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Accurate Tensor Completion via Adaptive
Low-Rank Representation

Lei Zhang, Member, IEEE, Wei Wei, Senior Member, IEEE, Qinfeng Shi, Chunhua Shen, Anton van den Hengel
and Yanning Zhang, Senior Member, IEEE

Abstract—Low-rank representation-based approaches that as-
sume low-rank tensors and exploit their low-rank structure with 
appropriate prior models, have underpinned much of the recent 
progress in tensor completion. However, real tensor data only 
approximately comply with the low-rank requirement in most 
cases, viz., the tensor consists of low-rank (e.g., principle part) 
as well as non-low-rank (e.g., details) structures, which limits the 
completion accuracy of these approaches.

To address this problem, we propose an adaptive low-rank 
representation model for tensor completion that represents low-
rank and non-low-rank structures of a latent tensor separately 
in a Bayesian framework. Specifically, we reformulate the CAN-
DECOMP/PARAFAC (CP) tensor rank, and develop a sparsity-
induced prior for the low-rank structure that can be used to 
determine tensor rank automatically. Then, the non-low-rank 
structure is modeled using a mixture of Gaussians prior that 
is shown to be sufficiently fl exible an d po werful to  in form the 
completion process for a variety of real tensor data. With these 
two priors, we develop a Bayesian minimum mean squared error 
estimate framework for inference. The developed framework can 
capture the important distinctions between low-rank and non-
low-rank structures, thereby enabling more accurate model, and 
ultimately, completion. For various applications, compared with 
the state-of-the-art methods, the proposed model yields more 
accurate completion results.

Index Terms—Adaptive low-rank representation, automatic 
tensor rank determination, tensor completion.
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Fig. 1. Low rank and non-low-rank structures in two color images (top:
’facade’, bottom: ’parrot’). (a) Images. (b) Low rank structure obtained by
employing CANDECOMP/PARAFAC (CP) factorization [23] on each image
with rank = 3. (c) Histograms of entries in the residual non-low-rank structure.
For the highly structured ’facade’, entries in the non-low-rank structure fit an
approximately sparse distribution, while that in ’parrot’ is more complex (e.g.,
heavy-tailed and multimodal).

I. INTRODUCTION

Representation of multidimensional data has become in-
creasingly important in various computer vision tasks, such
as visual data restoration [1]–[3], discrimative feature learn-
ing [4]–[9], compression [10]–[13]. Tensors provide an effec-
tive way to represent multidimensional data without loss of
structural characteristics, e.g., a video can be viewed as a 4-
mode tensor with dimensionality of height × width × channel
× time. However, a wide range of practical applications
(such as social networks [14], recommender systems [15],
image processing [16], [17] and face synthesis [18]–[20].)
often produce incomplete tensor data where partial entries
are missing, e.g., incomplete social relations, unknown user-
item correlation or corrupted videos. Missing entries often
cause the performance of related applications to decrease
significantly, particularly when the missing ratio is high. Thus,
significant attention has been paid [1], [21], [22] to estimating
missing entries in an incomplete tensor by exploiting its
intrinsic structural relations [1]. This is often referred as tensor
completion.

A promising way to address tensor completion is to adopt
a low-rank representation model [24] that assumes the latent
tensor to be of low rank, and recovers missing entries by
exploiting the low-rank structure. Specifically, for a latent K-
mode tensor L ∈ Rn1×···×nK (n1, · · · , nK are dimensions
in each mode), yi represents the observation of the entry in
L at position i = (i1, · · · , iK). Let YΩ =

{
yi
}
i∈Ω

be the
set of all such observations, where Ω contains the indices
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of all observations. Therefore, the observation model can be 
formulated as follows:

YΩ = LΩ +MΩ (1)

where MΩ is the noise corruption in an observation. In the
low-rank representation model, L can be recovered via the
maximum a posteriori (MAP) estimate as follows:

L̂ = arg max
L

p (L|YΩ) ∝ p (YΩ|L) p (L|Θ) (2)

where p (YΩ|L) denotes the likelihood induced by Eq. (1) and
p(L|Θ) represents a Θ-parametrized low-rank prior. Various
low-rank priors have been proposed [1], [21], [25]–[27]. A
brief review can be found in Section II.

However, in practice, real data only approximately comply
with the low-rank requirement in most cases, because low-rank
structure only covers the major information in the data and
fails to represent the residual details information, as shown in
Fig. 1. For simplicity, we refer to this problem as applicability
to real data. To distinguish the residual details information
from the low-rank structure, we refer to it as non-low-rank
structure. Note that these two types of structure are not
distinguished by their rank, and we employ the non-low-rank
structure to capture the remaining (or residual) information in
the real data except the low-rank structure. Inspired by this,
the latent tensor L can be factorized as follows:

L = X + E . (3)

where X and E represents the low-rank and non-low-rank
structures, respectively1. Most previous methods assume L to
be of low rank in its entirety [1], [21], [24], [25], [27], [28].
They thus implicitly assume E to be zero [1], [21], [25] or
explicitly model a sparse E [24], [27]–[30]. This assumption
is explained as resulting from highly-structured data (e.g., ’fa-
cade’ in Figure 1 with extensive repeated textures); however,
this assumption neglects the fact that few real data exhibit
the structural regularity required to support such a model, i.e.,
most real data are beyond the low-rank assumption and shows
a more complex E , e.g., ’parrot’ in Figure 1. Accurate tensor
completion requires explicit modeling of all aspects of the
latent L, i.e., those that do, or do not conform to the low
rank prior. Therefore, modeling the complex non-low-rank
structure E is as import to the latent tensor representation as
the low-rank structure X . However, few efforts have invested
in leveraging this for tensor completion.

In addition, a previous study [27] indicates that accurate
low-rank representation necessitates the tensor rank es-
timate. However, it is difficult for most previous low-rank
representation models to determine the tensor rank. We refer
to this problem as tensor rank determination. In most previous
studies [1], [21], [25], tensor rank is determined by unfolding
the tensor into a collection of matrices and then minimizing
matrix rank norms or setting them manually. However, matrix
rank norms cannot capture the multidimensional structure of
the latent tensor; thus misleading the rank determination.

1Note that E is not the observation noise that is captured by M in
Equation (1).

Moreover, the resulting erroneous rank estimate can cause
over-fitting in tensor completion [27].

To jointly address these two problems above with one
stone, we present an adaptive low-rank representation mod-
el for tensor completion that represents the low-rank and
non-low-rank structures of a latent tensor separately in a
Bayesian framework. Firstly, we reformulate the CANDE-
COMP/PARAFAC (CP) tensor rank in a new form, wherein
the low-rank structure X is depicted by a sparsity-induced low-
rank prior model. By exploiting the sparsity in the factorization
weights probabilistically, the proposed model can determine
the tensor rank automatically. Then, we model the non-low-
rank structure E with a mixture of Gaussians (MOG). The
powerful ability of MOG to fit a wide range of Es (e.g., zero,
sparse or mixed) enables the proposed model to adapt to a
variety of real tensor data that is often beyond the low-rank
assumption with complex non-low-rank structures. Both of
these two advantages contribute to the robustness of modeling
the latent tensor. To harness them in a principled way, we
adopt the Bayesian minimum mean squared error estimate
(MMSE) framework for inference over the proposed model.
In contrast to most previous studies that only produce a point
estimation on each missing entry with the MAP estimate [9],
[17], we infer the posterior mean of missing entries as well as
their uncertainty using Gibbs samplers. Experimental results
on synthetic tensor data sufficiently demonstrate the capacity
of the proposed model in tensor rank determination as well
as fitting various non-low-rank structures, the effectiveness of
each ingredient, convergence and recovery performance. In
addition, the proposed model is evaluated in image inpainting,
video completion and facial image synthesis applications to
validate its superiority over other state-of-the-art tensor com-
pletion methods in terms of recovery accuracy.

The primary contribution of this study can be summarized
as follows. 1) Differing from previous methods that only
consider the low-rank structure, we propose a general tensor
completion model that recovers both the low-rank and non-
low-rank structures in tensor data. 2) The proposed model
can automatically determine the unknown tensor rank, even
with high missing ratios. 3) The proposed model can data-
adaptively fit the complex non-low-rank structure in the latent
tensor. 4) Spatial coherence is considered for visual tensor data
to further improve recovery accuracy. 5) We present state-of-
the-art results for various tensor completion applications.

II. RELATED WORK

In this section, we briefly review previous low-rank repre-
sentation based tensor completion methods in terms of their
applicability to real data and tensor rank determination.

