
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 1

Few-Shot Learning with Geometric Constraints
Hong-Gyu Jung and Seong-Whan Lee, Fellow, IEEE

Abstract—In this paper, we consider the problem of few-shot
learning for classification. We assume a network trained for base
categories with a large number of training examples, and we aim
to add novel categories to it that have only a few, e.g., one or
five, training examples. This is a challenging scenario because
(1) high performance is required in both the base and novel
categories, and (2) training the network for the new categories
with few training examples can contaminate the feature space
trained well for the base categories. To address these challenges,
we propose two geometric constraints to fine-tune the network
with a few training examples. The first constraint enables features
of the novel categories to cluster near the category weights,
and the second maintains the weights of the novel categories
far from the weights of the base categories. By applying the
proposed constraints, we extract discriminative features for the
novel categories while preserving the feature space learned for
the base categories. Using public datasets for few-shot learning
that are subsets of ImageNet, we demonstrate that the proposed
method outperforms prevalent methods by a large margin.

Index Terms—Image Recognition, Few-Shot Learning, Deep
Learning, Neural Network, Geometric Constraint.

I. INTRODUCTION

DEEP networks have achieved state-of-the art performance
in a variety of fields, such as visual recognition [1]–[5],

object detection [6] and semantic segmentation [7]. Compared
to previous studies [8]–[12], these impressive achievements
are primarily owing to the availability of large numbers of
training examples. For instance, current deep networks for
image classification match human performance but require a
large number of training examples [1]. Humans can quickly
and accurately recognize novel categories using only one
example based on previous knowledge [13]. Mimicking the
cognitive abilities of humans is difficult, as the layers of deep
networks are heavily optimized for the trained categories.
In particular, the top layers tend to learn category-specific
features [14], which are not flexible enough to learn novel
categories without forgetting the parameters learned before.
Thus, to continually add novel categories, the network must be
re-trained by using a large number of training examples for the
base and novel categories [15]. Apart from the complexity of
training, building large numbers of training examples requires
a significant amount of human effort and incurs high costs.

c©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.1109/TNNLS.2019.2957187

This work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (No. 2017-0-01779, A machine learning and statistical
inference framework for explainable artificial intelligence, No. 2019-0-01371,
Development of brain-inspired AI with human-like intelligence, and No. 2019-
0-00079, Fostering high-quality artificial intelligence talent)

H.-G. Jung is with the Department of Brain and Cognitive Engineering
and S.-W. Lee is with the Department of Artificial Intelligence, Korea Uni-
versity, Anam-dong, Seongbuk-ku, Seoul 02841, Korea. e-mail: {hkjung00,
sw.lee}@korea.ac.kr (Corresponding author: Seong-Whan Lee).

To solve this problem, few-shot learning, which can train
neural networks using a few training examples, has attracted
considerable research interest. In this paper, we consider a
network problem where its base categories have been trained
using a large number of training examples and novel categories
with a few, e.g., one or five, training examples are to be added.
This problem is challenging as the network needs to exhibit
high performance in both the base and novel categories. In
other words, an effective algorithm needs to be able to generate
discriminative features and weights1 for the novel categories
without affecting those of the base categories.

One simple way to exploit training examples for a new
category is to fine-tune a network by adding nodes to a classi-
fier. However, this approach can destroy a feature space well
constructed for base categories owing to the small number of
training examples [17]. Instead of fine-tuning a network, recent
studies have attempted to train it to become generalizable to
unseen categories. For example, training examples for base
categories can be used to train a weight predictor where
the weights of both base and novel categories are calculated
using activations from a feature extractor [18]. Similarly, the
weights of novel categories can be generated by exploiting
the weights of base categories with an attention mechanism
[19]. To predict the weights of novel categories, these studies
used activations or weights well learned for base categories
with a large number of training examples. Nevertheless, the
feature space for novel categories has not been explicitly
considered, and whether the feature space trained for base
categories is suitable for novel categories unseen during the
training procedure is also uncertain.

In this paper, we propose a fine-tuning strategy that trains
novel categories with a few training examples while not
contaminating the feature space well learned for the base
categories. The goal is to allow the base and novel categories to
co-exist in a common space without interference. To this end,
we first restrict the feature space to a high-dimensional sphere
by normalizing the features and weights. This eliminates
information related to magnitudes, and thus makes it easy
to control the feature space using only angular information.
Based on the high-dimensional sphere, we propose two ge-
ometric constraints. The first is called weight-centric feature
clustering. For a given category, when used with cross-entropy
loss, this reduces the angular distance between the features
and the weights. The second is angular weight separation; this
separates category weights based on the angular distance.

Fig. 1 shows our motivation for the proposed geometric
constraints. From the CIFAR 100 dataset [16], we chose
10 base categories consisting of five pairs, each from a
parent category. For example, the images of “Motorcycle”
and “Bicycle” were included in the parent category, Vehicles

1In this paper, we alternately denote the output of a feature extractor as
features and activations. Weights are referred to as category weights used in
a classifier.

ar
X

iv
:2

00
3.

09
15

1v
1

 [
cs

.L
G

]
 2

0
M

ar
 2

02
0

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 2

Results on the Subset of CIFAR-100

Only trained w/ base categories Fine-tuned w/ novel categories Fine-tuned w/ geometric constraints
(Proposed method)

Visualization of base and novel categories in feature space

 Toy example w/ categories chosen for training a subset of CIFAR-100
 10 base categories

• (Motocycle, Bicycle), (Table, Bed), (Butterfly, Bee), (Pear, Orange), (Dolphin, Whale)
 3 novel categories

• Cockroach, Skunk, Shark

(a) Trained for base categories

Results on the Subset of CIFAR-100

Only trained w/ base categories Fine-tuned w/ novel categories Fine-tuned w/ geometric constraints
(Proposed method)

Visualization of base and novel categories in feature space

 Toy example w/ categories chosen for training a subset of CIFAR-100
 10 base categories

• (Motocycle, Bicycle), (Table, Bed), (Butterfly, Bee), (Pear, Orange), (Dolphin, Whale)
 3 novel categories

• Cockroach, Skunk, Shark

(b) Fine-tuned by Softmax

Results on the Subset of CIFAR-100

Only trained w/ base categories Fine-tuned w/ novel categories Fine-tuned w/ geometric constraints
(Proposed method)

Visualization of base and novel categories in feature space

 Toy example w/ categories chosen for training a subset of CIFAR-100
 10 base categories

• (Motocycle, Bicycle), (Table, Bed), (Butterfly, Bee), (Pear, Orange), (Dolphin, Whale)
 3 novel categories

• Cockroach, Skunk, Shark

(c) Fine-tuned by geometric constraints

Fig. 1. (Best viewed in color) Examples of base and novel categories in the feature space. We trained 10 base categories chosen from the CIFAR 100
dataset [16] using 500 training examples for each base category. (a) shows features extracted from both base and novel categories. The base categories are
clustered near the weights (hot pink). “Shark,” one of the novel categories, is clustered well but its location overlaps with that of “Whale”. The other two
novel categories are spread out. (b) shows the results after the network was fine-tuned with five training examples for each novel category. For the network, we
added classification weights for novel categories to the classifier and froze the classification weights for base categories during fine-tuning. We did not use any
training examples for base categories. (c) demonstrates that our proposed geometric constraints can locate the features of the novel categories discriminatively
and preserve the feature space of the base categories. The yellow circle means the weights of novel categories. The labels of the base (B) and novel (N)
categories are shown on the far right. For all experiments, we used SGD with 300 iterations and the learning rates were (a) 1e-2, (b) 1e-4 and (c) 1e-3.

