wn] denotes a sentence sequence consisting
of n words. The words in S are randomly initialized to a
set of real-valued embeddings Es = [e1..., ei..., en] at the
beginning of model training. Then the Es is fed into the
K-layer LSTMs. There are three gates (input gate i, forget
gate f , and output gate o) and a memory cell c in each

4

(a) AWD-LSTM on PTB (b) AWD-LSTM on WT2 (c) AWD-LSTM-MoS on PTB
Fig. 3. The model perplexities for the specific LSTM layer with different hidden sizes (from 200 to 1200 at interval of 200). (a) and (b) are AWD-LSTM
on PTB and WT2, (c) is AWD-LSTM-MoS on PTB. In each subfigure, LSTM-i (i = 1, 2) represents that the ith LSTM layer is the specific LSTM with a
variable hidden size, the other LSTM hidden sizes are fixed as in [6] and [12]. c is the standard hidden size for both LSTM-1 and LSTM-2 in (a), (b), (c).

(a) AWD-LSTM on PTB (b) AWD-LSTM on WT2 (c) AWD-LSTM-MoS on PTB
Fig. 4. The parameter counts (Param) and perplexity bands (PPL) of the language model for the specific LSTM layer with hidden sizes from 0.6c to 1.2c
at interval of 0.1c (≈ 100). For each model in different corpus, c is the standard hidden size for the specific LSTM set in [6] or [12]. LSTM-i (i = 1, 2, 3)
represents that the ith LSTM layer is the specific LSTM with a variable hidden size. It is worth noting that for both LSTM-1 and LSTM-2 in AWD-LSTM
((a) and (b)), the parameter counts are always the same, so we present the common parameter count at each hidden size. And the blue boxes mark the
parameter counts corresponding to the standard hidden sizes of LSTM-i (i = 1, 2, 3). In the perplexity band for each specific LSTM layer, the part in which
the perplexity differ from the standard perplexity (in [6] or [12]) within the range of [−0.25, 0.25] are marked with a red box.

LSTM. Given input V ls =
[
vl1..., v

l
i..., v

l
n

]
, the jth hidden

state of the lth LSTM layer hlj is updated as follows:

ilj = σ
(
W l
i v
l
j + U lih

l
j−1 + bli

)
(1)

glj = tanh
(
W l
rv
l
j + U lrh

l
j−1 + blr

)
(2)

f lj = σ
(
W l
fv
l
j + U lfh

l
j−1 + blf

)
(3)

olj = σ
(
W l
ov
l
j + U loh

l
j−1 + blo

)
(4)

clj = ilj � glj + f lj � clj−1 (5)

hlj = olj � tanh
(
clj
)

(6)

where vlj is the jth input vector (ej if it is the first LSTM,
or the output of the previous LSTM layer hl−1j), hlj is the
current exposed hidden state, clj is the memory cell state,

and � is element-wise multiplication.
[
W l
i ,W

l
r,W

l
f ,W

l
o

][
bli, b

l
r, b

l
f , b

l
o

]
are parameters of weight matrices and bias

vectors, which are generated by model training. Then the clj
participates in the processing of the next input vector vlj+1.
And hlj is fed into the next layer. The output of the last LSTM
layer hKj is used in predicting the probabilities distribution
of the next word. Assume there are |D| different words in
corpus that make up a vocabulary list D. Given the preceding j

words, the Softmax layer calculates the probability distribution
of (j + 1)th word in the word sequence as follow:

P (wj+1|w1, ..., wj) =
eWs·hK

j

1T · eWs·hK
j

(7)

where Ws is weight matrix of the Softmax layer, which has |D|
rows. hKj is the output of the last LSTM layer corresponding to
jth input, 1T = (1, ..., 1) ∈ R|D|, and P (wj+1|w1, ..., wj) ∈
R|D| contains the predicted probabilities corresponding to each
word in vocabulary list D.

The training of the language model is implemented in
backward propagation. In the backward propagation process,
the parameters of the model are updated by optimizing the
loss function. We take the word sequence S as an example,
whose loss function is negative log-likelihood (NLL) of the
sequence:

NLL (w1, ..., wn) = −
1

n

∑n

j=1
1Twj+1

·logP (wj+1|w1, ..., wj)

(8)
where P (wj+1|w1, ..., wj) is calculated in (7), 1Twj

=

(0, ..., 1, ..., 0) ∈ R|D|, the 1 corresponding to the index of
wj in vocabulary list D. We set θ as the collection of all
parameters in the language model, which consists of word
embeddings in vocabulary list D, parameters in the K-layer
LSTMs, and the weight matrix in the Softmax layer. The goal
of backward propagation is to minimize the loss function, and
find the optimal value of θ:

argmin
θ

NLL (w1, . . . , wn) (9)

The final language model is established by updating parame-
ters in θ layer-by-layer.

5

B. The Drawbacks of LSTM in the vanilla LSTM language
model

Although the vanilla LSTM model has become one of the
most promising language models in these years, there are
still some potential drawbacks on it. As we discussed before,
when a certain LSTM layer reaches a sufficient large scale,
simply lengthening its hidden states has little improvement on
the model effect, but introduces a lot of extra parameters. In
order to reflect this drawback more intuitively, we investigate
the influence of changes in different LSTM hidden size on
the vanilla LSTM language model by experiments. We use
AWD-LSTM2 [6] and AWD-LSTM-MoS [12] as experimental
objects, and apply perplexity as the evaluation metrics. Given
a word sequence [w1, ..., wn], whose perplexity is calculated
as:

PPL (w1, ..., wn) = exp

(
NLL (w1, ..., wn)

n

)
(10)

In our experiments, we choose a specific LSTM layer for
each language model, and change its hidden size with the
other hyper-parameters unchanged, then record the model
perplexities on corpora of PTB and WT23. We take the hidden
size of each LSTM layer in [6] as the standard size for the
models of AWD-LSTM, and the hidden size in [12] as the
standard size for the models of AWD-LSTM-MoS. And we
uniformly denote these standard sizes as c.

In order to obtain the overall trend of perplexities with
changes in the specific LSTM hidden size, we firstly use three
line graphs4 to observe in a large hidden size range from
200 to 1200 at intervals of 200 in Fig. 3. From these line
graphs we can clearly see that as the hidden sizes increase, the
perplexities keep decreasing, but the rate of decline is getting
slower and slower. This means that the contribution of newly
added parameters to the improvement of model performance
decrease. Besides that, Fig. 3 also shows that compared to the
first layer, the model perplexities drop faster as the hidden size
of the second LSTM layer increases. So, we can conclude that
the second LSTM layer is more sensitive to the dimensional
change than the first LSTM.

From Fig. 3, we can see the trend of the overall model
effect when the specific LSTM hidden size changes at a large
interval (200). For observing the influence of the specific
LSTM hidden size changes in a more gradual way, we conduct
experiments presented in Fig. 4. Fig. 4 shows the parameter
counts (Param) and perplexity bands (PPL) of the model for
the specific LSTM layer with hidden sizes from 0.6c to 1.2c
at interval of 0.1c. From the change in parameter count, the
small changes in the specific LSTM hidden size can lead to
obvious changes in overall parameter count. However, the final
effects are not improved distinctively. In the perplexity band

2The third LSTM layer of AWD-LSTM is connected to the Softmax layer,
whose input size is fixed after tying the word vectors and word classifier. So
we only experiment over the first two LSTM layers.

