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Abstract — The graph-based semi-supervised label propaga-

tion algorithm has delivered impressive classification results. 
However, the estimated soft labels typically contain mixed signs 
and noise, which cause inaccurate predictions due to the lack of 
suitable constraints. Moreover, available methods typically cal-
culate the weights and estimate the labels in the original input 
space, which typically contains noise and corruption. Thus, the 
encoded similarities and manifold smoothness may be inaccu-
rate for label estimation. In this paper, we present effective 
schemes for resolving these issues and propose a novel and ro-
bust semi-supervised classification algorithm, namely, the tri-
ple-matrix-recovery-based robust auto-weighted label propaga-
tion framework (ALP-TMR). Our ALP-TMR introduces a tri-
ple matrix recovery mechanism to remove noise or mixed signs 
from the estimated soft labels and improve the robustness to 
noise and outliers in the steps of assigning weights and predict-
ing the labels simultaneously. Our method can jointly recover 
the underlying clean data, clean labels and clean weighting 
spaces by decomposing the original data, predicted soft labels 
or weights into a clean part plus an error part by fitting noise. 
In addition, ALP-TMR integrates the auto-weighting process 
by minimizing reconstruction errors over the recovered clean 
data and clean soft labels, which can encode the weights more 
accurately to improve both data representation and classifica-
tion. By classifying samples in the recovered clean label and 
weight spaces, one can potentially improve the label prediction 
results. The results of extensive experiments demonstrated the 
satisfactory performance of our ALP-TMR.  

Index Terms— Semi-supervised classification; triple matrix 

recovery; robust auto-weighted label propagation 

I. INTRODUCTION 

In numerous emerging applications of pattern classification 

and data mining, real-world data typically contain noise and 

complex distributions and are not easy to distinguish due to 

lack of prior information [25][37-40][57-60], such as label 

information. However, real data typically have intrinsic spe-

cial structures, and inter-class samples typically lie in differ-

ent subspaces, which provides the possibility of distinguish-

ing them using data classification. Since labeling numerous 

real data is difficult and costly and unlabeled samples are eas-

ier to obtain, semi-supervised classification (SSC), which 

aims at classifying samples using partially labeled data, has 

been attracting substantial attention, especially in the case 

that the number of labeled samples is limited [17-20][31][41-

45][52-53]. As a classical graph-based SSC algorithm [61-

70], label propagation (LP) [1-9] has been widely utilized 

due to its effectiveness and efficiency. LP models predict the 

labels of samples by propagating label information from la-

beled data to unlabeled data using their geometric structures 

and initial state [1-9], namely, by balancing the label fitness 

and the manifold smoothness.  

Representative transductive LP algorithms mainly include 

Gaussian fields and harmonic function (GFHF) [1], linear 

neighborhood propagation (LNP) [2], special LP (SLP) [3], 

learning with local and global Consistency (LLGC) [5], pro-

jective label propagation (ProjLP) via label embedding [6], 

prior-class-dissimilarity-based LNP (CD-LNP) [4], sparse 

neighborhood propagation (SparseNP) [8], positive and neg-

ative label propagation (PN-LP) [7], and adaptive neighbor-

hood propagation (AdaptiveNP) [9]. GFHF, LLGC, LNP and 

SLP optimize similar objective functions to predict the labels 

of samples by receiving information partly from the neigh-

borhood and partly from the initial state. To encode the local 

neighborhood accurately, CD-LNP linearly reconstructs each 

data item by integrating class information to define the dis-

similarity and discriminative neighborhoods [4]. PN-LP ex-

tends regular LP to negative LP [7]. AdaptiveNP improves 

the classification performance by integrating sparse coding 

and neighborhood propagation [30], namely, the reconstruc-

tion and classification errors are jointly minimized, which 

differs from most LP algorithms, which explicitly separate 

the construction of graph weights from the LP step.  

  Although enhanced results have been delivered by the LP 

methods that are discussed above, they still drawbacks that 

can degrade the classification results. First, the steps of label 

prediction and weight assignment are typically conducted in 

the original input space, namely, the labels and local neigh-

borhood of each sample are encoded directly over the origi-

nal data. However, real-world data typically have various 

noises, unfavorable features and even corruptions; hence, it 

is likely that the estimated labels and encoded similarities are 

inaccurate in practice. Second, for single-label classification 

(one label is assigned for each sample), it is preferable for the 

estimated soft label vector of each sample to contain only one 

nonzero entry, which determines its class assignment. How-

ever, the estimated labels typically have unfavorable mixed 

signs and noise of various levels, which degrades the results 

[6] [8]. Thus, the labels that are determined over the original 

predicted soft labels may be inaccurate or even completely 

incorrect; LLGC, LNP, GFHF, SLP, CD-LNP, PN-LP and 

AdaptiveNP suffer from this problem. To eliminate the neg-

ative effects of noise and mixed signs in the estimated soft 

labels, SparseNP [8] and ProjLP [6] were introduced as fea-

sible approaches. ProjLP can predict more discriminating 

“deep” soft labels of data by using label embedding to reduce 
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the noise and mixed signs in soft labels to enhance the clas-

sification performance [6]. In contrast to ProjLP, SparseNP 

explicitly employs a sparse regularization on the predicted 

soft labels for the joint optimization to reduce the unfavora-

ble mixed signs and the noise in the soft labels on the classi-

fication result [8]. In this paper, we develop another method 

and propose a simple yet effective approach for removing 

noise and mixed signs from the predicted soft labels via clean 

label recovery. Third, SLP, LNP, CD-LNP, LLGC, GFHF, 

ProjLP, SparseNP and PN-LP typically suffer from a perfor-

mance-degrading issue that is caused by constructing the 

graph weights prior to the LP step, namely, by pre-calculat-

ing the weights over the original data in a separable step but 

failing to ensure that the pre-obtained weights are jointly op-

timal for the subsequent label estimation, thereby resulting 

in inaccurate predicted labels [19][23][26][36]. In addition, 

the widely used Gaussian kernel weights in [1][3] [5][28] and 

local reconstruction weights in [2][4][6][8] require the selec-

tion of an optimal number of nearest neighbors or kernel 

width, which is never easy in practice. AdaptiveNP resolves 

this issue by integrating the adaptive weight construction and 

neighborhood propagation into a unified model; however, it 

still operates on the original data and label spaces. Therefore, 

the presence of both noise and mixed signs may render its 

prediction result fragile even if the corruption level is low. 

The pre-calculated weights and jointly computed weights 

from previous work may still suffer from lack of ensured ro-

bustness for data representation since without proper con-

straints on the weight matrix, they may contain incorrect in-

ter-class connections that directly result in erroneous label 

prediction results and inaccurate similarities. Thus, it will be 

better to reduce the incorrect inter-class connections in 

weights and to use them to encode the neighborhood and 

manifold smoothness for enhancing the label prediction.  

Therefore, in this paper, we propose effective strategies for 

addressing the drawbacks that are discussed above, and we 

propose a novel LP model that is robust to the noise and 

mixed signs in the original data, estimated soft labels and 

weights. The main contributions are summarized as follows:  

(1) A novel triple-matrix-recovery-driven robust auto-

weighted label propagation model, which is referred to as 

ALP-TMR, is proposed for semi-supervised classification. 

ALP-TMR introduces a novel triple-matrix-recovery-based 

mechanism for enhancing the robustness of the learning pro-

cess to the noise and unfavorable mixed signs in the data, 

predicted soft labels and jointly computed weights.  

(2) To discover the underlying clean label and clean data 

spaces, ALP-TMR presents a simple and intuitive approach 

in which the original data/estimated soft label matrix is fac-

torized into a recovered clean data/clean label matrix and a 

sparse error. Then, for accurate classification, the final labels 

of samples are calculated in the recovered label space.  

(3) To define the locality and manifold smoothness, ALP-

TMR encodes the similarity more accurately by recovering 

the underlying clean weights. ALP-TMR decomposes the 

original weight matrix into a recovered clean weight matrix 

with fewer inter-class connections and a sparse error that is 

fitted to the incorrect connections. To make the recovered 

weights jointly optimal for representing and classifying data, 

ALP-TMR integrates the adaptive weighting by jointly min-

imizing the reconstruction errors based on recovered clean 

samples, clean labels and clean weights. The auto-weighting 

can also avoid the tricky issue of selecting the neighborhood 

size or the kernel width when assigning weights.  