Applicability to real data. In most cases, real tensor
data L only ever approximately comply with the low-rank
assumption and contains both the low-rank and the non-low-
rank structures, i.e., X and E . Nevertheless, most previous
studies adopt the low-rank tensor representation model [1],
[21], [25] and totally neglect the non-low-rank E (i.e., E = 0).
They mainly focus on exploiting effective low-rank models.
For example, Liu et al. [31] propose a new core tensor trace-
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norm minimization (CTNM) method to speed up the conven-
tional low-rank tensor completion scheme. Yang et al. [32] 
leverage the regularized redescending M-estimators to improve 
the robustness of the low-rank tensor completion model to 
the outliers. Recently, Dian et al. [3] utilize the low tensor-
train rank model for hyperspectral imagery super-resolution. 
Differing from these apporaches, some other literatures in [24],
[27], [28] depict E by a sparse model. However, in real tensor 
data E can be complicated (e.g., heavy-tailed or multimodal). 
Thus a flexible m odel i s r equired t o d escribe E . M OG has 
demonstrated powerful ability to represent complex distributed 
data in various applications, e.g., denoising [33], [34], deblur-
ring [35] and image representation [36], etc. Inspired by this, 
we leverage MOG to fit the complex non-low-rank structure E 
as part of the latent tensor L for a general tensor completion 
model. Although MOG has been utilized in several low-rank 
models [33], [34], [37], they are clearly different from this 
work. Specifically, i n [ 33], [ 34], [ 37], t he l atent t ensor L  is 
assumed to be entirely of low rank, and MOG is utilized 
to model the mixed noise corruption (e.g., M in Eq. (1)), 
which is expected to be eliminated from the latent tensor L. 
In contrast, we assume L is beyond the low-rank assumption 
and leverage MOG to fit t he c omplex n on-low-rank structure 
E belonging to L. In addition, the MOG is inferred from a 
fully-observed matrix for robust principle analysis in [33],
[37], whereas we infer it from a handful of observed entries 
for tensor completion. In [34], EM algorithm is utilized to 
determine a point estimation for the MOG parameters. In 
contrast, we infer the posterior mean of these parameters with 
Gibbs samplers in the MMSE framework.

Tensor rank determination. According to the rank de-
termination schemes, existing low-rank tensor representation 
models can be roughly divided into two categories. 1) Com-
pletion models: These models minimize the tensor rank by un-
folding a tensor into a collection of matrices and then solving a 
convex optimization on those matrices with matrix rank norms. 
For example, Liu et al. [1] propose minimizing the trace norm 
of a tensor, which is defined as the summation of the nuclear 
norm on the unfolding matrix along each mode of the tensor. 
Zhao et al. [26] define a  t ensor r ank n orm a s t he product 
of rank norms on all unfolding matrices of the tensor. Xu et 
al. [38] attempt to factorize each unfolding matrix optimally. 
Hu et al. [39] formulate the low-rank model based on the twist 
tensor nuclear norm for video completion. Zhang et al. [40] 
employ a family of nonconvex functions onto the singular val-
ues of the square deal matrix of the tensor to approximate the 
rank of the tensor. These models intrinsically exploit the low-
rank structure in the unfolding matrices. However, this cannot 
fully represent the multidimensional structure of tensors [22]. 
2) Factorization models: They decompose the latent tensor into 
multiple factors with a fixed rank which is often set manually, 
and then infer those factors instead. Previous studies [21], [41] 
propose various factor priors to regularize the Tucker factor-
ization of tensors. Another study [34] proposes a weighted 
CP factorization scheme. However, it is difficult to set correct 
tensor rank by chance. Moreover, incorrect tensor rank can 
induce over-fitting [ 22]. I n t his s tudy, w e r eformulate t he CP 
rank, and the tensor rank can be determined automatically by

exploiting the sparsity in factorization weights. Although a
similar idea has also been adopted in [22], [27], [42], the
proposed model is more general, flexible and powerful. These
previous studies essentially differ from the proposed model
in three aspects. (i) In [22], [27], CP factorization weights are
absorbed into the factor matrices; thus the tensor rank depends
on the row sparsity of those matrices. We model weights
and factor matrices separately to analyze the effect of various
factors on the tensor more flexibly. (ii) All factor matrices
follow the same distribution to give a consistent rank in [22],
[27], whereas we adopt various distributions to model each
factor matrix separately (Section III-A4). (iii) The sparsity is
depicted by a hierarchical student-t distribution in [22], [27],
while we employ a more powerful reweighed Laplace prior
(Remark 1), which determines the tensor rank more accurately
(Section V-A).

To the best of our knowledge, this study is the first at-
tempt to jointly address automatic tensor rank determination
and modeling the complex non-low-rank structure in tensor
completion.

III. PROPOSED TENSOR COMPLETION MODEL

Given the observation model as Eq. (1), we assume thatMΩ

is Gaussian white noise and each entry inMΩ is independent
and identically distributed with precision τ0. Thus, we obtain
the following likelihood

p (YΩ|X , E) =
∏
i
N
(
yi|xi + ei, τ

−1
0

)Oi (4)

where O is an indicator tensor with entries Oi = 1 if i ∈ Ω. xi
and ei are the entries in X and E , respectively. In this study,
we propose to recover the latent L from YΩ by exploiting the
low-rank structure X and fitting the complex non-low-rank
structure E . To this end, we specifically design priors for X
and E as follows.

A. Low-rank structure modeling
We reformulate the CP tensor rank in a new form, with

which a sparsity-induced low-rank model is proposed to rep-
resent X and the corresponding tensor rank of X then can be
determined automatically by exploiting the sparsity in the CP
factorization weights.

1) CP factorization: In CP factorization, tensor X is fac-
torized as a sum of R rank-one tensors as follows:

X =
∑R

r=1
λru

(1)
r ◦ · · · ◦ u(K)

r = [[λ;U (1), · · · ,U (K)]],

(5)
where u(k)

r ∈ Rnk is the factor vector in k-th mode and k =
1, · · · ,K. ◦ denotes the outer product. For simplicity, the CP
factorization can be represented as the right part of Eq. (5).
Here λ = [λ1, · · · , λR]

T is the weights vector, and U (k) =[
u

(k)
1 , · · · ,u(k)

R

]
∈ Rnk×R denotes the k-th factor matrix.

2) CP rank vs. sparsity-induced rank:
Definition 1 (CP rank): The rank of tensor X , denoted

rank(X ), is defined as the smallest number of rank-one tensors
in the CP factorization of X [43].
CP rank is a specialized tensor rank that degenerates to the
matrix rank when K = 2. However, since CP factorization is
ill-posed [43], the determination of CP rank is NP hard.
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To address this problem, we reformulate the CP rank in a 
new form. Specifically, g iven a  t ensor X  o f rank (X )  =  R0, 
assume we have all of its CP factorizations with R � R0, 
and we can find t he o ne w ith t he s parsest w eight v ector λ. 
According to Definition 1, only R 0 weights in λ  will be non-
zero, viz., rank (X ) = ‖λ‖0. Inspired by this, we give the 
following definition for sparsity-induced t ensor rank.

Definition 2  (Sparsity i nduced r ank): G iven C P factoriza-
tion of X with R � rank (X ) and the sparsest weight vector 
λ, rank (X ) = ‖λ‖0.
While being equivalent, Definition 1 and Definition 2 differ in 
two aspects. 1) Definition f orm. D efinition 2 de fines the  CP 
rank by exploiting the sparsity in CP factorization rather than 
counting the number of factorized rank-one tensors in Defi-
nition 1. 2) Difficulty o f rank d etermination. D efinition 2 can 
ease the determination of CP rank. According to Definition 2, 
rank determination can be cast into exploiting the sparsity in 
the CP factorization. Following this, appropriate sparse prior 
is introduced into the CP factorization as regularization to 
effectively reduce the solution space. When the sparse solution 
is obtained, the CP rank is the sparseness of weight vector 
λ. Although the `0 norm based sparse learning problem is 
also NP-hard, many techniques (e.g., `1 norm) have been 
proposed to provide satisfactory approximation solutions by 
solving a much easier problem (e.g., convex optimization or 
Bayesian inference). Thus, the rank determination problem 
resulting from Definition 2  c an b e a ddressed e ffectively. In 
contrast, according to the CP tensor rank in Definition 1, 
exhaustive search is required among the infinitely possible CP 
factorizations of a given tensor to determine its CP tensor 
rank. Therefore, based on the sparsity-induced tensor rank, 
the difficulty i n r ank determination can be reduced.