3Detailed information about PTB and WT2 datasets will be introduced in
Section V.

4Since the hidden size of the third LSTM of AWD-LSTM-MoS is much
smaller than the first two layers, it is not suitable to draw their hidden size
changes in the same coordinate system, so we only plot the hidden size
changes of the first two LSTM layers in the line graph.

for each specific LSTM layer, the part in which the perplexity
differ from the standard perplexity (in [6] and [12]) within the
range of [−0.25, 0.25] are marked with a red box. We found
the hidden sizes of 0.9c in most layers are included in a red
box, and the red box of the third LSTM layer in AWD-LSTM-
MoS includes the hidden size of 0.6c.

Combining the results in Fig. 3 and Fig. 4, we can clearly
conclude that appropriately reducing the hidden size of a
LSTM layer in the language model can reduce the useless
parameters under the premise of maintaining the model per-
formance. For the main reason of the phenomenon in Fig. 3
and Fig. 4, we exclude the following two common points:
1) Insufficient training: each model is trained as same as in
[6] and [12], the number of training epochs achieves 500. 2)
Overfitting: in Fig. 3 the regularization methods we use are
same as the standard in [6] and [12], it can be found that the
hidden size of almost all points for both LSTM-1 and LSTM-
2 in each subfigure is less than the standard hidden size c,
with only a few exceptions, but they do not cause serious
overfitting. The similar situation occurs in Fig. 4. Therefore,
we believe that the phenomenon is related to the structure of
LSTM itself, which we will analyze in the next section.

IV. THE IMPROVEMENT FOR LSTM IN THE VANILLA
LSTM LANGUAGE MODEL: MAJOR-MINOR LSTMS

In the previous sections, we have introduced the details
of the vanilla LSTM language model and pointed out its
drawback: in a nutshell, we found that when the scale of a
certain LSTM is large enough, simply increasing its hidden
size not only has little effect, but also introduces a large
number of extra parameters.

In this section, we provide a further theoretical analysis, by
firstly converting the operation of the LSTM to a general RNN
equivalent form, in which we aim to reveal the existence of
high correlation between features in the LSTM hidden states
that is one of the main causes of the afore discussed drawback.
At last, we propose a simple yet effective improvement on
LSTMs in the language model called Major-Minor LSTMs to
alleviate the issue.

A. Derivation of converting LSTM to RNN

In order to facilitate the following analysis of LSTM, we
simplify the operation of each LSTM in the language model
to a general RNN. For the sake of clarity, we omit the symbol
superscripts of the layer number in Section III.

Assume v = (v1, ..., vn), vj ∈ Rd0 are the input sequence
of the LSTM, the operation of LSTM can be written as:

yj = f (Wvj + Uyj−1 + b) (11)

W =
[
W̃ ;0T1

]T
∈ R5d1×d0 , W̃ =

[
WT
i ;WT

r ;WT
f ;WT

o

]T
(12)

U =

[
Ũ 02

03 I

]
∈ R5d1×2d1 , Ũ =

[
UTi ;U

T
r ;U

T
f ;U

T
o

]T
(13)

6

b =
[
b̃;0T4

]T
∈ R5d1 , b̃ =

[
bTi ; b

T
r ; b

T
f ; b

T
o

]T
(14)

f (x) = fd1 (x) = f
(3)
d1
◦ f (2)d1

◦ f (1)d1
(x) (15)

f
(1)
d1

(x) = (σ (x1:d1) , tanh (xd1+1:2d1) ,

σ (x2d1+1:4d1) , x4d1+1:5d1)
(16)

f
(2)
d1

(x) = (x1:d1 � xd1+1:2d1 + x2d1+1:3d1

�x4d1+1:5d1 , x3d1+1:4d1)
(17)

f
(3)
d1

(x) = (tanh (x1:d1)� xd1+1:2d1 , x1:d1) (18)

Where yj = (hj , cj) ∈ R2d1 , is the concatenation of the
hidden state and the cell state corresponding to (5) and (6)
of the LSTM;

[
W̃ , Ũ , b̃

]
are the non-recurrent, recurrent

parameter matrices and bias parameter vectors in (1), (2),
(3), (4); 01 ∈ Rd1×d0 , 02 ∈ Rd1×d1 , 03 ∈ Rd1×4d1 and
04 ∈ Rd1 are fixed zero matrices; I ∈ Rd1×d1 is the fixed
identity matrix. xp:q denotes the fragment of vector x from
the pth to the qth elements.

In fact, the result of the affine transformation Wxj +
Uyj−1 + b is the stacking of results of (1), (2), (3), (4)
before activation function and cj−1; f (1)d1

(Wvj + Uyj−1 + b)

is the stacking of ilj , g
l
j , f

l
j , o

l
j in (1), (2), (3), (4) and cj−1;

f
(2)
d1
◦f (1)d1

(Wvj + Uyj−1 + b) ∈ R2d1 is concatenation of the
current cell state cj and the output gate olj . At last, the output
of f (3)d1

◦ f (2)d1
◦ f (1)d1

(Wvj + Uyj−1 + b) = (hj , cj) ∈ R2d1 ,
which makes the (11) established.

B. The High Correlation between Features in LSTM Hidden
States

Through the above derivation process, the complex opera-
tion of LSTM is transformed into a simple recursive process
of RNN. In various task of NLP, this recursive operation mode
enable the LSTM to process the input texts of any length and
capture the long-term dependencies. However, we find that
this recursiveness can also lead to a high correlation between
different features in each LSTM hidden state, which impedes
the enhancement of model effect.

In general, if the hidden size of a LSTM is extended, its
capability of extracting features will be enhanced. However,
since LSTM is a recursive model, there is a high correlation
between its newly extended hidden states and original hidden
states, which may limit the diverse semantic features expres-
sion of the expanded hidden states. We randomly choose a
LSTM in the multi-layer LSTM language model as the exam-
ple, as in (11), the calculation of the LSTM can be written as:
yj = f (Wvj + Uyj−1 + b), vj ∈ Rd0 , yj = (hj , cj) ∈ R2d1 .
After increasing the hidden size from d1 to d1 + d2, the
extended output is ynewj =

((
hj , h

′

j

)
,
(
cj , c

′

j

))
∈ R2(d1+d2)

can be split into two parts yj = (hj , cj) ∈ R2d1 and
y

′

j =
(
h

′

j , c
′

j

)
∈ R2d2 (here we exchange the order of cj

and h
′

j in ynewj for the following description), where yj is
calculated as (11) - (18) and the y

′

j can be obtained by an
operation similar to yj :

yj = fd1
(
Wvj + Uynewj−1 + b

)
(19)

y
′

j = fd2

(
W

′
vj + U

′
ynewj−1 + b

′
)

(20)

Now if we assume that there is no term of ynewj−1 in (19)
and (20), the calculations of (19) and (20) are no longer
recursive procedures. The hidden state yj and y

′

j are generated

by parameters in [W, b] and
[
W

′
, b

′
]
, respectively5. That is

to say, when the yj is extended to ynewj , the newly added

parameters in
[
W

′
, b

′
]

can be used to generate more diverse
semantic features for the input vj independently of the original
parameters in [W, b].

But in fact, the two sets of parameters cannot transform the
input vj independently due to the existence of terms of ynewj−1 .