The remainder of this paper is organized as follows: In 

Section II, we briefly review the related work. Section III 

presents the formulation, optimization and convergence anal-

ysis of our ALP-TMR method. Section IV describes the ex-

perimental results and analysis. Finally, the conclusions of 

this work are presented in Section VI.  

II. RELATED WORK 

A. Regular Transductive Label Propagation 

Consider a collection of samples  , n N

L UX X X   , where 

 1 2, ,..., n l

L lX x x x   is a labeled set, in which each sample 
n

ix  is associated with a unique label i  1 i c , where c 

is the number of classes and n is the dimensionality of the 

original data.  1 2, ,..., n u

U l l l uX x x x 

     is an unlabeled set, 

namely, l u N  is the total number of samples. Then, 

transductive LP methods aim at propagating label infor-

mation of labeled set LX to unlabeled set UX based on their in-

trinsic relations, which are encoded by a pre-constructed 

weighted neighborhood graph  ,G X E . To assign weights 

,i jW for measuring the pairwise similarities between samples, 

Gaussian kernel weights [1][3][5] and the reconstruction 

weights [2][4][6][8] are widely used in available methods. 

Let    
1 2, ,...,

c l u

l uY y y y
 

  denote the initial label set of all 

samples, where c

iy  is a column vector, in which 
, 1i jy   

if
jx is labeled as  1i i c   and

, 0i jy  for unlabeled data
jx . 

Denote by    
1 2, ,...,

 

 
c l u

l uF f f f the estimated soft label 

matrix. A general framework for most available transductive 

LP algorithms can be defined as 

      TTmin
F

tr FLF tr F Y U F Y   ,       (1) 

where L is graph Laplacian matrix L D W  or normalized 

graph Laplacian matrix  
1/2 1/2

L D D W D
 

  
1/2 1/2

I D WD
 

 , 
   

,

l u l u

i jW W
  

    is the weight matrix, D is a diagonal ma-

trix with entries
,

,
ii i j ij

D W  ,  tr  is the trace operator,
T is the transpose of the corresponding matrix, and U denotes 

a diagonal matrix for balancing the similarity-based manifold 

smoothness and label fitness. The label of each sample ix is 

received partially from its neighbors and partially from the 

initial state [1-9]. Matrix U includes the weighting factors for 

the labeled and unlabeled data, which is defined as 

   0

0

l
l u l u

u

U
U

U

   
  
 

,          (2) 

where  l l

iU diag u and  u u

iU diag u are diagonal matrices 

with , 1,....,l

iu i l , and , 1,....,u

iu i l l u   , respectively, as 

the entries for weighting the labeled and unlabeled data.  

B. Robust Label Propagation: SparseNP and ProjLP 

We briefly review the formulations of SparseNP and ProjLP 

that consider eliminating the negative effects of unfavorable 

mixed signs in the predicted soft labels for classification.  

SparseNP. SparseNP attempts to reduce the mixed signs 

and noise in the predicted labels via sparse regularization. 

SparseNP improves the discrimination performance of the 

predicted labels F by imposing the sparse
2,1l -norm on F di-

rectly for joint optimization [8]. By assuming that the data 

space and label space share the same reconstruction relations, 

the objective function of SparseNP is defined as 

    
2

T

2,1
min

FF
F FW tr F Y UD F Y F

      , (3) 

where 
2

T

F
F FW  is the label reconstruction error, D is a 



diagonal matrix with entries ,i jii j
D W , 

2,1
F   is the 

2,1l -norm-based soft label matrix and   is a tuning param-

eter. Due to the use of the 
2,1l -norm, rows of the estimated 

soft label matrix F   will shrink to zeros theoretically [24] 

[29][34], which can potentially encourage the soft labels to 

be discriminating to enhance the classification result.  

ProjLP. ProjLP is another effective approach for reducing 

the mixed signs and noise in the estimated soft labels by com-

puting the discriminative “deep” labels of the samples. Pro-

jLP explicitly obtains an 
2,1l -norm-based robust projection

     1 1

1 2, ,...,
c c

dP p p p
  

  for converting the original “shal-

low” label vector if  into a deep label vector via the label 

embedding in terms of
iP f . The optimization problem of the 

recently proposed ProjLP algorithm is formulated as 

    T2
T T T T T

,

2,1

min



   



FF P
P F P FW tr P F Y UD P F Y

P

, (4) 

where W is a weight matrix, 
,i jW are the entries of W, P F  

is the “deep” soft label matrix that is obtained by embedding 

over F and 
2,1

P denotes the 
2,1l -norm-based sparse projec-

tion. 
2

T

F
F FW  denotes the reconstruction error that is 

based on P F and     T
T Ttr P F Y UD P F Y   is the label 

fitness error between P F and initial label Y. Due to the joint 

computation of P, the embedded labels P F will be more dis-

criminating than the original soft labels in F because the 
2,1l

-norm on P can ensure that the learnt P is sparse in rows, and 

the sparse embedding procedure can also remove unfavora-

ble mixed signs from P F for more accurate label estimation.  

III. ROBUST AUTO-WEIGHTED LABEL PROPAGATION VIA 

TRIPLE MATRIX RECOVERY (ALP-TMR) 

A. Main Notations that are Used in the Paper 

First, some important notations are introduced. For any ma-

trix 1 2, ,..., m q

qS s s s     , its lr, p-norm is defined as 

/
/

,, 1 1
( | | )

l p
m q r p r

i jr p i j
S S

 
 
   .           (5) 

If p=r=2, it becomes the Frobenius norm; if p=1 and r=2, 

it is the l2,1-norm [29][35]. Let 
is  be the i-th row vector of 

S, and let is  be the i-th column vector of S. Then, the Fro-

benius norm and the l2,1-norm of S are formulated as 

 

   

 

22 2

, 2
1 1 1

1/2

2

,2,1 2
1 1 1

2

qm m
i

i jF
i j i

qm m
i

i j

i j i

S S s tr S S tr SS

S S s tr S OS

 

  



  

   

 
   

 

 

  

,     (6) 

where O is a diagonal matrix with entries
2

1 / 2 i

iiO s  and 

,i jS  is the  ,i j -th entry of S. In practice, 
2

is could be equal 

to zero. Under special cases, we can use the simple regulari-

zation approach to define  
2

1 / 2 i

iiO s   , where  is a 

small number, so that 
2

2 is  can approximate
2

2 is . I is 

an identity matrix and its dimensionality is automatically 

compatible. The horizontal (respectively, vertical) concate-

nation of a collection of matrices or vectors along a row (re-

spectively, column) is represented using 
1 2; ;...; ms s s    (re-

spectively, 1 2, ..., qs s s   ).  

B. The Objective Function 

The formulation of our ALP-TMR is described. ALP-TMR 

focuses on enhancing the transductive label estimation and 

representation performances by improving the robustness to 

noise and outliers in the specified data X, estimated soft la-

bels F and constructed weights W, which operates by per-

forming triple matrix decompositions on X, F, and W simul-

taneously, namely,   XX X E ,   FF F E and WW W E  , 

where X , F and W  are the recovered clean data, the clean 

soft labels and the clean weights, respectively, and XE , FE

and WE  represent the data recovery error, the label recov-

ery error and the neighborhood recovery error, respectively. 

The recovery errors XE , FE and WE are all modeled by the 

robust l2,1-norm for handling the gross sparse errors and out-

liers [19][29][30] [32], which can make the computation of 

reconstructions 
T T

T T

2,1 2,1

,F F X X  and 
2,1

W W  po-

tentially robust to the noise and errors in X, F, and W. ALP-

TMR also minimizes the reconstruction errors based on re-

covered clean labels F and clean data X , which seamlessly 

integrates the robust LP and auto-weighting. These discus-

sions lead to the following unified model for ALP-TMR:  

      
 

T

, , , ,

T T

2,12,1 2,1

T T

min , ,

. . , ,

, 0, 0,

F X WF W E E E

F X W

F X W

ii

J F X W tr F Y U F Y

E E E

s t F F E X X E W W E

W F W e W e

  

  

  

     

  

,    (7) 

where , 0W F  are nonnegative constraints, which enable 

the learnt weights to hold nonnegativity properties. The con-

straint 0iiW avoids the trivial solution W I  and T Te W e  

is the sum-to-one constraint, which is imposed to retain the 

geometrical properties of the learned weights.  , ,J F X W  is 

the joint reconstruction error over the recovered clean data
X , clean labels F and clean weightsW , which is defined as 

 
2 2 2

, , +
F F F

J F X W F FW X XW W    .     (8) 

The weight matrix W  is jointly optimized adaptively. 