3) Sparsity-induced low rank model: For low-rank tensor 
recovery, a feasible method is to separately recover the de-
composed weight vector and corresponding factor matrices 
generated in its CP factorization. Given these decomposed 
components, the low-rank tensor can then be reconstructed by 
fusing these components in CP factorization form. However, 
there often exist infinite C P f actorization r esults f or a  given 
tensor; thus, it is difficult t o find appropriate factorization for 
recovery. Fortunately, according to the reformulated sparsity 
induced tensor rank, for a low-rank tensor (e.g., rank is R0), 
its CP factorization with R (e.g., R � R0) factors contains a 
special form, i.e., factorization with the sparsest decomposed 
weight vector. Thus, to recover the low-rank tensor, we can set 
a sufficiently l arge R  a nd s earch a  s pecific CP  factorization 
with the sparsest weight vector. Due to the sparse property, 
we can introduce appropriate sparsity regularizations to guide 
searching a unique solution for tensor completion. For simplic-
ity, we refer to this specific CP factorization as the sparsest CP 
factorization. Following this idea, we can formulate the low-
rank tensor recovery problem as a sparse learning problem, 
in which we attempt to recover both the sparsest decomposed 
weight vector (i.e., the sparse representation) and the corre-
sponding factor matrices (i.e., the dictionary). This is similar 
to the conventional sparse learning problem to simultaneous 
recover the dictionary and sparse representation. In addition, 
according to Definition 2 , t he r eal t ensor r ank i s e qual t o the

sparseness of the decomposed weight vector in the sparsest CP
factorization. Thus, by solving such a sparse learning problem,
we can also determine the tensor rank automatically. In the
following, we provide details of establishing a prior model
for the low-rank structure X based on Definition 2.

Specifically, Definition 2 indicates that a low-rank tensor
can be well represented by a sparse CP factorization (i.e.,
with a sparse weight vector λ in Eq. (5)). Moreover, the tensor
rank can also be determined automatically by the sparseness
of weight vector λ. Thus, we propose to model the low-rank
structure X by exploiting the sparsity of the weight vector λ
in its CP factorization. Such a low rank model is referred to as
a sparsity-induced low rank model. With a small tensor rank
(i.e., R � rank (X )), this model amounts to representing X
on a tensor dictionary with sparse coefficients λ, where each
dictionary atom is a rank-one tensor as u(1)

r ◦ · · · ◦ u(K)
r in

Eq. 5. These atoms can well preserve the multidimensional
structure of tensors, viz., the new tensor rank intrinsically
depends on the multidimensional structure of tensors, which is
totally different from the rank norms defined when unfolding
the matrices of a tensor [1], [25], because only the two-
dimensional structure is depicted in unfolding matrices.

To model the sparsity of λ, we adopt the following two-
level hierarchical reweighted Laplace prior [44]:

λ ∼ N (λ|0,diag (γ)) , γ ∼
∏R

r=1
Ga(γr|1,

κr
2

) (6)

where λ and γ = [γ1, ..., γR]T follow a zero-mean Gaussian
distribution and a product of Gamma distributions, respec-
tively. γr and κr are the respective r-th entries of γ and
κ = [κ1, ..., κR]T . Here the motivation is twofold. First, the
reweighed Laplace prior outperforms traditional sparsity priors
(e.g., the Laplace prior) in exploiting the low-rank structure in
a given tensor (see Remark 1). Second, the inherent two-level
hierarchical prior is conjugates to the likelihood in Eq. (4),
which enables the inference discussed in Section IV tractable.
In the following, we discuss the former reason in detail.

To exploit the sparsity in λ, `0 norm is the best choice;
however, `0 norm often renders the related sparse learning
problem NP hard. Thus, most existing literatures [45], [46]
have sought an appropriate surrogate for `0 norm. A famous
surrogate is the Laplace prior (i.e., `1 norm), which can be
formulated as:

p (λ|w) ∝ exp (−w‖λ‖1) , (7)

w is the scale parameter. However, it demonstrates a key
difference to `0 norm, where a large magnitude entry will
be penalized more heavily than a small magnitude entry [45].
This imbalance often limits the accuracy of the sparse solution.
To mitigate this problem, we employ the reweighted Laplace
prior given as Eq. (6). According to [44], [46], it has been
proven that these two hierarchical priors in Eq. (6) amount to
a reweighted Laplace prior on λ as:

p (λ|K) ∝ exp (−‖Kλ‖1) , (8)

where K = diag
(
[
√
κ1, ...,

√
κR]T

)
. Differing from the

Laplace prior, an additional diagonal weight matrix K is



5

introduced to adjust the magnitude of each entry in λ. More-
over, Lemma 3 proves that each κr is a decreasing function 
over |λr| in the Bayesian inference, which is similar as [44]. 
Therefore, the reweighted Laplace prior can well mitigate the 
negative influence f rom t he e ntry m agnitude w hen depicting 
the sparsity. By introducing such a powerful sparsity prior, we 
obtain the following remark:

Remark 1: The sparsity-induced low-rank model can effec-
tively exploit the low-rank structure in the tensor.

4) Regularized factor matrix: In this study, weight vector λ 
and factor matrices U (k)s from the CP factorization of X are 
modeled separately. Although λ has been well regularized as 
Eq. (6), infinite solutions still exist for the CP factorization of 
X , e.g., X = [[λ; c−1U (1), U (2), · · · , cU (K)]] with any scalar 
c 6= 0. To address this problem, we assume that each entry
u

(k)
ir of the factor matrix U (k) follows Gaussian distribution

independently and identically as:

u
(k)
ir ∼ N

(
u

(k)
ir |µ

(k), τ (k)−1
)
. (9)

which amounts to regularizing each entry with the `2 norm.
Note that we adopt an individual Gaussian distribution for
each U (k). This enables capturing the specific characteristic
for each factor matrix. Moreover, such a Gaussian prior is a
conjugate prior for the likelihood in Eq. (4), thereby rendering
the subsequent inference feasible and solvable (Section IV).
In addition, such a prior can be easily extended to consider
the spatial similarity (e.g., smoothness) of visual tensor data
(Section VI-B). To complete the Bayesian model, we further
introduce conjugate priors over the parameters of the Gaussian
distributions, µ(k)s and τ (k)s as

µ(k), τ (k) ∼ N
(
µ(k)|µ0, (β0τ

(k)
)−1

)Ga
(
τ (k)|a0, b0

)
.

(10)
where µ(k) and τ (k) jointly follow a Gaussian-gamma distri-
bution parametrized by µ0, β0, a0 and b0.

In summary, the low rank structure X is modeled by
exploiting the sparsity in weight vector λ and regularizing
factor matrices U (k) in its CP factorization.

B. Mixture of Gaussians for non-low-rank structure

As shown in Fig. 1, the distribution of entries in E can
be complex (e.g., heavy-tailed or multi-mode) in practice. To
impose a suitable prior on complex E , we assume that each
entry ei comes from a mixture of D Gaussians as follows:

ei ∼
∑D

d=1
πdN

(
ei|µd, τ

−1
d

)
, (11)

where πd ≥ 0 is the mixing proportion with
∑D
d=1 πd = 1.

N
(
ei|µd, τ

−1
d

)
denotes the d-th Gaussian component with

mean µd and precision τd. By introducing D indicator vari-
ables zdis for d = 1, · · · , D, Eq. (11) can be represented
equivalently as a two-level generative model [47]:

ei ∼
∏D

d=1
N
(
ei|µd, τ

−1
d

)zd
i , zi ∼ Multinomial (zi|π) ,

(12)
where zi =

(
z1

i , ..., z
D

i

)
∈ {0, 1}D with

∑D
d=1 z

d

i = 1 following
a multinomial distribution parametrized by π = (π1, ..., πD).

To model E flexibly, we further impose conjugate priors over
the parameters of µds, τds, and π as follows:

µd, τd ∼ N (µd|µ0, (β0τd)
−1

)Ga (τd|a0, b0)

π ∼ Dir (π|α0) ,
(13)

where π follows Dirichlet distribution Dir (π|α0) with param-
eter α0 = (α01, · · · , α0D). The MOG has obvious advantage
relative to representing the complex E , which leads to the
following remark.

Remark 2: The MOG can fit a wide range of non-low-rank
structures Es.
It has been demonstrated that an MOG has universal ability
to approximate any continuous distributions [47]. In addition,
it has been proven [33] that both the Dirac delta distribution
for a zero variable (i.e., δ(0)) and the spike-and-slab sparsity
prior [48] are special cases of the MOG. Therefore, the MOG
can fit a wide range of Es (i.e., zero, sparse or more complex),
which leads to a more robust representation for the real
tensor data and ultimately improves completion performance
(Section V-A).

