
ar
X

iv
:1

91
2.

04
45

6v
1

 [
m

at
h.

N
A

]
 1

0
D

ec
 2

01
9

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 1

A Stochastic Quasi-Newton Method for Large-Scale

Nonconvex Optimization with Applications
H. Chen, H. C. Wu, Member, IEEE, S. C. Chan, Member, IEEE, W. H. Lam, Senior Member, IEEE

Abstract—Ensuring the positive definiteness and avoiding ill-
conditioning of the Hessian update in the stochastic Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method are significant
in solving nonconvex problems. This paper proposes a novel
stochastic version of damped and regularized BFGS method for
addressing the above problems. While the proposed regularized
strategy helps to prevent the BFGS matrix from being close to
singularity, the new damped parameter further ensures positivity
of the product of correction pairs. To alleviate the computational
cost of the stochastic LBFGS updates, and to improve its robust-
ness, the curvature information is updated using the averaged
iterate at spaced intervals. The effectiveness of the proposed
method is evaluated through the logistic regression and Bayesian
logistic regression problems in machine learning. Numerical
experiments are conducted by using both synthetic dataset and
several real datasets. The results show that the proposed method
generally outperforms the stochastic damped limited memory
BFGS (SdLBFGS) method. In particular, for problems with small
sample sizes, our method has shown superior performance and
is capable of mitigating ill-conditioned problems. Furthermore,
our method is more robust to the variations of the batch size
and memory size than the SdLBFGS method.

Index Terms—nonconvex optimization, stochastic quasi-
Newton method, LBFGS, damped parameter, nonconjugate ex-
ponential models, variational inference.

I. INTRODUCTION

S
TOCHASTIC optimization algorithms have been exten-

sively studied over decades and can be traced back to

the epochal work [22], which have been widely employed

in different areas, e.g., machine learning [23]–[25], [52],

[53], power systems [51], wireless communication [5]–[7],

and bioinformatics [50]. In particular, the classical stochastic

approximation (SA) of the exact gradient, also known as

stochastic gradient descent (SGD), has been widely applied

to these stochastic optimization problems, where the gradi-

ent information is employed in finding the search direction.

However, in many applications, the exact gradient depends on

certain random variables with unknown distributions and thus

is difficult to evaluate explicitly. Furthermore, in many applica-

tions with extremely massive data samples, the exact gradient

of the objective function is rather expensive to compute. In

SGD, an unbiased estimator of the gradient is derived using

a mini-batch of data points randomly sampled from the full

dataset. This substantially reduces the computational cost.

In the theoretical aspect, SGD algorithm has been widely

used in the problems with the assumption that the objective

function f(·) is twice continuously differentiable and strongly

The authors are with the Department of Electrical and Electronic En-
gineering, The University of Hong Kong, Hong Kong, China (e-mail:
hmchen@eee.hku.hk; andrewhcwu@eee.hku.hk; scchan@eee.hku.hk; wh-
lam@eee.hku.hk;).

convex. In particular, [20] has proposed a robust mirror descent

SA algorithm, which is also applicable to general convex

objective functions. Recently, there has been an increasing in-

terest in SA based algorithms for solving nonconvex stochastic

optimization problems [8], [19], [21]. Specifically, [21] has

investigated a stochastic block mirror descent method to solve

large scale nonconvex optimization problems with high dimen-

sional optimization variables. [19] has studied a framework of

randomized stochastic gradient (RSG) methods by randomly

selecting a solution from the previous iterates. The Monte

Carlo integration has been adopted for the stochastic search

direction [29], [30]. Moreover, the control variate technique

[29] is proposed to reduce the variance of the SA.

In the deterministic optimization settings, quasi-Newton

or Newton methods can achieve higher accuracy and faster

convergence by utilizing the second-order information [8],

[12]. For the stochastic regime, stochastic quasi-Newton’s

methods (SQN) have been extensively studied in [1]–[3], [8]–

[13], [16], [54]. In particular, [16] has developed a stochastic

variable-metric method with subsampled gradients. In [2], a

SGD-QN scheme has been proposed in which the diagonal

elements of the Hessian matrix are approximated to rescale the

SGD. Since it only involves scalar computation, the method is

quite efficient. It should be noted that direct application of the

deterministic quasi-Newton methods brings noisy curvature

approximation and thus affects the robustness of the iteration

[10]. In [9], the incremental quasi-Newton method (IQN) is

proposed to minimize the objective function written in a sum

of large amounts of strongly convex functions. It alleviates the

high computational cost at each iteration. The main ingredients

are as follows. In lieu of random selection of an individual

function, incremental methods choose this individual function

in a cyclic routine. Thus, it leads to efficient implementation of

both the BFGS and iterate updates. The aggregated gradients

of all functions are successful in reducing the noise of gradient

approximation. Moreover, it satisfies the Dennis-Moré condi-

tion. This indicates that IQN method yields local superlinear

convergence rate.

Furthermore, the quality of the curvature estimate may be

difficult to control in stochastic regime. To alleviate it, [10] has

investigated an efficient subsampled Hessian-vector product to

estimate the curvature information based on the limited mem-

ory BFGS (LBFGS). This method is applied in strongly convex

optimization and can avoid doubly evaluating gradients. In

[11], the subsampled Hessian matrix scheme is adopted in

matrix-vector product form, and the conjugate gradient method

is further applied to obtain the search direction. Moreover, the

subsampled Hessian matrix is also used as the initial Hessian

approximation matrix in the LBFGS method. This is because

http://arxiv.org/abs/1912.04456v1

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 2

the traditional choice contains little curvature information

about the problem. In [1], the subsampled Hessian matrix has

been adopted to formulate the stochastic block BFGS scheme.

The main ingredient is left-multiplying the inverse equation

by a randomly generated matrix with few columns. Hence,

the computational cost is substantially reduced. In [31], the

stochastic variance reduced gradient (SVRG) strategy has been

employed to reduce the variance of the stochastic gradient.

It should be noted that the above discussed second-order

methods have been proposed for solving convex problems.

They cannot be directly applied to nonconvex problems.

Moreover, tackling non-convexity and ill-conditioning are

two major challenges in stochastic nonconvex optimization

problems. To this end, damped BFGS [8] and regularized

BFGS [3] have been proposed to deal with the non-convexity

and ill-conditioning of the stochastic optimization problem,

respectively. In stochastic BFGS methods, the Hessian ap-

proximation matrices are ensured to be positive definite in

strongly convex optimization problems [14]. However, it is not

the case for nonconvex objective functions. In [8], a stochastic

damped BFGS based on [13] is proposed to address this issue.

However, the BFGS update may still be ill-conditioned if there

are insufficient samples. Moreover, the convergence may be

significantly affected if the BFGS matrix is close to singularity

or even singular. In [3], a regularized stochastic BFGS (RES)

method is proposed to improve the numerical condition men-

tioned above. However, if the problem is nonconvex, the BFGS

update may become non-positive definite and hence a descent

step may not be guaranteed. Moreover, directly combining the

damped scheme [3] and this regularized formulation may still

not be able to guarantee positive definiteness of the BFGS

update and a descent step. To this end, we propose in this

paper a novel stochastic quasi-Newton method, called Sd-

REG-LBFGS method, to address the above problems. Our

main contributions are as follows:

• New damped BFGS scheme: We propose a new stochastic

regularized damped BFGS method containing a novel

damped parameter and a new gradient difference scheme.

The proposed scheme guarantees positive definiteness of

the BFGS update and improves the numerical condition

of the optimization problem.

• Choice of Regularization Parameters: The choice of the

regularization parameters for the new regularized gradient

difference and damped parameter schemes is crucial to

ensure positive definiteness of the BFGS update. We

proved that if the chosen regularization parameters satisfy

a certain condition (Lemma 1) we have derived, then pos-

itive definiteness is guaranteed for the proposed approach.

• Convergence Analysis: The convergence property of the

proposed method is thoroughly analyzed. In particular, we

show that the norm of the updated Hessian approximation

matrix is uniformly bounded (see Lemmas 2 and 3),

which is a necessary condition for convergence. Further-

more, we showed that with a specified step size, the

iteration number N required to reach a norm of gradient

of 1
N

∑N−1
k=0 E(‖∇f(xk)‖

2
) < ǫ is at most O(ǫ−

1
1−υ),

for 0.5 < υ < 1. All the above convergence results

are independent of the convexity assumption. Thus, our

proposed method can be applied to nonconvex problems.

For numerical study, the proposed approach is evaluated

using a logistic regression, a Bayesian logistic regression

and a nonconvex relaxed soft margin support vector machine

(SVM)1. Experimental results using a synthetic dataset and

several real datasets [38], [41]–[45] show that the proposed

regularized damped stochastic BFGS method performs better

than the conventional damped stochastic BFGS and other

algorithms in terms of classification accuracy (ACC) and norm

of gradient (NOG), which suggest it converges closer to the

stationary point. Moreover, the sensitivity of the proposed

algorithm on various algorithmic parameters and the com-

plexity of the proposed algorithm are also studied. Due to

page limitation, it is omitted here and interested readers are

referred to Sections III and IV of the supplementary material

for details.

The rest of the paper is organized as follows: Section II

reviews the general formulation of the SQN framework. In

Section III, we provide the detail derivation of our proposed al-

gorithm, including the uniform bound on the norm of LBFGS

matrix and the convergence results. In Sections IV and V,

the effectiveness of the proposed Sd-REG-LBFGS algorithm

is demonstrated through solving several machine learning

problems, and the numerical experiments are conducted to

evaluate the performance of the proposed algorithm with a

comparison with conventional algorithms. The conclusion is

provided in Section VI.

Mathematical Notation: we use ‖a‖ to denote the Euclidean

norm of vector a and ‖A‖ to denote the matrix norm of a

matrix A. The trace operator of A is written as Tr(A) and

the determinant as detA. The operator EΞ(·) stands for the

expectation taken with respect to random variable Ξ. A � B
indicates the matrix A−B is positive semidefinite. The identity

matrix with appropriate dimension is signified as I .

II. PROBLEM FORMULATION

Consider the following general optimization problem in

expectation form:

min
x∈Rn

f(x) := E[F (x,Ξ)], (1)

where Ξ ∈ R
d denotes a random variable, and F : R

n ×
R

d → R is possibly a nonconvex random function. In many

applications, the expectation in (1) is intractable, or the value

and gradient of f are not easily obtained. For example, in

machine learning problems, the random variables may contain

the input features Y and the class labels Z , i.e. Ξ = (Y, Z),
which may follow some unknown distribution P , in which

inferences are to be made. The training set is assumed to be

a collection of independent and identically distributed (i.i.d.)

samples ξi = (yi, zi) with i = 1, . . . , N , distributed according

to P via certain observations. The expectation of F (x,Ξ) in

(1) can be approximated by the following empirical average

f̄(x) = 1/N
∑N

i=1 F (x, ξi), where F (x, ξi) is the empirical

1 Due to page limitation, the simulation results for the nonconvex relaxed
soft margin SVM is omitted here and interested readers are referred to Section
V of the supplementary material.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 3

loss function corresponding to the same i-th sample ξi. For

a large-scale problem where N is large, this exact empirical

gradient may require expensive evaluation of F (x, ξi) for all

the samples. In general, stochastic optimization can also be

applied to problems where one might be able to access values

of the objective function and its gradient from some physical

sensor devices in physical simulations. The measured results

may be noisy and depend on the unknown ξn every time we

attempt to measure F (x, ξ) or its gradient.