Although the above reconstruction error is similar to that of 

AdaptiveNP in form for weighting, the reconstruction weight 

matrixW is simultaneously computed in the recovered clean 

data space X and clean soft label space F , while the weight 

matrix in AdaptiveNP is still obtained based on the original 

data X and soft labels F, which typically contain various 

noises and unfavorable mixed signs that cause inaccurate 

similarities. In addition, the jointly obtained weights W  en-

sure that the learned weights explicitly improve both the data 

representation and classification performances [18][20].  

By substituting FF F E  , XX X E  and   WW W E

into Eq. (7) and re-expressing the sum-to-one constraint
T Te W e , we obtain the following optimization problem:  

 

     

 
 

, , , ,

T

T T

2,12,1 2,1

min , , , ,

+ +

. . 0, 0, 0

F X W
F X W

F W E E E

F F

F X W

F ii

F W E E E

tr F E Y U F E Y

E E E

s t F E W W

  

       



   

,   (9) 

where the joint reconstruction error term  , ,J F X W  can be 

reformulated as  , , , ,F X WF W E E E :  

     
2 2

, , , ,F X W W WF F
F W E E E H H W E W E     , (10) 

where     
T

T T T, ,F XH F E X E e   . Matrix recovery over 

the samples and weights is alternately performed during the 



optimizations. Our ALP-TMR is more general and flexible 

for semi-supervised classification since it can be applied in 

both clean and noisy cases. For the ideal case that the data 

are absolutely clean, the predicted soft labels are correct and 

the encoded weights are accurate, and ALP-TMR can be re-

duced to the traditional setting.  

The optimization procedures of our ALP-TMR method are 

performed alternately via the following three steps:  

(1) Robust auto-weighting in the recovered clean data 
space and clean label space:  

We show how to obtain the adaptive reconstruction weight 

matrix W and error term WE . Given the recovered clean soft 

labels FF F E  and clean data   XX X E , we can obtain 

W and WE from the following formulation:  

   

2

2

2,1,
T T

min +

. . 0, 0



   
   

      
   
   
   

 

W
W W WFW E

F

ii

F F

X X W E W E E

e e

s t W W

. (11) 

The adaptive reconstruction error encoded by W is simul-

taneously computed based on recovered clean data and clean 

label spaces. This process can improve the representation and 

prediction results. Once the recovered adaptive weight ma-

trix W  has been obtained, we can easily use it to recover 

the clean soft labels and the label fitness error.  

 (2) Robust adaptive classification in the recovered clean 
label space via matrix decomposition:  

When the clean weight matrix W  has been recovered, we 

can use it to characterize the manifold smoothness, to pre-

serve the locality between data points adaptively in the label 

space, and to propagate the label information of labeled data 

to unlabeled data. We can recover F  from 

    

     

 

2 T

2,1,

T

min

. . 0

F
F F W FFF E

F F

F

F E F E W E E

tr F E Y U F E Y

s t F E

    

     
  

 

.  (12) 

From the computed label matrix F and the label fitness er-

ror FE , the clean soft labels can be recovered as   FF F E .  

 (3) Robust clean data recovery and error correction via 
matrix decomposition:  

We discuss how to compute the noise in X. Given the clean 

weightsW , we can recover the clean data X  and 
XE  via 

    
2 T

2,1
min     

X
X X W XFE

X E X E W E E .  (13) 

After the sparse error 
X

E  for the above problem has been 

obtained, the clean data can be recovered as =  XX X E . Then, 

we can use the clean data X , together with the recovered la-

bels, to further update the clean adaptive weight matrix.  

C. Optimization 

We present the optimization procedure of ALP-TMR. Since 
the objective function of ALP-TMR in Eq. (9) has several 
variables and they depend on one another, it cannot be solved 
directly. Thus, we follow the common procedures to solve 
the problem of ALP-TMR alternately. First, we initialize FE , 

WE  and XE  to zero matrices and initialize the weight ma-
trix W using the reconstruction weights of [10]. Then, the 
minimization of the problem is conducted as follows:  

1) Given others, update the recovered clean data:  

First, we demonstrate how to recover the sparse error XE  

from X. The formula for solving XE is Eq. (13). Let Q  be a 

diagonal matrix with entries  
2

1/ 2 i

iiq b , where ib  is the 

i-th column vector of XE . Suppose that each 0ib . Since

 T

2,1
2 T

X X XE tr E QE , Eq.(13) can be approximated as 

    

      

2 T

2,1
min

2





    

   

X
X X W XFE

T T

X X X X

X E X E W E E

tr X E A X E tr E QE
,  (14) 

where         =W WA I W E I W E I W I W


       is 

an auxiliary matrix. By differentiating Eq. (14) with respect 

to XE , we can obtain  
1X t

E


at the (t+1)-th iteration as 

      1

1
+2 ,




   t tX t t t tt

E XA A Q A I W I W . (15) 

After  
1X t

E


 has been obtained, we can update 1tQ   as 

    1 1+1 +1 2
, =1/ 2 , 

  
 

i

t ii ii tt t
Q diag q where q b i , (16) 

where
1

i

tb denotes the i-th column of  
1X t

E . We initialize the 

diagonal matrix Q as an identity matrix. As we have  
+1X t

E , 

the subspace can be recovered as  +1
+1

 t X t
X X E .  

2) Given others, update the recovered clean soft labels:  

We optimize FE  and F by using the robust adaptive LP 

problem in Eq. (12). Based on the properties of the 
2,1l -norm, 

 
2,1

2 F F FE tr E DE , where D is a diagonal matrix with en-

tries  
2

1/ 2 i

iid g  and ig  is the i-th column vector of FE . 

If each 0ig  , where 1,2,...,i N , the problem formulation in 

Eq. (12) can be re-expressed as 

      

     

, ,

T

min 2
   

       

F
F F F F

F E D

F F

tr F E A F E tr E DE

tr F E Y U F E Y

,   (17) 

where we also initialize the diagonal matrix D as an identity 

matrix. Next, we fix F to update FE . By differentiating with 

respect to FE  and setting it to zero, we obtain 

    
1

1
= 2




   F t t t t tt

E F A YU FU A U D .     (18) 

After  
1F t

E


has been obtained, we can update 1tD as 

    1 1+1 +1 2
, =1/ 2 , 

  
 

i

t ii ii tt t
D diag d where d g i , (19) 

where 
1

i

tg  is the i-th column of  
1F t

E . After the error term 
 

1F t
E


 has been obtained, we update F by differentiating 

with respect to F and setting it to zero as follows:  

     
1

1 1 1
=t F t F tt t

F E A E U YU A U


  
   .     (20) 

After both  
1F t

E


and 1tF  have been obtained, we can 

recover the underlying clean soft labels as  1 1 1
  
 t t F t

F F E .  

3) Given others, update the recovered clean weights:  

We compute W and EW to recover the clean weight space via 

Eq. (11). Let T; ;    F XH F E X E e . By a similar argument, 

 
2,1

2 W W WE tr E OE , where O is a diagonal matrix with

 
2

1/ 2  i

iio  as entries and  i is the i-th row of WE . As-

sume that each 0 i , Eq. (11) can be reformulated as 

   

    
      

2 2

2,1, ,
min +

2

W
W W WF FW E O

W W

W W W W

H H W E W E E

tr H HW HE H HW HE

tr W E W E tr E OE







 

   

    

   

, (21) 



where O is also initialized to an identity matrix. Then, we fix 

W to update WE . Differentiating the above equation with re-

spect to WE  yields 

     
1

1 11
2W t tt

E H H I O H HW W H H


  

 
     ,  (22) 

where    
TT T TT TT

1 11 1 1 1
; ; ; ;t tt t F Xt t

H F E X E e F X e    

     
    

. 