1. For novel categories, we chose “Cockroach” and “Skunk”
which were not similar to any of the base categories, and
“Shark” whose images looked similar to those in “Whale”.
Using 500 training examples for each base category, we first
trained a shallow convolutional neural network (CNN) that
had three nodes for the feature extractor and the softmax
classifier followed by cross-entropy loss. We then extracted
features of the examples for the base and novel categories. The
extracted features are shown in Fig. 1. Features of “Shark” are
located close to those of “Whale,” which were well trained,
and features of the other two novel categories are spread out.
We can also see that merely fine-tuning the novel categories
with five training examples contaminates the feature space that
was well learned for the base categories. Furthermore, it is
clear that our proposed method not only preserves features of
the base categories but also constructs discriminative features
of novel categories using only five training examples for each
category. In Section V, we show that the proposed method
can be applied to more complex datasets such as a subset of
ImageNet built for few-shot learning.

To sum up, our contributions in this paper are threefold:
• Assuming only a few training examples for novel cate-

gories, a fine-tuning strategy is proposed to classify both
base and novel categories. That is, we do not use any
training examples of the base categories to fine-tune a
network or for few-shot learning.

• We develop two geometric constraints that help classify
the novel categories while maintaining the feature space
previously learned for the base categories.

• We demonstrate that the proposed method achieves state-
of-the art performance and we analyse it using several
CNNs.

We discuss the overall model in Section III. The details
of the geometric constraints are described in Section IV and
the experimental results are detailed in Section V. We discuss
the proposed method and the result in Section VI. Finally, we
present the conclusions of this work in Section VII.

II. RELATED WORK

A typical few-shot learning problem does not assume the
existence of base categories with a large number of training
examples, and its objective is to only classify novel categories
with a few training examples. Meta-learning has recently
attracted interest in the context of solving this problem [20]–
[24]. In meta-learning, we use meta-training, meta-validation
and meta-test datasets. Given a meta-training dataset, we ran-
domly select a few training examples to obtain the parameters
of the network and randomly choose test examples to generate
a loss and train it. This process is repeated several times to
make the network generalizable to unseen categories. Finally,
the algorithms are evaluated in the meta-test set by the way
they used in the meta-training set. Note that the three meta-
datasets have disjoint categories.

Based on the concept of meta-learning, a matching network
[23] was proposed to jointly learn two embedding functions
for training examples and a test example. This method uses
a deterministic distance metric to compare them. Unlike in a
fixed manner, the proposed method in [24] learns a relation
module to compare the results of the two embedding functions.
A prototypical network [22] learns a prototype for each cate-
gory, so that the examples discriminatively cluster around the
prototypes corresponding to each category. Some studies [20],
[25] developed memory modules that store useful information
from training examples and exploited their memories when
testing them. On the contrary, the relationship between activa-
tions and weights was established by [21]. The authors used
l2 normalization layers to benefit from cosine similarity that
renders activations and weights in the final layer symmetric.
Thus, the activations of training examples for novel categories
can be regarded as weights in the final layer.

However, the purpose of the above studies was to only
classify novel categories with a few training examples, and
they did not assume the existence of previously-trained base
categories. In this respect, the most relevant works to ours
are [18], [19], [26] and [27]. A weight predictor trained on

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 3

a large number of training examples for base categories was
proposed by [18]. Following training, the weight predictor was
used to calculate the weights of novel categories based on
the activation of a few training examples. An attention-based
weight generator [19] was developed to predict the weights
of novel categories by exploiting those of the base categories.
These two studies take advantage of activations or weights that
are well learned for the base categories with a large number of
training examples, and do not need to fine-tune a network for
novel categories. However, it is unclear whether the feature
space trained for the base categories is also suitable for novel
categories hitherto unseen.

In terms of a generative model, Wang et al. [26] generated
data that has similar characteristics to the training examples
for novel categories. Similarly, Hariharan and Girshick [27]
presented an example generation function where transforma-
tions learned from base categories are applied to the examples
of novel categories. Then, they re-trained a classifier using
a large dataset for base categories and the generated exam-
ples for novel categories. However, the complexity of this
training procedure can be burdensome for few-shot learning.
Instead, we propose a fine-tuning strategy that uses only a few
training examples for novel categories. Moreover, fine-tuning
the network does not affect the feature space learned for the
base categories and generates discriminative features for novel
categories.

Finally, a common concept exploiting marginal distance was
proposed by [28]. However, the paper aims to classifying only
novel categories without any distractors (e.g., base categories).
This means their idea cannot be directly applied to our
scenario. Specifically, they show the triplet (or contrastive)
loss can be applied to few-shots. But, the losses should form
triplets of anchor, positive and negative examples for training.
Note that, in our scenario, generating triplets for training incurs
very high complexity since we deal with both base and novel
categories. Meanwhile, our method only uses a few training
examples (not pairs of examples) and we will show our method
works for prevalent datasets for few-shot image recognition.

III. OVERALL FRAMEWORK

In this section, we define the few-shot learning problem,
introduce a two-stage training procedure to classify base and
novel categories, and explain how to test an example.

A. Problem Definition

In our classification problem, the dataset DBase =
{DTr

Base, D
V al
Base, D

Test
Base} is available to train, validate, and

test the base categories. Similar to ImageNet [29], DBase is
composed of a large number of examples for CBase categories.
Then, (1) we train a network with DTr

Base to classify CBase

categories.
Based on the network, we aim to add novel categories

to it. The dataset DNovel is available for novel categories,
containing C ′Novel categories that are disjoint to CBase. (2)
We randomly choose CNovel (∈ C ′Novel) categories, and k
training and TNovel test examples from each category. Then,
the network is further trained using k × CNovel examples.

This setting is called CNovel-way k-shot learning. The typical
number of k is one or five.