In this paper, we mainly focus in machine learning prob-

lems mentioned above. Moreover, the stochastic gradient,

denoted as g(x,Ξ) is an unbiased estimator of ∇f(x), i.e.,

EΞ[g(x,Ξ)] = ∇f(x), where the expectation is taken with

respect to Ξ. We assume that we can access the gradient via

explicit evaluation from the training data (or some physical

sensor devices in physical simulations for general stochastic

optimization). In addition, we assume that f is continuously

differentiable and the gradient of f is Lipschitz continuous:

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖, (2)

with Lipschitz constant Lf > 0.

In classical deterministic quasi-Newton methods, at iteration

k, the update of current iterate is given by:

xk+1 = xk − ηkB
−1
k ∇f(xk), (3)

where Bk is an approximation to the Hessians of the objective

function ∇2f(xk), since evaluating ∇2f(xk) is computa-

tionally intensive. Various Hessian approximation methods

have been proposed which include, e.g., Broyden, Fletcher,

Goldfarb, and Shanno (BFGS); Davidon, Fletcher, and Powell

(DFP) and symmetric rank-1 (SR1) updates. In this paper, we

mainly focus on the following BFGS update as it is one of

the most popular quasi-Newton algorithms:

Bk+1 = Bk +
yky

T
k

sTk yk
−

Bksks
T
kBk

sTkBksk
, (4)

where the correction pairs are sk = xk+1 − xk and yk =
∇f(xk+1) − ∇f(xk) respectively. It can be shown that (4)

satisfies the secant equation, i.e., Bksk+1 = yk. To show that

the resultant matrix is positive definite, one can rewrite (4) by

letting s = sk, y = yk, B = Bk, Bk+1 = B+ for notational

convenience, which yields:

B+ =
yyT

sT y
+B

1
2

(

I −
B

1
2 ssTB

1
2

sTB
1
2B

1
2 s

)

B
1
2 . (5)

Moreover, it can be shown by induction that with the con-

dition sTk yk > 0, and an initial positive definite Hessian

approximation B0 ≻ 0, Bk is updated recursively and remains

positive definite in subsequent iterations. In fact, the condition

sTk yk > 0 to preserve the positive definiteness of the Hessian

approximation update via (4) is always satisfied for strongly

or strictly convex objective functions. This is due to the

monotonic gradient mapping property [37]. To be specific, if

the objective function f is strongly or strictly convex, for any

x, y ∈ R
n, (∇f(x)−∇f(y))T (x− y) > 0. Hence, by letting

x = xk+1 and y = xk , we can see that the condition sTk yk > 0
is satisfied.

To migrate the classical quasi-Newton method to the

stochastic regime, the main ingredient is to adopt the stochastic

approximation for the exact gradient, which forms the general

framework of the SQN method. More precisely, at iteration k,

we subsample a mini-batch mk of data so as to compute the

stochastic gradient evaluated at the current solution xk, which

we shall refer to as ∇F (xk, ξk,i) with i = 1, . . . ,mk. The SA

based on this mini-batch estimate can be obtained by the fol-

lowing ensemble average of ∇F (xk, ξk,i) with i = 1, . . . ,mk:

ḡ(x, ξk) =
1

mk

∑mk

i=1 ∇F (xk, ξk,i). By combining (3) and (4),

one gets the desired SQN iterate as follows:

xk+1 = xk − ηkB
−1
k ḡ(xk, ξk), (6)

where the following stochastic gradient difference is employed

in BFGS update (4):

yk =
1

mk

mk
∑

i=1

∇F (xk+1, ξk,i)−∇F (xk, ξk,i). (7)

Remark. It should be noted from the first term in (7) that

the gradient of F at xk+1 is generated using the same

subsampling process conducted at current iteration. This

implies that at each iteration, the stochastic gradient is

evaluated twice. There are two advantages: i). For strongly

convex function F (·), using (7) guarantees the condition

sTk yk > 0. Moreover, we suggest to adopt the first-order Taylor

approximation to reduce the computational complexity, i.e.,

yk ≈ 1/mk

∑mk

i=1 ∇
2F (xk, ξk,i)sk, where ∇2F (xk, ξk,i)sk is

a product of the matrix and the vector, which can be obtained

with low complexity [10]; ii). It ensures that the BFGS Hessian

approximations are uniformly bounded below and above.

III. THE PROPOSED ALGORITHM

A. The Proposed Damped SQN Method

In nonconvex optimization problems, the positivity condi-

tion sTk yk > 0 of the correction pairs may not be maintained.

This may lead to non-positive definite BFGS matrix. To rem-

edy this problem, [13] has proposed a damped QN method to

preserve the positive definiteness of BFGS matrix in noncon-

vex optimization. Here, we shall extend it to stochastic regime.

Specifically, yk is modified to ȳk := θkyk+(1−θk)Bksk (thus

yk in (7) will be modified), where θk is the damped parameter

satisfying:

θk =











0.8sTkBksk

sTk Bksk − sTk yk
, if sTk yk ≤ 0.2sTkBksk,

1, otherwise.

(8)

It can be easily verified that Bk ≻ 0 and 0 < θk ≤ 1 with

an initial positive definite Hessian approximation B0 ≻ 0.

Note that when θk = 1, which is often the case in practice,

the BFGS matrix update reduces to the classical formula

in (4). For other values of θk, such modification prevents

the determinant of Bk+1 from being less than 0.2 of the

determinant of Bk [13]. In addition, since:

sTk ȳk =

{

0.2sTkBksk, if sTk yk ≤ 0.2sTkBksk,

sTk yk, otherwise,
(9)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 4

it implies that if Bk ≻ 0, then sTk ȳk ≥ 0.2sTkBksk > 0,

and the damped quasi-Newton method ensures the positive

definiteness of the BFGS update Bk+1.

For nonconvex optimization problems, even the stochastic

damped BFGS method guarantees all the subsequent Bk+1 ob-

tained via (4) be positive definite, it is possible for the smallest

eigenvalue of Bk+1 to be arbitrarily close to zero, and hence,

the Hessian approximation matrix Bk will be nearly singular

[3]. To remedy the problem, we shall propose a generalized

RES scheme for nonconvex optimization using novel damped

QN method. We shall first introduce briefly the regularized

stochastic quasi-Newton method (RES) for strongly convex

optimization problems in [3]. Then, the proposed generalized

RES scheme will be described.

Recall Bk+1 in (4) is obtained by solving the following

semidefinite programming problems:

min
Z

Tr[B−1
k Z]− logdet[B−1

k Z]− n

s.t. Zsk = yk, Z � 0,
(10)

where the optimal solution to (10) is Z∗ = Bk+1, obtained

by nulling the gradient of the Lagrangian duality function

ϕ(Z(ν), ν) = infZ�0 L(Z, ν) with respect to ν, in which

L(Z, ν) = Tr[B−1
k Z] − logdet[B−1

k Z] − n + νT (Zsk − yk).
A simple interpretation to (10) is to minimize the Gaus-

sian differential entropy between the Gaussian distributions

N (0, Bk) and N (0, Z) with the constraint of the secant equa-

tion and positive semidefinite solution. For the RES strategy,

the following modification of the optimization problem (10)

is solved:

min
Z

Tr[B−1
k (Z − γI)]− logdet[B−1

k (Z − γI)]− n

s.t. Zsk = yk, Z � 0.
(11)

By setting Z̃ = Z − γI and ỹk = yk − γsk, the following

regularized BFGS update is obtained by using the related

Lagrangian duality function:

Bk+1 = Bk +
ỹkỹ

T
k

sTk ỹk
−

Bksks
T
kBk

sTkBksk
+ γI. (12)

Under the condition sTk ỹk > 0 with an initial positive

semidefinite B0 � 0, the subsequent Hessian approximations

will have the smallest eigenvalue exceeding a given desired

level γ. Comparing (4) and (12), one can see that not only is

yk being modified to ỹk, an additional regularization term γI
is also introduced to avoid possible ill-conditioning.

However, it can be verified that RES cannot be adopted to

the damped QN mehtod for nonconvex optimization problems

by simply applying (8) to modify yk in (12). We briefly

illustrate this below. Consider ȳk, which is the modified

version of yk by employing (8). It follows that sTk ỹk can be

calculated as follows:

sTk ỹk =

{

0.2sTkBksk − γsTk sk, if sTk yk ≤ 0.2sTkBksk,

sTk yk − γsTk sk, otherwise,
(13)

Hence, the positivity of sTk ỹk cannot be guaranteed. Moreover,

even in strongly convex functions F (·) with convexity param-

eter m (i.e., ∇2F � mI), if the given level γ is chosen to be

greater than m, which results in sTk ỹk < 0, Bk+1 can still be

near singular or negative positive.

To remedy the problem, we now propose a novel damped

SQN method. To start with, the following stochastic gradient

difference ŷk is proposed to modify yk:

ŷk = θ̄kyk + (1− θ̄k)(Bk + δI)sk, (14)

where δ is a given positive constant that satisfies specific

condition (see Lemma 1). Furthermore, we propose to update

the damped parameter as follows:

θ̄k =











0.8sTk (Bk + δI)sk − γsTk sk
sTk (Bk + δI)sk − sTk yk

,
if sTk yk ≤ 0.2sTk (Bk

+ δI)sk + γsTk sk,

1, otherwise.
(15)

Substituting ˜̂yk := ŷ − γsk into (12) with the parameter θ̄k
defined in (15) yields our proposed Hessian approximation

updating scheme:

Bk+1 = Bk +
˜̂yk ˜̂y

T
k

sTk
˜̂yk

−
Bksks

T
kBk

sTk Bksk
+ γI. (16)

The following lemma shows that by recursively updating Bk

via (16), our proposed method maintains the positive definite-

ness of the Hessian approximation matrix at each iteration.

Lemma 1. For ŷk defined in (14) and δ is chosen to satisfy

0.8δ ≥ γ, then 0 < θ̄k ≤ 1 and sTk
˜̂yk ≥ 0.2sTk (Bk + δI)sk.

Moreover, if Bk ≻ 0, then Bk+1 generated by the proposed

damped BFGS update (16) are positive definite with the

smallest eigenvalue exceeding the given desired level γ.

Proof. Note from (15) that, if sTk yk ≤ 0.2sTk (Bk + δI)sk +
γsTk sk, then θ̄k = 1; for sTk yk > 0.2sTk (Bk + δI)sk + γsTk sk,

by substituting the inequality into θ̄k, we get the following

inequality:

θ̄k =
0.8sTk (Bk + δI)sk − γsTk sk
sTk (Bk + δI)sk − sTk yk

≤
0.8sTk (Bk + δI)sk − γsTk sk

sTk (Bk + δI)sk − [0.2sTk (Bk + δI)sk + γsTk sk]
= 1.

(17)

Moreover, the numerator of (15) satisfies 0.8sTkBksk+(0.8δ−
γ)sTk sk ≥ 0.8sTkBksk > 0 with the conditions 0.8δ ≥ γ and

Bk ≻ 0. Similarly from the denominator in (15), we have:

sTk (Bk + δI)sk − sTk yk ≥ 0.8sTk (Bk + δI)sk − γsTk sk > 0.
(18)

Subsequently, both the numerator and denominator of (15) are

positive and its maximum value is one, i.e., 0 < θ̂k ≤ 1.