The two sets of parameters in [W,U, b] and
[
W

′
, U

′
, b

′
]

must
cooperate with each other to generate features in LSTM hidden
states, which results in the entire hidden state affected by the
change of any parameters in the two parameter sets. So yj
and y

′

j are highly correlated, which is adverse for diversity
and comprehensive feature expressions of the layer outputs
hj , h

′

j within yj and y
′

j . Because of this, simply lengthening
the LSTM hidden states cannot improve the final model effect
continuously. In Section V-B, we will further explore the
feature correlation of LSTM hidden states in the language
model by experiments.

C. Major-Minor LSTMs for Language Modeling

A simple and straightforward way to break the correlation
between the newly added hidden states and the original hidden
states of the LSTM is to leverage multiple LSTMs to extract
semantic features of inputs, which also facilitates reducing
model parameters6. On the other hand, it is necessary to
keep a LSTM containing most of parameters so that it has
sufficient generalization capability to extract complex seman-
tic features from input, which will be verified in Section
V-D2. To this end, we construct a large-scale Major LSTM
to extract the main semantic features from the output of
the previous layer and apply a small-scale Minor LSTM in
generating a set of auxiliary features to cooperate Major
LSTM, we named this architecture to Major-Minor LSTMs
(MMLSTMs). In this way, yj and y

′

j in (19) and (20) are

5As in (12) - (14), there are also a part of fixed values in [W,U, b] and[
W

′
, U

′
, b

′
]

, but we only focus on the parts of parameters that can be
updated in training.

6With a fixed output size n, using multiple small-scale LSTMs requires
less parameters than using a single large-scale LSTM, because the n × n-
dimensional matrix of recurrent connection in the large LSTM is replaced by
a set of ni × ni–dimensional matrix distributed in recurrent connections in
these small LSTMs and satisfy

∑
ni = n. So we can obtain

∑
(ni)

2 ≤ n2.

7

substituted by ymajorj =
(
hmajorj , cmajorj

)
∈ R2dma and

yminorj =
(
hminorj , cminorj

)
∈ R2dmi :

ymajorj = fdma

(
Wmajorvj + Umajorymajorj−1 + bmajor

)
(21)

yminorj = fdmi

(
Wminorvj + Uminoryminorj−1 + bminor

)
(22)

where fdma
(x) and fdmi

(x) are non-linear functions defined
as (15) - (18), Wmajor, Wminor correspond to (12) containing
non-recurrent parameter matrices of two LSTMs. As (13), the
form of Umajor, Uminor are block diagonal matrices, which
involve the recurrent parameter matrices. bmajor and bminor

are biases as in (14). Obviously, the parameters of Major
LSTM and Minor LSTM generate the two parts of hidden
states hmajorj and hminorj independently.

The core idea of MMLSTMs is to divide the output features
into two parts and generate them independently with two
LSTMs. [33] also splits the output of the LSTM into several
groups and utilizes the LSTM with matrix factorization to
obtain the output of each group by separated input features.
In contrast, our MMLSTMs always maintain the integrity
of the input features instead of splitting them into separate
parts, so that the complete input information can be taken into
account during generating the outputs of both Major and Minor
LSTMs. In addition, MMLSTMs leverage the vanilla LSTM
rather than the LSTM with matrix factorization to ensure that
the model expressiveness does not degrade due to the sharp
drop in the amount of parameters.

For the MMLSTMs language model, there are two branches
in each layer: Major LSTM and Minor LSTM. Naturally,
according to above discussion, the inputs of Major and Minor
LSTMs are both the output of the previous layer, and we
highlight the relationship of “major” and “minor” by setting
the ratio of their hidden sizes. For further improvement, in
our proposed model, we use the original word embeddings
as the input of Minor LSTM instead of the output of the
previous layer. Fig. 2 shows the language model build by our
MMLSTMs, which substitutes a MMLSTMs layer for each
LSTM in the vanilla language model.

The reasons why we utilized the original word embeddings
as the input of Minor LSTM are three-folds. First, accord-
ing to our MMLSTMs design, we appropriately reduce the
hidden size of original LSTM in LSTM language model as
the Major LSTM, which will not impair its generalization
ability significantly. Therefore, the Major LSTM has enough
capability to process the output of the previous layer, and there
is no need to process it with the Minor LSTM. Second, if we
consider the layers before the current layer as a whole, the
output of the previous layer can be written as the function of
the original sequence embedding. The output of the previous
layer is just an intermediate result for generating the auxiliary
features of the current layer. The original embeddings, by
contrast, can generate the auxiliary features more directly.
Third, as mentioned by [6], the size of embedding should be
smaller than the hidden size, so that the overfitting of the word

embeddings can be eased. Therefore, the size of original word
embeddings is always smaller than the output of LSTM layer,
using the original embedding as the input of Minor LSTM
requires fewer parameters. We will compare these two types
input in detail in Section V.

It is worth noting that the Minor LSTM can be seen as a
shortcut connection in form. But in fact, The Minor LSTM is
essentially different from existing shortcut connections [27],
[30], [31], [34], [35]. Firstly, the existing shortcut connection
is an indispensable part of many deep networks, where its main
role is to alleviate the issues encountered in training process
(e.g. gradient vanishing/exploding). But in our scenario, we
apply the Minor LSTM in shallow neural networks (no more
than 5 layers), which does not suffer the same problem as those
in deep networks in training process. So the motivation of
Minor LSTM and existing shortcut connection are completely
different. Secondly, in the architecture of MMLSTMs, we have
defined the primary and secondary status of the Major and
Minor LSTMs at the beginning, the Minor LSTM is just used
for generating the auxiliary features. But for the existing neural
networks with shortcut connection, the importance of the two
branches (the main branch and the branch of shortcut connec-
tion) cannot be determined in advance. In the experimentation
discussed in Section V, we will demonstrate that the primary-
secondary structure of our MMLSTMs can effectively improve
the performance of LSTM language model.

As for how the auxiliary features actually work, we do the
following analysis:

When the output of the current MMLSTMs layer(
hmajorj , hminorj

)
is fed into the next layer, which is a

combination of different components in forms of nonlinear
affine transformation, the calculation of each component can
be denoted as:

zj = g
(
Ahmajorj + Czj−1 + d+Bhminorj

)
(23)

where zj ∈ Rd3 is the jth output of the compo-
nent,

[
A ∈ Rd3×d1 , B ∈ Rd3×d2 , C ∈ Rd3×d3 , d ∈ Rd3

]
are

parameters. g is the non-linear activation function of the
component. If the component is not recursive, the C is set to
0. From (11) we can infer that the term of Bhminorj can work
as an adaptive bias, which adjust the calculation of hmajorj

dynamically. Different from the fixed bias d, the term Bhminorj

will change with the various input. But if we use the
(
hj , h

′

j

)
generated by (19), (20) as the input of the component, the
correlation between hj and h

′

j will constrain h
′

j , so that it
cannot adjust the calculation of hj freely.

V. EXPERIMENTS

In this section, we conduct a series of experiments to verify
the effectiveness of MMLSTMs in language model and explore
the characteristics of MMLSTMs language model.

A. Results on Two Small Corpus: PTB and WT2

We firstly evaluate our methods on two small corpus Penn
Treebank (PTB) [39] and the WikiText-2 (WT2) [36], and their

8

TABLE I
STATISTICAL RESULTS PENN TREEBANK (PTB), WIKITEXT-2 (WTB) AND WIKITEXT-103 (WT103) DATASETS.