After  
1W t

E


has been obtained, we can update matrix 1tO  as 

    1 1+1 +1 2
, =1/ 2 , 

  
 

i

t ii ii tt t
O diag o where o i .  (23) 

Similarly, we obtain the weights W by differentiating the 

problem in Eq. (21) with respect to W and setting it to zero:  

    
1

1 1 1 1 1 1
=


 

     
 t t t t t W t

W H H I H H E ,      (24) 

 1 0t ii
W   and    1 1max ,0t tW W  , where  1 0t ii

W   replaces 

the diagonal entries with zeros, and    1 1max ,0t tW W   is 

the constraint for replacing the negative entries with zeros to 

ensure the nonnegativity of 1tW  . After  
1W t

E


and 1tW  have 

been obtained, we can recover the clean adaptive weight ma-

trix as  1 1 1
  
 t t W t

W W E .  

Thus, by performing the classification and auto-weighted 

learning jointly in the recovered clean data, clean label and 

clean weighting spaces, the data representation and classifi-

cation performances can be potentially improved. An early 

version of this paper has been presented in [56]. This paper 

also investigates the recovery of the clean weighting space 

and conducts thorough experimental evaluations on face, ob-

ject, handwriting digit and text classification. To the best of 

our knowledge, joint recovery on the data, soft labels and 

adaptive weights has not been explored in previous research. 

For a complete presentation of the method, we summarize 

the optimization procedures of our ALP-TMR in Table I.  

D. Convergence Analysis 

Since our ALP-TMR solves for the variables alternatively, 

we aim at analyzing its convergence behavior. To facilitate 

the proof, a lemma in [29] is reviewed.  

Lemma 1. For any pair of non-zero vectors , mp q , the 

following inequality holds:  
2 2

2 2

2 2

2 2
2 2

  
p q

p q
q q

.           (25) 

Thus, the convergence behavior of our ALP-TMR can be 

summarized by the following proposition.  

Proposition 1. The objective function of ALP-TMR in 

Eq. (9) is non-increasing at each iteration, where the diagonal 

matrices Q, D and O are fixed as constants.  

Proof. Denote the diagonal matrices Q, D and O at the t-th 

iteration as Qt, Dt
 and Ot, respectively. When we calculate 

1t
F

 ,
1t

W ,  
1F t

E ,  
1X t

E and  
1W t

E at the (t+1)-th iteration, 

the following inequality holds:  
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where t  is an auxiliary matrix, which is constructed as 
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E , where i =1, 2,…,N. Therefore, the fol-

lowing equivalent inequality holds:  
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From the inequality in Lemma 1, it follows that 
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By combining the inequalities in Eq. (27) and Eq. (28), 

we obtain the following inequality:  
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which indicates that the objective function value of our ALP-
TMR will monotonically decrease in the iterations. Besides, 
since the objective function has a lower bound, namely, zero, 
the above optimization converges. Although the above prop-
osition can indicate that the objective function of ALP-TMR 
is non-increasing, we still hope that the major variable F can 
also converge. Therefore, the convergence condition is 



simply set as   3

+11 10t t F
Error t F F     , which ensures 

that the prediction result will not change drastically.  

TABLE I.  

OPTIMIZATION PROCEDURE OF OUR ALP-TMR.  

Input: Training data matrix X, initial label matrix Y, param-

eters ,  and  .  
Initialize Q, D and O to the identity matrices; Initialize the 
weight matrix W by the reconstruction weights [10]; Initial-
ize the error matrices FE , WE and XE to zero matrices; 0F Y ; 
t=0; 1l

lu  , 0u

lu  .  
while not converged do 
1: 1t t  ;  
2: Recover the error matrix  

1X t
E


via Eq. (15) and obtain 

the recovered clean data as  
1X t

X E


 ;  
3: Estimate the soft label matrix 1tF  via Eq. (20);  
4: Recover the error matrix  

1F t
E


via Eq. (18) and recover 

the clean soft labels as  1 1t F t
F E 

 ;  
5: Update the weight matrix 1tW  via Eq. (24);  
6: Recover the error  

1W t
E


via Eq. (22) and obtain the re-

covered clean weights as  1 1t W t
W E 

 ;  
7: Update the diagonal matrices 1tQ  , 1tD  , and 1tO  by us-

ing Eq. (16), Eq. (19) and Eq. (23), respectively;  
end while 
Output: Recovered clean soft labels *

1 tF F  and clean 
adaptive weight matrix *

1 tW W .    

IV. SIMULATION RESULTS AND ANALYSIS 

We evaluate ALP-TMR mainly on data classification and 

compare the results with those of 9 related popular methods: 

GFHF [1], LLGC [5], SLP [3], LNP [2], CD-LNP [4], ProjLP 

[6], PN-LP [7], SparseNP [8] and AdaptiveNP [9]. Since all 

the compared algorithms must pre-obtain a similarity graph 

weight matrix for measuring the manifold smoothness during 

the label propagation process, and to avoid the complicated 

issue of choosing the optimal kernel width the weighting step 

that was encountered in previous work, we compute the same 

reconstruction weights [10] for each compared method for 

fair comparison. The nearest-neighbor search involves an-

other troublesome parameter, namely, the number of nearest 

neighbors K, which is also difficult to determine in practice. 

In this study, K is set to 7 for each method according to [33], 

in which it is shown that this choice performs well in most 

cases. We also symmetrize the reconstruction weights and set 

the diagonal entries to zeros for LLGC. For fair comparison, 

the model parameters of each algorithm are all carefully cho-

sen via grid search. We conduct all experiments on a PC with 

Intel (R) Core (TM) i5-4590 @ 3.30 Hz and 8.00 GB.  

TABLE II.  

DESCRIPTION OF THE REAL-WORLD DATASETS 

Dataset Name #Classes (c) #Dim (n) #Points 

YaleB-UMIST [11][27] 58 1024 3426 
CMU PIE [12] 68 1024 11554 

USPS [13] 10 256 11000 

CASIA-HWDB1.1 [22] 10 196 2381 

ETH80 [16] 80 1024 3280 

COIL100 [15] 100 1024 7200 

TDT21 30 2000 9394 

RCV1 [51] 4 2000 9625 

CIFAR1002 100 1600 50000 

In this simulation, nine public image and text databases are 

employed, namely, two face image databases, three object 

image databases, two handwriting digit databases and two 

                                                        
1 https://www. nist.gov/speech/tests/tdt/tdt98/index.htm 

document datasets. TABLE II presents detailed information 

on the considered datasets. As is common practice, each 

face/object image is resized to 32×32 pixels; hence, each im-

age corresponds to a data point in a 1024-dimensional space. 

For the transductive classification on each database, each da-

tabase is split into a labeled set and an unlabeled set, similar 

to [1-9][21]. Finally, the accuracy is computed by comparing 

the predicted labels of the unlabeled samples with the 

ground-truth labels that are provided by the original data cor-

pus. To avoid bias, we average all the results over 10 random 

splits of labeled/unlabeled data points under each setting.  

A. Parameter Sensitivity Analysis  

The values of the model parameters ( ,  , and  ) in the ob-

jective function of our ALP-TMR may affect the perfor-

mance; hence, we explore the effects of the parameters on the 

classification results. We present the classification results of 

ALP-TMR under various parameters on the YaleB-UMIST 

database as an example. YaleB-UMIST is a mixed face data-

base of extended YaleB [11] and UMIST [27]. The extended 

YaleB face database is highly challenging because it contains 

images with various facial expressions and illumination con-

ditions. The UMIST face database contains 1012 images of 

20 persons of mixed race/gender/appearance. For this study, 

we select 40 samples per subject as labeled and test on the 

remaining samples. Since ALP-TMR has three parameters, 

we fix one parameter and tune other two via the grid search 

strategy. First, we fix =10-8 to tune  and  . Then, we fix 

=106 to tune and  . Finally, we fix  =10-2 to tune   and

 . The classification results are averaged over 30 runs in 

each setting, and we tune ,  and  in Fig. 1, where the pa-

rameters are selected from the candidate set {10-8, 10-6,…, 

108}. According to Fig. 1, ALP-TMR performs effectively 

for a wide range of parameter settings, namely, our ALP-

TMR is robust to the model parameters.  
In addition the above parameter analysis, we explore the 

effects of the model parameters in the objective function of 

our ALP-TMR by setting 0  , 0   and 0   alterna-

tively. 0   indicates that the sparse errors in the original 

data X, soft labels F and adaptive weights W cannot be mod-

eled and removed. If 0  , the sparse errors in data X cannot 

be modeled. If 0  , the sparse errors in the weights W cannot 

be modeled. In this simulation, four real-world image data-

bases, namely, CMU PIE, YaleB, ETH80 and COIL100, are 

adopted. For transductive classification, the numbers of la-

beled data points are set to 12, 30, 100 and 15 for CMU PIE, 

YaleB, ETH80 and COIL100, respectively, and the remain-

ing samples are set as unlabeled. The classification results 

that are obtained by setting 0  , 0   and 0   over 

CMU PIE, YaleB, ETH80 and COIL100 are presented in Ta-

ble III, from which we find that setting 0  , 0   or 0   

strongly degraded the classification results, namely, the in-

volved terms that are associated with ,  and  are all im-

portant for improving the results of our method.  