Moreover, from (14) and (15), sTk
˜̂yk can be calculated as

follows:

sTk
˜̂yk = sTk (Bk + δI)sk − γsTk sk − θ̄k[s

T
k (Bk + δI)sk − sTk yk]

=











0.2sTk (Bk + δI)sk,
if sTk yk ≤ 0.2sTk (Bk + δI)sk

+ γsTk sk,

sTk yk − γsTk sk, otherwise.
(19)

From (19), we can see that sTk
˜̂yk ≥ 0.2sTk (Bk + δI)sk.

Therefore, if Bk is positive definite, it follows that sTk
˜̂yk > 0.

Consequently, as in (5), the first three terms in the right hand

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 5

side of the proposed BFGS update scheme (16) is a positive

definite matrix.

Remark. From the inequality sTk
˜̂yk ≥ 0.2sTk (Bk + δI)sk, we

further have sTk
˜̂yk ≥ 0.2[λ(Bk)min+δ]sTk sk, where λ(Bk)min

is the smallest eigenvalue of Bk. Next, we shall extend the

proposed BFGS update to a limited memory version.

B. The Proposed Algorithms for Limited Memory

The limited-memory quasi-Newton method [32], which ap-

proximates the Hessian approximation from a limited number

of vectors attained from recent iterations, is useful in large

scale applications to reduce the large memory storage of

the Hessian approximation matrices. As this method requires

modest storage and possesses good convergence speed, it is

generally considered to be superior to the steepest descent

method for deterministic optimization [10]. Interested readers

are referred to [14] for more information. In recent years,

stochastic limited-memory BFGS (L-BFGS) methods have

been studied for strongly convex optimization problems [33]

[32] [10]. In this subsection, we propose a stochastic damped

and regularized L-BFGS (Sd-REG-LBFGS) method for non-

convex optimization problems.

For robustness in implementation and to amortize the cost,

one of the strategies is to update the BFGS Hessian approxima-

tion at spaced intervals using the average of the iterate points

instead of at each iteration [10]. Motivated by this strategy, we

compute the correction pairs {sj, yj} based on the average

of the iterates in the specified interval. The BFGS Hessian

approximations are subsequently calculated. In particular, all

the modifications are based on our proposed damped BFGS

method in (14)-(16). Specifically, we assume that the length of

the aforementioned interval of iterations is L. Suppose we have

a memory with size M . It stores the sequence of correction

pairs {sj , yj} for j = t − (M − 1) − 1, . . . , t − 1, where

t := k+1
L and the iteration k satisfies (k + 1) mod L = 0 and

k ≥ M(L − 1) − 1. We further define sj as the difference

of two average iterates with respect to the two most recent

disjoint intervals, i.e.,:

sj = x̄j+1 − x̄j , where x̄j =















1

L

jL−1
∑

k=(j−1)L

xk, if j ≥ 1,

x0, if j = 0.
(20)

Subsequently, the gradient difference is evaluated at x̄j+1 and

x̄j as follows:

yj =
1

mj

mj
∑

l=1

∇F (x̄j+1, ξj,l)−∇F (x̄j , ξj,l). (21)

Recall that we only update BFGS matrix at the end of each

interval, to reduce the memory of storing Bt, we can further

approximate it using the L-BFGS method, where a sequence

of correction pairs in (20) and (21) are stored. Based on the

stochastic damped and regularized BFGS method proposed in

(16), we define a new vector ỹj := θ̂jyj + (1 − θ̂j)(B̂
(0)
j+1 +

δI)sj − γsj , with θ̂j given by:

θ̂j =















0.8sTj (B̂
(0)
j+1 + δI)sj − γsTj sj

sTj (B̂
(0)
j+1 + δI)sj − sTj yj

,
if sTj yj ≤ γsTj sj+

0.2sTj (B̂
(0)
j+1 + δI)sj ,

1, otherwise,
(22)

where B̂
(0)
j+1 is an initial estimate of the Hessian matrix and

a typical value of B̂
(0)
j+1 in standard L-BFGS is

yT
j yj

sT
j
yj
I . As

the denominator sTj yj may not be positive for nonconvex

problems, we propose the following initial value of B̂
(0)
j+1:

B̂
(0)
j+1 = τj+1I, where τj+1 = max

{

yTj yj

sTj yj
+ γ, β

}

, (23)

where β is a given positive constant and is also the lower

bound on τj , i.e., τj > β. Therefore, at the end of the t-th
interval, we define the Sd-REG-LBFGS formula from the past

correction pairs (sj , ỹj) via the following inner iterations:

B̂
(i+1)
t = B̂

(i)
t +

ỹj ỹ
T
j

sTj ỹj
−

B̂
(i)
t sjs

T
j B̂

(i)
t

sTj B̂
(i)
t sj

+ γI (24)

for i = 0, . . . ,M − 1 and j = t− (M − 1)+ i− 1. It follows

from Lemma 1 that sTj ỹj ≥ 0.2sTj (B
(0)
j+1 + δI)sj . Therefore,

starting with the positive definite matrix B̂
(0)
t given in (23) and

a constant δ satisfying 0.8δ > γ, the positive definite matrix

B̂t = B̂
(M)
t ≻ γI can be updated by the inner iteration of

the proposed Sd-REG-LBFGS formula in (24). Furthermore,

as the gradient is stochastic and the exact evaluation of the

objective function is expensive at each iteration, the Wolfe

condition based on the incomplete stochastic gradient may

lead to premature condition for convergence or oscillation

and prevent the algorithm further progressing. Therefore, we

choose the step size to satisfy the well-known condition [22]

for the step size choice in stochastic optimization, namely:

∞
∑

k=1

ηk = ∞,
∞
∑

k=1

η2k < ∞. (25)

A popular choice is ηk = r
k , for r > 0 [3], [8], [10].

The proposed Sd-REG-LBFGS algorithm is summarized in

Algorithm 1.

C. Convergence Result

For the convergence result of our proposed algorithm, one

significant condition is that the norm of the resulting B̂
(i+1)
t

from (24) is uniformly bounded above, and uniformly bounded

below from zero. Moreover, the following assumption is useful

for the derivation of the upper and lower bound:

Assumption 1 [8]. The random function F (x,Ξ) is twice

continuously differentiable, where the second-order derivative

with respect to x is denoted as ∇2F (x,Ξ). Moreover, there

exists a positive constant ρ such that
∥

∥∇2F (x,Ξ)
∥

∥ ≤ ρ.

Note that the above assumption implies that −ρI ≺
∇2F (x,Ξ) ≺ ρI , rather than the strong convexity assumption

0 ≺ ρI ≺ ∇2F (x,Ξ) ≺ ρ̄I in [10] [3]. The following lemma

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 6

Algorithm 1 Sd-REG-LBFGS

Input: initial optimization variable x0, memory size M , in-

terval length L, step length ηk and gradient sample batch

size mk, choose the constant δ and γ satisfying 0.8δ > γ

1: Set t = 0 and generate m0 samples {ξ0,l}
m0

l=1

2: for k = 0, 1, . . . do

3: Randomly choose mk samples ξk = {ξk,1, · · · , ξk,mk
}

4: Calculate stochastic gradient ḡ(xk, ξk) =
1

mk

∑mk

l=1 ∇F (xk, ξk,l),
5: if t < 2 then

6: xk+1 = xk − ηkḡ(xk, ξk)
7: else

8: xk+1 = xk − ηkB̂
−1
t · ḡ(xk, ξk)

9: end if

10: if (k + 1) mod L = 0 then

11: Calculate and store the correction pairs: st and yt
according to (20) and (21) respectively

12: Set t = t+ 1
13: Generate mt samples {ξt,l}

mt

l=1

14: if t > 1 then

15: Set M̃ = min{t,M}, draw the sequence of cor-

rection pairs {sj , yj}
t−1

j=t−M̃
from the memory.

16: Set the initial matrix B̂
(0)
t = τtI, where τt =

max
{

yT
t−1yt−1

sTt−1yt−1
+ γ, β

}

17: for i = 0, . . . , M̃ − 1 do

18: Set j = t − M̃ + i and apply Sd-REG-LBFGS

formula according to (24)

19: end for

20: Set B̂t = B̂
(M̃)
t .

21: end if

22: end if

23: end for

shows that the norm of the matrix B̂M̃
t generated by the Sd-

REG-LBFGS formula (24) is uniformly bounded above.

Lemma 2. Given the positive definite matrix B̂
(0)
t defined by

(23), suppose B̂
(i+1)
t is updated through L-BFGS computation

step in the t-th interval of Algorithm 1, then with Assumption

1, the norm of B̂
(M̃)
t is bounded above, i.e.,

∥

∥

∥
B̂

(M̃)
t

∥

∥

∥
≤ QU , (26)

where QU = β + ρ+ γ + M̃(Q + 5ρ+ γ), M̃ = min{t,M}
and Q is defined as follows:

Q = max







5(ρ+ γ)2

β + δ
+ 5(β + δ),

5(ρ+ γ)2

β + ρ+ γ + δ
+

5(β + ρ+ γ + δ)







.

(27)

Proof. Recall from the Sd-REG-LBFGS formula that ac-

cording to Lemma 1, each generated matrix satisfies B̂
(i+1)
t ≻

γI . Note from the third term on the right hand side in (24) that

the matrix term
B̂

(i)
t sjs

T
j B̂

(i)
t

sT
j
B̂

(i)
t sj

is positive definite. Therefore, we

have:

B̂
(i+1)
t � B̂

(i)
t +

ỹj ỹ
T
j

sTj ỹj
+ γI. (28)

Taking matrix norm on both sides and using triangle inequality

of norm leads to:

∥

∥

∥
B̂

(i+1)
t

∥

∥

∥
≤

∥

∥

∥

∥

∥

B̂
(i)
t +

ỹj ỹ
T
j

sTj ỹj
+ γI

∥

∥

∥

∥

∥

≤
∥

∥

∥
B̂

(i)
t

∥

∥

∥
+

∥

∥

∥

∥

∥

ỹj ỹ
T
j

sTj ỹj

∥

∥

∥

∥

∥

+ γ

=
∥

∥

∥
B̂

(i)
t

∥

∥

∥
+

ỹTj ỹj

sTj ỹj
+ γ,

(29)

from the definition ỹj := θ̂jyj +(1− θ̂j)(B̂
(0)
j+1 + δI)sj − γsj

with θ̂j given in (22), it follows from Lemma 1 that inequalities

sTj ỹj ≥ 0.2sTj (B
(0)
j+1 + δI)sj > 0 hold. This yields:

ỹTj ỹj

sTj ỹj
≤

∥

∥

∥
θ̂jyj + (1 − θ̂j)(B̂

(0)
j+1 + δI)sj − γsj

∥

∥

∥

2

0.2sTj (B
(0)
j+1 + δI)sj

=
1

0.2sTj (B
(0)
j+1 + δI)sj

{θ̂2jy
T
j yj + (1 − θ̂j)

2

· sTj (B̂
(0)
j+1 + δI)2sj + 2θ̂j(1− θ̂j)

· yTj (B̂
(0)
j+1 + δI)sj + γ2sTj sj

− 2γsTj [θ̂jyj + (1 − θ̂j)(B̂
(0)
j+1 + δI)sj]}.