Penn Treebank WikiText-2 WikiText-103
Train Valid Test Train Valid Test Train Valid Test

Arcitles - - - 600 60 60 28,475 60 60
Tokens 887,521 70,390 78,669 2,088,628 217,646 245,569 103,227,021 217,646 245,569
Vocab 10,000 33,278 267,735
OoV 4.8% 2.6% 0.4%

TABLE II
SINGLE MODEL PERPLEXITY ON VALIDATION AND TEST SETS ON PENN TREEBANK. BASELINE RESULTS ARE OBTAINED FROM [6], [12]. * INDICATES

USING DYNAMIC EVALUATION.

Model #Param Validation Test
[10] – RNN-LDA + KN-5 + cache 9M - 92.0

[14] - LSTM (large) 66M 82.2 78.4
[15] – Variational LSTM (MC) 66M - 73.4

[17] - CharCNN 19M - 78.9
[36] – Pointer Sentinel-LSTM 21M 72.4 70.9

[37] - LSTM + continuous cache pointer - - 72.1
[16] – Tied Variational LSTM + augmented loss 51M 71.1 68.5

[30]– Variational RHN 23M 67.9 65.4
[35] – NAS Cell 54M - 62.4

[32] – 2-layer skip connection LSTM 24M 60.9 58.3
[36] – AWD-LSTM 24M 60.7 58.8
AWD-LSTM-MoS− 18.8M 59.74 57.97

[12] – AWD-LSTM-MoS 21.5M 58.08 55.97
Ours-AWD-MMLSTMs-MoS 21.3M 56.52 54.51
[6] – AWD-LSTM + finetune 24M 60.0 57.3

AWD-LSTM-MoS− + finetune 18.8M 58.01 55.89
[12] – AWD-LSTM-MoS + finetune 21.5M 56.54 54.44

Ours-AWD-MMLSTMs-MoS + finetune 21.3M 55.42 53.46
[6] – AWD-LSTM + finetune + continuous cache pointer* 24M 53.9 52.8

[38] – AWD-LSTM + finetune + dynamic evaluation* 24M 51.6 51.1
AWD-LSTM-MoS− + finetune + dynamic evaluation* 18.8M 49.72 48.92

[12] – AWD-LSTM-MoS + finetune + dynamic evaluation* 21.5M 48.33 47.69
Ours-AWD-MMLSTMs-MoS + finetune + dynamic evaluation* 21.3M 47.31 46.81

TABLE III
SINGLE MODEL PERPLEXITY OVER WIKITEXT-2. BASELINE RESULTS ARE OBTAINED FROM [6] AND [12]. * INDICATES USING DYNAMIC EVALUATION.

Model #Param Validation Test
[16] - Variational LSTM (tied) + augmented loss 28M 91.5 87.0

[37] - LSTM + continuous cache pointer - - 68.9
[32] - 2-layer skip connection LSTM (tied) 24M 69.1 65.9

[6] – AWD-LSTM 33M 69.1 66.0
AWD-LSTM-MoS− 29.4M 67.33 64.64

[12] – AWD-LSTM-MoS 35M 66.01 63.33
Ours-AWD-MMLSTM-MoS 32.3M 64.3 61.77

[6] – AWD-LSTM + finetune 33M 68.6 65.8
AWD-LSTM-MoS− + finetune 29.4M 65.11 63.02

[12] – AWD-LSTM-MoS + finetune 35M 63.88 61.45
Ours-AWD-MMLSTM-MoS + finetune 32.3M 63.11 60.51

[6] – AWD-LSTM + finetune + continuous cache pointer* 33M 53.8 52.0
[38] – AWD-LSTM + finetune + dynamic evaluation* 33M 46.4 44.3

AWD-LSTM-MoS− + finetune + dynamical evaluation* 29.4M 44.23 42.19
[12] – AWD-LSTM-MoS + finetune + dynamical evaluation* 35M 42.41 40.68

Ours-AWD-MMLSTMs-MoS + finetune + dynamical evaluation* 32.3M 41.91 40.15

statistical results are shown in Table I7. We used perplexity as
the primary metric, the results of both our models (AWD-
MMLSTMs-MoS) and other competitive models on PTB and
WT2 are reported in Table II and Table III respectively.

7The statistical results are excerpted from: https://einstein.ai/research/blog/
the-wikitext-long- term-dependency-language-modeling-dataset

Following is the descriptions of PTB and WT2 datasets.

PTB: The Penn Treebank dataset has long been a central
dataset for experimenting with language modeling. The dataset
has been preprocessed and does not contain capital letters,
numbers, or punctuation. The vocabulary is capped at 10,000
unique words, quite small in comparison to most modern

9

TABLE IV
HYPER-PARAMETERS USED FOR AWD-MMLSTMS-MOS. V-DROPOUT

ABBREVIATES VARIATIONAL DROPOUT [15]. SEE [6] FOR MORE DETAILED
DESCRIPTIONS.

Hyper-parameter PTB WT2
Learning rate 20 20

MMLSTMs layer size [1080, 1080, 620] [1200, 1200, 650]
Proportions of Major LSTM [90%, 90%, 60%] [90%, 90%, 60%]

Embedding V-dropout 0.5 0.55
Hidden state V-dropout 0.25 0.2
Non-monotone interval 10 10

TABLE V
HYPER-PARAMETERS USED FOR DYNAMIC EVALUATION OF

AWD-MMLSTMS-MOS. SEE [38] FOR MORE DETAILED DESCRIPTIONS.

Hyper-parameter PTB WT2
Batch size 150 130

Learning rate(η) 0.0024 0.00198
ε 0.0025 0.0023
λ 0.07 0.0245

bptt 7 7

datasets, which results in a large number of out of vocabulary
(OoV) tokens.

WT2: WikiText-2 is sourced from curated Wikipedia arti-
cles and is approximately twice the size of the PTB dataset.
The text is tokenized and processed using the Moses tokenizer
[40], frequently used for machine translation, and features a
vocabulary of over 30,000 words. Capitalization, punctuation,
and numbers are retained in this dataset.

We applied our proposed MMLSTMs in AWD-LSTM–MoS
architecture proposed by [12], and called the new model AWD-
MMLSTMs-MoS. For fair comparison, we only adjust the
hyper-parameters associated with our improvement, and set
other hyper-parameters to be the same as in [12]. Table IV lists
the hyper-parameters we adjust. For facilitating the adjustment
of the regularization methods on Major and Minor LSTMs, we
tied up their embedding and hidden state variational dropout
values. We divided the dimension of each MMLSTMs layer
output into 10 parts, and heuristically and manually search
various combinations of Major and Minor LSTMs hidden
size proportions. It was found that the hidden sizes of the
Major LSTMs on three layers accounted for [90%, 90%, 60%]
respectively can achieve the best effect on both datasets.
The improvement of MMLSTM on the single LSTM can be
divided into two steps: reducing the hidden size of the original
LSTM, construct the Minor LSTM. For exploring the influence
of smaller LSTM hidden sizes on the model performance, we
built a AWD-LSTM-Mos− with the same LSTM hidden sizes
as the Major LSTMs in our AWD-MMLSTMs-MoS, which
can better compare the performance of the language model
before and after using Minor LSTMs.