IV. INFERENCE

According to the above likelihood and priors, we show
the probabilistic graphical structure of the proposed model in
Figure 2. Most previous studies have inferred latent tensor L
with MAP estimate as Eq. (2); however, generative models
often perform poorly in the context of MAP [49]. We adopt
the Bayesian minimum mean squared error estimate (MMSE)
suggested in [49] for tensor completion as follows:

L̂ = arg min
L̃

∫ ∥∥∥L̃ − L∥∥∥2

F
p (L|YΩ) dL = E [L|YΩ] , (14)

where L̂ equals the expectation E [L|YΩ] of L under the pos-
terior distribution p (L|YΩ), and ‖A‖F denotes the Frobenius
norm on tensor A. In contrast to MAP that only produces
a point estimation, MMSE exploits the uncertainty of L
and adopts the probabilistic mean as a solution which often
demonstrates better robustness and performance. However,
it is difficult to conduct the expectation in Eq. (14). To
circumvent this problem, we can adopt the mean of samples
drawn from the posterior of L as an unbiased estimate for
L̂ [49]. Since we model the non-low-rank structure E and
the CP factorization of the low-rank structure X rather than
directly modelling L, we draw samples from the corresponding
posteriors for λ, U (k) and E . Given their sample means, L̂
can then be obtained from Eqs. (5) (3). Specifically, based on
Eqs. (4) (6) (9) (10) (12) (13), we can obtain the posterior of
all involved variables as follows:

p (λ,U ,Z,π,µ, τ ,µe, τ e|YΩ) , (15)

where U =
{
U (k)

}
, Z =

{
zi
}

, µ =
{
µ(k)

}
, τ =

{
τ (k)

}
,

µe = {µd} and τ e = {τd} are introduced for simplicity.
Then, Gibbs sampling is employed on Eq. (15) to sample each
variable as follows.

A. Gibbs samplers for low-rank structure
The low-rank structure X is decomposed into weight vector

λ and factor matrices U (k)s.
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Fig. 2. Probabilistic graphical structure of the proposed model. z1, · · · ,zN denote all zi with all possible is for simplicity.

1) Sampler for weight vector λ: According to Figure 2,
the posterior for λ can be inferred by receiving two kinds
of messages. The first one comes from its parent and is
represented as the prior in Eq. (6), and the second one sent by
the observation Y and its parents (i.e., factor matrices U (k),
non-low-rank structure E and τ0) is expressed as the likelihood
in Eq. (4). Thus, given U (k)s, E , γ and τ0, we obtain the
posterior over λ as follows:

p (λ|−) ∝ N (λ|0,Γ)
∏
i

N

(
yi|ei +

R∑
r=1

λr

K∏
k=1

u
(k)
ikr
, τ−1

0

)Oi
.

(16)
Since all entries in λ are dependent on each other, we must
sample each entry alternatively. To this end, let ỹri = yi− ei−∑R
t6=r λt

∏K
k=1 u

(k)
ikt

and b̃ri =
∏K
k=1 u

(k)
ikr

. Then, the posterior for
entry λr then can be given as follows:

p (λr|−) ∝ exp

(
− λ2

r

2γr

)∏
i

exp

−Oi
(
ỹri − λr b̃

r

i

)2

2τ−1
0

 .
(17)

where messages from other entries λt (t 6= r) are introduced.
As can be seen, we draw λr from a Gaussian distribution as

λr ∼ N
(
µ̃λr

, τ̃−1
λr

)
, (18)

where the posterior parameters can be updated as

τ̃λr = γ−1
r + τ0

∑
i

Oib̃
r2

i , µ̃λr = τ−1
λr
τ0
∑
i

Oib̃
r

iỹ
r

i. (19)

2) Sampler for hyperperameter: γ By integrating the mes-
sages from weight vector λ and its hyperprior expressed in
Eq. (6), the posterior of γ can be formulated as

p (γ| ∼) ∝ N (λ|0,Γ)
R∏
r=1

Ga

(
γr|1,

2

κr

)
, (20)

where each entry λr is independently distributed as

p (γr| ∼) ∝ γ−1/2
r exp

(
−λ

2
r + κrγ

2
r

2γr

)
. (21)

Thus, γr can be drawn from a generalized inverse Gaussian
distribution as

γr ∼ GIG
(
γr|κr, λ2

r, 1/2
)
. (22)

Given the r-th entry λr and κr, the posterior expectation of
γr can be given as

E [γr] =
|λr| K3/2(|λr|

√
κr)√

κrK1/2(|λr|
√
κr)

(23)

which linearly depends on λr and performs as a decreasing
function of κr. To demonstrate this point, we introduce the
following Lemma.

Lemma 1: Given the modified Bessel function of sec-
ond kind Kv (z), we define a function fv (z) =
zKv+1 (z) /Kv (z), then, for any variable x > 0, f1/2 (x) =
x+ 1.

Proof: In [50], it has been proved that

Kv+1 (z)−Kv−1 (z) =
2v

x
Kn (z) ;

Kv+ 1
2

(z) = K−v− 1
2

(z) , ∀v ∈ R.
(24)

When v = 1/2, we have

K3/2(z)

K1/2(z)
=

1

x
+
K−1/2 (z)

K1/2(z)
=

1

x
+ 1. (25)

Thus, f1/2 (x) = x (1/x+ 1) = x+ 1.
Lemma 2: Given λr and κr, E [γr] = |λr|√

κr
+ 1

κr
.

Proof: In Eq. (23), E [γr] =
f1/2(|λr|

√
κr)

κr
. According to

Lemma 1, E [γr] = |λr|√
κr

+ 1
κr

.
3) Sampler for hyperparameter κ: The posterior over κ can

be inferred by receiving the messages from hyperparameter γ,
as shown in Fig. 2, and the posterior over each entry κr can
be formulated as follows:

p (κr|−) ∝ Ga

(
γr|1,

2

κr

)
∝ κr exp

(
−γrκr

2

)
. (26)

Thus, we can draw κr from a Gamma distribution as

κr ∼ Ga

(
κr|2,

2

γr

)
. (27)

Lemma 3: Given λr and the corresponding E [γr] for E-
q. (27), there exists a decreasing function ρ s.t. E [κr] =
ρ(|λr|).

Proof: Given λr and the corresponding E [λr], the pos-
terior for κr can be reformulated as Ga (κr|2,E [λr]), and
the resulted posterior expectation E [κr] = 4/E [λr]. Thus,
according to Lemma 2, we obtain

E [κr] = ρ (|λr|) ∝ (|λr|+ const)
−1 (28)

where const denotes the variable relative to λr. Thus, ρ (|λr|)
is a decreasing function over λr.

With Eq. (8), weight λr is shrunk with
√
κr while ex-

ploiting the sparsity of λ. Based on Lemma 3, E [κr] ∝
(|λr|+ const)

−1, thus λr will be shrunk less than λj when
|λr| > |λj |, which is consistent with Remark 1 in Sec-
tion III-A3.
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ir

4) Sampler for factor matrix U (k): Similarly, the posterior 
for U (k) is jointly determined by observation Y , other factor 
matrices U (j) with j 6= k, and hyperparameters µ(k), τ (k) 

in its prior. Since the entries in each column of U (k) are 
correlated with each other, we sample each entry u(k) with
the posterior

p(u
(k)
ir |−) ∝

∏
i:ik=i

[
N
(
yi|ei +

∑R

t=1
λt
∏K

s=1
u

(s)
ist
, τ−1

0

)Oi
N
(
u

(k)
ir |µ

(k), τ (k)−1
)]
.

(29)
Thus, u(k)

ir can be drawn from a Gaussian distribution as

u
(k)
ir ∼ N

(
µ̃
u
(k)
ir
, τ̃
u
(k)
ir

)
, (30)

where let c̃rki = λr
∏K
s6=k u

(s)
isr

and the corresponding parameters
are

τ̃
u
(k)
ir

=
∑

i:ik=i
τ0Oic̃

rk2

i + τ (k),

µ̃
u
(k)
ir

= τ−1

u
(k)
ir

(∑
i:ik=i

τ0Oiỹ
r

i c̃
rk

i + τ (k)µ(k)

)
.

(31)

5) Sampler for hyperparameter µ(k) and τ (k): By receiving
the messages from U (k), β0, a0 and b0, the posterior over µ(k)

can be given as

p
(
µ(k)|−

)
∝

nk∏
i=1

R∏
r=1

N
(
u

(k)
ir |µ

(k), τ (k)−1
)
N
(
µ(k)|µ0,

(
β0τ

(k)
)−1

)
.

(32)
Thus, µ(k) can be drawn from a Gaussian distribution as

µ(k) ∼ N
(
µ̃µ(k) , τ̃−1

µ(k)

)
, (33)

where the posterior parameters are

τ̃µ(k) = τ (k) (β0 + nkR) , µ̃µ(k) =
τ (k)

τµ(k)

(
nk∑
i=1

R∑
r=1

u
(k)
ir + β0µ0

)
.

(34)
Similarly, we have the posterior over τ (k) as

p
(
τ (k)|−

)
∝

nk∏
i=1

R∏
r=1

[
N
(
u

(k)
ir |µ

(k), τ (k)−1
)

N
(
µ(k)|µ0,

(
β0τ

(k)
)−1

)
Ga
(
τ (k)|c0, e0

)]
.