Finally, (3) the network is evaluated using TBase

(
∈ DTest

Base

)
and TNovel examples. Thus, given CBoth = CBase ∪ CNovel,
the goal is to correctly classify an example as belonging to
one of CBoth categories. Steps (2) and (3) are repeated several
times to obtain a 95% confidence interval.

B. Two-Stage Training Procedure

Notation We consider a network composed of a feature
extractor and a classifier. We use fi to denote the feature
extracted from the i-th example through the feature extractor.
The weights of the base categories for the classifier are
WB =

[
w1

Bw
2
B · · ·w

nB

B

]
, where wj

B is the column vector
for the j-th category and nB the number of the base
categories. Likewise, the weights of the novel categories are
denoted by WN =

[
w1

Nw
2
N · · ·w

nN

N

]
. If l2 normalization

is applied, we denote it by ṽ = v/‖v‖, where v is a
column vector and Ṽ =

[
ṽ1ṽ2 · · · ṽn

]
, where ṽj is a

normalized column vector. We define scores in a classification
layer as SBase = {f̃Ti w̃1

B , f̃
T
i w̃

2
B , · · · , f̃Ti w̃

nB

B } and
SNovel = {f̃Ti w̃1

N , f̃
T
i w̃

2
N , · · · , f̃Ti w̃

nN

N }.

Training Stage 1 As shown in Fig. 2, a network is
trained on DTr

Base to classify CBase categories. The features
and weights are normalized by l2-norm. For classification,
we use the softmax layer followed by cross-entropy loss.
This can be expressed as

Lcls = − 1

M

M∑
i=1

log
esf̃

T
i w̃

yi
B∑nB

j=1 e
sf̃T

i w̃j
B

, (1)

where M is a batch size, yi refers to the category of the i-
th example, and f̃Ti w̃

j
B is the cosine similarity between the

weight and the feature. s is a learnable parameter.
Eq. 1 has two notable aspects. First, we normalize the

features and weights by l2-norm. This locates the feature space
in a high-dimensional sphere. In other words, we consider
only angular information with respect to features and weights.
This helps us in training stage 2 to geometrically control
the locations of the features and weights in terms of angular
distances. Second, we apply a scale parameter s. As addressed
in [30], the range [−1, 1] of f̃Ti w̃

j
B is too small to obtain

a sufficient gradient for training. Thus, it is possible for the
network to fail to converge. To solve this problem, we scale
up the cosine similarity by using the learnable parameter s
[30].

In addition to Eq. 1, we also apply a loss called weight-
centric feature clustering that will be introduced in Section
IV. This is to place the weights for base categories at
predictable locations, such as the center of features for each
category.

Training Stage 2 We now consider DNovel and the
network trained in training stage 1. The parameters of bottom
blocks are frozen. However, we duplicate the top convolution
blocks in order to fine-tune them, and build a classifier
consisting of CNovel nodes. Given a training example of

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 4

s
Proposed Fine-Tuning Strategy using Few-Shot Examples
Overall Framework

Input

𝑆஻௔௦௘ଵ

𝑆஻௔௦௘ଶ

𝑆஻௔௦௘ଷ

…

𝑆஻௔௦௘ସ

𝑆஻௔௦௘ହ

𝑆஻௔௦௘
௡ಳ

 Two stages and two geometric constraints
 Stage1: training base categories that have large-scale training examples
 Stage2: training novel categories with two geometric constraints

Apply
𝑾෪𝑩

Feature 𝒇෨𝒊 Classification

Stage1: Training base categories

𝑆ே௢௩௘௟ଵ

𝑆ே௢௩௘௟ଶ

𝑆ே௢௩௘௟
௡ಿ

…

Stage2: Training novel categories

Large-scale training examples for base categories

A few training examples for novel categories

…

0 0 0…

Apply
𝑾෪𝑵

Weight
transfer

Fig. 2. Overall framework. In training stage 1, a network is trained for the base categories with a large number of training examples. In training stage 2, we
duplicate parts of the convolution blocks to be fine-tuned and build a classification layer for the novel categories. The parameters of the bottom blocks are
frozen. We forward the training examples for the novel categories to the bottom blocks, the duplicated top blocks and the novel classifier. In the test stage,
an example is forwarded to all layers, and we calculate the largest value from the classification layers of the base and novel categories.

DNovel, it is forwarded to the bottom blocks, the duplicated
top layers, and the novel classifier. In training stage 2, we do
not use the top convolution blocks and the classifier used for
training the base categories, which are shown using broken
lines in Fig. 2. Based on this network architecture, we use
the loss functions proposed in Section IV to train examples
of novel categories.

C. Two-Stream Test Procedure

Once training stages 1 and 2 are complete, we use test
examples from DTe

Base and DNovel. We forward a test example
Ii to all layers used in training stages 1 and 2. The example
is then classified into a category by

argmax
k

(Sk
Both), (2)

where Sk
Both is the k-th element of SBase∪SNovel. To evaluate

base categories or novel categories only, we substitute Sk
Both

into Sk
Base or Sk

Novel, respectively.

IV. LOSS FUNCTIONS

In this section, we elaborate on the loss functions used
in training stage 2. As we use separate blocks and weights
learned independently for the base and novel categories, it is
unnatural for them to co-exist in a common feature space. To
address this issue, we introduce three functions, cross-entropy
loss and two geometric constraints, to extract discriminative
features for novel categories while preserving the feature space
trained for the base categories in training stage 1.

A. Cross-Entropy Loss

We use a similar loss function to Eq. 1 but replace the
weights for the base categories with those for the base and
novel categories and use the fixed scale parameter s trained
in training stage 1.

B. Weight-Centric Feature Clustering

Because novel categories are not trained in stage 1, their
features may not be well clustered, and thus intra-class vari-
ation may be large. To solve this problem, we propose the
weight-centric feature clustering (WCFC) defined as

LWCFC =

CNovel∑
i=1

−log(cos θg(fi),w̃i
N

), (3)

where cos θg(fi),w̃i
N

= g(f i)T · wi
N

‖wi
N‖

. We define a function

g(·) as two types. For type 1,

g(f i) =
f̄ i

‖f̄ i‖
, (4)

where f̄ i is the arithmetic mean of features of the training
examples for the i-th category. As the initial weight wi

N , we
use f̄ i. For type 2,

g(f i) =

∑
i f̃

i

‖
∑

i f̃
i‖
. (5)

When using this type, we set the initial weight wi
N to

∑
i f̃

i.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 5

Cross-entropy
and

weight-centric
feature clustering

Base category 1
Base category 2
Base category 3
Novel category

(a) Feature space after training stage 1

Cross-entropy
and

weight-centric
feature clustering

Base category 1
Base category 2
Base category 3
Novel category

(b) Feature space after training stage 2

Fig. 3. Visual interpretation of training stages 1 and 2 in 3-dimensional feature space. (a) After the base categories have been trained, their features are
clustered close to the weights. (b) By applying the fine-tuning strategy using the proposed loss functions, features of the novel categories are clustered near the
weights, and are sufficiently distant from weights of other categories. Note that all features and weights are located on a high-dimensional sphere in practice.