We also applied dynamic evaluation [38] to further enhance
our model performance, whose hyper-parameters are listed
in Table V. Dynamic evaluation [41]–[43] adapts models to
recent sequences using gradient descent based mechanisms.
Different from the traditional static evaluation, the dynamic

evaluation will dynamically adjust the trained model parame-
ters as the test progresses. For traditional static evaluation, the
model can only use the training set to update the parameters,
while dynamic evaluation also allows model to utilize the
samples in test set that have been tested. Therefore the
model effects can been improve significantly with the dynamic
evaluation.

The evaluation process can be divided into three stages:
training, fine-tuning, and dynamic estimation. After the train-
ing, we can obtain a preliminary model, which will be tuned
to achieve better results in the further stages namely the
fine-tuning and dynamic estimation. The Table II and III are
divided into three parts, which corresponding to the three
stages. It can be seen that AWD-MMLSTMs-MoS exceeds
other baselines in all stages on both PTB and WT2, which
demonstrates that MMLSTMs can effectively enhance the
model performance without sacrificing the extra parameters.
Moreover, we guaranteed that the hyper-parameters are con-
sistent with the baseline model (AWD-LSTM-MoS) except for
the part of MMLSTM, so it excludes the influence of other
factors (e.g. regularization, optimizer) on the final results.

B. Results on a medium corpus: WT103

To further validate the effects of MMLSTMs language
model on real life corpus, we conducted an experiment on
a widely-used medium-scale dataset WikiText-103 (WT103).
The WT103 is also derived from Wikipedia, whose training
set is 103M and vocabulary contains 267K words. Compared
to the preprocessed version of WT2, WT103 is over 55 times
larger. Therefore, WT103 is a representative language model
dataset, Table I shows the details.

In this experiment, in order to eliminate the impact of
some advanced regularization and optimization techniques on
evaluate results, we directly improve from a simple 2-layer
LSTM language model, and only add some basic regulariza-
tion techniques to prevent overfitting, then leverage Adam [45]
optimizer with learning rate of 0.001 to speed up the training.
The details are shown in Table VI.

The experimental results on WT103 are reported in Table
VII. From Table VII, we can see that the LSTM language
model implemented by us surpasses the LSTM language
model in [37]. Comparing our LSTM language model and
MMLSTMs language model, it can be found that the per-
plexity of the MMLSTMs language model is about 3.3 points
lower than the baseline LSTM language model we construct.
In addition, many regularization techniques in AWD-LSTM
are excluded, which fully validates the effectiveness of the
MMLSTMs on real life dataset.

C. Evaluation on output feature correlation

Combining our previous analysis in Section IV-B, for the
single LSTM in each layer of existing LSTM language model,
the generation of a specific output feature requires the joint
implementation of all parameters during training, which also
affects the other output features. This to some extent limits
the free expression of various semantic features and increase

10

TABLE VI
THE DETAILS OF BASELINE LSTM LANGUAGE MODEL AND MMLSTMS LANGUAGE MODEL ON WT103. BPTT ABBREVIATES BACKPROPAGATION

THROUGH TIME. RECURRENT WEIGHT DROPOUT REPRESENTS THE DROPOUT CONNECTION ON LSTM RECURRENT MATRIX, SEE [6] FOR MORE
DETAILS. EXCEPT FOR THE HIDDEN SIZES OF LSTM (MMLSTM) LAYERS, ALL OTHER HYPER-PARAMETERS ARE THE SAME.

Model LSTM language model MMLSTMs language model
Embedding size 256 256

LSTM(MMLSTM) size 1024 1100
Proportions of Major LSTM [100%, 100%, 100%] [90%, 90%, 90%]

LSTM (MMLSTM) layer 2 2
BPTT 70 70

Batch size 128 128
Number of epoch 50 50
Weight tying [16] True True

Dropout of LSTM (MMLSTM) output 0.1 0.1
Recurrent weight dropout [44] 0.15 0.15

TABLE VII
SINGLE MODEL PERPLEXITY OVER WIKITEXT-103.

Model #Param Validation Test
LSTM language model [37] - - 48.7

LSTM language model(our implement) 75.4M 47.01 47.95
MMLSTMs language model 75.0M 43.45 44.69

the correlation of different features. For the model with high-
correlated output features, a natural and direct manifestation
is that a part of its multiple output features need to work
together closely in the subsequent operations, and once some
of the multiple high-correlated output features are missing,
the subsequent operations will be influenced significantly and
the final results will get worse obviously. Thus, in order to
visually verify that the correlation between our MMLSTM
output features is weaker than the general LSTM, we designed
the following experiment on the PTB corpus.

During test, we arbitrarily masked a part of the features (set
the value to 0) within different output vectors of a LSTM layer
in the trained language model, and refer to this layer as masked
layer. The process is same as the forward propagation of the
model with dropout in training process. One of the effects of
the dropout is to prevent complex co-adaptations in which a
feature dector is only helpful in the context of several other
specific feature detectors [46]. In our scenario, we only need to
compare the degree of correlation between the output features
of general LSTM and MMLSTM, which does not require the
backward propagation as in dropout.

In the experiments, we constructed five language models
denoted as LM, LM+, LM#, LM##, MMLM. LM is the
original AWD-LSTM-MoS in [6]; for LM+ , we slightly
amplified the dropout rate of LSTM hidden states, recurrent
weights in AWD-LSTM-MoS (increase by 0.025 per value) to
study whether increasing the intensity of regularizations can
effectively reduce the correlation of LSTM output features.
For fair comparison, we set three language models of LM#,
LM## and MMLM: LM# adjusts the hidden size of each
LSTM layer in LM to be the same as our AWD-MMLSTM-
MoS in Section V-A, and keep the other hyper-parameters
unchanged; LM## denotes the AWD-LSTM-MoS with all
hyper-parameters to be the same as AWD-MMLSTM-MoS
(including all hidden sizes and dropout rates); MMLM is the

AWD-MMLSTM-MoS in Section V-A.
Similar to dropout, we leveraged a Bernoulli distribution

with probability P to decide which features within test layer
output are masked, the range of P is from 0 (no mask) to 0.5
(mask a half features) at interval of 0.05. Figure 5 (a), plots
the line charts of perplexities of the five language models with
all three LSTM layers as masked layers. Figure 5 (b), Figure
5 (c), Figure 5 (d) separately set the masked layer as the first
to the third LSTM layer in each model. In all the sub-figures,
the perplexity of every model is the average of five runs for
each value of P .

From the four sub-figures of Figure 5, we can observe that
regardless of whether the test layer is all LSTMs in language
model or a certain LSTM layer, the effect of MMLM is
consistently better than the other three language models, which
fully reflects the superiority of MMLSTM. Comparing the
LM## with MMLM, whose hyper-parameters are the same
except for the structure of each LSTM layer, we can conclude
that the significant weakening of the feature correlation is
absolutely due to the MMLSTMs.

