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Abstract—This paper presents an integrated trajectory planning and

attitude control framework for six-degree-of-freedom (6-DOF) hypersonic

vehicle (HV) reentry flight. The proposed framework utilizes a bilevel

structure incorporating desensitized trajectory optimization and deep

neural network (DNN)-based control. In the upper level, a trajectory

dataset containing optimal system control and state trajectories is

generated, while in the lower-level control system, DNNs are constructed
and trained using the pregenerated trajectory ensemble in order to

represent the functional relationship between the optimized system states

and controls. These well-trained networks are then used to produce

optimal feedback actions online. A detailed simulation analysis was

performed to validate the real-time applicability and the optimality of

the designed bilevel framework. Moreover, comparative analysis was

also carried out between the proposed DNN-driven controller and other

optimization-based techniques existing in related works. Our results

verify the reliability of using the proposed bilevel design for the control

of HV reentry flight in real time.

Index Terms—Trajectory planning, attitude control, 6-DOF hyper-

sonic vehicle, bilevel structure, deep neural network.

I. INTRODUCTION

T
HE design of guidance and control systems for HVs has been

extensively investigated over the last couple of decades due to

its increasing importance in a wide variety of real-world applications

[1]–[3]. In this work, a particular focus in industry is the development

of advanced guidance and control systems for reentry flight [4]–

[7]. The reentry mission scenario contains both atmospheric and

exoatmospheric flight phases [8]. Consequently, an almost immediate

change in the aerodynamic environment must be considered, thus

making reentry design a challenging task. In addition to the complex

flying environment, other theoretical or practical challenges may

also exist, such as the inherent nonlinearities of the system model,

disturbances in the initial entry conditions, and high demands of

online computation [9]. As a result, it is still difficult to design a

reentry guidance and control system that can offer a reliable solution

in real time.

A reentry guidance and control system is usually divided into

two subsystems, namely, an trajectory control system and an attitude

control system [10]. Trajectory control is often fulfilled by carrying

out two major steps: trajectory optimization [11] and trajectory

tracking guidance [12]. Since a well-planned trajectory is a key for
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enhanced trajectory control of the HV, a large amount of research on

developing trajectory optimization methods can be found [13], [14].

For example, in [13] the authors developed a bioinspired optimization

strategy to calculate the crossrange optimal trajectories for hypersonic

glide vehicles. In addition, the authors in [14] designed a unified

multiobjective optimization technique in order to optimize the reentry

trajectory with the consideration of multiple performance indices.

Although a large amount of results were provided in the afore-

mentioned works to test and validate the effectiveness of different

trajectory optimization methods, the dynamics of the HV were mainly

modeled as a point mass. Few attempts have been made to find

optimal flight trajectories for six-degree-of-freedom (6-DOF) HVs.

It should be highlighted that attitude rates and angles might have

non-negligible impacts on the HV motion in real flight scenarios.

Algorithms developed using a 3-DOF model may not fully exploit

the relationships between the rotational and translational dynamics.

As a result, the accuracy of the simulated state and control trajectories

might be degraded.

Apart from the optimal flight path generation, the design of

advanced trajectory or attitude control systems has also been ex-

tensively investigated [15]–[17]. For instance, in [15] a nonsingular

fast terminal SMC controller equipped with a finite-time disturbance

observer was designed to fulfill the tracking control problem by

nullifying both the disturbance observation and trajectory errors. In

the research reported by Xiao et al. [18], a sliding mode control

(SMC)-based attitude tracking controller was developed. One unique

feature of this design is that it has a strong fault-tolerance capability

with respect to different types of actuator faults. Similarly, a reliable

fuzzy tracking attitude control scheme was constructed in [19],

wherein stochastic actuator failures were considered and modeled

as a Markov chain.

Other effective algorithms have also been designed, such as

that by Zong et al. [20], [21], who proposed specific disturbance

attenuation and rejection-based methods. These methods aim to

asymptotically stabilize the system under certain conditions and have

been successfully applied to attitude tracking control of spacecraft

[22].

Nevertheless, the core idea of most trajectory or attitude control

designs is to apply the estimation technique as a compensator to allow

adjustment in advanced control methods (e.g., the SMC-based control

[23], the fault-tolerant control [24], [25], or the output-feedback

control [26]). Using these strategies, a robust control performance can

be acquired. However, less attention has been paid to the optimality

of the tracked reference signal or the derived control law.

To optimally produce the control command, the possibility of

applying model predictive control (MPC) has been investigated. For

instance, a heuristic approach-based MPC was developed by Tang

et al. [27]. Then this controller was applied to steer the flight of

a reduced-order HV. Similarly, in [28] a robust MPC method was

proposed to control a longitudinal model of the HV in the presence

of control input delays. The suitability of this approach was also
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validated by conducting a number of simulations as reported in the

original paper. However, a critical problem of applying MPC-based

approaches is that the consideration of the full system model and

multiple path constraints tends to result in a large computational

burden on the optimization process, which cannot be afforded in real

time.