(30)

From the definition yj = 1
mj

∑mj

l=1 ∇F (x̄j+1, ξj,l) −

∇F (x̄j , ξj,l), and using the first-order Taylor approximation

at x̄j , we have yj = 1
mj

∑mj

l=1 ∇
2F (x̄j + ϑsj , ξj,l)sj ,

where 0 < ϑ < 1. Thus, yTj yj =
1
m2

j

sTj {
∑mj

l=1

∑mj

r=1 ∇
2F (x̄j + ϑsj , ξj,r)∇2F (x̄j + ϑsj , ξj,l)}sj .

With Assumption 1 that
∥

∥∇2F (x, ξ)
∥

∥ ≤ ρ, which

implies −ρI ≺ ∇2F (x, ξ) ≺ ρI . We further have

yTj yj ≤ ρ2sTj sj . Next, we consider the product yTj sj .

Since yTj sj = 1
mj

∑mj

l=1 s
T
j ∇

2F (x̄j + ϑsj , ξj,l)sj , it follows

that −ρsTj sj ≤ yTj sj ≤ ρsTj sj . Substituting the above

inequality into (30), with B̂
(0)
j+1 = τj+1I , we get:

ỹTj ỹj

sTj ỹj
≤

1

0.2(τj+1 + δ)
{θ̂2jρ

2 + (1− θ̂j)
2(τj+1 + δ)2

+ 2ρθ̂j(1− θ̂j)(τj+1 + δ) + γ2

+ 2γθ̂jρ− 2(1− θ̂j)(τj+1 + δ)γ}

=
5(θ̂jρ+ γ)2

τj+1 + δ
+ 5(1− θ̂j)

2(τj+1 + δ)

+ 10θ̂j(1 − θ̂j)ρ− 10γ(1− θ̂j).

(31)

By using τj+1 = max

{

yT
j yj

sT
j
yj

+ γ, β

}

, we have β+δ ≤ τj+1+

δ ≤ β + ρ+ γ + δ. Furthermore, 10θ̂j(1− θ̂j)ρ ≤ 5ρ(1− θ̂2j)

holds true as 0 < θ̂j ≤ 1. By using the property of the function

ϕ(x) = ax+ b
x , a > 0, b > 0, we obtain the following result:

ỹTj ỹj

sTj ỹj
≤ Q+ 10θ̂j(1− θ̂j)ρ− 10γ(1− θ̂j)

≤ Q+ 5ρ(1− θ̂2j)− 10γ(1− θ̂j) ≤ Q + 5ρ,

(32)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 7

where Q is defined in (27). Therefore, by substituting the

results in (32) into (29), one gets

∥

∥

∥
B̂

(i+1)
t

∥

∥

∥
≤
∥

∥

∥
B̂

(i)
t

∥

∥

∥
+Q +

5ρ+ γ. By induction, we then obtain the desired result:
∥

∥

∥
B̂

(M̃)
t

∥

∥

∥
≤
∥

∥

∥
B̂

(0)
t

∥

∥

∥
+M̃(Q+5ρ+γ) ≤ β+ρ+γ+M̃(Q+5ρ+γ).

(33)

Thus, we have proved the upper bound on the norm of the

matrix B̂
(M̃)
t , the next lemma gives for a more accurate lower

bound rather than just B̂
(M̃)
t � γI .

Lemma 3. Given the initial positive definite matrix B̂
(0)
t

defined by (23), and suppose B̂
(i+1)
t is updated via L-BFGS

step of Algorithm 1, then with Assumption 1, all eigenvalues

of B̂
(M̃)
t satisfies

λ(B̂
(M̃)
t) ≥ QL, (34)

where QL = max
{

Q̃−1, γ−1
}

and

Q̃ =
w2M̃ − 1

Q+ 5ρ+ 2
√

0.2(Q+ 5ρ)(β + δ)
+ β−1w2M̃ , (35)

with w :=
√

Q+5ρ
0.2(β+δ) + 1.

Proof. From (24), we have:

B̂
(i+1)
t � B̂

(i)
t +

ỹj ỹ
T
j

sTj ỹj
−

B̂
(i)
t sjs

T
j B̂

(i)
t

sTj B̂
(i)
t sj

. (36)

Since both sides of the inequality (36) are positive definite

matrices, taking matrix inversion and using the Sherman–

Morrison–Woodbury formula yields:

Ĥ
(i+1)
t �

(

I −
sj ỹ

T
j

sTj ỹj

)

Ĥ
(i)
t

(

I −
ỹjs

T
j

sTj ỹj

)

+
sjs

T
j

sTj ỹj

= Ĥ
(i)
t −

1

sTj ỹj
(sj ỹ

T
j Ĥ

(i)
t + Ĥ

(i)
t ỹjs

T
j) +

ỹTj Ĥ
(i)
t ỹj

(sTj ỹj)
2

· sjs
T
j +

sjs
T
j

sTj ỹj
,

(37)

where Ĥ
(i)
t is the inverse matrix of B̂

(i)
t , i.e., Ĥ

(i)
t := B̂

(i)−1

t .

By taking the matrix norm on both sides of (37) and using the

triangle inequality, we get:

∥

∥

∥
Ĥ

(i+1)
t

∥

∥

∥
≤
∥

∥

∥
Ĥ

(i)
t

∥

∥

∥
+

2
∥

∥

∥
Ĥ

(i)
t

∥

∥

∥
· ‖sj‖ · ‖ỹj‖

sTj ỹj
+

ỹTj ỹj

sTj ỹj
·
sTj sj

sTj ỹj

·
∥

∥

∥
Ĥ

(i)
t

∥

∥

∥
+

sTj sj

sTj ỹj
.

(38)

Recall from the proof of Lemma 2 that
ỹT
j ỹj

sT
j
ỹj

≤ Q +

5ρ. Moreover, according to Lemma 1, we have
sTj sj

sT
j
ỹj

≤

sTj sj

0.2sT
j
(B̂

(0)
j+1+δI)sj

= 1
0.2(τj+1+δ) and hence

‖sj‖ · ‖ỹj‖

sTj ỹj
=

(

sTj sj

sTj ỹj
·
ỹTj ỹj

sTj ỹj

)1/2

≤

√

Q+ 5ρ

0.2(τj+1 + δ)
.

(39)

Substituting the above results into (38) and noting the fact

τj+1 ≥ β, (38) can be simplified to
∥

∥

∥
Ĥ

(i+1)
t

∥

∥

∥
≤ w2

∥

∥

∥
Ĥ

(i)
t

∥

∥

∥
+

1

0.2(β + δ)
. (40)

By induction with Ĥ
(0)
t � β−1I , we obtain the desired result.

Based on the above uniformly upper bound and lower

bound on the resultant L-BFGS matrix, we now derive the

convergence result of our proposed algorithm. Moreover, the

following assumption is required.

Assumption 2. For any iteration, the variance of the gradient

conditioned on current iterate is bounded above:

E(‖∇F (xk, ξk)−∇f(xk)‖
2 |xk) ≤ σ2. (41)

Moreover, the norm square of the gradient is expected to be

bounded above by a positive constant D [3], [10], [15]:

E[‖∇F (xk, ξk)‖
2 |xk] ≤ D. (42)

With Assumption 2, we introduce the following lemma:

Lemma 4 [3], [8]. Suppose Assumption 2 holds, and the se-

quence {xk} for k = 1, . . . , is generated with the initial value

x0 and using a specific constant batch size mk = m. Then

there exists a positive constant Mf such that E[f(xk)] ≤ Mf .

Moreover, the sequence almost surely converges to a stationary

point, i.e., lim
k → ∞

‖∇f(xk)‖ = 0, with probability 1.

We are now ready to proceed to show the convergence of

our proposed algorithm under the given assumptions, which

is summarized in the following theorem. Without loss of

generality, the interval length is assumed to be unity.

Theorem 1. Suppose the iterations of the Sd-REG-LBFGS

algorithm satisfies Assumption 2, and the sequence {xk} for

k = 1, . . . , N −1 is generated with initial value x0. Given the

constant batch size mk = m and in particular the following

step size:

ηk =
η0Q

−1
U

kυ + (Lf/2)η0Q
−2
L

, (43)

with 0.5 < υ < 1, the following inequality holds:

1

N

N−1
∑

k=0

E

(

‖∇f(xk)‖
2
)

≤
[(N − 1)υ + (Lf/2)η0Q

−2
L]2

η0Q
−2
U (N − 1)υN

· (Mf − f l) +
LfQ

−2
L σ2η0[(N − 1)1−υ − 1]

2m(1− υ)N
,

(44)

where f l := min{f(x0), . . . , f(xN−1)} and N is the iteration

number. Furthermore, given a constant 0 < ǫ < 1, the iteration

number N needed to ensure 1
N

∑N−1
k=0 E

(

‖∇f(xk)‖
2
)

≤ ǫ is

at most O(ǫ−
1

1−υ).
Proof. Recall that the gradient of f(·) is Lipschitz contin-

uous with constant Lf , therefore, using second-order Taylor

expansion at iteration k leads to:

f(xk+1) ≤ f(xk) +∇f(xk)
T (xk+1 − xk) +

Lf

2
‖xk+1 − xk‖

2

= f(xk) +∇f(xk)
T (−ηkB̂

−1
k ḡk) +

Lf

2
η2k

∥

∥

∥
B̂−1

k ḡk

∥

∥

∥

2

≤ f(xk)− ηk∇f(xk)
T B̂−1

k ḡk +
Lf

2
η2k

∥

∥

∥
B̂−1

k

∥

∥

∥

2

· ‖ḡk‖
2
,

(45)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 8

where for notational convenience, we denote ḡk = ḡk(xk, ξk).
From Lemma 2 and Lemma 3, we have Q−1

U I � B̂−1
k �

Q−1
L I . Substituting it into (45) results in:

f(xk+1) ≤ f(xk)− ηkQ
−1
U ∇f(xk)

T ḡk +
Lf

2
η2kQ

−2
L ‖ḡk‖

2
.

(46)

To evaluate the expectation of (46), we shall first take the

expectation conditioned on xk on both sides and then the

expectation with respect to xk. We shall make use of the fact

that EB[EA(A|B)] = E(A) for random variables A and B.

Consequently, with Assumption 2, we get:

E[f(xk+1)] ≤ E[f(xk)]− ηkQ
−1
U E[∇f(xk)

T
E(ḡk|xk)]

+
Lf

2
η2kQ

−2
L E[E(‖ḡk‖

2 |xk)].

(47)

Furthermore, we have:

E(‖ḡk −∇f(xk)‖
2 |xk) = E(‖ḡk‖

2 |xk)− ‖∇f(xk)‖
2
,
(48)

and it further yields E(‖ḡk‖
2 |xk) = σ2/m + ‖∇f(xk)‖

2
.

Substituting the result into (47), we have:

E[f(xk+1)] ≤ E[f(xk)]−

(

ηkQ
−1
U −

Lf

2
η2kQ

−2
L

)

· E(‖∇f(xk)‖
2
) +

Lfη
2
kQ

−2
L σ2

2m
.