Note that Eq. 4 is the normalization of averaged features and
Eq. 5 is the normalization of the sum of normalized features.
Thus, Eq. 5 has more degrees of freedom for magnitude and
we have found that this is beneficial to novel categories for
few-shot learning.

When used with cross-entropy loss, this weight-centric fea-
ture clustering states that features corresponding to a category
should be located near the weight. In Eq. 3, maximizing the
cosine similarity cosθg(fi),w̃i

N
is the core concept.

C. Angular Weight Separation

Thus far, we have clustered features for novel categories
near the weights to reduce intra-class variation. Our goal now
is to ensure that the weights and features for the novel cate-
gories are sufficiently far from those for the base categories. To
achieve this, we first define the angular distance uij between
weights as follows:

uij =

{
cos θw̃i,w̃j

N
, if w̃i 6≡ w̃j

N

0, otherwise
, (6)

where w̃i is the i-th column vector of
[
W̃BW̃N

]
.

Then, we maximize θw̃i,w̃j
N

, so that uij is smaller than
margin m. This is called the angular weight separation (AWS)
constraint and is defined as

LAWS =

∑
i,j −log (−uij · 1M (uij) + 1)∑

i,j 1M (uij)
, (7)

where M = {uij | uij > m, ∀i, j} and 1M (uij) ={
1, if uij ∈M
0, otherwise

is the indicator function. The logarithm and

a factor of 1 are used to align the loss function with the scale
of the other loss functions. During the training process, when
all novel weights are separated from other weights in terms of
the angular distance, we turn off the AWS loss.

D. Regularization

We sum up all the losses for the final loss function.

Ltotal = γLcls + αLWCFC + βLAWS (8)

Using Eq. 8, we train the convolution blocks and weights for
the novel categories in training stage 2. Fig. 3 shows the role
of each loss function. For all experiments, we use γαβ = 111.
In Section V, we discuss how different settings of the hyper-
parameters impact on the performance of the proposed method.

V. EXPERIMENTS

To evaluate the proposed method, we used two common
datasets for few-shot learning: miniImageNet [23] and Bharath
& Girshick’s dataset [27]. The two datasets were built based
on ImageNet [29].

A. miniImageNet

MiniImageNet [23] is the most commonly used dataset for
few-shot learning. It is composed of 64 training, 16 validation,
and 20 test categories. Each category contains 600 examples of
size 84×84. We used the split provided by [31]. Most studies
use miniImageNet as follows: Using the training categories,
k training examples for each of CNovel categories are chosen
to obtain the parameters of a network and T test examples
are randomly chosen to train it. Then, this process is repeated
several times to warm-up or generalize the parameters of the
network. Finally, the network is evaluated on the test categories
in the same way as it was on the training categories. Therefore,
this dataset has been primarily used to only classify novel
categories in meta-learning.

Recently, Gidaris and Komodakis [19] extended the dataset
by collecting 300 extra validation examples and 300 test
examples for the 64 base categories. Thus, we used the original
600 examples to train the base categories and the additional
examples for validation and testing. We trained and tested
the base and novel categories as follows: In training stage 1,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 6

TABLE I
CLASSIFICATION ACCURACY ON miniIMAGENET. THE RESULTS ARE AVERAGED TO OBTAIN A 95% CONFIDENCE INTERVAL. ‘-’ DENOTES THAT THE
PERFORMANCE WAS NOT REPORTED FOR THE MODEL. WE REFERRED TO [19] FOR THE ACCURACIES OF OTHER METHODS. † INDICATES THAT THE

PROPOSED DATA AUGMENTATION TECHNIQUE WAS USED. THE HIGHEST NUMBERS ARE BOLDED.

Models Feature Extractors
5-way 5-shot 5-way 1-shot

Novel Both Base Novel Both Base

Matching Nets [23] C64F 55.30 - - 43.60 - -
Finn et al. [32] C64F 63.10±0.92 - - 48.70±1.84 - -

Prototypical Nets [22] C64F 68.20±0.66 - - 49.42±0.78 - -
Relation Nets [24] C64F 65.32±0.66 - - 50.44±0.82 - -
Mishra et al. [33] ResNetS 68.88±0.92 - - 55.71±0.99 - -

Gidaris and Komodakis [19]†
C64F 73.27±0.59 57.72 66.96 57.78±0.78 48.13 66.58

ResNetS 70.32±0.66 55.93 79.58 56.76±0.80 49.68 79.43

Proposed
C64F 72.92±0.64 58.00 67.12 53.39±0.81 45.32 67.12

C64F-Dropout 73.21±0.65 58.77 66.98 55.74±0.83 48.11 66.98
ResNetS 78.00±0.61 68.16 79.78 58.52±0.82 56.05 79.78

Ablation (w/o Fine-Tuning)
C64F 72.85±0.63 54.43 67.12 53.43±0.81 43.17 67.12

C64F-Dropout 71.32±0.63 51.71 66.98 54.86±0.80 38.52 66.98
ResNetS 68.68±0.67 47.11 79.78 54.12±0.83 43.11 79.78

we trained 64 base categories with 600 examples. In training
stage 2, we randomly chose CNovel novel categories and k
examples for each category to fine-tune the network using the
proposed loss functions. In the test stage, we randomly chose
T examples from each of the 64 base categories and CNovel

novel categories to test the network. We iterated training stage
2 and the test stage to obtain a 95% confidence interval.

For the feature extractor, we used a shallow CNN called
C64F with four convolution blocks: each block had 3 × 3
convolutions, batch normalization [34], ReLU [35] and
2 × 2 max-pooling. The sizes of feature maps for the four
convolution blocks were 64. For a deeper model, the small
version of ResNet [1] proposed in [33] was used as in
[19]. We call the network ResNetS. In all cases, we did
not use ReLU for the last layer in the last convolutional block.

Data Augmentation As our method uses a fine-tuning
strategy, it is important for training examples to generate
a loss large enough to back-propagate the error. In this
respect, we found that augmenting the training examples of
each novel category helped improve performance. Given a
training example, we performed zero-padding with 8 pixels
on each border and randomly cropped it to make 84 × 84.
It was then horizontally flipped with a probability of 0.5.
This transformation is identical to that used when training
the base categories in training stage 1. By iterating this
process, we generated nAug examples for each training
example. In our experiments, we augmented examples
to have 20 training examples for each novel category
in total. Since this simple augmentation helps improve
performance, more advanced example generation methods
[27], [36] may further boost the performance of our algorithm.