Recently, growing interest in researching integrated guidance

and control (IGC) schemes for HVs has been witnessed. A large

amount of research on designing or implementing an IGC method

for HVs has been reported in the literature [29], [30]. Among

these works, the investigation carried out by Tian et al. [30] is of

particular importance. Specifically, the IGC system designed in [30]

produced the guidance command via real-time trajectory replanning.

Subsequently, the optimized guidance command was offered to the

inner loop, where a bilevel SMC controller was implemented to

compute the attitude angle profiles. However, two main drawbacks

may exist. First, the rotational effects are not considered when the

guidance command is produced. Moreover, the SMC-based attitude

controller does not take into account the optimality of the state

feedback. Although there are still some open issues in applying the

IGC system, it was illustrated that the IGC scheme can have the

potential to be utilized in near-real time. Consequently, attention is

given to the IGC design in the present study.

In this paper, we design and suggest a new reentry IGC

framework that can effectively tackle the issues faced by existing

methods. Compared with the results of traditional methods, one

advantage of applying the proposed control system is that well-

researched trajectory optimization and deep learning approaches are

fused together to build an integrated framework, thereby allowing

additional DOFs and more system state information available. In

addition, the proposed control algorithm is able to produce optimal

feedback actions online under the consideration of large initial state

perturbations. The contributions of this article are summarized as

follows.

1) A 6-DOF version of the reentry trajectory optimization problem

is formulated by extending the traditional 3-DOF model to

consider rotational effects.

2) A desensitized trajectory optimization algorithm is iteratively

utilized to address the optimal 6-DOF trajectory design problem

with the consideration of noise-perturbed initial states, thereby

producing a large optimal trajectory dataset.

3) A simple yet effective DNN-based online feedback action pro-

ducer is designed by training DNNs on the optimal trajectory

dataset to learn the inherent relation with respect to the state-

control actions.

It is important to remark that some preliminary results were

reported in [31]. Compared to this preliminary version, this work

presents detailed problem formulation, methodology design and ad-

ditional experimental results, thus making the paper more comprehen-

sive. In addition, this paper can also be treated as an extension work

in order to address some remaining problems in [31]. In particular,

a desensitized optimization strategy is embedded in the original

algorithm framework to enhance the robustness of the solution-

finding process, and a systematic strategy is suggested to select the

network structural parameters such that the network prediction ability

can be improved.

The remainder of this article is organized as follows. Sec II

gives the mathematical formulation of the considered 6-DOF reentry

trajectory optimization mission. In Sec III, a desensitized trajectory

design algorithm applied to form the training dataset, along with the

DNN-based real-time feedback action producer, is outlined. Numeri-

cal and semiphysical studies testing the control performance and the

real-time implementation of the proposed strategy are demonstrated

in Sec IV. Finally, concluding remarks are drawn in Sec V.

II. SIX-DOF HV REENTRY TRAJECTORY OPTIMIZATION

In this section, the 6-DOF HV reentry trajectory optimization

model considered in this research is outlined. Specifically, Sec II.A

presents the nonlinear translational and rotational dynamics of the

reentry vehicle. Subsequently, Sec II.B defines various system-related

constraints. According to the constructed system model and mission

constraints, a 6-DOF reentry trajectory planning formulation with

accumulated heating load minimization is presented in Sec II.C.

A. Translational and Rotational Equations of Motion

Typical 3-DOF reentry trajectory planning models consider the

vehicle as a point mass only. In this work, alternatively, we take

into account the coupling between the translational and rotational

equations of motion (EOMs). More precisely, the translational EOMs

of the HV can be described by Eq. (1), whereas the rotational EOMs

of the HV are formulated by Eq. (2).

ṙ = V sin γ

θ̇ = V cos γ sinψ
r cosφ

φ̇ = V cos γ cosψ
r

V̇ = −D
m

− g sin γ
+Ω2r cosφ(cosφ sin γ − cos γ sinψ cosψ)

γ̇ = L cos σ
mV

+ (V
2−gr
rV

) cos γ + 2Ω sinψ cosφ
+Ω2r cosφ(cosφ cos γ + sinφ cosψ sin γ)

ψ̇ = L sin σ
mV cos γ

+ V
r
cos γ sinψ tanφ

+Ω2r cosφ sinφ
cos γ

− 2Ω(tan γ cosψ cosφ− sinφ)

(1)

α̇ = q − p cosα tanβ − ν sinα tanβ + sin σ
cos β

(cos γψ̇−
φ̇ sin γ sinψ + (Ω + θ̇)(sin γ cosψ cosφ− cos γ sinφ))

− cos σ
cos β

(γ̇ − φ̇ cosψ − (θ̇ +Ω) cosφ sinψ)