(49)

By summing (49) for k = 0, . . . , N − 1, the following result

is obtained:

N−1
∑

k=0

E(‖∇f(xk)‖
2
) ≤

N−1
∑

k=0

E[f(xk)]− E[f(xk+1)]

ηkQ
−1
U − (Lf/2)η2kQ

−2
L

+

N−1
∑

k=0

LfηkQ
−2
L σ2

2m[Q−1
U − (Lf/2)ηkQ

−2
L]

.

(50)

Furthermore, from (43), we have ηk

Q−1
U

−(Lf/2)ηkQ
−2
L

= η0k
−υ.

Substituting it into (50), we obtain the simplified inequality:

N−1
∑

k=0

E(‖∇f(xk)‖
2
) ≤

N−1
∑

k=0

η0k
−υ

η2k
(E[f(xk)]

− E[f(xk+1)]) +
LfQ

−2
L σ2η0
2m

N−1
∑

k=0

k−υ.

(51)

By utilizing the result in Lemma 3 that E[f(xk)] ≤ Mf , we

further have:
N−1
∑

k=0

E(‖∇f(xk)‖
2) ≤

N−1
∑

k=1

(

η0k
−υ

η2k
−

η0(k − 1)−υ

η2k−1

)

E[f(xk)]

−
η0(N − 1)−υ

η2N−1

E[f(xN)] +
LfQ

−2
L σ2η0
2m

N−1
∑

k=0

k−υ

≤ Mf

N−1
∑

k=1

(

η0k
−υ

η2k
−

η0(k − 1)−υ

η2k−1

)

−
η0(N − 1)−υ

η2N−1

f l +
LfQ

−2
L σ2η0
2m

N−1
∑

k=0

k−υ

=
η0(Mf − f l)(N − 1)−υ

η2N−1

+
LfQ

−2
L σ2η0
2m

N−1
∑

k=0

k−υ

=
[(N − 1)υ + (Lf/2)η0Q

−2
L]2(Mf − f l)

η0Q
−2
U (N − 1)υ

+
LfQ

−2
L σ2η0
2m

N−1
∑

k=0

k−υ.

(52)

By applying following inequality:

k−υ ≤
k1−υ − (k − 1)1−υ

1− υ
, for k ≥ 1, (53)

to (52), we obtain the desired result in (44). For a given

constant ǫ satisfying 0 < ǫ < 1, the iteration number needed

to guarantee 1
N

∑N−1
k=0 E(‖∇f(xk)‖

2
) < ǫ satisfies:

[(N − 1)υ + (Lf/2)η0Q
−2
L]2(Mf − f l)

η0Q
−2
U (N − 1)υN

+

LfQ
−2
L σ2η0[(N − 1)1−υ − 1]

2m(1− υ)N
< ǫ.

(54)

Therefore, for 0.5 < υ < 1, the iteration number is at most

O(ǫ−
1

1−υ) to reach 1
N

∑N−1
k=0 E(‖∇f(xk)‖

2
) < ǫ.

IV. EMPIRICAL STUDY

We have studied the theoretical properties and the conver-

gence of the proposed quasi-Newton method in the previous

section. In this section, we will apply the proposed method

to solve several optimization problems in machine learning.

Specifically, two machine learning problems will be studied,

namely logistic regression and Bayesian logistic regression

for binary classification. To carry out the optimization, the

gradient required by the Sd-REG-LBFGS method is obtained

analytically. In a general fashion, we mainly focus on noncon-

jugate exponential models under stochastic regime, in which

Bayesian logistic regression is a particular example.

A. Logistic Regression

We first consider the logistic regression problem. The ob-

jective function is given as follows [17]:

f(θ) = −
1

N

N
∑

n=1

znlog σ(θTxn) + (1− zn)log σ(−θTxn),

(55)

where σ(·) is the sigmoid function given by σ(x) = 1/(1 +
exp(−x)), xn is the feature vector and zn is its label.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 9

B. Sd-REG-LBFGS for VBI

Variational Bayesian inference (VBI) is an efficient method

for approximating the a posteriori probability distributions for

making inference. The main ingredient is to convert inference

problems into optimization problems with the KL-divergence

as the objective function. Another popular scheme for making

inference is Markov chain Monte Carlo (MCMC) sampling

method. It can be easily parallelized for multiple processors

to reduce the computational cost for high dimension problems.

In this section, we illustrate the application of the proposed

Sd-REG-LBFGS to the delta VBI scheme for nonconjugate

models proposed in [18]. The resultant algorithm is denoted

by SDVBI. In addition, interested readers can refer to [23],

[29], [35] for applications of optimization methods in VBI.

Suppose x1:N are observations, z1:N are local hidden

variables and θ is global hidden variable. Furthermore, θ is

the nonconjugate variable and z1:N are conjugate variables.

Consider the nonconjugate model in [18] as follows:

p(x, z, θ) = p(θ) ·
N
∏

n=1

p(xn|zn)p(zn|θ), (56)

where p(zn|θ) = h(zn)exp{ηgn(θ)
T t(zn) − a(ηgn(θ))} and

p(xn|zn) = h(xn)exp{t(zn)T [t(xn)
T , 1]T }. The goal of vari-

ational inference is to approximate the posterior distribution

by finding a member of a specific family Q to minimize its

KL-divergence to the true a posteriori distribution:

q∗(z, θ) = argminq∈Q KL(q(z, θ)||p(z, θ|x)). (57)

For the MFVI framework, the statistical independence be-

tween hidden variables with a fully factorized variational

distribution family are assumed, i.e.,

q(z, θ) = q(θ|λ) ·
N
∏

n=1

q(zn|ϕn), (58)

where q(zn|ϕn) = h(zn)exp{ηl(ϕn)
T t(zn)−a(ηl(ϕn))}, and

Gaussian distribution has been adopted to approximate its

variational distribution, i.e., q(θ|λ) = N (µ, S), with λ being

the parameter pair (µ, S). The following can be obtained by

substituting the results into (57):

KL(q||p) = Eq[log q(z1:N , θ)]− Eq[log p(z1:N , θ|x1:N)]

= Eq[log q(z1:N , θ)]− Eq[log p(x1:N , z1:N , θ)] + const.

:= L(q).
(59)

First, for nonconjugate variable θ, the objective function of

delta VBI has been derived based on second-order Taylor

approximation of the variational objective function in [18] as

follows:

L(λ) = Eq(θ|λ)[log q(θ|λ)] −
N
∑

n=1

Eq(θ,zn)[log p(zn|θ)]

≈ d(µ) +
1

2
(Tr{∇2d(µ)S} − log detS) + const.,

(60)

where d(θ) := −ηg(θ)
T ·
∑N

n=1 ∇ηl
a(ηl(ϕn))+Na(ηg(θ))−

log p(θ), the optimization problem becomes:

λ∗ = argminλ∈Rd {L(λ) = −
1

2
log detS + Eq(θ|λ)d(θ)}.

(61)

We notice that (60) contains large summation term, which

makes the gradient evaluation computationally rather expen-

sive. Next, we randomly sample a subset S from {1, . . . , N}
to form an unbiased stochastic gradient, which is denoted as

∇λL(λ;S). We omit the reduplicative and tedious derivation,

as the full gradient can be found in Appendix C of [18].

For the conjugate variable zn updating, the variational

objective function L(ϕn) from the KL-divergence in (59) in

[18] is as follows:

L(ϕn) = Eq(zn)[log q(zn)]− Eq(zn)[log p(xn|zn)]

− Eq(zn,θ)[log p(zn|θ)] + const

= {ηl(ϕn)
T − [t(xn)

T , 1]− Eq(θ)[ηg(θ)
T]}

· ∇ηl
a(ηl(ϕn))− a(ηl(ϕn)) + const,

(62)

where the last equality in (62) follows from the basic property

of the exponential family. To derive the update for ϕn, we take

the gradient of L(ϕn):

∇ϕn
L(ϕn) = Dϕn

ηl(ϕn)
T · ∇2

ηl
a(ηl(ϕn)){ηl(ϕn)

− [t(xn)
T , 1]T − Eq(θ)[ηg(θ)]},

(63)

where Dϕn
ηl(ϕn) is the Jacobian matrix of ηl(·) with respect

to ϕn. Therefore, by using the gradient for optimization or

by simply setting the gradient to zero, i.e., ∇ϕn
L(ϕn) = 0,

we obtain the conjugate variable update. With the above

stochastic gradients derived, we have shown the application

of the proposed method.

In particular, with the following settings [18]:

h(zn) = 1, t(zn) = [zn, 1− zn]
T , a(ηg(θ)) = 0,

ηgn(θ) = [log σ(θTxn), log σ(−θTxn)]
T , n = 1, . . . , N,

(64)

one recovers Bayesian logistic regression. Here, it should

be noted that VBI is only considered for the nonconjugate

variable θ. However, for the settings of correlated topic model,

VBI is considered for both θ and zn. As the applications of Sd-

REG-LBFGS are similar, we shall consider Bayesian logistic

regression for numerical experiments for simplicity.

V. NUMERICAL RESULTS

In this section, the numerical experiments are performed on

our proposed Sd-REG-LBFGS algorithm. Two applications are

considered in machine learning, which are logistic regression

and SDVBI for Bayesian logistic regression. Moreover, in this

paper, we only consider binary classification problems. We

also employed a synthetic dataset and several real datasets

[38], [41]–[45] for the performance evaluation. In particular

for the parameter studies, we use a synthetic dataset and a real

scene dataset [38] (available at http://mulan.sourceforge.net

/datasets-mlc.html), which can be categorized as the following

4 scenarios:

S1. Solving logistic regression (LR) using synthetic dataset,

which is presented in Section V-A;

http://mulan.sourceforge.net

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 10

S2. Solving Bayesian logistic regression (BLR) using syn-

thetic dataset, which is presented in Section V-A;

S3. Solving LR using scene dataset in [38]. Due to page

limitation, the results are presented in Section II of the

supplementary material;

S4. Solving BLR using scene dataset in [38]. Due to

page limitation, the results are presented in Section II of the

supplementary material.

The following algorithms are considered for evaluation:

(A) Proposed Sd-REG-LBFGS: The proposed stochastic

damped regularized L-BFGS as described in Algorithm 1;

(B) SdLBFGS: Stochastic damped regularized L-BFGS

without regularization in [8];

(C) SGD: Stochastic gradient descent is adopted;

(D) SAA: Stochastic approximation averaging in [39] is

applied;

(E) RSA: Robust stochastic approximation in [20] is em-

ployed.

(F) Adam: Adam [40] is employed.

Here, we summarize again some key parameters and vari-

ables that are involved in the numerical experiments.

1. d: the dimension of the optimization variable, e.g., θ ∈
R

d.

2. N : the number of training points in the dataset.

3. m: the batch size used for stochastic approximation of the

gradient. In the numerical experiment, we use constant batch

size at each iteration, e.g., m = |S| for ∇θL(θ;S).

4. M : the memory size used for the Sd-REG-LBFGS

algorithm to store the correction pairs (st, yt) calculated by

(20) and (21).

5. L: the interval length. Every L iterations, we perform

averaging on the iterate points, which is used to calculate the

correction pairs by (20) and (21).

6. γ: the regularized parameter for BFGS update given in

(24), which prevent the L-BFGS matrix from being close to

singularity.