(35)
It can be seen that τ (k)

d can be drawn from the following
Gamma distribution

τ (k) ∼ Ga
(
ã(k), b̃(k)

)
, (36)

where the parameters are

ã(k) = a0 + (nkR+ 1) /2;

b̃(k) = b0 +

[
nk∑
i=1

R∑
r=1

(
u

(k)
ir − µ

(k)
)2

+ β0

(
µ(k) − µ0

)2
]
/2.

(37)

B. Gibbs sampler for non-low-rank structure
1) Sampler for non-low-rank structure E: Since each entry

ei is assumed to be independent to others, given messages
from Y , U (k), λ, µds and τds, we obtain the following
posterior:

p
(
ei|−

)
∝ N

(
yi|ei + xi, τ

−1
0

)Oi∏D

d=1
N
(
ei|µd, τ

−1
d

)zd
i ,

(38)
and ei can be drawn from a Gaussian distribution as

ei ∼ N
(
µ̃ei

, τ̃−1
ei

)
, (39)

with parameters

τ̃ei
= Oiτ0 +

∑D

d=1
τdz

d

i ,

µ̃ei
= τ̃−1

ei

[
τ0Oi

(
yi − xi

)
+
∑D

d=1
τdz

d

iµd
]
.

(40)

2) Sampler for hyperparameter µd and τd: With messages
from E and parameters β0, a0, b0 in the hyperprior, the
posterior over µd can be given as follows:

p (µd|−) ∝
∏

i
N
(
ei|µd, τ

−1
d

)zd
i N

(
µd|µ0, (β0τd)

−1) . (41)

Thus, µd can be drawn from a Gaussian distribution as:

µd ∼ N
(
µ̃µd

, τ̃−1
µd

)
, (42)

with parameters

τ̃µd
= τd

(∑
i
zdi + β0

)
, µ̃µd = τ̃−1

µd
τd
(∑

i
zdiei + β0µ0

)
.

(43)
Similarly, we have the posterior over τd as

p (τd|−) ∝
∏
i

N
(
zi|µd, τ

−1
d

)zd
i N

(
µd|µ0, (β0τd)

−1)Ga (τd|a0, b0) .

(44)
Thus, τd can be drawn from a Gamma distribution as

τd ∼ Ga
(
ãd, b̃d

)
, (45)

with parameters

ãd = a0 +
(∑

i
zdi + 1

)
/2,

b̃d = b0 +
[∑

i
zdiei + β0 (µd − µ0)2

]
/2;

(46)

3) Sampler for zi: Similarly, we obtain the posterior over
zi as

p (zi|−) ∝ Multinomial (zi|π) . (47)

zi thus can be drawn from a multinomial distribution as

zi ∼ Multinomial (zi|π̃) , (48)

with π̃ = (π̃1, ..., π̃D) and each entry π̃d is given as

π̃d = πdN
(
ei|µd, τ

−1
d

)
/
∑D

t=1
πtN

(
ei|µt, τ

−1
t

)
. (49)

4) Sampler for hyperparameter π: By integrating messages
from zi and α0 in the hyperprior, we obtain the posterior over
π as

p (π| ∼) ∝
∏
i

Multinomial (zi|π) Dir (π|α0) . (50)

Thus, π can be drawn from a Dirichlet distribution as follows:

π ∼ Dir (π|α̃) , (51)

where α̃ = (α̃1, ..., α̃D) with entry α̃d =
∑

i z
d

i + α0d.
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C. Algorithm, complexity and convergence

With the above samplers, the entire Gibbs sampling flow
is summarized in Algorithm 1 where Nb, Ns are the iteration
number for burn-in and samples collection, respectively.

Algorithm 1: Adaptive low-rank tensor completion
Input: Observation YΩ, parameters

a0, b0, µ0, β0,α0, τ0, D.
Initialization: U ,λ, τ , τ e are initialized by 1 with
proper size, µ,µe are initialized by 0,
π =

(
D−1, · · · , D−1

)T
and zi ∼ Multinomial (zi|π).

for t← 1 to Nb +Ns do
Sample the low-rank structure:
1. Sample λr, γr and κr as Eqs. (18) (22) (27);
2. Sample u(k)

ir , µ(k) and τ (k)
d as Eqs. (30) (33) (36);

Sample the non-low-rank structure:
1. Sample ei, µd and τd as Eqs. (39) (42) (45);
2. Sample zi and π as Eqs. (48) (51);
if t > Nb then

Collect samples for λ,U , E ;

4. Get the sample mean λ̄, Ū , Ē across Ns samples;
5. Complete the latent tensor L̂ with λ̄, Ū , Ē as
Eqs. (5) (3).

In each Gibbs sampling iteration, we draw samples for all
unknown variables using corresponding samplers. Note that
per-iteration sampling complexity is dominated by O(RKN),
which is only linear in the number N of entries in the latent
tensor L. Moreover, it has been demonstrated that MMSE
often converges well [49] and more evidence will be provided
in Section V-A.

V. EXPERIMENTS

We evaluate the proposed model comprehensively in ex-
tensive experiments on synthetic and real visual tensor data.
The experiments on synthetic data are conducted to validate
the following five aspects of the proposed model: i) automatic
tensor rank determination; ii) the ability to fit a wide range of
non-low-rank structures Es; iii) the effectiveness of the adap-
tive low-rank tensor model; iv) convergence; v) recovery per-
formance. In addition, three other practical applications, i.e.,
image inpainting, video completion and facial image synthesis,
are performed to further evaluate the recovery performance
of the proposed model. To this end, the proposed model is
compared with 8 state-of-the-art low rank tensor completion
methods, including FaLRTC [1], HaLRTC [1], RPTCscad [26],
TMac [38], STDC [21], t-SVD [25], FBCP [22] and BRT-
F [27]. Note that only BRTF considers a sparse non-low-rank
structure E , while the others adopt a zero E .

For the proposed model, we set all hyperparameters in
a non-informative manner to reduce their influence on the
posterior as much as possible [33], [47]. Throughout the
experiments, µ0 = 0, and α01, · · · , α0D, β0, a0 and b0 are
10−6. In addition, we fix the number D of mixture components
in E as 3 for simplicity. Of course, it also can be determined
automatically by the tuning scheme proposed in [33] with
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Fig. 3. Tensor rank determined by different methods on synthetic data. The
vertical color bars denote the inferred tensor rank, while the horizontal red
dash lines indicate the true tensor rank.

TABLE II
RRE OF THE PROPOSED METHOD AND ITS VARIANTS ON SYNTHETIC

TENSOR WITH DIFFERENT MISSING RATIOS.
rank = 5 rank = 10

Method 70% 80% 90% 70% 80% 90%

Ours nx(6) -∗ - - - - -
Ours nx(10) - - - - - -
Ours nx(20) - - - - - -
Ours nx(50) - - - - - -
Ours ne 0.2234 0.2242 0.2426 0.2210 0.2372 0.2702
Ours 0.1829 0.1960 0.2038 0.1796 0.1914 0.2055

∗’-’ denotes recovery failure.

simply setting a sufficiently large initialized D. The initialized
tensor rank R is set 20 and 100 for the synthetic data and
real visual data, respectively. The comparison methods are
implemented by the codes of authors with tuned parameters
for the best performance. For simplicity, we term the proposed
model ’Ours’ in the following tables and figures.

A. Tensor completion on synthetic data

We generate the latent tensor L of size 30× 30× 30 based
on Eq. (3). The low-rank structure X of rank (X ) = 5 is
generated via CP factorization in Eq. (5) with factor matrices
U (k) ∈ R30×5s and weights vector λ ∈ R5×1. The entries in
U (k) are sampled independently from N (0, 1), while weights
in λ are sampled uniformly in range of (0, 2]. To simulate a
wide range of residual components, the following 5 types of
E are generated: (1) zero non-low-rank structure with all zero
entries; (2) Gaussian non-low-rank structure with all entries
sampled from N (0, 0.01); (3) sparse non-low-rank structure
with 10% of entries sampled uniformly from range of [−2, 2];
(4) mixture non-low-rank structure (zero mean) with 10%
of entries sampled uniformly in range of [−2, 2], 30% of
entries sampled from N (0, 0.1) and 60% of entries sampled
from N (0, 0.005); (5) mixture non-low-rank structure (non-
zero mean) with 10% of entries sampled uniformly in range
of [−1, 4], 20% of entries sampled from N (0.1, 0.1) and
70% of entries sampled from N (−0.1, 1/300). Additional 5
simulations for L are generated in a similar manner, however,
rank (X ) = 10. To obtain the incomplete observation YΩ, we
first add noise M with entries sampled from N (0, 0.001) on
L. Then, a certain percentage (i.e., the missing ratio) of entries
are selected randomly from the noisy L and set to zeros. Here
we choose the missing ratio from 70% to 90%.
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TABLE I
QUANTITATIVE COMPARISON BETWEEN PARAMETERS IN TRUE PDFS OF E (DENOTED ’TRUE’) AND THAT IN ESTIMATED ONES (DENOTE ’EST.’).