For the two object pairs: LM and LM+, LM# and LM##,
LSTM hidden size and other hyper-parameters are the same
in language models of each pair except for the regularization
in each LSTM, but the LSTM feature correlations is not
distinctly weakened by increasing the regularization intensity
of LSTM, especially for LM+. Although the dropout rates of
different parts of the LSTM in LM+ are amplified by 0.025,
the LSTM feature correlation is almost unchanged. In contrast,
using MMLSTM can weaken the LSTM feature correlation
more simply and effectively than fine-tuning of some existing
regularization methods. From this phenomenon we can also
conclude that due to the existing regularization can not break
the shackles of the recursive pattern of the single LSTM, the
degree of output feature correlation can not been weaken once
it reaches a certain level. But our MMLSTM can further reduce

11

50

100

150

200

250

300

350

400

0 0 . 05 0 .1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .45 0 .5

PP
L

PROBABILITY (P)

MMLM LM LM# LM## LM+

(a)

50

55

60

65

70

75

80

85

90

0 0 . 05 0 .1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .45 0 .5

PP
L

PROBABILITY (P)

MMLM LM LM# LM## LM+

(c)

50

55

60

65

70

75

80

85

90

95

0 0 .05 0 .1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .4 5 0 .5

PP
L

PROBABILITY (P)

MMLM LM LM# LM## LM+

(b)

50

55

60

65

70

75

80

85

90

95

0 0 .05 0 .1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .45 0 .5

PP
L

PROBABILITY(P)

MMLM LM LM# LM## LM+

(d)

Fig. 5. The test perplexities (from P=0 to 0.5) of MMLM, LM, LM#, LM##, LM+ with different masked layers on PTB corpus. (a) Masked layer is all
LSTMs in corresponding language model. For MMLM, each LSTM layer involves both Major and Minor LSTMs (the same for (b), (c), (d)). (b) Masked
layer is the first LSTM layer. (c) Masked layer is the second LSTM layer. (d) Masked layer is the third (last) LSTM layer. In all sub-figures, the perplexity
of every model is the average of five runs for each value of P .

the feature correlation of the layer output.
Another noteworthy finding is that the performance of LM∗

is not obviously distinct from LM, but the parameter count has
increased from 21.5M to 24.9M, which again confirms that:
when the hidden sizes of LSTMs in existing LSTM language
model are large enough, continuing to lengthen the hidden
states not only wastes tremendous parameters but also has little
effect.
D. Further Investigation

1) Different inputs for Minor LSTM: In the Section IV-C,
we explained the reason why we used the original embeddings
as the input of the Minor-LSTMs instead of the output of
the previous layer. To compare the influence of the two
types inputs on the final results, we conducted experiments
on PTB and WT2 datasets, while limiting the amount of
parameters. We build two AWD-MMLSTMs-MoS with the
two types input for the Minor LSTMs, which are denoted
as MMLM-1 (original embedding as input) and MMLM-2
(previous layer output as input). The MMLM-1 is the same
as AWD-MMLSTM-MoS in Section V-A. For the MMLM-
2, its hidden size in the first two LSTM layers are set to
1150, so that the parameters of the two models are roughly

equal. Besides, the other hyper-parameters of MMLM-1 and
MMLM-2 are the same as in Table IV. The results in Table
VIII showed that the MMLM-1 steadily surpasses MMLM-2
on both datasets, which demonstrates the shortcut connection
from input word embedding to each Minor LSTM is helpful
for our AWD-MMLSTM-MoS under the hyper-parameters in
Table IV.

2) Different ratios for Major and Minor LSTM hidden
sizes: In the Section IV-C, we elaborated the difference
between the Minor LSTM in our MMLSTMs and the shortcut
connections in existing deep networks. A typical difference
is that the MMLSTMs assigns the importance of Major and
Minor LSTMs by setting their relative dimensional size at
the beginning of the design. The Minor LSTM is only for
generating a set of auxiliary features for the output of the Ma-
jor LSTM; Whereas in existing deep networks with shortcut
connection, there is no clear importance division between the
main branch and the branch of shortcut connection. In most
cases, the two braches interact with each other by element-
wise addition operation [27], [30].

In this subsection, we verified the validity of the primary and
secondary structure of our MMLSTMs through experiments,

12

TABLE VIII
THE PERPLEXITIES OF MMLM-1 AND MMLM-2 ON PTB AND WT2 DATASETS.

Model PTB WT2
#Param Val Test #Param Val Test

MMLM-1 21.3M 56.52 54.51 32.3M 64.30 61.77
MMLM-2 21.7M 57.95 55.93 32.5M 65.43 62.76

TABLE IX
THE HIDDEN SIZES OF LSTM LAYER IN MODELS WITH DIFFERENT RATIOS.

Ratio of Major-Minor Proportions of Major LSTM MMLSTMs (LSTM) Size #Param (M)
PTB WT2 PTB WT2

5:5 [50%, 50%, 50%] 1560 1550 24.3 33.4
6:4 [60%, 60%, 60%] 1500 1500 24.2 33.5
7:3 [70%, 70%, 70%] 1420 1440 24.1 33.8
8:2 [80%, 80%, 80%] 1330 1330 24.1 33.5
9:1 [90%, 90%, 90%] 1240 1230 24.2 33.3

10:0 [6] [100%, 100%, 100%] 1150 1150 24.2 33.6

66.62

65.26

62.58
62.14

61.45

62.64

64.6

63.07

60.4

59.58
59.17

60.09

59

60

61

62

63

64

65

66

67

68

5 - 5 6 - 4 7 - 3 8 - 2 9 - 1 10 - 0

PP
L

Ratio of Major-Minor

valid test

(a)

77.19

76.17

72.51

71.64
71.13

72.13

74.11

72.78

69.56

68.63
68.04

69.3

68

69

70

71

72

73

74

75

76

77

78

5- 5 6 - 4 7 - 3 8 - 2 9 - 1 10 - 0

PP
L

Ratio of Major-Minor

valid test

(b)
Fig. 6. The valid and test perplexities of AWD-MMLSTMs (training for 300 epochs) under different Major and Minor dimension ratios on PTB (a) and WT2
(b).

TABLE X
ABLATION STUDY ON PTB AND WT2 DATASETS. ADJUSTED DIM MEANS ADJUSTED DIMENSION OF THE LAYER REMOVED THE MINOR LSTM.

Model PTB WT2
Adjusted Dim #Param Val Test Adjusted Dim #Param Val Test

MMLM-w/o-Minor-1 1030 21.5M 57.3 55.10 1150 32.5M 65.34 62.73
MMLM-w/o-Minor-2 1030 21.5M 57.14 54.93 1130 32.6M 65.07 62.43
MMLM-w/o-Minor-3 520 21.5M 57.84 55.74 550 32.6M 65.66 63.02

MMLM (in Section IV-B) - 21.3M 56.52 54.51 - 32.3M 64.3 61.77

TABLE XI
THE MAIN HYPER-PARAMETERS OF NMT MODELS.

Model Baseline (we implement) MMLSTM-NMT-model
Source(target) embedding size 1000 1000

Encoder (Decoder) LSTM layer 4 4
LSTM (MMLSTM) sizes [1000, 1000, 1000, 1000] [1070, 1070, 1070, 1070]

Proportions of Major LSTMs [100%, 100%, 100%, 100%] [70%, 70%, 80%, 90%]
Initial learning rate 1.0 1.0

Dropout rate 1.0 1.0
Training step 340000 340000

13

TABLE XII
THE WMT 15 AND 16 GERMAN-ENGLISH RESULTS OF SINGLE NMT MODELS.

Model Baseline [47] Baseline + BPE (We implement) MMLSTM-NMT model + BPE
Param 170.7M 170.7M 172.8M

WMT
2015

PPL 9.7 6.83 6.15
BLEU 24.9 29.36 30.83

WMT
2016

PPL - 5.39 4.88
BLEU - 33.38 35.48

thus demonstrating the difference between our MMLSTMs and
existing shortcut connections. We utilized the AWD-LSTM
as the basic model, and replaced its LSTM layers with the
MMLSTMs. All hyper-parameters are consistent with [6],
except for the overall output size of each MMLSTMs and
the ratio of the Major and the Minor LSTM hidden sizes.
We adjusted the dimensional ratios of the Major LSTM and
Minor LSTM from 5 : 5 to 9 : 1, and set different overall
output sizes to ensure that the parameter counts of each model
roughly equal. The experiments are conducted on PTB and
WT2 datasets, and the output dimension of the hidden layers
in different model are listed in Table IX.