TABLE III.  

CLASSIFICATION RESULTS OVER VARIOUS PARAMETERS 

ON CMU PIE, YaleB, ETH80 AND COIL100.  

Settings of ALP-TMR CMU PIE YaleB ETH80 COIL100 

0, 0, 0      0.9034 0.7933 0.7459 0.8249 

0, 0, 0      0.8889 0.7570 0.7293 0.8030 

0, 0, 0      0.9139 0.8194 0.7838 0.8541 

0, 0, 0      0.9562 0.9239 0.8486 0.8991 

2 http://www.cs.toronto.edu/~kriz/cifar.html 



  
Fig. 1: Results under various parameters: (left) fix  to tune and  ; (middle) fix to tune  and  ; and (right) fix  to tune and  .  

 
(a) CMU PIE database         (b) YaleB-UMIST database    

       
(c) USPS database          (d) CASIA-HWDB1.1 database 

 
(e) ETH80 database            (f) COIL100 database 

Fig. 2: Convergence results of our proposed ALP-TMR method on six 

real image databases.  

B. Convergence Analysis 

We present numerical results and use them to evaluate the 

convergence of ALP-TMR in this study. Two real face data-

bases, two handwriting digit databases and two object data-

bases, namely, YaleB-UMIST, CMU PIE [12], USPS [13], 

CASIA-HWDB1.1 [22], ETH80 [16], and COIL100 [15], 

are applied to evaluate our method. For each database, we fix 

the number of labeled samples, namely, to 10 for CMU PIE, 

30 for YaleB-UMIST, 100 for USPS, 40 for CASIA-

HWDB1.1, 100 for ETH80 and 30 for COIL100, to evaluate 

the differences between consecutive estimated label matrices 

F. The convergence analysis results of our ALP-TMR on the 

six image databases are presented in Fig. 2. The divergence 

between the consecutive soft label matrices F decreases dur-

ing the iterations and finally converges to zero; hence, the 

final result will not differ drastically. In addition, ALP-TMR 

typically converges in less than 10 iterations, namely, the 

convergence of ALP-TMR is fast in the investigated cases.  

C. Exploratory Data Analysis via Visualization 

We visualize the recovered estimated soft labels and the re-

covered weights for visual evaluations. The CMU PIE face 

image database is evaluated in this simulation.  

Visualization of the recovered clean predicted soft la-

bels. First, we visualize the predicted soft labels. For GFHF, 

LLGC, LNP, SparseNP, AdaptiveNP and our ALP-TMR, we 

aim at visualizing the estimated soft labels for the unlabeled 

images in Fig. 3, where the horizontal axis in each subfigure 

corresponds to the number of unlabeled images and the ver-

tical axis to the number of classes. We select 20 face images 

from each person as the labeled set and 22 images as unla-

beled samples for transductive learning. The brightness in 

each gray figure is determined by the values in the estimated 

soft labels, namely, the corresponding pixels will be brighter 

if the reconstruction value is larger. We also observe that the 

face images of the same subject are effectively merged into 

clusters in the results of ALP-TMR, namely, fewer mixed 

signs are included in the estimated results of our ALP-TMR 

due to the positive effects of robust soft label recovery.  

In addition, to evaluate the effects of the robust soft label 

recovery, namely, FF F E  , we conduct a simulation for 

visualizing the decomposition results in Fig. 4, where we pre-

sent the original estimated label matrix F, the recovered 

clean soft label matrix F and the recovered sparse error FE . 

The recovered soft label matrix F  contains less noise and 

fewer unfavorable mixed signs than the original label matrix 

F; hence, the label recovery can indeed remove the unfavor-

able mixed signs and noise. Moreover, estimating the hard 

labels of the unlabeled samples based on the recovered clean 

labels in F  will be potentially more accurate than based on 

the original soft label matrix F.  

Visualization of the recovered clean adaptive weights. 

For accurate representation and similarity measures, the 

weight matrix should exhibit a powerful descriptive perfor-

mance based on various classes and, moreover, should have 

a block-diagonal structure so that one can reconstruct each 

sample from the samples of one class as much as possible, 

which could improve the subsequent data classification result. 

Thus, we also prepare a study for evaluating the robust 

weight recovery, namely,
WW W E  , by visualizing the 

weight matrix that is recovered by ALP-TMR in Fig. 5, 

where we present the original weight matrix W, the recovered 

clean weights W and the recovered sparse error WE . For this 

study, we select 15 images from each person as labeled. From 



the visualization results, we observe the following: (1) both 

the recovered weights W and the original weights W  have 

block-diagonal structures, but the structure of the recovered 

weights W is clearer; (2) the intra-class connectivity of the 

recovered weights W  is similar to that of W, namely, the 

weight recovery process can effectively preserve the im-

portant intra-class connectivity; and (3) the recovered weight 

matrix W  contains fewer incorrect inter-class connections 

than W; hence, the robust weight recovery can remove the 

incorrect inter-class connections effectively. Thus, the en-

coded manifold structures and pairwise similarities that are 

obtained using the recovered weights W  will be more ac-

curate, which will improve the label estimation results.  

     
GFHF             magnified view of the rectangle (GFHF)             LLGC        magnified view of the rectangle (LLGC) 

     
LNP            magnified view of the rectangle (LNP)              SparseNP    magnified view of the rectangle (SparseNP) 

     
AdaptiveNP       magnified view of the rectangle (AdaptiveNP)         ALP-TMR   magnified view of the rectangle (ALP-TMR) 

Fig. 3: Visualization of the predicted soft label matrix of each semi-supervised algorithm on the CMU PIE face image database.  

   =      +    

Fig. 4: Visualization of the soft label recovery via FF F E   on the CMU PIE face image database: (left) original soft labels F, (middle) 

recovered clean soft labels F and (right) recovered sparse error FE .  

   =      +    

Fig. 5: Visualization of the decomposition WW W E   on the CMU PIE face database: (left) original weight matrix W, (middle) recovered 

clean weight matrix W and (right) recovered sparse error WE . 

D. Face Recognition 

We evaluate each algorithm on face image recognition and 

representation on two face datasets, namely, YaleB-UMIST 

and CMIU PIE. Sample images from these databases are 

shown in Fig. 6. We compute the classification result of each 

algorithm by changing the number of labeled samples in the 



training set and averaging the classification results over 10 

random splits of labeled and unlabeled images. In this paper, 

the random feature extractor [24] is employed for each face 

database, and each face image is projected onto a 500-D fea-

ture vector. We compare the classification results of our 

ALP-TMR with those of the SLP, GFHF, LNP, LLGC, CD-

LNP, ProjLP, SparseNP, AdaptiveNP and PN-LP methods.  

   

Fig. 6: Image samples from YaleB-UMIST (left) and CMU PIE (right). 

  

Fig. 7: Classification results of each algorithm with various numbers 

of labeled data on YaleB-UMIST (left) and CMU PIE (right).  

TABLE III: 

PERFORMANCE COMPARISON OF RANDOM FEATURES ON 

TWO FACE DATABASES.  