σ̇ = −p cosβ cosα− q sinβ + α̇ sinβ − ν cosβ sinα

−φ̇ cos γ sinψ − ψ̇ sin γ

+(Ω + θ̇)(sin γ sinφ+ cos γ cosφ cosψ)

β̇ = −ν cosα+ p sinα+ sinσ(γ̇ − φ̇ cosψ + (Ω + θ̇) sinψ

cosφ) + cosσ(−φ̇ sin γ sinψ + ψ̇ cos γ − (Ω + θ̇)
(sin γ cosψ cosφ− cos γ sinφ))

ṗ = MxIzz
IxxIzz−I2

xz

+ MzIxz
IxxIzz−I2

xz

+
pq(Ixx+Izz−Iyy)Ixz

IxxIzz−I2
xz

+
qν((Iyy−Izz)Izz−Ixz)

IxxIzz−I2
xz

q̇ = Ixz
Iyy

(ν2 − p2) +
My

Iyy
+ pν(Izz−Ixx)

Iyy

ν̇ = MxIxz
IxxIzz−I2

xz

+ MzIxx
IxxIzz−I2

xz

+
pq((Ixx−Iyy)Ixx+I

2
xz

)

IxxIzz−I2
xz

+
qν(Iyy−Ixx−Izz)Ixz

IxxIzz−I2
xz

(2)

The definitions of variables appearing in Eq. (1) and Eq. (2) are

tabulated in Table I.

TABLE I: Notations for variables

r, V : Radial distance and velocity

θ, φ: Longitude and latitude

γ, ψ: Flight path angle (FPA) and heading angle

α, β, σ: Angle of attack (AOA), sideslip angle and bank angle

p, q, ν: Angular rates for roll, pitch, and yaw angles

Iij (i, j=x, y, z): Moment of inertia

Mx, My , Mz : Roll, pitch, and yaw moments

L, D: Lift and drag forces

m, Ω: Mass of HV and earth’s rotation rate

g, ρ: The gravity and density of the atmosphere

x, u, t The state, control, and time variables

t0, tf The initial and terminal time

In Table I, D is calculated via D = 1
2
ρV 2SCD , where S and

CD represent the reference area of the HV and drag coefficient,

respectively. L = (CL/CD)D, where CL is the lift coefficient.
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ρ = ρ0 exp (r −Re)/hs, where Re and hs are respectively the

radius of the earth and the density scale height. The states x and

controls u are abbreviated as

x = [r, θ, φ, V, γ, ψ, α, σ, β, p, q, ν]
u = [Mx,My,Mz]

As a result, the system dynamics can be written as ẋ = f(x, u).

B. System-related Constraints

Some state/control-dependent constraints are required to be

considered during the reentry flight. For instance, to successfully

complete the mission, boundary constraints are imposed on the initial

and terminal state values. These requirements can be modeled as:

r(t0) = r0 θ(t0) = θ0 φ(t0) = φ0

V (t0) = V0 γ(t0) = γ0 ψ(t0) = ψ0

α(t0) = α0 σ(t0) = σ0 β(t0) = β0
p(t0) = p0 q(t0) = q0 ν(t0) = ν0
r(tf ) = rf V (tf ) = Vf γ(tf ) = γf
p(tf ) = pf q(tf ) = qf ν(tf ) = νf

(3)

where the initial time is set to t0 = 0. Apart from the boundary

limitations, path constraints are also imposed on the control variables

such that they could vary in desirable regions:
⎧

⎨

⎩

Mmin
x ≤Mx ≤Mmax

x

Mmin
y ≤My ≤Mmax

y

Mmin
z ≤Mz ≤Mmax

z

(4)

For safety reasons, the flight trajectory is restricted to a narrow

corridor such that three important safety factors (i.e., the aerody-

namic heat, dynamic pressure and normal load) cannot violate their

allowable ranges. To describe these requirements, three state path

constraints are constructed:
⎡

⎣

Q̇(x)
Pd(x)
nL(x)

⎤

⎦ =

⎡

⎢

⎣

KQρ0.5V 3

1
2
ρV 2

√
L2+D2

mg

⎤

⎥

⎦
≤

⎡

⎣

Q̇max

Pmax

Nmax

⎤

⎦ (5)

C. Overall Optimization Formulation

For the considered problem, the objective function applied for

analysis is minimizing the accumulated aerodynamic heating. This

can be modeled as:

J = min

∫︁

tf

0

Q̇(x)dt (6)

Based on the objective and constraints constructed earlier, the

overall optimization formulation for the considered mission is estab-

lished below:

minimize Eq.(6) (mission objective)

subject to Eq.(1) (translational EOMs)

Eq.(2) (rotational EOMs)

Eq.(3) (boundary conditions)

Eq.(4) (control limitations)

Eq.(5) (state limitations)

(7)

III. BILEVEL TRAJECTORY AND ATTITUDE CONTROL METHOD

In this paper, we aim to design an IGC method that can steer the

HV to fly along the simulated optimal path in real time. Motivated by

related works, a bilevel control structure is designed. An advantage

of utilizing the designed control scheme is that the structure of

the optimized control signal can be maximally preserved, while

the recursive online replanning process is no longer necessary. The

structure of the proposed framework, along with some key application

aspects, is outlined in the subsequent subsections.

