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Unsupervised AER Object Recognition Based on
Multiscale Spatio-Temporal Features and Spiking
Neurons

Qianhui Liu, Gang Pan, Haibo Ruan, Dong Xing, Qi Xu, and Huajin Tang

Abstract—This paper proposes an unsupervised address event
representation (AER) object recognition approach. The proposed
approach consists of a novel multiscale spatio-temporal feature
(MuST) representation of input AER events and a spiking
neural network (SNN) using spike-timing-dependent plasticity
(STDP) for object recognition with MuST. MuST extracts the
features contained in both the spatial and temporal information
of AER event flow, and meanwhile forms an informative and
compact feature spike representation. We show not only how
MuST exploits spikes to convey information more effectively, but
also how it benefits the recognition using SNN. The recognition
process is performed in an unsupervised manner, which does not
need to specify the desired status of every single neuron of SNN,
and thus can be flexibly applied in real-world recognition tasks.
The experiments are performed on five AER datasets including a
new one named GESTURE-DVS. Extensive experimental results
show the effectiveness and advantages of this proposed approach.

Index Terms—address event representation (AER), spatio-
temporal features, spiking neural network, unsupervised learn-
ing.

I. INTRODUCTION

EUROMORPHIC engineering takes inspiration from bi-
N ology in order to construct brain-like intelligent systems
and has been applied in many fields such as pattern recog-
nition, neuroscience, and computer vision [I], [2]. Address
event representation (AER) sensors are neuromorphic devices
imitating the mechanism of human retina. Traditional cameras
usually record the visual input as images at a fixed frame
rate, which would suffer from severe data redundancy due
to the strong spatio-temporal correlation of the scene. This
problem could be solved to a large extent with AER vision
sensors, which naturally respond to moving objects and ignore
static redundant information. Each pixel in the AER sensor
individually monitors the relative changes of light intensity of
its receptive field. If the change exceeds a predefined threshold,
an event will be emitted by that pixel. Each event carries
the information of timestamp (the time when the event was
emitted), address (the position of the corresponding pixel in
the sensor) and polarity (the direction of the light change, i.e.,
dark-to-light or light-to-dark). The final output of the sensor
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is a stream of events collected from each pixel, encapsulating
only the dynamic information of the visual input. Compared
with traditional cameras, AER sensors have the advantage
of maintaining an asynchronous, high-temporal-resolution and
sparse representation of the scene. Commonly used AER
sensors include the asynchronous time-based image sensor
(ATIS) [3]], dynamic vision sensor (DVS) [4], [5]], dynamic
and active pixel vision sensor (DAVIS) [6].

The output of AER vision sensor is event-based; however,
there remain open challenges on how to extract the features
of events and then to design an appropriate recognition mech-
anism. Peng et al. [[7] proposed a feature extraction model
for AER events called Bag of Events (BOE) based on the
joint probability distribution of events. In addition, there are
some existing works inspired by the cortical mechanisms of
human vision, with a hierarchical organization that can provide
features of increasing complexity and invariance to size and
position [8[]. Chen et al. [9] proposed an algorithm to extract
size and position invariant line features for recognition of ob-
jects, especially human postures in real-time video sequences
from address-event temporal-difference image sensors. Zhao et
al. [10] presented an event-driven convolution-based network
for feature extraction that takes data from temporal contrast
AER events, and also introduced a forgetting mechanism
in feature extraction to retain timing information of events
into features. Lagorce et al. [[11] proposed the HOTS model,
which relies on a hierarchical time-oriented approach to ex-
tract spatio-temporal features called time-surfaces from the
asynchronously acquired dynamics of a visual scene. The
time-surfaces are using relative timings of events to give
contextual information. Orchard et al. [[12] proposed the HFirst
model, in which a spiking hierarchical model with four layers
was introduced for feature extraction by utilizing the timing
information inherently presented in AER data.

In addition, biological study of the visual ventral pathway
indicates that vision sensing and object recognition in the
brain are performed in the form of spikes [[13]]. Several coding
hypotheses [14], [15] have been proposed from different
aspects to explain how these spikes represent information in
the brain. Neurons in the visual cortex have been observed to
precisely respond to the stimulus on a millisecond timescale
[16]. This supports the hypothesis of temporal coding, which
considers that information about the stimulus is contained in
the specific precise spike timing of the neuron. To implement
the temporal coding, we need to specify the coding function
to map the features of AER events to precise spike timings.
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Fig. 1. The flow chart of the proposed AER object recognition. The event flow from AER sensor are sent concurrently to motion symbol detection (MSD)
[10] and event queue. MSD adaptively partitions the events waiting to be sent in event queue into segments, and streams the events segment by segment
to neurons in S1 layer for spatio-temporal feature extraction. Neurons have their own scale of receptive field and respond best to a certain orientation. The
neuron responses reflect the strength of features, which cover both the spatial features of different scales and orientations and temporal information. Neurons
of the same receptive scale and orientation are organized into one feature map (denoted by blue squares) and the max responses in adjacent non-overlapping
2 X 2 neuron regions of each feature map reach the C'1 layer. The C'1 features are coded to spikes and multiscale features having the same orientation and
position in C'1 maps flow into the same encoding neuron. The encoding neurons emit spikes to trigger learning neurons and the relative timing of spikes will
trigger the spike-timing-dependent plasticity (STDP) on excitatory synapses during training. Each learning neuron inhibits others through inhibitory synapses
(denoted by dash lines), ensuring different neurons learn different patterns. After training, each learning neuron will be assigned a class label based on its
sensitivity to patterns of different classes. The final recognition decision is determined by averaging the firing rates of learning neurons per class and choosing

the class with the highest average firing rate.