Data 
Method 

YaleB-UMIST  CMU PIE 

Mean±STD Best (%) Mean±STD Best (%) 
GFHF 71.11±9.76 82.92 83.73±7.05 92.92 
LLGC 71.75±9.09 83.01 85.25±7.06 93.02 
LNP 72.49±9.82 84.97 84.61±6.94 93.92 
SLP 73.56±9.81 84.67 82.19±9.18 92.67 

PN-LP  69.16±8.59 79.89 81.16±7.16 90.89 
CD-LNP 66.43±9.24 77.55 76.30±8.97 85.55 
SparseNP 75.83±8.83 85.50 87.45±6.12 94.50 

ProjLP 73.95±8.94 82.41 87.33±6.60 95.41 
AdaptiveNP 85.04±9.58 93.89 92.44±5.51 96.79 

ALP-TMR 86.45±7.89 94.92 93.57±5.44 97.64 

Recognition on the YaleB-UMIST database. We evalu-

ate each algorithm for face representation and recognition on 

the mixed YaleB-UMIST face database. The classification 

results of each method under various numbers of labeled 

samples in the training set are presented in Fig. 7 (left), where 

we report the classification accuracy based on the unlabeled 

set. According to Fig. 7, the averaged results (%) with the 

standard deviation (STD) are listed in TABLE III. The best 

records over various random splits are also specified. The 

number of labeled images per subject is set to 5, 10, 15, 20, 

25, 30, 35, 40 and 45. We find that (1) the classification result 

of each model is improved by increasing the number of la-

beled images and (2) our ALP-TMR outperforms the com-

pared methods by obtaining better results in most cases. The 

recently proposed AdaptiveNP also performs well on this 

face database by delivering comparable results to ALP-TMR. 

SparseNP and ProjLP deliver better results than the remain-

ing methods since they introduce two feasible approaches for 

reducing the noise and unfavorable mixed signs from the es-

timated soft labels via label embedding and sparse constraint, 

respectively. CD-LNP performs the worst on this dataset.  

Recognition on the CMU PIE face database. This data-
base contains face images under various lighting and illumi-

nation conditions and facial expressions. The performances 

of each method with various numbers of labeled images are 

presented in the right side of Fig. 7. For this database, we 

choose 2, 4, 6, 8, 10, 12, 14 and 16 images from each person 

as labeled and use the remaining images for testing. TABLE 

III lists the mean accuracy (%) and highest accuracy (%) ac-

cording to the results in Fig. 7. We find that (1) ALP-TMR 

obtains the enhanced results compared with the related algo-

rithms, which can be attributed to the strategy of triple matrix 

recovery; and (2) AdaptiveNP obtains highly competitive re-

sults with ALP-TMR. ProjLP realizes higher accuracies than 

other methods, and CD-LNP performs the worst.  

E. Handwriting Digit Recognition 

We evaluate each method on recognizing the handwritten 

digits on the USPS [13] and CASIA-HWDB1.1 [22] data-

bases. Examples of handwritten digits are shown in Fig. 8.  
 

   

Fig. 8: Image samples from USPS (left) and CASIA-HWDB1.1 

(right).  

Results on the USPS database. This handwriting digit 
database (available from http://www.cs.toronto.edu/~roweis 

/data.html) contains images of digits from ‘0’ to ‘9’ of size 

16×16 pixels, and each digit corresponds to 1100 images, 

namely, each image corresponds to a 256-D vector. The clas-

sification results of each method with various numbers of la-

beled images are presented in Fig. 9. The averaged results 

according to Fig. 9 are listed in Table IV. In this study, the 

number of labeled digit images is fixed to 5, 10, …, 60. We 

find that (1) the results of each criterion are improved as the 

number of labeled digits is increased and (2) ALP-TMR out-

performs the other algorithms.  

Results on the CASIA-HWDB1.1 database. In this 

study, a sampled subset, namely, HWDB1.1-D [43], which 

 

Fig. 9: Classification results of each algorithm with various numbers 

of labeled samples on USPS (left) and CASIA-HWDB1.1 (right).  

TABLE IV:  

PERFORMANCE COMPARISON OF ALGORITHMS ON TWO 

HANDWRITING DIGITS DATABASES.  

Data 
Method 

USPS database CASIA-HWDB1.1 
Mean±STD Best (%) Mean±STD Best (%) 

GFHF 72.57±8.72 79.36 73.61±9.69 92.79 
LLGC 85.34±6.52 89.95 85.97±2.65 90.74 
LNP 86.57±6.25 89.72 86.41±2.21 90.83 
SLP 85.89±5.25 88.67 85.61±2.62 90.12 

PN-LP  80.23±6.24 85.63 81.54±6.87 79.75 
CD-LNP 73.47±9.22 81.63 74.86±7.88 78.37 
SparseNP 89.93±2.42 91.73 89.70±2.22 92.45 

ProjLP 89.68±3.22 91.83 88.54±2.25 92.51 
AdaptiveNP 82.37±5.99 86.73 85.67±4.03 88.03 
ALP-TMR 91.12±3.04 93.82 90.76±2.63 93.92 



   

 
Fig. 10: Sample images of ETH80 (top left), COIL100 (top right) and 

CIFAR 100 (bottom row).  

 
Fig. 11: Classification results of each algorithm with various numbers 

of labeled samples on ETH80 (left) and COIL100 (right).  

TABLE V:  

PERFORMANCE COMPARISON OF RANDOM FEATURES 

ON TWO OBJECT DATABASES.  

Data 
Method 

ETH80 database COIL100 database  
Mean±STD Best (%) Mean±STD Best (%) 

GFHF 71.86±5.50 81.85 86.36±3.78 90.92 
LLGC 81.62±2.71 86.02 86.97±3.49 91.42 
LNP 80.86±2.68 85.62 87.36±3.38 92.32 
SLP 80.30±2.89 85.17 87.18±3.83 92.07 

PN-LP  72.41±4.42 82.89 82.91±4.81 88.89 
CD-LNP 70.11±4.83 79.55 76.36±5.34 85.55 
SparseNP 82.81±2.02 88.30 90.41±3.10 93.50 

ProjLP 82.39±1.95 87.61 90.14±3.47 93.01 
AdaptiveNP 73.29±4.34 80.29 78.42±4.54 86.29 
ALP-TMR 82.26±1.95 88.92 91.51±4.13 96.92 

 

contains 2381 handwritten digits (‘0’-‘9’), from CASIA-

HWDB1.1[14] is evaluated in this study. Following [43], we 

resize all images to 14×14 pixels for consistency of the digit 

sizes. The classification results that are delivered by each al-

gorithm with various numbers of labeled digits in the training 

set are presented in Fig. 9, where the number of labeled digits 

is set to 2, 5, …, 35. The averaged results according to Fig. 9 

are listed in Table IV. We find that ALP-TMR realizes higher 

accuracies than its competitors on this dataset. In addition, 

the label prediction results of each method can be improved 

by increasing the number of labeled images.  

B. Object Recognition 

We evaluate each algorithm on recognizing the objects in 

three databases, namely, ETH80, COIL100 and CIFAR100. 

Examples from the two databases are shown in Fig. 10. We 

also use the random feature descriptor, and the dimension of 

the extracted random-object features is 400. For CIFAR100, 

we use principal component analysis (PCA) [50] to extract 

the principal features and to reduce the dimension to 1600.  

Results on ETH80. This database has 8 large categories. 

Each large category contains 10 subcategories and each sub-

category contains 41 images from various viewpoints. The 

classification results of each algorithm with various numbers 

of labeled data points in the training set are presented in Fig. 

11. The statistics for Fig. 11 are listed in Table V. We find 

that (1) the performance of each algorithm is enhanced as the 

number of labeled images increases and (2) ALP-TMR ob-

tains superior results compared to the other methods.  

Results on COIL100. The object images of COIL100 

were placed on a motorized turntable against a black back-

ground. The turntable was rotated 360 degrees to vary the 

poses with respect to the axed color camera. Images were 

captured at pose intervals of 5 degrees, which corresponds to 

72 poses per object. Fig. 11 presents the classification results 

of each algorithm with various numbers of training images, 

and TABLE V lists the statistics for Fig. 11. We find that our 

proposed ALP-TMR delivers comparable or better results 

than the compared methods.  

Results on CIFAR100. This object database includes 100 

classes, each class has 600 images and the 100 classes are 

clustered into 20 super-classes. In this database, each image 

has a "fine" label, which specifies the class to which it be-

longs, and a "coarse" label, which specifies the superclass to 

which it belongs. The whole database is divided into a train-

ing set of 50,000 samples and a test set of 10,000 samples. 