A. Offline Trajectory Dataset Construction

In the upper level, a set of optimized trajectories for the HV

reentry flight are generated to form a trajectory ensemble. Suppose

that x0 (the initial condition) is perturbed by the stochastic parameters

ξx. The stochastic parameters are sampled via {ξ(k)x}Nk=1 ∼ R(ξx),
where R(·) denotes the probability density function of ξx. Subse-

quently, the trajectory planning model (7) with noise-perturbed x0 is

written as:
minimize J(k)

subject to ẋ(k) = f(x(k), u(k))

x
(k)
0 = x0 + ξ

(k)
x

Φ(x
(k)
f ) = 0

h(x(k), u(k)) = 0
g(x(k), u(k)) ≤ 0

(8)

in which h(·, ·) and g(·, ·) are respectively the compressed forms

of equality and inequality constraints defined in Sec II.B. Φ(·) is

the compressed form of the terminal conditions given by Eq. (3).

Consequently, the optimal solution set {(x(k), u(k))}Nk=1 can be

obtained by iteratively solving Eq. (8) until k reaches N . Problem

(8) can be solved via standard optimal control methods such as

the direct collocation method [9], the multiple shooting method

[9], or the pseudospectral method [11]. These methods all apply

a “discretization + optimization” mode to address the problem.

More precisely, {ti}
Nc
i=1 temporal nodes are utilized to parameterize

the continuous-time optimization model (8). Subsequently, nonlinear

programming (NLP) algorithms are applied to optimize the static

optimization model.

1) Initialization: Note that one critical process that could have

an impact on the convergence performance of the NLP algorithms

is the assignment of initial guess values. Based on the problem

formulation, it is obvious that the high nonlinearity and coupling of

the 6-DOF dynamic model might significantly increase the sensitivity

of the solution with respect to the initial guess values. Moreover,

the consideration of various path constraints might further restrict

the feasible region, thus increasing the computational burden on the

optimization algorithm.

To overcome these difficulties, an initial guess generator as

suggested in [32] is applied. This generator is based on an improved

particle swarm optimization (IPSO) algorithm and is used mainly

to desensitize the effects caused by active mission constraints and

poor initial guess values. Compared with the results of the original

PSO, the local exploitation ability of the IPSO is further improved by

using a local gradient operation. For completeness reasons, a brief

description including the implementation steps of the algorithm is

recalled as follows [32]:

Step 1. Initialize a set of particles with a position vector uz(G) =
[uz,1(G), ..., uz,d(G)] and a velocity vector vz(G) =
[vz,1(G), ..., vz,d(G)]. Here, z and d are the index and

dimension of the particle, respectively, while G denotes the

index of generation.

Step 2.Compute the fitness value for the particle via:

Jz(G) =

{︂

Jz(G), if V oz(G) = 0;

J̄(G) + J̄(G)V oz(G), if V oz(G) > 0.

where J̄(G) denotes the worst fitness value among the genera-

tion, whereas Vo ∈ [0, 1] represents the magnitude of constraint

violation. The calculation approach can be found in [8].

Step 3.Perform a local gradient operation to update uz via:

ūz(G) = uz(G) + ez
ez = −( ∇uJz

‖∇uJz‖
+ ∇uV oz

‖∇uV oz‖
)

where ∇· is the partial differentiation operation.

Step 4.Search the global best position g(G) and the best position of

the zth particle pz(G).
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Step 5.Update the position and velocity vectors via:

vz,d(G+ 1) = wvz,d(G) + c1(pz,d(G)− uz,d(G))
c2(g(G)− uz,d(G))

uj,d(G+ 1) = uz,d(G) + vz,d(G+ 1)

where c1 and c2 are two uniformly distributed random numbers

[9], [32].

Step 6.Set G = G+ 1, and go back to Step 2. Terminate the process

when G reaches Gmax.

Step 7.Output the best solution among the Gmaxth generation, and

use this solution as the initial reference solution.