rank = 5
Zero Sparse Gaussian Mixture (zero mean) Mixture (non-zero mean)

Comp.1 Comp.1 Comp.2 Comp.1 Comp.1 Comp.2 Comp.3 Comp.1 Comp.2 Comp.3

πd
True - 0.1 0.9 - 0.1 0.3 0.6 0.1 0.2 0.7
Est. - 0.102 0.898 - 0.150 0.282 0.568 0.065 0.250 0.685

µd
True 0 0 0 0.1 0 0 0 1.5 0.1 -0.1
Est. -2e-4 -0.015 4e-4 0.101 -0.017 -0.012 1e-4 2.429 0.050 -0.1

τd
True 1e12 0.75 1e12 100 0.75 10 200 0.48 10 300
Est. 6.64e4 0.7081 4.13e5 100.1 1.072 13.582 220.8 1.050 7.086 314.6

rank = 10
Zero Sparse Gaussian Mixture (zero mean) Mixture (non-zero mean)

Comp.1 Comp.1 Comp.2 Comp.1 Comp.1 Comp.2 Comp.3 Comp.1 Comp.2 Comp.3

πd
True - 0.1 0.9 - 0.1 0.3 0.6 0.1 0.2 0.7
Est. - 0.101 0.899 - 0.149 0.281 0.570 0.062 0.239 0.699

µd
True 0 0 0 0.1 0 0 0 1.5 0.1 -0.1
Est. -2e-4 0.032 0.000 0.100 0.020 4e-4 -6e-4 2.611 0.094 -0.100

τd
True 1e12 0.75 1e12 100 0.75 10 200 0.48 10 300
Est. 6.16e5 0.728 9.12e4 98.76 1.005 15.70 220.6 1.391 6.392 313.9
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Fig. 4. Visual comparison between true PDFs of E (denoted ’True’) and those estimated ones (denote ’Est.’).
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Fig. 5. RRE curves versus the iteration number of Gibbs sampling on two
synthetic tensors with different missing ratios.

1) Tensor rank determination: We evaluate the proposed
model on 2 different synthetic tensors that consist of two low
rank X s of rank (X ) = 5, 10 but a same mixture non-low-
rank structure E with non-zero mean. Given YΩ with different
missing ratios, we infer the sparse weights vector λ, and give
the inferred tensor rank as the number of weights |λr| > 10e-
5. Since most competitors cannot infer the tensor rank, only
the inferred ranks from the proposed model, FBCP and BRTF
are shown in Figure 32. As can be seen, when rank (X ) = 5,
the proposed model infers the tensor rank exactly even when
90% of entries are missing, while both FBCP and BRTF fail to
estimate the real tensor rank accurately. When rank (X ) = 10,
the proposed model only misses the true rank when the missing
ratio is 90%, while FBCP and BRTF miss the true one in most
cases. This is primary due to the newly defined tensor rank
and the sparsity-induced low-rank model adopted. In addition,

2More comparisons can be found in the supplementary materials.

modeling the non-low-rank structure benefits separating the
low-rank structure exactly, thereby determining the accurate
tensor rank. Therefore, we can conclude that the proposed
model can accurately estimate the tensor rank, even if the
tensor data contain complex non-low-rank structure with nu-
merous missing entries.

2) Ability to fit a wide range of Es: Given YΩ with
70% of entries missing, the proposed model can estimate the
probability density function (PDF) (i.e., the distribution) of E
by inferring the posterior mean of parameters µe, τ e and π in
tensor completion. A quantitative comparison of the estimated
parameters in 5 different PDFs of E and the corresponding
ground truth are given in Table I. As shown, the proposed
model produces accurate estimations for these parameters, viz.,
the proposed model can well fit E with different PDFs. To
clarify this point, we plot the estimated PDFs of E and the
corresponding ground truth in Figure 4. As can be seen, the
estimated PDFs comply well with the ground truth, especially
in the complicated mixture E cases. In addition, the proposed
model performs stably with different low-rank structures (e.g.,
rank(X ) = 5, 10 in Table I and Figure 4) in terms of fitting E .
Therefore, we conclude that the proposed model can fit a wide
range of E , which is consistent with the theoretical analysis
in Remark 2.

3) Effectiveness of adaptive low-rank tensor model: In the
proposed adaptive low-rank tensor model, the low-rank and the
complex non-low-rank structures are modeled separately. To
evaluate the effectiveness of separate components, we compare
the proposed model with two variants which we refer to as
’Ous nx’ and ’Ours ne’. In ’Ours nx’, we remove the low-
rank structure X and model the entire tensor with MOG,
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TABLE III
RRE ON SYNTHETIC TENSORS WITH DIFFERENT NON-LOW-RANK

STRUCTURES AND MISSING RATIOS.

Zero non-low-rank structure E
rank = 5 rank = 10

Method 70% 80% 90% 70% 80% 90%

FaLRTC [1] 0.0248 0.1990 0.6942 0.4386 0.7057 0.9105
HaLRTC [1] 0.0218 0.1974 0.6934 0.4383 0.7056 0.9105
RPTCscad [26] 0.0063 0.1948 0.8367 0.5245 0.7485 0.9168
TMac [38] 0.8354 0.8917 0.9498 0.8352 0.8920 0.9479
STDC [21] 0.1694 0.3685 0.8714 0.5585 0.8377 0.9965
t-SVD [25] 0.3874 0.6242 0.8687 0.6224 0.7924 0.9498
FBCP [22] 0.0027 0.0032 0.1589 0.0404 0.0417 0.3928
BRTF [27] 0.1279 0.1379 0.1509 0.0352 0.1393 0.4719
Ours 0.0086 0.0041 0.0047 0.0036 0.0047 0.0074

Gaussian non-low-rank structure E
rank = 5 rank = 10

Method 70% 80% 90% 70% 80% 90%

FaLRTC [1] 0.0750 0.2170 0.6864 0.4944 0.7159 0.9067
HaLRTC [1] 0.0754 0.2179 0.6857 0.4938 0.7154 0.9068
RPTCscad [26] 0.0297 0.2025 0.8258 0.5564 0.7545 0.9143
TMac [38] 0.8355 0.8916 0.9483 0.8450 0.8935 0.9470
STDC [21] 0.1624 0.3947 0.8797 0.5682 0.8330 -∗

t-SVD [25] 0.4044 0.6117 0.8734 0.6439 0.7907 0.9526
FBCP [22] 0.0462 0.0335 0.1663 0.0612 0.0634 0.3104
BRTF [27] 0.0889 0.1437 0.1587 0.1338 0.1449 0.4732
Ours 0.0285 0.0307 0.0351 0.0292 0.0320 0.0389

Mixture non-low-rank structure E (on-zero mean)
rank = 5 rank = 10

Method 70% 80% 90% 70% 80% 90%

FaLRTC [1] 0.2902 0.4363 0.7834 0.5494 0.7413 0.9240
HaLRTC [1] 0.2901 0.4362 0.7842 0.5495 0.7415 0.9240
RPTCscad [26] 0.2903 0.4906 0.8711 0.5907 0.7704 0.9288
TMac [38] 0.8340 0.9006 0.9522 0.8374 0.8923 0.9511
STDC [21] 0.3233 0.5527 0.8995 0.6512 0.8688 0.9423
t-SVD [25] 0.5158 0.7116 0.9245 0.6759 0.8110 0.9754
FBCP [22] 0.2199 0.2416 0.2746 0.2247 0.2316 0.2996
BRTF [27] 0.1976 0.2326 0.2547 0.1837 0.2340 0.5642
Ours 0.1829 0.1960 0.2038 0.1796 0.1914 0.2055
∗’-’ denotes recovery failure.

while ’Ours ne’ sets the no-low-rank structure E = 0. In the
experiments, we employ these three methods to recover two
synthetic tensors with different missing ratios, which consists
of two respective X s of rank(X ) = 5, 10 and a non-zero
mean mixture E . Since ’Ours nx’ only utilizes the MOG to
model the entire tensor, different Ds (i.e., the number of
Gaussian components) are adopted to well fit the complex
tensor structure. The recovery performance is measured by
the relative reconstruction error (RRE), i.e., ‖L−L̂ ‖F /‖L‖F ,
where L̂ is the estimation of the true L. The comparison results
are presented in Table II.