Fig. 6 showed the perplexities (training for 300 epoch)
of the models under different Major and Minor dimension
ratios on PTB and WT2 datasets. We can clearly see that as
the ratio of the Major and the Minor LSTMs decreases, the
perplexities on valid and test sets continue to decline from the
ratios of 5 : 5 to 9 : 1, but when the ratio reaches 10:0, that
is, there is no Minor LSTM at all, the perplexities rebound.
This phenomenon indicates that the Major LSTM requires
sufficient parameters to extract the main semantic features, and
the Minor LSTM is helpful when it is used to generate the
auxiliary features in a secondary position. This experiments
fully reflects the difference between our Minor LSTM and
existing shortcut connections.

3) Ablation Study for Minor LSTMs in Different LSTM lay-
ers: Through our experiments, we can reach a conclusion that,
using MMLSTMs layers can control the amount of parameters
and improve the model performance. To further study the con-
tribution of the Minor LSTM in different MMLSTMs layers,
we conducted an ablation study for AWD-MMLSTMs-MoS
(in the Section IV-B, denoted as MMLM) on both PTB and
WT2. We removed the Minor LSTM from each MMLSTMs
layer by layer, and denoted the model with the removed layer
as MMLM-w/o-Minor-i (i = 1, 2, 3). The dimension of the
layer removed the Minor LSTM is adjusted to keep total
parameters consistent, and the other hyper-parameters are the
same to ensure a single variable contrast experiment. We also
excluded the fine-tuning and dynamic evaluation steps, and the
results are reported in Table X.

Comparing with MMLM (in the Section IV-B), we can
conclude that the Minor LSTM of the third layer has the
greatest effect on the final performance of the model, followed
by the first Minor LSTM and finally the second.

4) The MMLSTM on Machine Translation: For verifying
the effectiveness of MMLSTM in the sequence to sequence
tasks, we applied it in the neural machine translation (NMT)
model of [47], which is a classical NMT model and takes

advantage of multi-layer LSTMs in both encoder and decoder.
The original NMT model, as our baseline, involves three
global attention mechanisms in the process of generating the
context vector, and we choose the general attention. The
models are trained on the WMT 2014 English-German dataset
consisting of about 4.5 million sentence pairs, and sentence
were encoded using Byte-pair encoding [48] (short for BPE).
We also use SGD as optimizer. The other training details are
the same as in [47].

During transforming the baseline model, we noticed that: 1)
Each layer of encoder LSTM and decoder LSTM corresponds
to each other, the last cell state of the encoder LSTM are fed
into the corresponding decoder LSTM, so the hidden size of
each encoder LSTM should be consistent with corresponding
decoder. 2) In [47], an input-feeding approach is proposed
to make alignment decision jointly take into account past
alignment information. To this end, the input of the first LSTM
layer in decoder is the concatenation of the current target word
embedding and the last attentional vector.

In order to meet the above two points, we make the
following improvements: 1) As in Section V-A, we replaced
each LSTM in both encoder and decoder to MMLSTM, and
divide the dimension of each MMLSTMs layer output into 10
parts, then heuristically and manually search various combi-
nations of Major and Minor LSTMs hidden size proportions.
For the encoder MMLSTM and decoder MMLSTM in the
same layer, we keep the hidden size of the encoder Major
(Minor) LSTM to be the same with the decoder Major (Minor)
LSTM. And the cell states are delivered from the encoder
Major (Minor) LSTM to the corresponding decoder Major
(Minor) LSTM. 2) In order to be compatible with input-
feeding approach, the high-layer Minor LSTMs still adapt
skip connection and process the input as the same as the
first MMLSTM. Concretely, the input of each encoder Minor
LSTM is set to the embedding of the input source sequences,
the input of the decoder Minor LSTM is both the attentional
vector of the last time step and the current input target word
embedding. The evaluation measures are perplexity (PPL)
and BLEU [49]. BLEU is a precision-based measure, which
measures how well a candidate translation matches a set of
reference translations by counting the percentage of n-grams
in the candidate translation overlapping with the references,
please see [49] for more details. The main hyper-parameters
are shown in Table XI, and the results of German → English
are present in Table XII.

In Table XII, the baseline model implemented by us signif-
icantly surpasses the baseline model in [47] with the help of
BPE. Compare MMLSTM-NMT model with baseline model,

14

we can find that the former consistently outperforms the latter
in both PPL and BLEU, but the parameter count of MMLSTM-
NMT model only increases 1.2%, which fully verifies the
effectiveness of MMLSTM on machine translation.

VI. CONCLUSIONS

From our research work, we observed that when a certain
LSTM reaches a sufficiently large scale, the benefits of in-
creasing its hidden size are very limited, which even leads to
a lot of useless parameters. In this paper, we have studied the
phenomenon systematically, and revealed a high correlation
between the newly extended hidden states and the original
hidden states, which hinders the LSTM from extracting diverse
and comprehensive semantic features. We have then proposed
to appropriately reduce the hidden size of the Major LSTM in
the original LSTM layer, and constructed a small-scale Minor
LSTM to extract a set of auxiliary features directly from the
original sequence of words, so that the layer has capability
to extract more diverse and comprehensive semantic features.
In experiments, we verified that the MMLSTMs language
model established a new state-of-the-art on Penn Treebank and
Wikitext-2 datasets with perplexity as the evaluation metric.
Therefore, like the existing regularization and optimization
methods, the MMLSTMs can also be used as an effective
technique to improve the effect of LSTM language model
while controlling the parameter counts.

ACKNOWLEDGMENT

This work was supported in part by the National
Key Research and Development Program of China (No.
2017YFB1400603).

REFERENCES

[1] P. Koehn, Statistical Machine Translation, 1st ed. New York, NY, USA:
Cambridge University Press, 2010.

[2] D. Yu and L. Deng, Automatic Speech Recognition: A Deep Learning
Approach. Springer, 2014.

[3] J. Botha and P. Blunsom, “Compositional morphology for word rep-
resentations and language modelling,” in International Conference on
Machine Learning, 2014, pp. 1899–1907.

[4] O. Press and L. Wolf, “Using the output embedding to improve language
models,” arXiv preprint arXiv:1608.05859, 2016.

[5] A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to generate
reviews and discovering sentiment,” arXiv preprint arXiv:1704.01444,
2017.

[6] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing
lstm language models,” arXiv preprint arXiv:1708.02182, 2017.

[7] J. Howard and S. Ruder, “Fine-tuned language models for text
classification,” CoRR, vol. abs/1801.06146, 2018. [Online]. Available:
http://arxiv.org/abs/1801.06146

[8] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” in Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70. JMLR. org, 2017,
pp. 933–941.

[9] N.-Q. Pham, G. Kruszewski, and G. Boleda, “Convolutional neural
network language models,” in Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, 2016, pp. 1153–
1162.

[10] T. Mikolov and G. Zweig, “Context dependent recurrent neural network
language model.” SLT, vol. 12, no. 234-239, p. 8, 2012.