We use the "fine" label for each model and perform transduc-

tive leaning based on the training set for efficiency. The clas-

sification results for each criterion under various numbers of 

labeled data points in the training set are listed in TABLE VI. 

We observe that (1) the classification result for each criterion 

is improved when the number of labeled images increases 

and (2) our ALP-TMR obtains enhanced results compared 

with the other models.  

TABLE VI: 

RECOGNITION PERFORMANCE COMPARISON OF PRINCIPAL FEATURES ON THE CIFAR100 DATABASE.  

Setting 
Method 

CIFAR100 (50 labeled) CIFAR100 (100 labeled) CIFAR100 (150 labeled) CIFAR100 (200 labeled) 
Mean±STD Best (%) Mean±STD Best (%) Mean±STD Best (%) Mean±STD Best (%) 

GFHF 58.63±0.83 59.53 64.83±0.72 65.23 71.03±1.02 72.17 79.87±1.38 80.83 
LLGC 59.31±1.25 60.32 65.63±1.03 66.37 72.38±0.83 73.67 81.23±0.92 82.39 
LNP 59.18±1.27 60.26 65.12±0.82 65.97 72.02±0.74 73.37 80.67±0.45 81.27 
SLP 57.82±1.86 59.47 63.39±1.34 64.76 70.19±1.48 71.89 78.38±0.73 79.65 

PN-LP 53.38±1.38 54.32 59.48±1.30 60.81 65.28±1.22 67.03 72.89±0.81 73.66 
CD-LNP 52.08±1.40 53.03 58.30±1.27 59.93 64.48±0.88 65.74 71.83±0.92 73.36 
SparseNP 60.47±1.34 61.92 67.28±1.48 68.77 73.98±1.20 74.29 82.37±0.83 83.83 

ProjLP 60.23±1.27 61.33 66.78±1.03 67.44 74.91±0.75 75.47 82.34±0.58 83.92 
AdaptiveNP 61.29±0.92 62.27 67.36±1.11 68.78 74.47±0.79 75.33 82.88±0.69 83.98 
ALP-MD 62.17±1.39 64.62 68.67±1.30 69.17 75.33±0.69 76.47 83.23±0.48 84.86 

 

C. Document Categorization 

In addition to examining each method for representing and 

recognizing images, we also conduct a study in which we 

evaluate them on document categorization on the two text 

databases: TDT2 and RCV1. For efficiency, PCA is also em-

ployed to reduce the numbers of dimensions of TDT2 and 



RCV1 to 2000 for document categorization.  

 
Fig. 12: Classification performances of each method with various 

numbers of labeled samples on TDT2 (left) and RCV1 (right).  

TABLE VII:  

PERFORMANCE COMPARISON OF ALGORITHMS ON TWO 

TEXT DATABASES.  

Data 
Method 

RCV1 database TDT2 database  
Mean±STD Best (%) Mean±STD Best (%) 

GFHF 54.74±12.7 69.08 48.33±13.7 69.08 
LLGC 82.99±5.64 88.70 78.82±9.78 88.70 
LNP 81.52±6.81 86.74 75.62±10.8 86.74 
SLP 72.97±15.3 83.90 61.14±20.7 83.90 

PN-LP  64.91±7.96 72.04 57.93±11.6 72.04 
CD-LNP 80.18±5.05 84.98 62.55±17.6 84.98 
SparseNP 82.01±5.34 85.91 79.97±9.54 85.91 

ProjLP 74.59±12.3 86.05 77.44±8.67 86.83 
AdaptiveNP 85.82±6.20 93.72 84.91±9.88 93.72 
ALP-TMR 88.24±5.68 95.92 86.88±9.44 95.92 

 

Results on TDT2. The TDT2 text database contains data 

that were collected during the first half of 1998 and obtained 

from 6 sources, namely, 2 newswires (APW and NYT), 2 ra-

dio programs (VOA and PRI) and 2 television programs 

(CNN and ABC). The TDT2 text database contains 11201 

on-topic documents from 96 semantic categories. In this 

study, a sampled set of the original TDT2 corpus is applied 

[54], where documents that appear in two or more categories 

were removed and the largest 30 categories were kept, 

thereby leaving us with a total of 9,394 documents. The per-

formances of each method under various training set sizes 

are presented in Fig. 12 and TABLE VII. The categorization 

performance is enhanced as the number of labeled images 

increases. Our proposed ALP-TMR obtains enhanced results 

compared to the other methods in most cases.  

Results on RCV1. The RCV1 database contains infor-
mation on topics, regions, and industries for each document 

and a hierarchical structure for topics and industries. In this 

study, a subset of 9625 documents with 29992 distinct words 

is used [55], which includes categories “C15”, “ECAT”, 

“GCAT” and “MCAT”, which contain 2022, 2064, 2901, and 

2638 documents, respectively. The classification results are 

presented in Fig. 12 and TABLE VII presents the statistics 

for Fig. 12. According to the results, ALP-TMR outperforms 

the compared methods. GFHF performs the worst on this set.  

D. Robustness Analysis 

In this study, we evaluate the robustness of each semi-super-

vised algorithm against pixel corruptions. Two face data-

bases (YaleB-UMIST and CMU PIE), two handwritten digit 

databases (CASIA-HWDB1.1 and USPS) and two object da-

tabases (ETH80 and COIL100) are evaluated. The gray val-

ues of the labeled image data are corrupted by including ran-

dom Gaussian noise with a fixed variance. For noisy face 

recognition, we randomly select 40 and 20 images per person 

from the YaleB-UMIST and CMU PIE databases, respec-

tively, as the labeled set. For the noisy handwritten digit 

recognition, we randomly select 50 and 20 samples from 

each digit of the USPS and CASIA-HWDB1.1 datasets, re-

spectively, as the labeled set. For the noisy object recognition, 

we randomly select 70 and 30 sample images from each ob-

ject class of the ETH80 and COIL100 databases, respectively, 

as the labeled set.  

  

 
 Fig. 13: Classification performances of each method with various levels of pixel corruption on YaleB-UMIST (left) and CMU PIE (right).  

 

Fig. 14: Classification results of each algorithm under various levels of pixel corruption on USPS (left) and CASIA-HWDB1.1 (right).  



 
Fig. 15: Classification results of each algorithm under various levels of pixel corruption on ETH80 (left) and COIL100 (right).  

   

Fig. 16: Out-of-sample data inclusion performances on YaleB-UMIST (left), CASIA-HWDB1.1 (middle) and COIL100 (right). 

The averaged classification results over 15 random splits 

that are based on noisy databases are presented in Figs. 13-

15. We make the following observations: 1) the classification 

performance of each method decreases as the level of noise 

increases; 2) ALP-TMR outperforms its competitors by us-

ing the triple matrix recovery to enhance the robustness by 

removing the noise from the data, the predicted soft labels 

and the similarity jointly; and 3) AdaptiveNP obtains compa-

rable results to ALP-TMR for face recognition but delivers 

poorer results for object and handwriting digit recognition. 

ProjLP and SparseNP outperform the remaining methods 

since they also used feasible methods to reduce the unfavor-

able mixed signs and noise from the estimated soft labels.  

E. Out-of-Sample Extension for Handling New Data 

We discuss ALP-TMR to consider out-of-sample new data. 

We apply a similar inclusion approach to LNP via label re-

construction [2]. However, our approach differs from LNP as 

follows: Our method reconstructs the label of each new sam-

ple newx  by using the recovered clean soft labels  FF E  of 

the training set, whereas LNP uses the original soft label ma-

trix F of the training set for the label reconstruction.  

For specified new test data newx , our method searches its K-

neighbors from the labeled training set and calculates the 

weight vector  ,neww x x  that specifies the contributions of the 

neighbors to the reconstruction of newx . Analogous to LNP [2], 

we apply the following smoothness criterion for newx :   
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where  newx contains the K-nearest neighbors of newx  and 

if  is the i-th column of the recovered clean soft label matrix
F . Since   newf is convex in newf , it is minimized when 
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Then, the label of sample newx can be reconstructed using 

the soft labels of the labeled data in the training set:  
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from which the soft label vector newf  of each newx  can be 
estimated by minimizing Eq. (33), where the largest element 
in newf  determines the class assignment of sample newx .  