Without modeling the non-low-rank structure, the proposed
model outperforms ’Ours ne’ obviously. This demonstrates
that modeling the non-low-rank structure separately can im-
prove the performance. In addition, Ours nx fails to recover
the tensor in most cases. The reason is intuitive. To solve the
ill-posed tensor completion problem, we must well represent
the low-rank structure as regularization. However, the MOG
is too flexible to regularize the ill-posed problem and thus
causes completion failure, especially when the tensor is highly
structured (i.e., the tensor rank = 5). Thus, we model the low-
rank structure by exploiting the sparsity in the CP factoriza-

Fig. 6. Ground truth of 10 benchmark images.

tion, which is crucial for tensor completion. Therefore, we can
conclude that the proposed data-adaptive tensor model which
exploits the low-rank-structure and the non-low-rank structure
separately, is effective in tensor completion.

4) Validation of convergence: It has been proven that
samples generated by Gibbs sampling coverage to a stable
probabilistic distribution [47]. To illustrate this point more
intuitively, using the two synthetic tensors adopted in Sec-
tion V-A3, we plot the RRE curves of the proposed model
versus the Gibbs sampling iteration number with different
missing ratios, as shown in Figure 5. The plots indicate that
the proposed model converges in hundreds of iterations in
different cases.

5) Evaluation of recovery performance: We compare the
proposed model with 8 existing tensor completion methods. To
ensure a comprehensive comparison, we conduct experiments
on tensors consisting of a low-rank X with rank = 5, 10 as well
as three different types of non-low-rank E : i) a zero non-low-
rank E ; ii) a Gaussian non-low-rank E ; iii) a mixture non-low-
rank E (non-zero-mean). The recovery results are reported in
Table III. We find that the proposed method outperforms other
comparison methods in most cases. Moreover, its superiority
is further enhanced with the increasing missing ratio or a
simpler E , e.g., when E comes from mixture distribution and
the missing ratio is 90%, the improvement over the second best
method, i.e., FBCP, is up to 0.09 in RRE when the tensor rank
is 10. When E is set to zero without any other changes, the
improvement is up to 0.38. In addition, compared with other
methods, the proposed method performs more stably with the
changing missing ratios. For example, when E = 0 and the
tensor rank is 10, the RRE of the proposed model is less than
0.01. In contrast, the RRE of FaLRTC increases from 0.4 to
0.9. Based on those observed results, we can conclude that the
proposed model outperforms existing methods on the synthetic
tensor data.

6) Analysis of computational cost: The runtime required for
all methods to complete the tensor L with a non-zero-mean
mixture E , when the rank is 5 and the missing ratio is 80%,
are listed in Table IV. All methods are run using MATLAB
software on a Laptop with 4GB RAM and 4 i5 CPU cores.
Since Gibbs sampling requires extensive iterations for con-
vergence, the proposed method consumes more time than the
other methods. However, note that this study primarily focuses
on validating the theoretical results. In addition, the proposed
method can be further accelerated via using some common
implementation techniques, e.g., the parallel programming or
the variational Bayesian (VB) technique. In Table IV, the
last column shows the runtime of a rough VB version of the
proposed method. As can be seen, implementing VB increases
the speed of the proposed method by nearly 4 times with only
a slight performance drops (e.g., RRE increases from 0.1960
up to 0.1987).
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TABLE IV
RUNTIME OF ALL METHODS ON SYNTHETIC DATA OF RANK = 5 WITH A NON-ZERO-MEAN MIXTURE E AND 80% MISSING RATE.

Method FaLRTC [1] HaLRTC [1] RPTCscad [26] TMac [38] STDC [21] t-SVD [25] FBCP [22] BRTF [27] Ours Ours (VB)
Time(s) 3.935 7.581 12.36 2.087 1.419 5.445 13.77 21.84 213.5 52.46

TABLE V
AVERAGE RRE, PSNR AND SSIM ON 10 BENCHMARK IMAGES WITH DIFFERENT MISSING RATIOS.

Method 60% 70% 80% 90%
RRE PSNR SSIM RRE PSNR SSIM RRE PSNR SSIM RRE PSNR SSIM

FaLRTC [1] 0.1003 25.6337 0.7911 0.1289 23.4559 0.7024 0.1704 21.0291 0.5797 0.2445 17.8378 0.4068
HaLRTC [1] 0.0995 25.7348 0.7916 0.1281 23.5329 0.7010 0.1695 21.0939 0.5757 0.2430 17.9096 0.3997
RPTCscad [26] 0.0859 27.0793 0.8232 0.1336 24.1529 0.7106 0.1582 21.9985 0.6022 0.2210 18.9062 0.4198
TMac [38] 0.1408 22.7919 0.6465 0.1517 22.1323 0.6036 0.1700 21.1231 0.5375 0.2940 16.1311 0.2627
STDC [21] 0.0893 26.5850 0.8089 0.1078 25.0486 0.7579 0.1367 22.9630 0.6801 0.2326 17.9273 0.4913
t-SVD [25] 0.0915 26.4223 0.7832 0.1219 23.9397 0.6826 0.1649 21.3169 0.5472 0.2391 18.0432 0.3580
FBCP [22] 0.0916 26.5030 0.7601 0.1137 24.5926 0.6866 0.1508 22.1263 0.5727 0.2192 18.8112 0.3878
BRTF [27] 0.2685 16.7725 0.4421 0.2892 16.1276 0.4018 0.3089 15.5556 0.3611 0.3291 15.0054 0.3108
Ours 0.0755 28.0223 0.8381 0.0966 25.9144 0.7676 0.1302 23.3615 0.6549 0.1970 19.8088 0.4549

(a) Incomplete image (b) FaLRTC [1] (c) HaLRTC [1] (d) RPTCscad [26] (e) TMac [38]

(f) STDC [21] (g) t-SVD [25] (h) FBCP [22] (i) BRTF [27] (j) Ours

Fig. 7. Visual results of the ’facade’ image, when missing ratio is 90%.

(a) Incomplete image (b) FaLRTC [1] (c) HaLRTC [1] (d) RPTCscad [26] (e) TMac [38]

(f) STDC [21] (g) t-SVD [25] (h) FBCP [22] (i) BRTF [27] (j) Ours

Fig. 8. Visual results for the ’parrot’ image from the top four methods, when missing ratio is 70%.
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(a) Incomplete frame (b) RPTCscad [26] (c) STDC [21] (d) FBCP [22] (e) Ours

Fig. 9. Visual results for the 11-th frame in the ’suzie’ video 5.

(a) Incomplete frame (b) RPTCscad [26] (c) STDC [21] (d) FBCP [22] (e) Ours

Fig. 10. Visual results for the 19-th frame in the ’foreman’ video 5.

TABLE VI
RRE, PSNR AND SSIM ON TWO VIDEOS.

Method suzie foreman
RRE PSNR SSIM RRE PSNR SSIM

FaLRTC [1] 0.0746 29.7584 0.7108 0.0537 29.1385 0.7484
HaLRTC [1] 0.0746 29.7585 0.7108 0.0537 29.1385 0.7484
RPTCscad [26] 0.0726 29.9943 0.7158 0.0493 29.8815 0.7635
TMac [38] 0.0615 31.4253 0.8588 0.0702 26.8153 0.8103
STDC [21] 0.0747 29.7401 0.7091 0.0543 29.0494 0.7431
FBCP [22] 0.0426 34.6221 0.9103 0.0570 28.6269 0.8205
BRTF [27] 0.0951 27.6432 0.6967 0.0975 23.9687 0.7117
Ours 0.0381 35.6013 0.9182 0.0422 31.2435 0.8512

B. Image inpainting

We test the proposed model on 10 benchmark images
(see Figure 6) for image inpainting. Each image is of size
256×256×3 and rescaled to [0, 1]. We generate the incomplete
observation by randomly selecting a certain percentage of
missing entries in each image. Given the incomplete obser-
vation, all methods are utilized to recover the latent image.
In addition to RRE, peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM), two conventional image quality
indices are also adopted to measure the recovery accuracy.
Average RRE, PSNR and SSIM on 10 benchmark images
are given in Table V. As can be seen, the proposed model
outperforms other methods in most cases. To clarify these
results, visual comparison of the recovery results for the
’facade’ image (e.g., the missing ratio is 90%) as well as
the ’parrot’ image (e.g., the missing ratio is 70%) are shown
in Figure 7 and Figure 8, respectively. In each image, an
area of interest is enlarged to facilitate a detailed comparison.
Because the ’facade’ image is highly structured, most methods
can recover the major structure of the image with even
90% missing entries. However, compared with the proposed
method, most of the competing methods fail to well recover
the fine details, e.g., the zoomed areas in Figure 8 (b)-(i). In
contrast, these details are well recovered in the results of the

TABLE VII
RRE ON CMU-PIE DATASET WITH DIFFERENT MISSING RATIOS.
Method 60% 70% 80% 90%

FaLRTC [1] 0.3741 0.5058 0.7392 0.9103
HaLRTC [1] 0.3694 0.5021 0.7388 0.9086
RPTCscad [26] 0.2228 0.2599 0.3284 0.4166
TMac [38] 0.2629 0.4226 0.6574 0.9385
STDC [21] 0.2602 0.2606 0.3316 0.5154
FBCP [22] 0.1410 0.1911 0.2590 0.3746
Ours 0.1172 0.1560 0.2274 0.3372

proposed model, as shown in the enlarged area in Figure 8
(j). The superior performance of the proposed model can be
attributed to the following. First, we propose an appropriate
sparsity-induced low-rank model for tensor data, which differs
completely from the matrix rank norm induced low-rank model
in FaLRTC, HaLRTC and TMac. Second, we adopt a flexible
MOG to model the complex non-low-rank structure, which
is not considered in other competing methods. These can be
further validated by the results for the ’Parrot’ image shown
in Figure 8. As can be seen, the ’Parrot’ image contains
a complex non-low-rank structure, and the proposed model
provides clearer and more natural results than other methods,
particularly for enlarged details.