7. ηk: the step size for SGD, SdLBFGS and Sd-REG-

LBFGS optimization schemes. In the numerical experiment,

we adopt the diminishing step size ηk = r/k with a positive

constant r at each iteration.

In general, for the regression problems, one needs to

include a constant bias term. This can be implemented by

concatenating a unity element at the beginning or the end of

each input vector, i.e., if the unity is put at the beginning,

θ0 + θTxn = [θ0, θ
T][1, xT

n]. For notational convenience, we

omit the bias term here. The performance of various algorithms

will be evaluated in terms of the norm of the gradient (NOG)

and the classification accuracy (ACC). The NOG for LR is

defined as follows:

NOG =

∥

∥

∥

∥

∥

1

N

N
∑

n=1

[zn − σ(θTxn)]xn

∥

∥

∥

∥

∥

. (65)

Moreover, the exact gradient of the objective function in BLR

can be calculated as follows [18]:

∇θL(θ) =
1

N

N
∑

n=1

{[zn − σ(θT xn)]xn +
1

2
σ(θTxn)

· σ(−θTxn)[1− 2σ(θTxn)]xnx
T
nSxn}+ S−1

0 .
(66)

Hence, the NOG for BLR is defined as NOG = ‖∇θL‖.

Lower NOG indicates the better convergence of an algo-

rithm to a stationary point. The classification accuracy is given

as

ACC =
TP + TN

TP + FN + FP + FN
(67)

where TP, TN, FP, and FN denote true positives, true negatives,

false positives and false negatives, respectively. The decision

rules for class prediction are given as

if σ(θ̂Txn) ≥ 0.5, then zn = 1, else zn = 0, (68)

for logistic regression and Bayesian logistic regression respec-

tively, where θ̂ is the estimated value of θ. We have also

conducted a sensitivity analysis to study the effects of different

batch sizes, memory sizes and regularization parameters with

our proposed method. Due to page limitation, the details are

omitted here. Interested readers are referred to Section II of

the supplementary material for details.

A. Performance comparisons with different real datasets

In this subsection, we first study the effectiveness of our

proposed method using the same settings of each algorithms

for their common parameters with different real datasets.

Specifically, for all schemes, batch size is set to a relatively

small value to show that our proposed method is particularly

effective. Moreover, the real datasets are described as follows:

1. Banknote Authentication Dataset (BNA) [45] (available

at UCI Machine Learning Repository): we use 1,370 samples,

which has 4 variables. Considering 5-fold cross validation,

there are 1,096 data points for training and 274 samples for

testing.

2. Wireless Indoor Localization Dataset (WINL) [42], [43]

(available at UCI Machine Learning Repository): 2,000 sam-

ples with 7 variables are used for the performance evaluation.

For 5-fold cross-validation, there are 1,600 data points for

training and 400 samples for testing.

3. Ionosphere Dataset (IONO) [44] (available at UCI Ma-

chine Learning Repository): we use 350 samples with 33

variables for performance evaluation. There are 280 data points

for training and 70 samples for testing according to 5-fold

cross validation.

4. Electrical Grid Stability Simulated Dataset (ELEG) [41]

(available at UCI Machine Learning Repository): 10,000 sam-

ples of the dataset with 14 variables is used for performance

evaluation, of which 8,000 are for training and 2,000 are for

testing according to 5-fold cross validation.

Moreover, the batch size and step size for each algorithm

are set to m = 20 and ηk = 7/k, respectively. For our

proposed method and SdLBFGS, the memory is set to the

same value M = 10. We set the regularization parameters

for our proposed method to γ = 10−4 and δ = 1.25 + 0.01,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 11

Table I: The NOG and ACC performances of various algo-

rithms averaged over 50 Monte Carlo simulations and 5-fold

cross validation with different datasets for logistic regression

and Bayesian logistic regression.

Dataset Algorithms
NOG
(LR)

ACC
(LR)

NOG
(BLR)

ACC
(BLR)

Sd-REG-
LBFGS

0.0288 95.27% 0.0294 95.47%

SdLBFGS 0.0313 95.17% 0.3351 91.67%

BNA RSA 0.0317 95.11% 0.3306 90.36%

SAA 1.7341 95.11% 1.6801 90.35%

SGD 0.0318 95.10% 0.3371 90.35%

Adam 0.2592 92.23% 0.1349 94.52%

Sd-REG-
LBFGS

0.010 97.11% 0.0073 91.42%

SdLBFGS 0.012 97.31% 0.0077 91.43%

WINL RSA 0.0654 95.89% 0.023 91.12%

SAA 1.36 95.89% 0.595 91.12%

SGD 0.0653 95.90% 0.023 91.12%

Adam 0.54 80.74% 0.10 86.46%

Sd-REG-
LBFGS

0.013 87.33% 0.0188 88.21%

SdLBFGS 0.017 86.98% 0.0741 86.82%

IONO RSA 0.087 85.70% 0.096 84.59%

SAA 0.795 85.70% 0.795 84.87%

SGD 0.087 85.70% 0.099 84.87%

Adam 0.19 79.13% 0.207 80.80%

Sd-REG-
LBFGS

0.017 87.55% 0.016 87.56%

SdLBFGS 0.020 87.68% 0.02 87.67%

ELEG RSA 0.043 86.72% 0.024 87.27%

SAA 0.502 86.72% 0.502 87.27%

SGD 0.042 86.72% 0.0241 87.27%

Adam 0.489 52.69% 0.493 64.53%

respectively. For each NOG and ACC value, it is computed

via the average of 5-fold cross validation and 50 Monte Carlo

runs. The results are shown in Table I. It can be seen that

our proposed method performs the best obviously in terms

of NOG performance. For ACC performance evaluation, our

proposed method is generally better than other methods, except

that the proposed method is slightly worse than SdLBFGS for

WINL and ELEG. This is due to the bias that our method

has introduced. However, Sd-REG-LBFGS is more robust as

SdLBFGS has resulted in ill-conditioning problems during the

experiments.

Next, we will consider the synthetic dataset and the real

dataset scene [38] to extensively study the effects of different

parameter settings.

B. Numerical results using synthetic dataset

In this subsection, we conduct the numerical experiments

using synthetic dataset. For the binary classification schemes,

we initialize the parameter to be optimized as θ0, which is

generated from a Gaussian distribution N (0, I). For SDVBI,

the initial values of mean µ and the covariance matrix S are

set to θ0 and identity matrix S0 = I , respectively. We generate

5000 synthetic data points for 5-fold cross validation and 50

Monte Carlo runs in the following manner. Each of the sample

xn is of dimension d = 50 and is randomly drawn from a

uniform distribution [0, 1]d. The desired parameter θ̄ generated

from the uniform distribution [−1, 1]d is used to generate the

true class labels zn = I(θ̄Txn > 0) for each of the sample

xn. Using the synthetic dataset, we first consider the logistic

regression problem and the objective function given in (55).

1) Logistic Regression: In Figs. 1(a) and 1(b), we illustrate

the effect of batch size on the Sd-REG-LBFGS algorithm

in terms of NOG and ACC, respectively. The regularized

parameter γ is set to γ = 10−4 and δ to δ = 1.25γ + 0.01
correspondingly. Fig. 1(a) shows that the proposed approach

consistently performs better than the SdLBFGS, SGD, RSA,

SAA and Adam algorithms in NOG. Larger batch size gener-

ally leads to better performance for all algorithms. This is due

to less variance of the stochastic gradient with larger batch

size.

Figs. 1(a) and (b) show that the proposed approach and the

SdLBFGS consistently performs better than SGD, RSA, SAA

and Adam algorithms in terms of NOG and ACC, respectively.

Moreover, the proposed algorithm performs consistently well

for different batch sizes, which suggests that the incorporation

of regularization helps to reduce estimation variance and hence

it is more robust to the variations of batch sizes.

In Figs. 2(a) and 2(b), we report the effect of various

memory sizes on the performance of the proposed Sd-REG-

LBFGS. We set the step size constant to r = 7 and the batch

size m = 100 for the proposed approach and SdLBFGS. The

regularized parameters of the proposed approach are set to

γ = 10−4 and δ to δ = 1.25γ + 0.01, respectively, which

satisfies the condition 0.8δ > γ. Furthermore, the iteration

interval length is set to L = 10. From the figures, we can

see that the proposed approach and the SdLBFGS give better

NOG and ACC performance than the SGD, RSA, SAA and

Adam. Moreover, a larger memory size generally lead to more

accurate approximation of the Hessian matrix and hence a

better performance.

In Figs. 3(a) and 3(b), we study the effect of the regulariza-

tion parameter on Sd-REG-LBFGS in terms of NOG and ACC,

respectively. The following values of γ = 10−2, 10−3, 10−4

are employed. We can see that the proposed approach performs

better in terms of NOG and ACC. We notice the small amount

of regularization imposed in the proposed Sd-REG-LBFGS

method generally lead to better NOG than the SdLBFGS while

its ACC is similar to SdLBFGS.

Overall, we find that the proposed approach performs better

than other conventional algorithms in terms of NOG and ACC.

This may be attributed by the small amount of regularization

applied to the proposed approach, which improves the numer-

ical stability and hence it converges closer to the stationary

point (lower NOG). Meanwhile, we notice that the ACC of

the proposed Sd-REG-LBFGS and the SdLBFGS algorithms

are quite similar under this setting. We shall compare these

algorithms more formally using a statistical test on their

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 12

0 200 400 600 800 1000

Iteration

10
-2

10
-1

10
0

N
O

G

(a)

0 200 400 600 800 1000

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
C

C

(b)

Figure 1: The (a) Norm of Gradient (NOG) and (b)
Classification Accuracy (ACC) of logistic regres-
sion solved using various algorithms with different
batch sizes averaged over 50 Monte Carlo simula-
tions. The synthetic dataset is used.

0 200 400 600 800 1000

Iteration

10
-2

10
-1

10
0

N
O

G

(a)

0 200 400 600 800 1000

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
C

C

(b)

Figure 2: The (a) NOG and (b) ACC of logistic
regression solved using various algorithms with
different memory sizes averaged over 50 Monte
Carlo simulations. For comparison, SdLBFGS ,
SGD, RSA, SAA and Adam are implemented. The
synthetic dataset is used.

0 200 400 600 800 1000

Iteration

10
-2

10
-1

10
0

N
O

G

(a)

0 200 400 600 800 1000

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
C

C

(b)

Figure 3: The effect of regularized parameter γ on
the (a) NOG and (b) ACC of logistic regression
solved using the proposed Sd-REG-LBFGS. For
comparison, SdLBFGS , SGD, RSA, SAA and
Adam are implemented. The synthetic dataset is
used.

average classification accuracies at different settings in Section

V-B.

2) SDVBI for Bayesian Logistic Regression: In this sub-

section, numerical experiments are performed on SDVBI for

Bayesian logistic regression using synthetic dataset. We will

study various values of the batch size m, the memory size

M and the regularization parameter γ, under which Sd-REG-

LBFGS is performed for the optimization.

Figs 4(a) and 4(b) show the NOG and ACC of SDVBI,

respectively, solved using different algorithms with various

batch sizes. In this experiment, we fix the regularization

parameters to γ = 10−4 and δ = 1.25γ + 0.01 respectively.

Moreover, we set the memory size to M = 10 and the interval

length to L = 10.