Effect of Dropout Since our algorithm uses a fine-
tuning strategy, it is crucial that a network has an ability
to be generalizable to unseen categories. Typically, we rely
on a large number of training examples to train a network

with a highly complicated distribution. For few-shot learning,
however, we only have a few training examples, and thus
other techniques for generalization should be considered. In
our experiment, we have found that ResNetS significantly
outperforms C64F. We assume that this is because not only
the depth of the network but also the usage of Dropout [37]
on the last fully connected layers. Thus, we add Dropout
following a linear layer with 1, 024 neurons to C64F and set
the dropout rate to 0.5. We call the network C64F-Dropout.

Performance In Table I, we compare our proposed method
with prevalent methods [22]–[24], [32], [33] for few-shot
learning and a model [19] considering both base and novel
categories. It is clear that, as the feature extractor has a greater
capacity to handle the training dataset, the performance of
the proposed method improves significantly. For example,
in training stage 1, ResNetS yields the accuracy of around
79% in the base categories, higher than the 65 ∼ 68% of
C64F. In this case, our method outperforms others by a large
margin. Therefore, the proposed fine-tuning strategy with
geometric constraints is clearly advantageous when a deeper
network is available. It is worth noting that the proposed
strategy dose not affect the accuracy on base categories even
after fine-tuning the network. For ResNetS, the performance
improvements in both categories indicate that the geometric
constraints not only preserve the feature space of base
categories, but also extract discriminative features for novel
categories, when compared to [19] that aims to obtain the
weights of novel categories based on those of base categories.
Note that Table I results from the choice of the weight-centric
feature clustering as follows: we always use Eq. 5 for training
stage 2. For training stage 1, we used Eq. 5 for C64F; and
Eq. 4 for ResNetS. We used 0.6 for the margin value for the
angular weight separation.

Ablation Study To assess the benefit of our fine-
tuning strategy, we show the accuracy when not fine-tuning
the network. In this case, the weights of novel categories are

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 7

TABLE II
TOP-5 CLASSIFICATION ACCURACY ON THE IMAGENET. THE RESULTS ARE AVERAGED TO OBTAIN A 95% CONFIDENCE INTERVAL. ‘-’ DENOTES THAT

THE PERFORMANCE WAS NOT REPORTED FOR THE MODEL. ‘W/ H’ IS SHORT FOR W/ HALLUCINATION WHERE THE ALGORITHMS USE EXAMPLE
GENERATION TECHNIQUES. † INDICATES THAT THE PROPOSED DATA AUGMENTATION TECHNIQUE WAS USED. THE HIGHEST NUMBERS ARE BOLDED.

*RESULTS WERE REPORTED BY [26] AND WE REFERRED TO [19].

Models
Novel Both Both with prior

k=1 2 5 10 20 k=1 2 5 10 20 k=1 2 5 10 20

Prototypical Nets [22]* 39.3 54.4 66.3 71.2 73.9 49.5 61 69.7 72.9 74.6 53.6 61.4 68.8 72 73.8
Matching Nets [23]* 43.6 54 66 72.5 76.9 54.4 61 69 73.7 76.5 54.5 60.7 68.2 72.6 75.6

Logistic Regression [26]* 38.4 51.1 64.8 71.6 76.6 40.8 49.9 64.2 71.9 76.9 52.9 60.4 68.6 72.9 76.3
Logistic Regression w/ H [27]* 40.7 50.8 62 69.3 76.5 52.2 59.4 67.6 72.8 76.9 53.2 59.1 66.8 71.7 76.3

SGM w/ H [27] - - - - - 54.3 62.1 71.3 75.8 78.1 - - - - -
Batch SGM [27] - - - - - 49.3 60.5 71.4 75.8 78.5 - - - - -

Prototype Matching Nets w/ H [26]* 45.8 57.8 69 74.3 77.4 57.6 64.7 71.9 75.2 77.5 56.4 63.3 70.6 74 76.2
Prototype Matching Nets [26]* 43.3 55.7 68.4 74 77 55.8 63.1 71.1 75 77.1 54.7 62 70.2 73.9 75.9

Gidaris and Komodakis [19]†
49.08 59.97 70.77 75.51 78.26 60.03 66.71 73.77 76.94 78.77 58.65 65.3 72.37 75.54 77.34
±.23 ±.15 ±.10 ±.06 ±.05 ±.14 ±.10 ±.06 ±.04 ±.03 ±.14 ±.09 ±.06 ±.04 ±.03

Proposed
45.98 58.37 70.17 75.49 78.62 57.11 64.53 71.77 75.20 78.10 56.24 63.77 71.43 74.91 77.08
±.22 ±.16 ±.09 ±.07 ±.05 ±.14 ±.10 ±.07 ±.06 ±.03 ±.14 ±.10 ±.06 ±.05 ±.03

Proposed-Dropout
49.57 60.89 71.07 76.11 78.84 60.39 67.44 74.22 77.32 79.05 58.91 65.84 72.71 75.96 77.88
±.24 ±.16 ±.09 ±.07 ±.05 ±.14 ±.10 ±.06 ±.05 ±.03 ±.14 ±.10 ±.06 ±.05 ±.04

set to the sum of normalized features of training examples
for each category. The weights and the feature extractor for
novel categories are not trained further. We observe that our
fine-tuning strategy significantly improves the performance
when evaluating both the base and novel categories.

B. Bharath & Girshick’s Dataset

Bharath & Girshick proposed a larger dataset for few-shot
learning [27]. The dataset is composed of 193 base categories
and 300 novel categories for cross-validation, and there are
196 base categories and 311 novel categories for evaluation.
The categories have training, validation and test examples
as in ImageNet [29]. We used the categories provided by
the most recent work [19] and we show the performance
using the evaluation categories. As a feature extractor, we
exploit ResNet10 [1]. We further show the performance can
be boosted with ResNet10-Dropout that adds Dropout [37]
of the dropout rate 0.2 following a linear layer with 1, 024
neurons.