C. Video completion

We also evaluate the proposed model on two famous videos,
’suzie’ and ’foreman’3 for video completion. For each video,
20 consecutive frames are extracted as experimental data of
size 144 × 176 × 3 × 20, and then rescaled to [0, 1]. The in-
complete observation for video ’susie’ is a scrabbled version4,
as shown in Figure 9 (b); and the incomplete observation for
video ’foreman’ is corrupted by superimposed texts4, as shown
in Figure 10 (b). The observations are also corrupted by noise

3https://media.xiph.org/video/derf/
4For every two consecutive frames in the video, there is one corrupted with

the same scrabbles or superimposed texts.
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(a) Ground truth (b) STDC [21] (c) FBCP [22] (d) Ours

Fig. 11. Visual results for the 49 selected missing faces, when missing ratio is 70% 5.

sampled from N (0, 0.001). Since t-SVD cannot be applied to
4-mode tensor [25], here we only employ other 8 methods to
recover the latent video. The RRE, PSNR and SSIM for these
two videos are give in Table VI. The proposed model returns
higher PSNR, SSIM and lower RRE than other methods,
which demonstrates the superiority of the proposed method
over others for video completion. To further clarify these
results, visual comparison results of two corrupted frames are
shown in Figure 9, 10. Compared with other methods, the
proposed model produces sharper and clearer results.

D. Facial image synthesis

Motivated by the fact that a complete training set is often
not available in actual facial recognition applications [51],
[52], facial image synthesis is studied to recover missing
faces in an incomplete dataset. In this subsection, we use
the CMU-PIE face dataset [53] for facial image synthesis.
Specifically, we select images from the first 3 subjects with
11 positions and 21 illumination changes to construct a 4-
mode tensor L ∈ R3×11×21×1024, which is then rescaled to
[0, 1]. For the incomplete observation, a certain percentage of
missing faces are randomly selected. Given the observation, all
methods except t-SVD and BRTF 6 are employed to recover L.
Table VII gives the RRE for each method. As can be seen, the
proposed model yields the lowest RRE with different missing
ratios. Visual comparison results for 49 selected missing faces
(e.g., the missing ratio is 70%) are shown in Figure 11.
Compared with other competing methods, the proposed model
recovers more details and produces less artifacts.

VI. DISCUSSION

In this section, we will consider two remaining problems
with the proposed model, including noise estimation and
spatial similarity constraint in visual tensors.

A. Noise estimation

In the above discussion, we assume the noise precision τ0 is
predefined; however, this will limit the proposed model in the
cases corrupted by noise with unknown precision. To address

5Complete results for all methods can be found in the supplementary
material.

6BRTF always fails on this dataset as rank becomes 0.

TABLE VIII
RRE ON SYNTHETIC TENSOR WITH DIFFERENT NOISE CORRUPTIONS.

τ0 1000 500 200 100 10 1

Ours 0.2038 0.2068 0.2066 0.2068 0.2199 0.3293
Ours est 0.2068 0.2086 0.2093 0.2097 0.3072 0.3403

this problem, we assume precision τ0 to follow a Gamma
distribution as follows:

τ0 ∼ Ga(τ0|a0, b0). (52)

Then, it can be inferred with Gibbs sampling as Section IV
and drawn from a Gamma distribution as

τ0 ∼ Ga(ãτ0 , b̃τ0) (53)

with parameters

ãτ0 = a0 + (
∑

i
Oi)/2;

b̃τ0 = b0 +
1

2

∑
i
Oi(yi − xi − ei)

2;
(54)

To demonstrate the effectiveness of the noise estimation dis-
cussed above, we compare the proposed model (i.e., given
the true noise precision τ0) with its variant termed ’Ours est’
which estimates the noise with the sampler in Eq. (53). The
experiment is conducted on the synthetic tensor which consists
of low rank structure of rank = 5 and a non-zero-mean mixture
non-low-rank structure as Section V-A. Gaussian white noise
with different precisions are added to the observation. With
such noisy observations, the recovery results of the proposed
model and ’Ours est’ are given in Table VIII. As can been
seen, the proposed model only slightly outperforms ’Ours est’.
Therefore, we can conclude that the proposed model armed
with the sampler in Eq. (53) can well mitigate the effect of
noise corruption on tensor completion.

B. Spatial similarity constraint

Here we consider the spatial similarity constraint in visual
tensors. Specifically, visual tensor data (e.g., image or video)
often shows similarity in the spatial domain. Such similarity
can provide extra prior information for the ill-posed comple-
tion task, thereby improving the recovery accuracy especially
when the missing ratio is high. In general, such similarity can
be modeled by exploiting the correlation among different rows
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Fig. 12. Performance comparison between the proposed method and its variant that considers the spatial similarity in two applications. (a)-(c) image inpainting
results; (d)-(f) video completion results.

of the factor matrices U (k). For example, if we consider a
color image as 3-mode tensor, the correlation among different
rows in each U (k) represents the correlation among rows,
columns and channels of the image. Considering the obviously
local similarity in visual data, we assume neighboring rows
in each U (k) to be similar and introduce the following prior
distribution

p
(
u

(k)
ir

)
∼ N

(
u

(k)
ir |µ

(k), τ (k)−1
)
N
(
u

(k)
ir |w

T
i u

(k)
r , η−1

0

)
(55)

where wi = [w1i, · · · , wnki]
T is a weight vector with∑nk

j=1 wji = 1 and wii = 0. This prior suggests that each
row of U (k) can be reconstructed by other rows, and also
complies with the `2 norm constraint on each entry. To this
end, a sufficiently large η0 is adopted, e.g., 103. In addition,
we set wji = exp

(
−2 ∗ ρ ∗ |i− j|2

)
to imply the major

contribution of neighboring rows in the reconstruction. The
parameter ρ = Nz/N , where Nz denotes the number of
observed entries in Y . Thus, 1 − ρ equals the missing ratio.
With this prior, u(k)

ir thus can be drawn from a Gaussian
distribution N

(
µ̃
u
(k)
ir
, τ̃
u
(k)
ir

)
as Eq. (30) with parameters

τ̃
u
(k)
ir

=
∑

i:ik=i
τ0Oic̃

rk2

i + τ (k) + η0,

µ̃
u
(k)
ir

= τ−1

u
(k)
ir

(∑
i:ik=i

τ0Oiỹ
r
i c̃
rk
i + τ (k)µ(k) + η0w

T
i u

(k)
r

)
.

(56)
To demonstrate the effectiveness of the prior in Eq. (55),

we compare the proposed model with its variant ’Ours sc’
where u(k)

ir is sampled with Eq. (56), in above image inpainting
and video completion applications. The numerical results are
compared in Figure 12. As can be seen, ’Ours sc’ outper-
forms the proposed model in both applications. Moreover,
its superior performance is more obvious when the missing
ratio is high. Intuitively, this is because a high missing ratio
results in a worsened ill-posed problem that requires more
prior information to regularize the infinite solution space.

VII. CONCLUSION

We have presented an adaptive low-rank representation
model for tensor completion. The model explicitly decomposes
the latent tensor into the low-rank structure and the non-low-
rank structure in a Bayesian way. The low-rank prior relies
on a new formulation of CP rank, which forms the basis of
automatic tensor rank determination by exploiting sparsity in
CP factorization from an incomplete set of observations. The
prior for the non-low-rank structure is a mixture of Gaussians
which has shown to be sufficiently flexible to reflect a variety

of real tensor data. These two priors allow the development of
an MMSE method to estimate the posterior mean of missing
entries and their uncertainty using Gibbs sampling. In addition,
the proposed model has been shown to outperform other
existing models in terms of tensor recovery.
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