[11] R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones, “Character-
level language modeling with deeper self-attention,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3159–
3166.

[12] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen, “Breaking the
softmax bottleneck: A high-rank rnn language model,” arXiv preprint
arXiv:1711.03953, 2017.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” arXiv preprint arXiv:1409.2329, 2014.

[15] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” in Advances in neural information
processing systems, 2016, pp. 1019–1027.

[16] H. Inan, K. Khosravi, and R. Socher, “Tying word vectors and word
classifiers: A loss framework for language modeling,” arXiv preprint
arXiv:1611.01462, 2016.

[17] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware neural
language models.” in AAAI, 2016, pp. 2741–2749.

[18] K. Kawakami, C. Dyer, and P. Blunsom, “Learning to create and reuse
words in open-vocabulary neural language modeling,” arXiv preprint
arXiv:1704.06986, 2017.

[19] Z. Assylbekov, R. Takhanov, B. Myrzakhmetov, and J. N. Washington,
“Syllable-aware neural language models: A failure to beat character-
aware ones,” arXiv preprint arXiv:1707.06480, 2017.

[20] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling,” in icassp, vol. 1, 1995, p. 181e4.

[21] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” Computer Speech & Language, vol. 13,
no. 4, pp. 359–394, 1999.

[22] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of machine learning research, vol. 3,
no. Feb, pp. 1137–1155, 2003.

[23] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh Annual
Conference of the International Speech Communication Association,
2010.

[24] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Explor-
ing the limits of language modeling,” arXiv preprint arXiv:1602.02410,
2016.

[25] K. Zolna, D. Arpit, D. Suhubdy, and Y. Bengio, “Fraternal dropout,”
arXiv preprint arXiv:1711.00066, 2017.

[26] B. D. Ripley, Pattern recognition and neural networks. Cambridge
university press, 2007.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[29] N. N. Schraudolph, “Centering neural network gradient factors,” in
Neural Networks: Tricks of the Trade. Springer, 1998, pp. 207–226.

[30] J. G. Zilly, R. K. Srivastava, J. Koutnı́k, and J. Schmidhuber, “Recurrent
highway networks,” arXiv preprint arXiv:1607.03474, 2016.

[31] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected
convolutional networks,” CoRR, vol. abs/1608.06993, 2016. [Online].
Available: http://arxiv.org/abs/1608.06993

[32] G. Melis, C. Dyer, and P. Blunsom, “On the state of the art of evaluation
in neural language models,” arXiv preprint arXiv:1707.05589, 2017.

[33] O. Kuchaiev and B. Ginsburg, “Factorization tricks for lstm networks,”
arXiv preprint arXiv:1703.10722, 2017.

[34] A. E. Orhan and X. Pitkow, “Skip connections eliminate singularities,”
arXiv preprint arXiv:1701.09175, 2017.

[35] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[36] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” arXiv preprint arXiv:1609.07843, 2016.

[37] E. Grave, A. Joulin, and N. Usunier, “Improving neural language models
with a continuous cache,” arXiv preprint arXiv:1612.04426, 2016.

[38] B. Krause, E. Kahembwe, I. Murray, and S. Renals, “Dynamic evaluation
of neural sequence models,” arXiv preprint arXiv:1709.07432, 2017.

[39] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a
large annotated corpus of english: The penn treebank,” Computational
linguistics, vol. 19, no. 2, pp. 313–330, 1993.

[40] P. Koehn, Statistical machine translation. Cambridge University Press,
2009.

[41] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1608.06993

15

[42] A. G. Ororbia II, T. Mikolov, and D. Reitter, “Learning simpler language
models with the differential state framework,” Neural computation,
vol. 29, no. 12, pp. 3327–3352, 2017.

[43] M. Fortunato, C. Blundell, and O. Vinyals, “Bayesian recurrent neural
networks,” arXiv preprint arXiv:1704.02798, 2017.

[44] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in International Conference on
Machine Learning, 2013, pp. 1058–1066.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[46] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[47] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[48] D. Britz, A. Goldie, M. Luong, and Q. V. Le, “Massive exploration of
neural machine translation architectures,” CoRR, vol. abs/1703.03906,
2017.

[49] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

Kai Shuang received the master’s and Ph.D. degrees
from the Beijing University of Posts and Telecom-
munications (BUPT) in 2003 and 2006, respectively.
He is currently an Associate Professor with the
State Key Laboratory of Networking and Switching
Technology, BUPT. His research interests include
deep learning, natural language processing, image
processing, cloud computing, and big data technol-
ogy.

Rui Li received the bachelor’s degree in information
and computing science from the Dalian University
of Technology. He is currently a research assistant
and a Doctor Degree Candidate in Beijing Univer-
sity of Posts and Telecommunications. His research
interests include deep learning, natural language pro-
cessing, language modeling and text classification.

Mengyu Gu received the bachelor’s degree in
telecommunications engineering from the Shanghai
University. She is currently a research assistant and
a Master Degree Candidate in Beijing University of
Posts and Telecommunications. Her research inter-
ests include deep learning, natural language process-
ing, language modeling and text classification.

Jonathan Loo received his M.Sc. degree in Elec-
tronics (with Distinction) and the Ph.D. degree in
Electronics and Communications from the Univer-
sity of Hertfordshire, Hertfordshire, U.K., in 1998
and 2003, respectively. Between 2003 and 2010,
he was a Lecturer in Multimedia Communications
with the School of Engineering and Design, Brunel
University, Uxbridge, U.K. Between June 2010 and
May 2017, he was an Associate Professor in Com-
munication Networks at the School of Science and
Technology, Middlesex University, London, U.K.

From June 2017, he is a Chair Professor in Computing and Communication
Engineering at the School of Computing and Engineering, University of West
London, United Kingdom. His recent research interests include deep learning,
natural language and image processing, cloud computing, wireless/mobile
communication and networks, cyber security. He has successfully graduated
18 Ph.D. students as their principal supervisor, and has co-authored more
than 250 journal and conference papers in the aforementioned specialized
areas. Dr. Loo has been an Associate Editor for Wiley International Journal
of Communication Systems since 2011. He was the Lead Editor of the book
entitled Mobile Ad Hoc Networks: Current Status”.

Sen Su is a professor in Beijing University of Posts
and Telecommunications. His research interests in-
clude deep learning, natural language processing,
computer vision, cloud computing and big data
technology. Contact him at susen@bupt.edu.cn.

	Introduction
	Related Work
	Word-level language model
	Shortcut connection

	The Vanilla LSTM Language Model
	subsubsection *Overview of the vanilla LSTM language model
	The Drawbacks of LSTM in the vanilla LSTM language model

	The Improvement for LSTM in the vanilla LSTM Language Model: Major-Minor LSTMs
	Derivation of converting LSTM to RNN
	The High Correlation between Features in LSTM Hidden States
	Major-Minor LSTMs for Language Modeling

	Experiments
	Results on Two Small Corpus: PTB and WT2
	Results on a medium corpus: WT103
	subsubsection *Evaluation on output feature correlation
	 Further Investigation
	Different inputs for Minor LSTM
	Different ratios for Major and Minor LSTM hidden sizes
	Ablation Study for Minor LSTMs in Different LSTM layers
	The MMLSTM on Machine Translation

	Conclusions
	References
	Biographies
	Kai Shuang
	Rui Li
	Mengyu Gu
	Jonathan Loo
	Sen Su