We also conduct a simulation to evaluate the performance 
of ALP-TMR on including out-of-sample new data. Three 
types of real images, namely, YaleB-UMIST faces, CASIA-
HWDB1.1 handwriting digits and COIL100 objects, are con-
sidered. The same label reconstruction scheme as LNP [2] is 
adopted for GFHF, LLGC, LNP, PN-LP, SLP, CD-LNP, Pro-
jLP, SparseNP and AdaptiveNP. In this study, half of the la-
beled images from each class are selected to be corrupted and 
the percentage of corruptions is set to 0.5. The number of 
nearest neighbors is fixed to seven for each algorithm for fair 
comparison. We present the classification results in Fig. 16, 
where the numbers of training data points per subject class 
are set to 80, 190 and 60 for YaleB-UMIST, CASIA-
HWDB1.1 and COIL100, respectively, and the remaining 
data points are considered as unlabeled samples. We find that 
the inclusion performance of each method can be improved 
by increasing the number of labeled training samples. ALP-
TMR outperforms the other compared methods by delivering 
superior performance. ProjLP and SparseNP also perform 
well on each database since they have also considered remov-
ing noise from the predicted soft labels of the training sam-
ples. AdaptiveNP obtains comparable results to our ALP-
TMR on YaleB-UMIST; however, it performs poorly on the 
CASIA-HWDB1.1 and COIL100 databases. CD-LNP ob-
tains the worst results in most cases, and the remaining meth-
ods perform comparably with one another.  



F. Comparison to Deep Convolutional Networks 

In this study, we compare the classification results that are 

based on deep convolutional features [47]. Three representa-

tive deep network models, namely, VGG16 [46], VGG19 [46] 

and Alexnet [47], are employed for the evaluations. Since 

deep network models perform classification based on deep 

convolutional features [59], while the classification process 

of ALP-TMR is conducted on original data, direct compari-

son between them is unfair. In this study, we compare them 

as follows. First, we use the VGG16, VGG19 and Alexnet 

models to extract the deep features from original images. In 

this step, the sizes of the original images are set to the re-

quired input sizes of the VGG16, VGG19 and Alexnet mod-

els. Since the inputs of the deep network frameworks are 

RGB images, in this study, we convert each gray image into 

an RGB image by copying the gray image into each of the 

three channels of RGB space. Features from the penultimate 

full connection layer ('fc7') are chosen for evaluations, where 

the dimension of the features is 4096. Then, we construct a 

feature matrix based on the extracted deep features. Second, 

we perform the classification task based on the constructed 

deep feature matrix by employing various classifiers for fair 

comparison. Based on the same feature matrix, we compare 

the classification results of ALP-TMR with those of two 

widely used classifiers, namely, multiclass Support Vector 

Machine (SVM, one-against-one) [49] and Softmax [48]. The 

accuracies of all the classifiers are averaged based on eight 

operations to avoid bias for fair comparison.  

  In this simulation, two popular datasets are employed: 

CMU PIE and USPS. For classification, we select 10 and 30 

feature vectors from the deep feature matrix for each class as 

labeled training sets for CMU PIE, and we select 20 and 50 

feature vectors as labeled training sets for USPS. For semi-

supervised classification via ALP-TMR, the number of unla-

beled samples is set to the same as that of labeled data. The 

comparison results over three deep networks are presented in 

TABLEs VIII, IX and X. According to the results, our ALP-

TMR realizes higher accuracy than SVM and Softmax based 

on the same deep features by discovering the underlying 

structures that are hidden in both labeled and unlabeled data. 

Hence, our ALP-TMR can also perform well using convolu-

tional features, which encourages us to incorporate the label 

propagation into deep learning in future work.  

TABLE VIII:  

PERFORMANCE COMPARISON OVER ALEXNET. 

Dataset 
Method 

CMU PIE face USPS digits 

10 label 30 label  20 label 50 label 

Alexnet + SVM 60.50 82.06 87.07 96.87 
Alexnet + Softmax 77.36 93.64 89.19 96.40 

Alexnet + ALP-TMR 79.51 93.79 90.34 97.53 

TABLE IX:  

PERFORMANCE COMPARISON OVER VGG16.  

Dataset 
Method 

CMU PIE face USPS digits 
10 label 30 label  20 label 50 label 

VGG16 + SVM 59.90 80.07 81.41 93.21 
VGG16 + Softmax 74.85 89.99 81.66 92.94 

VGG16 + ALP-TMR 80.41 94.18 85.82 95.34 

TABLE X:  
PERFORMANCE COMPARISON OVER VGG19.  

Dataset 
Method 

CMU PIE face USPS digits 
10 label 30 label  20 label 50 label 

VGG19 + SVM 56.57 78.02 79.90 92.24 
VGG19 + Softmax 72.51 88.46 83.30 92.27 

VGG19 + ALP-TMR 76.79 92.86 84.38 93.49 

IV. REMARKS AND DISCUSSION 

In this section, the reasons for categorizing our present work 

into the areas of neural networks and learning systems 

(NNLS) and the relation between our semi-supervised learn-

ing model and deep neural networks are described as follows:  

(1) Our proposed approach is a semi-supervised learning 

system, which has the same objectives as a neural network 

learning system, namely, representation and classification. 

Our proposed method aims at learning a discriminative rep-

resentation and predicting labels of samples via label propa-

gation for image classification. The major difference is that 

almost all available neural network learning systems perform 

classification in a supervised learning manner, whereas our 

approach is an effective semi-supervised learning method. 

Semi-supervised learning for representation and classifica-

tion is a very hot topic in the areas of NNLS, such as in the 

recently published TNNLS papers [61-70], in which a similar 

topic on semi-supervised learning to our work is studied.  

(2) Our approach is an effective semi-supervised classifier. 

Hence, it can be potentially used as a classifier in the output 

layer of a deep neural network architecture to classify sam-

ples. Since our proposed ALP-TMR can use a small amount 

of labeled data and a large amount of unlabeled data for semi-

supervised learning to predict the labels of samples, our work 

will have a wider range of application areas than the widely 

used fully supervised classifiers in the output layer, e.g., 

multi-class SVM [49] and Softmax [48]. SVM and Softmax 

require that all the training samples be labeled, while the 

amount of labeled data are typically limited in practice and 

the labeling process is costly. By discovering the intrinsic re-

lations of labeled and unlabeled data, the classification re-

sults can be potentially improved via our semi-supervised 

method over SVM and Softmax based on the same deep fea-

tures, according to the results in Subsection F of Section IV. 

Hence, our ALP-TMR can also perform well using convolu-

tional features, which encourages us to incorporate the LP 

process into the deep learning models in future work.  

In conclusion, our approach is a semi-supervised learning 

system, and our algorithm can be used as a classifier in the 

output layers of deep network models.  

V. CONCLUSIONS AND FUTURE WORK 

We have explored the robust semi-supervised classification 

problem for predicting the labels of samples. An effective tri-

ple-matrix-recovery-driven robust auto-weighted label-prop-

agation framework is proposed. To improve the accuracy and 

performance of the similarity measure, representation learn-

ing and semi-supervised classification, we have presented a 

simple yet effective triple matrix decomposition mechanism 

for recovering the underlying clean data, clean soft labels and 

clean weight spaces jointly from the original data, the pre-

dicted labels and the weights, which typically have unfavor-

able mixed signs or incorrect inter-class connections. Thus, 

our model potentially delivers enhanced data representation 

and classification results by performing robust label predic-

tion on recovered clean data and weight spaces.  

We have evaluated our method via extensive simulations. 

By visualizing the recovered clean soft labels and the recov-

ered clean weights, we conclude that the proposed triple ma-

trix recovery mechanism can indeed lead to more accurate 

similarity measures and data representations and more dis-

criminating predicted labels. Quantitative classification re-

sults on public face, handwriting and object databases also 



demonstrate that our method can realize enhanced label pre-

diction performance compared with related algorithms. In the 

future, we will incorporate the data inclusion process to form 

a unified model that can handle new data directly. The exten-

sion of our method to the other emerging applications, such 

as image retrieval and annotation, also merits investigation.  
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