Performance For this dataset, we provide the performance
called Both with prior [26]. When computing a probability
that an image x belongs to a class k, pk(x) = p(y = k|x), this
considers a prior probability of whether an example belongs
to base categories or novel categories. By following [19], we
set p(y ∈ Cbase|x) = 0.2 and p(y ∈ Cnovel|x) = 0.8 for
Both with prior. Table II shows top-5 classification accuracy
on the ImageNet. Our algorithm outperforms the state-of-the
art methods for all shots. It is worth noting that without any
hallucination and the training examples of base categories
[26], [27], our algorithm improves the performance only
using a few training examples for novel categories. The result
also verifies that a fine-tuning strategy for few-shot learning

TABLE III
CLASSIFICATION ACCURACY ON THE IMAGENET USING INCREMENTAL

LEARNING. FOR THE PROPOSED-DROPOUT, WE USED 20-SHOTS AND FOR
INCREMENTAL LEARNING, WE FINE-TUNED THE FEATURE EXTRACTOR

GRADUALLY FROM 1-SHOT TO 20-SHOTS.

Models Novel Both Both with prior

Proposed-Dropout 78.84±.05 79.05±.03 77.88±.04
Incremental learning 79.87±.05 79.44±.04 78.59±.04

can be boosted using a network with Dropout. We used 0.4
for the margin value for the angular weight separation.

C. Incremental Learning

Although the literature of few-shot learning mainly con-
siders the performance when k-shot training examples are
available, we would like to provide a possible application of
the proposed method. Since our method fine-tunes a network,
one might be interested in the performance when training
examples are given gradually. For this experiment, we fine-
tuned the feature extractor for novel categories continually
from 1-shot to 20-shots with ResNet10-Dropout. As shown in
Table III, the performance of incremental learning is superior
to 20-shots. This suggests that a recognition system can
be continually upgraded by the proposed method as novel
examples are continually provided.

D. Graphical Analysis

We aim to extract discriminative features for the novel
categories while preserving the feature space learned for the
base categories. To show that our algorithm accords with
the purpose, we visualize the feature space before and af-
ter applying our fine-tuning method on miniImageNet with

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 8

(a) 2D embedding space before fine-tuning (b) 2D embedding space after fine-tuning

(c) Novel category 1 (d) Novel category 2 (e) Novel category 3 (f) Novel category 4 (g) Novel category 5

Fig. 4. (Best viewed in color) 2D embedding space (a) before and (b) after fine-tuning ResNetS. The black circles indicate base categories of miniImageNet
and novel categories are expressed as colored squares. (c)-(g) are enlarged figures to corresponding parts of (b). We observe that the features of novel categories
are well placed between base categories.

(a) Original (b) After fine-tuning (c) Before fine-tuning (d) Original (e) After fine-tuning (f) Before fine-tuning

Fig. 5. Feature maps for novel categories. (a),(d): original images, (b),(e): feature maps after fine-tuning and (c),(f): feature maps before fine-tuning. Our
algorithm focuses on important parts of objects and removes noisy parts.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 9

Examples
 of each base

 category

Medians
 of base

 categories

Medians
 of novel

 categories

0.25

0.00

0.25

0.50

0.75

1.00

(a) Cosine similarity of ResNetS

Examples
 of each base

 category

Medians
 of base

 categories

Medians
 of novel

 categories

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(b) Cosine similarity of C64F

Examples
 of each base

 category

Medians
 of base

 categories

Medians
 of novel

 categories

0.25

0.00

0.25

0.50

0.75

1.00

(c) Cosine similarity of ResNet10

Fig. 6. Box plots of cosine similarity. Given a network trained on base categories, we first extracted features of the examples for base and novel categories.
Based on the feature space, we obtained the medians of the features of each category. For figures (a)-(c), we calculated the cosine similarity among (left)
examples belonging to each base category, (middle) medians of base categories and (right) medians of novel categories.

TABLE IV
COMPARISON BETWEEN THE PROPOSED METHOD AND THE SINGLE-STAGE FINE-TUNING APPROACH ON THE IMAGENET WITH RESNET10-DROPOUT.

FOR BASE CATEGORIES, THE AVERAGE ACCURACY OF ALL SHOTS IS REPORTED.

Models
Novel Both Both with prior

Basek=1 2 5 10 20 k=1 2 5 10 20 k=1 2 5 10 20

Proposed-Dropout
49.57 60.89 71.07 76.11 78.84 60.39 67.44 74.22 77.32 79.05 58.91 65.84 72.71 75.96 77.88

93.55±.24 ±.16 ±.09 ±.07 ±.05 ±.14 ±.10 ±.06 ±.05 ±.03 ±.14 ±.10 ±.06 ±.05 ±.04

Single-stage 45.08 57.01 69.98 75.1 78.04 55.23 63.34 71.08 73.82 75.24 54.44 61.55 69.76 73.27 75.34
90.45fine-tuning ±.43 ±.28 ±.16 ±.13 ±.09 ±.34 ±.20 ±.13 ±.08 ±.05 ±.29 ±.20 ±.14 ±.07 ±.05

ResNetS. We used T-SNE [38] for dimensionality reduction.
As shown in Fig. 4, the features of novel categories are well
placed between base categories. Without fine-tuning, features
of a category are spread out. This spreadability implies that
it is crucial to fine-tune a feature extractor for some novel
categories.

Furthermore, we visualize feature maps for novel categories
using Grad-CAM [39] that is a visualization method to analyse
what deep networks learn. As shown in Fig. 5, our algorithm
focuses on important parts of objects and removes noisy parts,
which helps improve the classification accuracy.

VI. DISCUSSION

We first discuss why the proposed method significantly
outperforms the state of the art on miniImageNet and is slightly
better on the ImageNet. Then, we discuss the following
questions: Does a single-stage fine-tuning approach work?
How does the performance vary according to the possible
combinations of the geometric constraints in Eq. 8? How
sensitive is the performance to the margin value in Eq. 7?
Finally, we discuss the limitation of the proposed method.

A. Network Characteristic

Since performance gains over other methods vary depending
on the networks, we analyse the reason in terms of network
characteristics. Given a network trained on base categories,
we first extracted features of the examples for base and
novel categories. Based on the feature space, we obtained

TABLE V
COMPARISON BETWEEN THE PROPOSED METHOD AND THE SINGLE-STAGE

FINE-TUNING APPROACH ON miniIMAGENET WITH RESNETS.

Models
5-way 5-shot 5-way 1-shot

Novel Both Base Novel Both Base

Proposed 78.00±0.61 68.16 79.78 58.52±0.82 56.05 79.78

Single-stage
76.78±0.59 58.62 64.58 55.11±0.78 52.95 72.32fine-tuning

the medians of the features of each category. For example,
if we have 64 categories, this process produces 64 medians
corresponding to each category. Then, we calculated the cosine
similarity among (a) features of the examples belonging to
each base category, (b) the medians of base categories and (c)
the medians of novel categories. Specifically, (a) is to show
how well the features cluster for a category they belong to. (b)
and (c) are to investigate how sufficiently the categories are
separated from each other. For statistical analysis, we used
box plots. As shown in Fig. 6, features from ResNetS well
cluster together for each category and categories are separated
sufficiently. However, a lot of categories are close together on
C64F and ResNet10.