From the figures, it can be seen that the proposed method

generally outperforms the Sd-LBFGS, SGD, RSA, SAA and

Adam algorithms with all batch sizes studied. Moreover, the

proposed algorithm performs consistently well for different

batch size, which suggests the incorporation of regularization

helps to reduces estimation variance and hence it is more ro-

bust to the variations of batch sizes. This enables us to choose

a smaller batch size so that it could reduce computational

cost without sacrificing much classification performance of the

SDVBI in Bayesian logistic regression.

Figs. 5(a) and 5(b) show the effect of memory size on the

NOG and classification performances of SDVBI in Bayesian

logistic regression using the proposed Sd-REG-LBFGS. The

Sd-LBFGS, SGD, RSA, SAA and Adam are also included

as benchmarks. Similar to previous sub-sections, we fix the

regularized parameter to γ = 10−4 and δ = 1.25γ + 0.01
respectively. Moreover, the batch size is set to m = 100 and

the interval length for Sd-REG-LBFGS is set to L = 10.

From the figures, we find that the NOG and ACC perfor-

mance of the proposed approach is generally better than other

approaches. Thus, we can choose a relatively small memory

size to reduce the computational cost without sacrificing

performance.

In Figs 6(a) and 6(b), we report the effect of regularization

parameter γ on Sd-REG-LBFGS for SDVBI. In general,

smaller γ value yields better performance in terms of NOG.

For the Sd-REG-LBFGS with γ = 10−2, 10−3 10−4, the

improvement in classification performance decreases when de-

creases. We notice the small amount of regularization imposed

in the proposed Sd-REG-LBFGS method generally lead to

better NOG than the SdLBFGS while its ACC is similar to

SdLBFGS.

Overall, the proposed Sd-REG-LBFGS performs better than

the SdLBFGS, SGD, RSA, SAA and Adam algorithms in

terms of NOG and classification accuracy. Moreover, the

classification performance of the proposed Sd-REG-LBFGS

algorithm is less vulnerable to insufficient samples caused

by small batch size as regularization is imposed to avoid

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 13

0 200 400 600 800 1000

Iteration

10
-2

10
-1

10
0

N
O

G

(a)

0 200 400 600 800 1000

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
C

C

(b)

Figure 4: The (a) NOG and (b) ACC of different
algorithms with various batch sizes in solving SD-
VBI in Bayesian logistic regression. For compar-
ison, SdLBFGS, SGD, RSA, SAA and Adam are
included. The synthetic dataset is used.

0 200 400 600 800 1000

Iteration

10
-2

10
-1

10
0

N
O

G

(a)

0 200 400 600 800 1000

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
C

C

(b)

Figure 5: The (a) NOG and (b) ACC of SDVBI
in Bayesian logistic regression solved using various
algorithms with different memory sizes averaged
over 50 Monte Carlo simulations. The synthetic
dataset is used.

0 200 400 600 800 1000

Iteration

10
-2

10
-1

10
0

N
O

G

(a)

0 200 400 600 800 1000

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
C

C

(b)

Figure 6: The effect of regularized parameter γ on
the (a) NOG and (b) ACC of SDVBI in Bayesian
logistic regression solved using the proposed Sd-
REG-LBFGS. For comparison, SdLBFGS, SGD,
RSA, SAA and Adam are implemented. The syn-
thetic dataset is used.

ill-conditioning of the Hessian update. On the other hand,

the proposed Sd-REG-LBFGS and SdLBFGS gives similar

performance when the number of samples is large.

Regarding to the choice of the algorithmic parameters

including the batch size m, memory size M and the reg-

ularization parameter γ, we observe a choice of m = 100
yields the best performance for most algorithms under the

datasets we have considered. For the proposed Sd-REG-

LBFGS method and the SdLBFGS method, a memory size

of M = 8 will suffice. Beyond these values, the performance

improvement is not so significant. Moreover, the complexity

and computational time increases with the two parameters and

hence it is desirable to keep them as small as possible. A small

amount of regularization, such as γ = 10−4, is adequate to

reduce the fluctuations under sufficient samples.

We notice that the proposed Sd-REG-LBFGS and SdLBFGS

algorithms gives similar performance with sufficient large

number of samples. We shall further compare the two algo-

rithms more rigorously using a statistical test under different

settings in Section V-C.

C. Comparison of classification performance of various algo-

rithms using Statistical Significance Testing

In this section, we employ nonparametric statistical tests -

sign test and Wilcoxon paired-difference test for the evaluation

of the statistical significance of whether the proposed algo-

rithm performs significantly better than the SGD, RSA, SAA

and Adam algorithms on average, or vice versa, in terms of

classification accuracy. It should be noted that the t-test may

not be a proper choice as classification accuracies (ACC) are

bounded and hence they are not normally distributed [48],

[49]. First, Table II shows the average classification accuracy

for each algorithm over all batch sizes, and the parameters are

set for each algorithm as follows:

1. Batch size: m = 5, 10, 30, 50, 100, 200, for synthetic

dataset scenario, and m = 5, 10, 20, 30, 50, 100, for scene

dataset scenario;

2. Memory size: M = 10 for Sd-REG-LBFGS and

SdLBFGS;

3. Step size constant r: r = 7 for all algorithms;

4. Regularization parameters: γ = 10−4 and δ = 1.25γ +
0.01.

Here, we abbreviate Sd-REG-LBFGS and SdLBFGS as

SRL and SDL for convenience respectively. More precisely,

the sign test tests the following hypotheses:

H0 : µX − µY = 0 vs H1 : µX − µY > 0, (69)

where µX and µY are the median classification accuracies of

algorithms A and B, respectively. The test statistic of the sign

test is given as

TS : number of times that xi − yi > 0, (70)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 14

Table II: The average classification accuracy of each algorithm over all batch
sizes.

ACC SRL SDL SGD RSA SAA Adam

S1 95.14% 89.67% 66.69% 66.58% 66.70% 50.25%

S2 95.25% 89.78% 67.26% 67.23% 67.26% 50.35%

S3 80.80% 80.48% 77.32% 77.36% 77.32% 65.72%

S4 80.90% 79.12% 76.38% 76.50% 76.38% 66.27%

where xi and yi are the classification accuracies of algorithms

A and B for the i-th experiment, respectively. The one-sided

p-value can be obtained by a binomial test as P = Pr(TS ≥
tS |H0) =

∑n
i=tS

(

n
i

)

0.5n, where tS is the observed number

of times that xi−yi > 0. n is the total number of experiments

performed.

For Wilcoxon paired-difference test, the following hypothe-

ses are considered

H0 : |xi − yi| follows a symmetric distribution around zero,

(71)

H1 : |xi − yi| does not follows a symmetric distribution aro-

und zero.
(72)

The test statistic is given as TW =
∑nR

i=1 sign(xi > yi)Ri,

where sign(x > y) is defined to be

sign(x > y) =

{

+ 1, if(x > y)

− 1, otherwise,
(73)

and Ri is the rank order of |xi − yi|. nR is the number

of experiments after excluding those with |xi − yi| = 0.

For nR < 20, the exact distribution is used. For nR ≥
20, a z-score can be calculated as z = Tw/σW , where

σW =
√

nR(nR + 1)(2nR + 1)/6. The right-sided p-value

for xi > yi is P = Pr(TW ≥ tw|H0), where tw is the observed

sum of rank. The p-values are obtained using MATLAB

function signrank. The batch size is set to m = 5 as our

proposed method is robust and efficient in particular for small

batch sizes.

The results of sign test are shown in Table III. The log p-

values for Wilcoxon paired-difference test are shown in Table

IV. The batch size is set to m = 5 as our proposed method is

robust and efficient in particular for small batch sizes. From

the tables, we can see that the proposed approach obtains

the highest ACC with statistical significance and the mean

difference in ACC between the proposed approach and other

algorithms is statistically significant for log p < −1.3, (a.k.a.

p < 0.05). A key observation is that we find that the proposed

approach performs much better than the SdLBFGS under small

batch size. This is possibly attributed to the incorporation

of the proposed regularization scheme, which is useful to

improve numerical stability under small sample size. For

sufficient samples, the performance of our algorithm is similar

to SdLBFGS. Such observations can be found in the sensitivity

study of the different parameters, which is omitted here due

to page limitation. Interested readers are referred to Section

III of the supplementary material for details.

Table III: Right-sided log p values obtained from sign test on mean classifica-
tion accuracy of various algorithms averaged over 50 Monte Carlo simulations

log p
SRL vs

SDL
SRL vs

SGD
SRL vs

RSA
SRL vs

SAA
SRL vs
Adam

S1 -15.05 -15.05 -15.05 -15.05 -15.05

S2 -15.05 -15.05 -15.05 -15.05 -15.05

S3 -15.05 -15.05 -15.05 -15.05 -15.05

S4 -10.732 -15.05 -15.05 -15.05 -15.05

Table IV: Wilcoxon paired-difference test on mean classification accuracy of
various algorithms averaged over 50 Monte Carlo simulations

log p
SRL vs

SDL
SRL vs

SGD
SRL vs

RSA
SRL vs

SAA
SRL vs
Adam

S1 -9.40 -9.40 -9.40 -9.40 -9.40

S2 -9.40 -9.41 -9.41 -9.40 -9.40

S3 -9.41 -9.41 -9.41 -9.41 -9.41

S4 -9.02 -9.41 -9.42 -9.41 -9.42

VI. CONCLUSION

A novel Sd-REG-LBGS method for solving nonconvex

and ill-conditioned stochastic optimization problems has been

presented. The convergence of the proposed method is es-

tablished under reasonable assumptions. The effectiveness of

the proposed method is studied via the logistic regression and

Bayesian logistic regression problems in machine learning for

both synthetic and real datasets. The effect of using different

algorithmic parameters is also studied. Experimental results

show that the proposed Sd-REG-LBFGS method generally

outperforms SdLBFGS and exhibits superior performance for

problems with small sample sizes. Moreover, the proposed

method is less sensitive to the variations of the batch size and

memory size than the SdLBFGS method. For future work,

we shall consider the extension of our method to distributed

optimization [4], [26]–[28] and asynchronous distributed op-

timization [46], [47].

REFERENCES

[1] R. M. Gower, D. Goldfarb, and P. Richtarik, “Stochastic block BFGS:
Squeezing more curvature out of data,”in 33rd Proc. Int. Conf. Mach.

Learn, 1869-1878, June 19-24, 2016.
[2] A. Bordes, L. Bottou, and P. Gallinari, “SGD-QN: Careful Quasi-Newton

Stochastic Gradient Descent,”J. Mach. Learn. Res., 10, pp. 1737 – 1754,
Jul. 2009.

[3] A. Mokhtari and A. Ribeiro, “RES: Regularized Stochastic BFGS Al-
gorithm,”IEEE Trans. Signal Process., vol. 62, no. 23, pp. 6089 - 6104,
Dec.1, 2014.

[4] M. Eisen, A. Mokhtari and A. Ribeiro, “Decentralized Quasi-Newton
Methods,”IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2613 - 2628,
May, 2017.

[5] M. Neely, “Distributed Stochastic Optimization via Correlated Schedul-
ing,”IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 759 - 772, April, 2016.

[6] P. Si, J. Yang, S. Chen, and H. Xi, “Smoothness Constraint Based
Stochastic Optimization for Wireless Scalable Video Streaming,”IEEE
Commun. Lett., vol. 19, no. 5, pp. 759 - 762, May, 2015.