2) Computational Consideration: According to experimental

tests shown in previously published works [30], another important

process that could influence the algorithm convergence ability is scal-

ing. Suitable scaling can increase the convergence rate, convergence

speed and algorithm robustness. To desensitize the negative effect

caused by poor scaling, a nondimensionalization process should be

performed by regulating the system variables via:

r̄ = r/r0 θ̄ = θ/π φ̄ = φ/π V̄ = V/V0

γ̄ = γ/π ψ̄ = ψ/π ᾱ = α/π σ̄ = σ/π
β̄ = β/π p̄ = p/π q̄ = q/π ν̄ = ν/π

(9)

The generated initial guess value and regulated variables are

then provided to a newly proposed NLP solver that addresses the

static optimization problem via a dual-loop improved gradient method

[33]. It was shown in [33] and [34] that this method can be effective

for solving this type of problem and can significantly improve the

success rate of finding optimal solutions. As a result, the optimizer

developed in [33] is well suited to solve the considered problem, and

we iteratively use it to create the optimal trajectory ensemble.

B. DNN-based Feedback Action Producer

Following the discussion stated in Sec III.A, we assumed that

the optimized HV reentry trajectory dataset has been generated. To

effectively control the vehicle in real time, the core idea is to build

multiple DNNs on the preconstructed trajectory ensemble in order

to learn and represent the optimal state-control actions. Then, the

trained DNNs is used as the optimal feedback controller in real time.

That is, u(k) = N (x(k)).
Generally speaking, a DNN consists of three components: an

input layer, multiple hidden layers, and an output layer (as demon-
strated in Fig. 1). Typically, each layer contains multiple function

Fig. 1: DNN illustration

units. Their outputs are written as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

oij = cj(ωijoj−1 + bij)

oj−1 =

Nj−1
o
∑︁

i=1

cj−1(ωi,j−1oi,j−1 + bi,j−1)

(10a)

(10b)

In Eq. (10), i = 1, 2, ..., No and j = 1, 2, ..., NL respectively
represent the indices of the unit and layer. ωij and bij are the weight
and bias parameters, respectively. cj stands for the activation function
of the jth layer, which is written as:

{︃

cj = max(x(k), 0)

cNL
= max(ū,min(x(k)), u)

(11a)

(11b)

in which ū and u are respectively the upper and lower bounds of

the controls. In the constructed DNN, ReLU activation functions are

applied in hidden layers, while the linear bounded function is utilized

in the output layer. The motivation for the use of a linear bounded

function relies on its capability in accommodating cases when a bang-

bang optimal control structure appears. Once a DNN is structured,

the stochastic gradient descent method is used to train the network

and adjust [ω, b] such that the mapping accuracy can be increased.

More precisely, a loss function in the form of (12) is used in the

training process.

E =
1

Nb

Nb
∑︁

i=1

(D(xi)− y(xi))
2 (12)

where Nb, D(·), and y(xi) denote the batch size, the final output of

the network, and the target output values, respectively. Subsequently,

the weight parameters can be updated via:

ωi = ωi +∆ωi (13)

where ∆ωi is given by:

∆ωi = −
ζ

Nb

∂
∑︀Nb

i=1(D(xi)− y(xi))2

∂ωi
(14)

C. Overall Algorithm Framework

A graphical illustration of the overall framework of the proposed

bilevel control strategy is shown in Fig. 2. To further clarify the online

control design, the lower-level DNN-based control scheme illustrated

in Fig. 2 is extracted and depicted in Fig. 3.

Fig. 2: Graphical illustration of the bilevel strategy

IV. NUMERICAL RESULTS

Simulation results and experimental studies of applying the

bilevel trajectory and attitude control strategy to address the con-

sidered problem are presented in this section. Several goals and

objectives for carrying out the experiments are listed below:

∙ Validating the effectiveness and reliability of using the DNN-based

feedback action producer to steer the flight of the HV.

∙ Comparing the control performance between existing control meth-

ods and the proposed strategy.
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Fig. 3: Overall framework of the DNN-based control scheme

∙ Studying the real-time performance of the proposed control scheme.

Before the obtained results are presented in detail, some

environment/vehicle-related parameters are first specified.

A. Scenario/Vehicle-related Parameter Assignment

The values of mission-related parameters are tabulated in Table

II, while the vehicle-related parameters are specified in Table III.

The state path constraints are assigned as [Qmax, Pmax, Nmax] =
[200, 280, 2.5], whereas the control constraints [Mx,My,Mz are

limited in [−105, 105]. ζ is set as 0.001. The numerical studies

were performed under Windows 10 and an Intel (R) i7-3520M CPU

running at 2.90 GHz with 8.00 GB RAM.