Based on the above characteristics, we compare the pro-
posed method with the novel weight generator by Gidaris and
Komodakis [19] that shows comparable results to ours. To
train the novel weight generator [19], the algorithm samples
some base categories and regards them as novel categories.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 10

This is to mimic the environment when real novel categories
are given. For this training procedure to be effective and
generalized, the distribution of features for base categories
should resemble that of novel categories. However, this is
not the case with ResNetS. As a result, despite the much
higher capacity, the performance of ResNetS is worse than
that of C64F. On the contrary, our proposed method relies on
the feature discriminability trained on base categories. Thus,
the proposed method produces valuable results with ResNetS
but is less effective with C64F and ResNet10. Even though
performance gains over other methods vary depending on
network characteristic, we achieve the best performance on
all datasets.

B. Single-Stage Fine-Tuning Approach

To validate that a simple fine-tuning approach with only
a few examples destroys a pre-trained network, we present
the following experimental setting: after training a network
using base categories, we added novel weights to the classifier.
Given a few training examples, we then fine-tuned the novel
weights of the classifier and the last convolution block of the
feature extractor with cross-entropy loss. For this experiment,
the feature extractor was shared for base and novel categories.
We used SGD with learning rates 1e-4 for ResNetS and 1e-
5 for ResNet10. As shown in Tables V and IV, the single-
stage approach destroys the pre-trained network. Especially,
the performance on base categories cannot be preserved unlike
the proposed method.

C. Effectiveness of each Loss Function

Since we use the three loss functions in Eq. 8, the effect
of each loss function can be discussed. The accuracy for all
possible combinations of the loss functions is shown in Fig. 7.
We can observe the following trends. (a) For both categories,
the angular weight separation plays a crucial role in the perfor-
mance. (b) For novel categories, the use of all loss functions
does not always result in the best performance. However, it
stably produce comparable results for all experiments and
the importance increases as the number of training examples
increases.

D. Sensitivity of the Margin Value

For the experiments, we have shown the results with the
margin value that was empirically set for the angular weight
separation. The purpose of the margin is to maintain the
classification weights far from each other. Thus, the value
should be determined according to the geometry of the feature
space. Nonetheless, Fig. 8 shows that the performance is not
too sensitive to the variation of the margin value. In other
words, the performance does not vary irregularly and this
enable us to find a peak point through validation examples.

E. Limitation

Although the proposed method achieves the state-of-the
art performance, it relies on the network capacity. Since we
have only a few training examples, it is difficult to adjust

TABLE VI
OPTIMIZERS AND HYPERPARAMETERS USED FOR OUR EXPERIMENTS

Model k-Shot Optimizer Learning Rate
Feature Extractor Classifier

C64F 1

Adam

1E-03 1E-03
5 1E-05 1E-02

C64F-Dropout 1 1E-04 5E-05
5 1E-05 1E-03

ResNetS 1 1E-04 1E-02
5 1E-04 1E-02

ResNet10
&

ResNet10
-Dropout

1 1E-05 1E-03
2 1E-05 1E-03
5 1E-05 1E-03
10 1E-05 1E-03
20 1E-05 1E-03

features for both base and novel categories. This is why we
fine-tune only the parameters for novel categories and freeze
the parameters for base categories. In this sense, to boost
the performance, we need a network well trained on base
categories where the features belonging to a category cluster
together and features for different categories are sufficiently
separated. To overcome the limitation, although inefficient,
training examples for base categories can be used together to
adjust the features of both base and novel categories. However,
we have only a few training examples for novel categories as
ever, which causes imbalanced categories. Thus, we believe
that in any case we need a data generation technique for few-
shot learning. We would like to leave this for the future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a fine-tuning strategy for few-
shot learning. We considered a network trained for base
categories with a large number of training examples and we
aimed to add novel categories to it that had only a few
training examples. We proposed two geometric constraints to
extract discriminative features for the novel categories while
preserving the feature space learned for the base categories.
The first constraint enabled features of the novel categories
to cluster near the category weights when combined with
cross-entropy loss. The second maintained the weights of the
novel categories far from the weights of the base categories.
Applying the constraints, we showed that the accuracy on
base categories was not affected even after fine-tuning the
network and comparable performances to the base categories
could be achieved on novel categories. The proposed method
gained state-of-the art performance especially using a network
with Dropout. Since we verified a simple way to augment
training examples improves the performance, future work
involves developing example generation techniques that are
advantageous to our idea.

APPENDIX A

Since the performance of neural networks depends on
the choice of optimizers and hyperparameters, it is common
to search for proper values from validation examples of a
dataset. Thus, in Table VI, we provide the optimizers and the
hyperparameters where we used for our experiments. For all
experiments, we used the Adam [40] optimizer.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 11

5-shot 1-shot

40

45

50

55

60

65

70

To
p-

1
Ac

cu
ra

cy

111

111

011

011

101

101

110

110

100

100

010

010

001

001

(a) Both categories with ResNetS on miniImageNet

5-shot 1-shot

55

60

65

70

75

80
111

111

011

011

101

101

110

110

100

100

010

010

001

001

(b) Novel categories with ResNetS on miniImageNet

1-shot 2-shot 5-shot 10-shot 20-shot

60

65

70

75

80

To
p-

5
Ac

cu
ra

cy

111

111

111

111
111

011

011

011
011 011

101

101

101

101
101

110

110

110
110 110

100

100

100
100 100

010

010

010
010 010

001

001

001

001
001

(c) Both categories with ResNet10-Dropout on the ImageNet

1-shot 2-shot 5-shot 10-shot 20-shot

50

55

60

65

70

75

80

To
p-

5
Ac

cu
ra

cy

111

111

111

111

111

011

011

011

011
011

101

101

101

101

101

110

110

110

110
110

100

100

100

100
100

010

010

010

010
010

001

001

001

001
001

(d) Novel categories with ResNet10-Dropout on the ImageNet

Fig. 7. Classification accuracy according to the combinations of the three loss functions. The binary numbers correspond to γαβ in Eq. 8. The gray bar
indicates 111, which means we use cross entropy loss, the weight-centric feature clustering and the angular weight separation.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 12

5-shot 1-shot
50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

To
p-

1
Ac

cu
ra

cy 0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

(a) Both categories with ResNetS on miniImageNet

5-shot 1-shot

55

60

65

70

75

80

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

(b) Novel categories with ResNetS on miniImageNet

1-shot 2-shot 5-shot 10-shot 20-shot

60

65

70

75

80

To
p-

5
Ac

cu
ra

cy

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

(c) Both categories with ResNet10-Dropout on the ImageNet

1-shot 2-shot 5-shot 10-shot 20-shot

50

55

60

65

70

75

80

To
p-

5
Ac

cu
ra

cy

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

(d) Novel categories with ResNet10-Dropout on the ImageNet

Fig. 8. Classification accuracy according to various margin values. This margin value is used for the angular weight separation in Eq. 7. The gray bar indicates
the accuracy we reported in Tables I and II.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020 13

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 770–778.