[7] A. Ribeiro, “Ergodic Stochastic Optimization Algorithms for Wireless
Communication and Networking,”IEEE Trans. Signal Process., vol. 58,
no. 12, pp. 6369 - 6386, Dec, 2010.

[8] X. Wang, S. Ma, D. Goldfarb, and W. Liu, “Stochastic Quasi-Newton
Methods for Nonconvex Stochastic Optimization,”SIAM J. Optim., vol.
27, no. 2, pp. 927 – 956, 2017.

[9] A. Mokhtari, M. Eisen and A. Ribeiro, “IQN: An Incremental Quasi-
Newton Method with Local Superlinear Convergence Rate,”SIAM J.

Optim., vol. 28, no. 2, pp. 1670 – 1698, 2018.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, DEC. 2019 15

[10] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A Stochastic
Quasi-Newton Method for Large-Scale Optimization,”SIAM J. Optim.,
vol. 26, no. 2, pp. 1008 - 1031, 2016.

[11] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal, “On the Use of
Stochastic Hessian Information in Optimization Methods for Machine
Learning ,”SIAM J. Optim., vol. 21, no. 3, pp. 977 – 995, Jan. 2011.

[12] L. Bottou, F. E. Curtis and J. Nocedal, “Optimization Methods for Large-
Scale Machine Learning,”SIAM Rev., vol. 60, no. 2, pp. 223 - 311, 2018.

[13] M. J. D. Powell, “Algorithms for nonlinear constraints that use la-
grangian functions,”Math. Programming, vol. 14, no. 1, pp. 224 – 248,
Dec., 1978.

[14] J. Nocedal, S. J. Wright, Numerical Optimization, New York:Springer-
Verlag, 1999.

[15] A. Mokhtari, and A. Ribeiro, “Global Convergence of Online Limited
Memory BFGS,”J. Mach. Learn. Res., vol. 16, no. 1, pp. 3151 - 3181,
Jan., 2015.

[16] N. Schraudolph, J. Yu, and S. Gunter, “A stochastic quasi-Newton
method for online convex optimization,”in Proc. 11th Int. Conf. Artif.

Intell. Statist., pp. 433 – 440, 2007.

[17] C. Bishop, Pattern Recognition and Machine Learning, Springer New
York., 2006.

[18] C. Wang, and D. M. Blei , “Variational Inference in Nonconjugate
Models,”J. Mach. Learn. Res., vol. 14, no. 1, pp. 1005 - 1031, Jan.,
2013.

[19] S. Ghadimi and G. Lan, “Stochastic First- and Zeroth-Order Methods
for Nonconvex Stochastic Programming,”SIAM J. Optim., vol. 23, no. 4,
pp. 2341 - 2368, 2013.

[20] A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro, “Robust
Stochastic Approximation Approach to Stochastic Programming,”SIAM

J. Optim., vol. 19, no. 4, pp. 1574 - 1609, 2009.

[21] C. Dang and G. Lan, “Stochastic Block Mirror Descent Methods for
Nonsmooth and Stochastic Optimization,”SIAM J. Optim., vol. 25, no. 2,
pp. 856 - 881, 2015.

[22] H. Robbins and S. Monro, “A Stochastic Approximation Method,”Ann.
Math. Statist., vol. 22, no. 3, pp. 400 - 407, 1951.

[23] M. D. Hoffman, D. M. Blei, C. Wang and J. Paisley, “Stochastic
Variational Inference,”J. Mach. Learn. Res., vol. 14, no. 1, pp. 1303 -
1347, Jan., 2013.

[24] Z. Ghahramani, “Probabilistic machine learning and artificial intelli-
gence,”Nature, vol. 521, no. 7553, pp. 452 – 459, 2013.

[25] D. M. Blei, A. Kucukelbir and J. D. McAuliffe, “Variational Inference:
A Review for Statisticians,”J. Am. Statist. Assoc., vol. 112, no. 518, pp.
859-877, 2017.

[26] L. Zhang, H. C. Wu, C. H. Ho, S. C. Chan, “A Multi-Laplacian Prior
and Augmented Lagrangian Approach to the Exploratory Analysis of
Time-Varying Gene and Transcriptional Regulatory Networks for Gene
Microarray Data , to appear in ”IEEE/ACM Trans. Comput. Biol. Bioinf..

[27] S. C. Chan, L. Zhang, H. C. Wu, and K. M. Tsui, “A maximum
a posteriori probability and time-varying approach for inferring gene
regulatory networks from time course gene microarray data,”IEEE/ACM

Trans. Comput. Biol. Bioinf., vol. 12, no. 1, pp. 123–135, 2015.

[28] S. C. Chan, H. C. Wu, C. H. Ho and L. Zhang, “An Augmented
Lagrangian Approach for Distributed Robust Estimation in Large-Scale
Systems, to appear in ”IEEE Systems Journal.

[29] J. Paisley, D. M. Blei and M. I. Jordan, “Variational Bayesian Inference
with Stochastic Search,”in 29th Proc. Int. Conf. Mach. Learn, vol. 14,
pp. 1363 - 1370, 2012.

[30] Sun Yi, D. Wierstra, T. Schaul and J. Schmidhuber, “Stochastic search
using the natural gradient,”in 26th Proc. Int. Conf. Mach. Learn, vol. 382,
pp. 1161 - 1168, 2009.

[31] R. Johnson and T. Zhang, “Accelerating Stochastic Gradient Descent
Using Predictive Variance Reduction,”in Proc. Adv. Neural Inf. Process.
Syst., vol. 1, pp. 315 - 323, 2013.

[32] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,”Math. Programming, vol. 45, no. 1, pp. 503 -
528, Aug., 1989.

[33] P. Moritz and R. Nishihara and M. I. Jordan, “A Linearly-Convergent
Stochastic L-BFGS Algorithm,”in Proc. 19th Int. Conf. Artif. Intell.

Statist., vol. 51, pp. 249 - 258, 2016.

[34] J. Taghia and A. Leijon, “Variational Inference for Watson Mixture
Model,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 9, pp. 1886
- 1900, Sept., 2016.

[35] A. Honkela, T. Raiko, M. Kuusela, M. Torni and Juha Karhunen ,
“Approximate Riemannian Conjugate Gradient Learning for Fixed-Form
Variational Bayes,”J. Mach. Learn. Res., vol. 11, pp. 3235 - 3268, Dec.,
2010.

[36] S. Amari, Information Geometry and Its Applications, Springer Japan,
2016.

[37] S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press New York., 2004.

[38] M.R. Boutell, J. Luo, X. Shen, and C.M. Brown, “Learning multi-label
scene classiffication,”Pattern Recognition, vol. 37, no. 9, pp. 1757-1771,
2004.

[39] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approxima-
tion by averaging,”SIAM J. Control Optim., vol. 30, no. 4, pp. 838-855,
1992.

[40] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”,
in 3rd International Conference for Learning Representations, 2015.

[41] V. Arzamasov, K. Böhm and P. Jochem, “Towards Concise Models
of Grid Stability ”, IEEE International Conference on Communications,

Control, and Computing Technologies for Smart Grids, Oct. 9-31, 2018.
[42] R. Bhatt, “Fuzzy-Rough Approaches for Pattern Classification: Hybrid

measures, Mathematical analysis, Feature selection algorithms, Decision
tree algorithms, Neural learning, and Applications”, Amazon Books.

[43] J. Rohra, B. Perumal, S. Narayanan, P. Thakur and R. Bhatt, “User
Localization in an Indoor Environment Using Fuzzy Hybrid of Particle
Swarm Optimization & Gravitational Search Algorithm with Neural
Networks”, in Proceedings of Sixth International Conference on Soft

Computing for Problem Solving, pp. 286-295, 2017.
[44] V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker, “Classification

of radar returns from the ionosphere using neural networks. Johns
Hopkins APL Technical Digest”, Johns Hopkins APL Technical Digest,
10, 262-266, 1989.

[45] V. Lohweg and H. Doerksen, “Banknote authentication data set”, sub-
mitted.

[46] R. Zhang and T. Kwok, “Asynchronous distributed ADMM for consen-
sus optimization”, in Proc. of the 31st Int. Conf. Mach. Learn, vol. 32,
pp. 1701-1709, June, 2014.

[47] R. Zhu, D. Niu and Z. Li, “A Block-wise, Asynchronous and Dis-
tributed ADMM Algorithm for General Form Consensus Optimization”,
in arXiv:1802.08882, Feb. 2018.

[48] T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms”, Neural Computation, vol. 10, pp.
1895–1924, Oct. 1998.

[49] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data
Sets”, J. Mach. Learn. Res., vol. 7, pp. 1- 30, Jan. 2006.

[50] M. Chen, B. Amos, L. Watson, J. Tyson, Y. Cao, C. Shaffer, M.
Trosset, C. Oguz, and G. Kakoti, “Quasi-Newton Stochastic Optimization
Algorithm for Parameter Estimation of a Stochastic Model of the Budding
Yeast Cell Cycle,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 16, no.
1, pp. 301-311, Nov. 2017.

[51] S. Huang, Y. Sun, and Q. Wu, “Stochastic Economic Dispatch With
Wind Using Versatile Probability Distribution and L-BFGS-B Based Dual
Decomposition,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6254-6263,
Nov. 2018.

[52] J. Rafati and R. Marcia, “Improving L-BFGS Initialization For Trust-
Region Methods In Deep Learning,”in 17th IEEE Int. Conf. Mach. Learn.

App., Dec. 27-20, 2018.
[53] S. Scardapane and P. Lorenzo, “Stochastic Training of Neural Networks

via Successive Convex Approximations,”IEEE Trans. Neural Netw. Learn.

Syst., vol. 29, no. 10, Oct. 2018.
[54] A. Jalilzadeh, A. Nedić, U. Shanbhag and F. Yousefian, “A Variable

Sample-size Stochastic Quasi-Newton Method for Smooth and Nons-
mooth Stochastic Convex Optimization,” IEEE Conference on Decision

and Control, Dec. 17-19 2018.

This figure "HCWu.png" is available in "png"
 format from:

http://arxiv.org/ps/1912.04456v1

http://arxiv.org/ps/1912.04456v1

This figure "WHLAM_photo_1.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/1912.04456v1

http://arxiv.org/ps/1912.04456v1

This figure "hmchen.png" is available in "png"
 format from:

http://arxiv.org/ps/1912.04456v1

http://arxiv.org/ps/1912.04456v1

This figure "scchan.png" is available in "png"
 format from:

http://arxiv.org/ps/1912.04456v1

http://arxiv.org/ps/1912.04456v1

	I Introduction
	II Problem Formulation
	III The Proposed Algorithm
	III-A The Proposed Damped SQN Method
	III-B The Proposed Algorithms for Limited Memory
	III-C Convergence Result

	IV Empirical Study
	IV-A Logistic Regression
	IV-B Sd-REG-LBFGS for VBI

	V Numerical Results
	V-A Performance comparisons with different real datasets
	V-B Numerical results using synthetic dataset
	V-B1 Logistic Regression
	V-B2 SDVBI for Bayesian Logistic Regression

	V-C Comparison of classification performance of various algorithms using Statistical Significance Testing

	VI Conclusion
	References