TABLE II: Assignment of mission-related parameters

Parameter Value Parameter Value

r(t0), 21162900 q(t0), 0∘/s
θ(t0), 0∘ ν(t0), 0∘/s
φ(t0), 0∘ rf , 21066900
V (t0), 25600 ft/s Vf , 16400 ft/s

γ(t0), −1∘ γf , 0∘

ψ(t0), 90∘ βf , 0∘

α(t0), 17∘ pf , 0∘/s
σ(t0), −75∘ qf , 0∘/s
β(t0), 0∘ νf , 0∘/s

p(t0), 0∘/s Kq , 9.289e−9

TABLE III: Assignment of vehicle-related parameters

Parameter Value Parameter Value

Re, ft 20902900 hs, ft 23800

ρ0, sl/ft3 2.378 × 10−3 Ω, rad/s 7.29×10−5

m, sl 6209.43 S, ft2 2690

Ixx, sl/ft2 434270 Ixz , sl/ft2 17880

Iyy , sl/ft2 961200 Izz , sl/ft2 1131541

B. Trajectory Ensemble Construction

We generate the optimal flight trajectory dataset used to train the

DNNs in this subsection. As stated in Sec III.A, it is assumed that

the stochastic disturbances ξx act on the initial state conditions x0.

Here, ξx = [ξr0 , ξθ0 , ξφ0 , ξV0 , ξγ0 , ξψ0 , ξα0 , ξσ0 ]
T and their values

are uniformly distributed on the following regions:

ξr0 ∈ [−2500, 2500] ft ξθ0 ∈ [−0.25∘,−0.25∘]
ξφ0

∈ [−1∘, 1∘] ξV0
∈ [−350, 350] ft/s

ξγ0
∈ [−0.5∘, 0.5∘] ξψ0

∈ [−0.5∘, 0.5∘]
ξα0

∈ [−1∘, 1∘] ξσ0
∈ [−2∘, 2∘]

A number of typical trajectory optimization methods are avail-

able in the literature [9]. However, due to the existence of stochastic

disturbances, a direct implementation of these methods for the con-

sidered problem might result in poor convergence performance and

local/infeasible solution detection [34]. To increase the success rate

for finding optimal solutions, the desensitized trajectory optimization

method established in Sec III.A is used to produce a set of optimal

reentry trajectories. To highlight its advantages, a Monte Carlo (MC)

simulation was executed to assess the convergence performance by

using different trajectory optimization techniques. By setting the

maximum iteration number to 5000, 3000 MC trials were performed.

Convergence results obtained via the proposed method and the other

two widely applied trajectory optimization algorithms are tabulated

in Table IV. Three primary indicators [Is, Ii, Im], representing times

of optimal/infeasible solution found and times of maximum iteration

reached, are presented in Table IV. Prs is the success rate for finding

the optimal solution.

TABLE IV: Convergence results via different methods

Indicator
Proposed

method

Method

reported in [11]

Method

reported in [35]

Is 2772 2007 2098

Ii 0 220 79

Im 228 773 823

Prs 92.40% 66.90% 69.93%

Using the IPSO algorithm to favorably start the gradient-based

optimization process can improve the success rate for finding the

optimal solution in the presence of initial condition disturbances.

This confirms the benefit from applying the IPSO-based desensiti-

zation strategy as well as the scaling process. With the desensitized

optimization method, 2× 103 optimal trajectories for the considered

problem are collected. Nc = 100 state-control pairs are extracted

from each flight path, thereby resulting in 2× 106 pairs.

C. Selection of DNN Structural Parameters

To steer the HV reentry flight, three DNNs (represented as NMx ,

NMy and NMz ) are established. The networks are trained on the

constructed trajectory dataset to approximate the inherent relation of

the optimized state-control action. Within the dataset, 50% of the

data are utilized for training, while 25% of the data are utilized for

testing and validation.

As for the network structural parameters, the number of layers,

units, and batches should be determined. Experiments were carried

out by specifying four levels for each parameter, as detailed in Table

V. Then, an orthogonal array can be constructed to describe different

parameter combinations (as illustrated in Table VI). The DNN is

trained for each parameter combination. The obtained average testing

mean absolute error (Te-MAE) values for different experiments are

also reported in Table VI. Based on the results from Table VI, the

level trends of the DNN structural parameters are shown in Fig. 4,

from where it can be observed that the best performance is acquired

if these three parameters are set as NL = 5, No = 64 and Nb = 8.

TABLE V: Parameter specification

Parameter Level

1 2 3 4

NL 3 4 5 6

No 16 32 64 128

Nb 6 8 10 12

Remark 1. Since the trained DNN acts as the optimal feedback action

generator, there is a concern regarding the tradeoff between its control
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TABLE VI: Results of different parameter combinations