[2] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2017, pp. 4700–4708.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. Int. Conf. Comput. Vis. (ICCV), 2015, pp. 1–9.

[4] X. Chen, J. Weng, W. Lu, J. Xu, and J. Weng, “Deep manifold learning
combined with convolutional neural networks for action recognition,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 3938–3952,
2017.

[5] B. Cao, N. Wang, J. Li, and X. Gao, “Data augmentation-based joint
learning for heterogeneous face recognition,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 6, pp. 1731–1743, 2018.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), 2015, pp. 91–99.

[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2015, pp. 3431–3440.

[8] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and J. Malik,
“Semantic segmentation using regions and parts,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2012, pp. 3378–3385.

[9] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifi-
cation with the fisher vector: Theory and practice,” Int. J. Comput. Vis.,
vol. 105, no. 3, pp. 222–245, 2013.

[10] U. Park, H.-C. Choi, A. K. Jain, and S.-W. Lee, “Face tracking and
recognition at a distance: A coaxial and concentric ptz camera system,”
IEEE Trans. Inf. Forensics Secur., vol. 8, no. 10, pp. 1665–1677, 2013.

[11] M.-C. Roh, H.-K. Shin, and S.-W. Lee, “View-independent human action
recognition with volume motion template on single stereo camera,”
Pattern Recognit. Lett., vol. 31, no. 7, pp. 639–647, 2010.

[12] B.-W. Hwang, V. Blanz, T. Vetter, and S.-W. Lee, “Face reconstruction
from a small number of feature points,” in Proc. 15th Int. Conf. Pattern
Recognit. (ICPR), 2000, pp. 838–841.

[13] L. A. Schmidt, “Meaning and compositionality as statistical induction
of categories and constraints,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2009.

[14] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp.
818–833.

[15] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proc. Natl. Acad. Sci. U.S.A.
(PNAS), vol. 114, no. 13, pp. 3521–3526, 2017.

[16] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep., 2009.

[17] J. Mao, X. Wei, Y. Yang, J. Wang, Z. Huang, and A. L. Yuille,
“Learning like a child: Fast novel visual concept learning from sentence
descriptions of images,” in Proc. Int. Conf. Comput. Vis. (ICCV), 2015,
pp. 2533–2541.

[18] S. Qiao, C. Liu, W. Shen, and A. Yuille, “Few-shot image recognition by
predicting parameters from activations,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2018, pp. 7229–7238.

[19] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning
without forgetting,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2018, pp. 4367–4375.

[20] T. Munkhdalai and H. Yu, “Meta networks,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2017, pp. 2554–2563.

[21] H. Qi, M. Brown, and D. G. Lowe, “Low-shot learning with imprinted
weights,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2018, pp. 5822–5830.

[22] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2017,
pp. 4077–4087.

[23] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), 2016, pp. 3630–3638.

[24] F. S. Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: relation network for few-shot learning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 1199–
1208.

[25] Q. Cai, Y. Pan, T. Yao, C. Yan, and T. Mei, “Memory matching networks
for one-shot image recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2018, pp. 4080–4088.

[26] Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-shot
learning from imaginary data,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2018, pp. 7278–7286.

[27] B. Hariharan and R. B. Girshick, “Low-shot visual recognition by
shrinking and hallucinating features,” in Proc. Int. Conf. Comput. Vis.
(ICCV), 2017, pp. 3018–3027.

[28] Y. Wang, X. Wu, Q. Li, J. Gu, W. Xiang, L. Zhang, and V. O. K. Li,
“Large margin few-shot learning,” arXiv preprint arXiv:1807.02872,
2018.

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” Int. J. Comput. Vis., vol. 115, no. 3,
pp. 211–252, 2015.

[30] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille, “Normface: l2 hyper-
sphere embedding for face verification,” in Proc. ACM Multimedia (ACM
MM), 2017, pp. 1041–1049.

[31] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in Proc. Int. Conf. on Learn. Representations (ICLR), 2017.

[32] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2017, pp. 1126–1135.

[33] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple
neural attentive meta-learner,” in Proc. Int. Conf. Learn. Representations
(ICLR), 2018.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2015, pp. 448–456.

[35] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. Int. Conf. Mach. Learn. (ICML), 2010,
pp. 807–814.

[36] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[37] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[38] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” J. Mach.
Learn. Res., vol. 9, pp. 2579–2605, 2008.

[39] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2017, pp. 618–626.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Hong-Gyu Jung received a B.S. degree in Elec-
tronic Engineering and a M.S. degree in Information
Telecommunication Engineering from Soongsil Uni-
versity, Seoul, Korea, in 2012 and 2014, respectively.
He is currently a Ph.D. student in the Department of
Brain and Cognitive Engineering at Korea Univer-
sity. His current research interests include artificial
intelligence and pattern recognition.

Seong-Whan Lee (S84M89SM96-F10) received a
B.S. degree in computer science and statistics from
Seoul National University, Korea, in 1984, and M.S.
and Ph.D. degrees in computer science from the
Korea Advanced Institute of Science and Technol-
ogy, Korea, in 1986 and 1989, respectively. He is
currently the head of the Department of Artificial
Intelligence, Korea University. His current research
interests include artificial intelligence, pattern recog-
nition, and brain engineering. He is a fellow of
the IAPR and the Korea Academy of Science and

Technology.

	I Introduction
	II Related Work
	III Overall Framework
	III-A Problem Definition
	III-B Two-Stage Training Procedure
	III-C Two-Stream Test Procedure

	IV Loss Functions
	IV-A Cross-Entropy Loss
	IV-B Weight-Centric Feature Clustering
	IV-C Angular Weight Separation
	IV-D Regularization

	V Experiments
	V-A miniImageNet
	V-B Bharath & Girshick's Dataset
	V-C Incremental Learning
	V-D Graphical Analysis

	VI Discussion
	VI-A Network Characteristic
	VI-B Single-Stage Fine-Tuning Approach
	VI-C Effectiveness of each Loss Function
	VI-D Sensitivity of the Margin Value
	VI-E Limitation

	VII Conclusion and future work
	Appendix A
	References
	Biographies
	Hong-Gyu Jung
	Seong-Whan Lee