Test No. Level Result

NL No Nb Te-MAE

Experiment No. 1 1 1 1 0.1085

Experiment No. 2 1 2 2 0.0853

Experiment No. 3 1 3 3 0.0908

Experiment No. 4 1 4 4 0.0842

Experiment No. 5 2 1 2 0.0644

Experiment No. 6 2 2 1 0.0703

Experiment No. 7 2 3 4 0.0652

Experiment No. 8 2 4 3 0.0715

Experiment No. 9 3 1 3 0.0458

Experiment No. 10 3 2 4 0.0473

Experiment No. 11 3 3 1 0.0427

Experiment No. 12 3 4 2 0.0482

Experiment No. 13 4 1 4 0.0539

Experiment No. 14 4 2 3 0.0496

Experiment No. 15 4 3 2 0.0511

Experiment No. 16 4 4 1 0.0513

N
L
 Level

1 2 3 4

T
e

-M
A

E

0.04

0.06

0.08

0.1

N
o
 Level

1 2 3 4

T
e

-M
A

E

0.062

0.064

0.066

0.068

0.07

N
b
 Level

1 2 3 4

T
e

-M
A

E
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0.064

0.066

0.068

0.07

Fig. 4: Level trends of the DNN parameters

accuracy and online computational burden. From Table VI and Fig. 4,

it can be expected that a more deeply trained network may result in a

higher control accuracy. Notably, the computational complexity of the

online process requires only a modest CPU effort. More precisely, to

calculate the optimal feedback actions, we only need a finite number

of forward operations influenced by the number of the network layer

NL. Trajectory ensemble generation and network training, on the

other hand, are performed offline.

D. DNN-based Control Performance

The performance of applying the lower-level DNN-based feed-

back action generator is validated in this subsection. Denoting the

trained DNNs as N = [NMx ,NMy ,NMz ], the online optimal

feedback actions M = [Mx,My,Mz] can be computed via M(ti) =
N (x(ti)). A sample test was executed, and the simulated optimal

results and the DNN-driven results are visualized in Fig. 5. The

characteristic of the simulated optimal state/control trajectories is

first analyzed. The translational state profiles are demonstrated in

Figs. 5(a)-(c). These state trajectories display a relatively smooth

trend and can vary in their allowable regions as prespecified in

the optimization model. On the other hand, Figs. 5(d)-(i) illustrate

the time evolution of the rotational states during the reentry phase.

Different from the translational state, the rotational states exhibit

higher-frequency dynamics. The angular rate profiles are relatively

small, which guarantees that unfeasibly sudden movements can be

avoided during the flight.

In addition, attention is given to the effect of the accumulated

heating load over the obtained solution profiles. Specifically, as

can be seen from Fig. 5(d), the AOA profile displays a steadily

increasing trend in order to slow down the HV (see Fig. 5(b)). This

aspect guarantees that the accumulated heating load does not increase

significantly. In addition, according to the definition of the objective

function (6), it is obvious that the total amount of heating load

depends strongly on the mission duration time. Therefore, we can

expect that minimizing the accumulated heating load will indirectly

shrink the flight duration to some extent.

The actual flight trajectories driven by the proposed DNN-

based control scheme are now studied. From Fig. 5, we can see

that the DNN-driven control scheme is able to generate almost

identical solutions as the simulated optimal results. Hence, it can

be concluded that the structure of the optimized control signal is

maximally preserved. It is noteworthy that although the state and

control evolutions illustrated in Fig. 5 are used only as an instance to

verify the control performance of the proposed DNN-based method,

other test cases among the test set can display similar results.

Time (s)

0 200 400 600

A
lt
it
u

d
e

 (
ft

)

×105

1.5

2

2.5

3
(a)

Time (s)

0 200 400 600

S
p

e
e

d
 (

ft
/s

)

×104

1

2

3
(b)

Time (s)

0 200 400 600

F
P

A
 (

d
e

g
)

-2

-1

0

1
(c)

Time (s)

0 200 400 600

A
O

A
 (

d
e

g
)

15

20

25
(d)

Time (s)

0 200 400 600

B
a

n
k
 a

n
g

le
 (

d
e

g
)

-80

-70

-60
(e)

Time (s)

0 200 400 600S
id

e
s
lip

 a
n

g
le

 (
d

e
g

)

×10-3

-5

0

5
(f)

Time (s)

0 200 400 600

R
o

ll 
ra

te
 (

d
e

g
/s

)

-0.2

0

0.2
(g)

Time (s)

0 200 400 600
P

it
c
h

 r
a

te
 (

d
e

g
/s

)

-0.4

-0.2

0

0.2
(h)

Time (s)

0 200 400 600

Y
a

w
 r

a
te

 (
d

e
g

/s
)

-0.2

-0.1

0

0.1
(i)

Time (s)

0 200 400 600

M
x
 (

lb
/f

t)

-200

0

200

400
(j)

Time (s)

0 200 400 600

M
y
 (

lb
/f

t)

-2000

0

2000

4000
(k)

Simulated optimal

DNN-driven

Time (s)

0 200 400 600

M
z
 (

lb
/f

t)

-1000

0

1000

2000
(l)

Fig. 5: Results produced via the DNN-driven approach
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Results regarding the terminal state distribution ef = xf−x(tf )
for 500 test cases are visualized in Fig. 6, where the terminal state

errors are denoted as:
⎧

⎨

⎩

erf = r(tf )− rf eVf = V (tf )− Vf
eγf = γ(tf )− γf epf = p(tf )− pf
eqf = q(tf )− qf eνf = ν(tf )− νf

From Fig. 6, it is obvious that erf , eVf and eγf can be successfully

steered into small neighborhoods around zero; specifically, their

values can be steered into [−150, 150] ft, [−25, 25] ft/s and

[−0.1∘, 0.1∘], respectively. Hence, the effectiveness and reliability

of applying the proposed bilevel control scheme can be confirmed.

E. Comparative Analysis

Comparative case studies were executed to demonstrate the

control performance of implementing different IGC methods in real

time. For instance, one comparative study is performed between the

DNN-based approach and the IGC method designed in [30]. Five

hundred MC test trials were executed for the considered problem.

The statistical performance regarding the terminal state dispersions

and the mean CPU processing time tp (for every control action) are

shown in Table VII.

TABLE VII: Statistical performance regarding terminal state values

Final state DNN-driven Approach

value approach [30]

erf -34.3550 22.5621

eVf 1.8614 0.5427

Mean eγf -0.0093 -0.0142

value epf -0.1737 -0.1421

eqf -0.0829 -0.2235

eνf -0.1530 0.3142

erf 41.8435 13.7935

eVf 6.0374 0.4431

Standard eγf 0.0195 0.0144

deviation epf 0.0034 0.0179

eqf 0.0379 0.0568

eνf 0.0078 0.0131

Average

CPU time
tp 9.7579 ms 0.6049s

From Table VII, we can see that the DNN-based feedback action

generator is able to acquire comparable control performance with the

controller suggested in [30]. Using the proposed approach, we are

able to achieve a microsecond-class processing ability. This is much

more efficient than using the controller designed in [30] (second-

class processing ability). This performance can be attributed by the

fact that in the proposed bilevel structure, there is no need for the

time-consuming online optimization process. To better demonstrate

the online processing performance of the DNN-based algorithm, a

histogram of the average CPU time of the 500 MC tests is depicted in

Fig. 7. Based on the computational results, the strong performance of

the online implementation of an optimal feedback controller modeled

via DNNs is further verified.

F. Experimental Study

This subsection describes experimental studies carried out on

a practical testing framework to further validate the effectiveness

of the designed strategy. The testing system consists of a server

(Dell EMC PowerEdge R930 rack), an industrial PC (IPC-610MB-

30LDE/I5-2400/DDR3 8 GB) and an embedded controller (NI PXI-

8820) as shown in Fig. 8. Specifically, the server is applied to train

DNNs, while the PC is used to convert the real-time simulation to

executable files via LabVIEW Real-Time Module. Following that, the

performance is tested on the embedded controller.

Fig. 7: Histogram of MC tests (Average CPU time)

Fig. 8: Testing framework
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Fig. 9: DNN-driven performance

The DNN-driven results, together with the simulated optimal

flight trajectories, are depicted in Fig. 9, from where it is obvious that

the proposed strategy can steer the 6-DOF HV model to fly along

the optimal solution. Supplementary works were performed to study

the impact of disturbances/uncertainties on the control performance.

For example, it is assumed that the inertia moment Iij has some

variations (e.g., 5%, 10%, and 15%). The resulting DNN-driven

results are presented in Fig. 9. We can observe that the DNN-

driven results start deviating from the simulated optimal solution

as the uncertainty increases. Actually, a potential way to strengthen

the online control accuracy is to expand the training dataset such

that it can cover more uncertain cases. For instance, the original

trajectory optimization model can be extended by including a variety
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of uncertainties or noise-perturbed dynamics. As a result, the trained

networks will have an enhanced capability in order to deal with the

disturbances/uncertainties, thus further improving the robustness as

well as the practicability of the proposed approach.

V. CONCLUSION

In this work, a bilevel control scheme incorporating an improved

trajectory optimization method and DNNs was designed to steer HV

reentry flight. By taking into consideration the rotational effects, the

typical 3-DOF HV model was extended to a 6-DOF version in the

trajectory optimization phase. Furthermore, DNNs were established to

study the simulated optimal state-control actions such that they can

generate optimal feedback actions in real time. Numerical studies

were performed to assess the real-time capability of the DNN-

based control scheme. Experimental studies were executed to confirm

the reliability of the proposed method. According to the obtained

results, we can conclude that in comparison to other IGC approaches

reported in the literature, the new design tends to be easier and more

straightforward to implement. Moreover, this design has the potential

to be implemented in real HV reentry flight situations. As a result, we

believe the suggested bilevel approach and obtained numerical results

are of practical interest to communities that are involved with deep

neural network-based control applications and spacecraft guidance

and control systems.

Some future research directions can be inspired from the study

carried out in this paper. For example, it would be worthwhile to

test the proposed strategy on solving other trajectory planning and

attitude control applications. Efforts can also be made to investigate

the possibility of applying reinforcement learning approaches to learn

the optimal feedback actions in a highly stochastic environment.
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