How to select a coding function that can better convey the
information contained in features into spikes and contribute
to the object recognition becomes a key question. We also
design the coding mechanism from spatial perspective since
the spatial information of feature spikes also takes effects in
object recognition.

Inspired by previous works, we introduce an encoding
scheme for AER events that extracts the spatio-temporal
features of raw events and forms a feature spike representation.
Considering that biological neurons are inherently capable
of processing temporal information, we present a cortex-
like hierarchical feature extraction based on leaky integrate-
and-fire (LIF) spiking neurons with spatial sensitivity. The
responses of these neurons are accumulated along the time
axis and reflect the strength of current spatio-temporal fea-
tures. We also propose the coding mechanism to obtain the
spatio-temporal feature spikes, which consists of the natural
logarithmic temporal coding function and multiscale spatial
fusion. Through the proposed coding function, we obtain
the feature spikes with even temporal distribution. We will
show that these spikes are more informative and contribute to
the recognition using SNN. Meanwhile, the spatio-temporal
features of multiple scales are highly correlated and are fused
to spike-trains to form a multiscale spatio-temporal feature
representation, which we have called MuST.

Since MuST is in the form of spikes, it is natural to
employ the spiking neural network (SNN) to learn the spike

patterns. Compared with traditional classifiers, SNNs are more
natural to interpret the information processing mechanisms
of the brain [[17], and more powerful on processing both
spatial and temporal information [18]]. In addition, SNNs
have the advantage of low power consumption, for example,
current implementations of SNN on neuromorphic hardware
use only a few nJ or even pJ for transmitting a spike [19].
Most existing works for AER object recognition, such as
[10] and [20], have chosen supervised classifiers of SNN
for recognition. These supervised classifiers need to specify
the desired status of firing or not or even the firing time of
neurons. However, setting the desired status to every single
neuron is intricate and tedious in real-world recognition tasks.
We consider the unsupervised learning rule spike-timing-
dependent plasticity (STDP) [21] of SNN. STDP works by
considering the relative timing of presynaptic and postsynaptic
spikes. According to this rule, if the presynaptic neuron fires
earlier (later) than the postsynaptic neuron, the synaptic weight
will be strengthened (weakened). Through the STDP learning,
each postsynaptic neuron naturally becomes sensitive to one
or some similar presynaptic spike patterns. There are some
existing works that have shown the powerful ability of STDP
to learn the spike patterns. Diehl et al. [[19]] proposed a SNN for
image recognition that employs STDP learning to process the
Poisson-distributed spike-trains with firing rates proportional
to the intensity of the image pixel. Iyer et al. [22] applied
the Diehl’s model [[19] on native AER data. Experiments on



the N-MNIST dataset [23] show that the method provides
an effective unsupervised application on AER event streams.
Zheng et al. [24] presented a spiking neural system that uses
STDP-based HMAX to extract the spatio-temporal information
from spikes patterns of the convolved image. Panda et al.
[25]] presented a regenerative model that learns the hierarchical
feature maps layer-by-layer in a deep convolutional network
using STDP.
Our major contributions can be summarized as follows:

o« We propose an unsupervised recognition approach for
AER object, which performs the task using MuST for
encoding the AER events and STDP learning rule of SNN
for object recognition with MuST. This approach does not
require a teaching signal or setting the desired status of
neurons in advance, and thus can be flexibly applied in
real-world recognition tasks.

o We present MuST which not only exploits the information
contained in the input AER events, but also forms a
new representation that is suitable for the recognition
mechanism. MuST extracts the spatio-temporal features
of AER events based on LIF neuron model, and forms
a feature spike representation which consumes less com-
putational resources while still maintaining comparable
performance.

« Extensive experimental analysis shows that our recog-
nition approach, processed in an unsupervised way, can
achieve comparable performance to existing, supervised
solutions.

The rest of this paper is organized as follows. Section
overviews the flow of information processing in this approach.
Section describes the details of this recognition ap-
proach. The experimental results are explained in Section
In section we come to our conclusion.

II. OVERVIEW OF THE PROPOSED APPROACH

The proposed AER object recognition consists of three
parts, namely the Event Flow Segmentation, Multiscale Spatio-
Temporal Feature (MuST) and Recognition with STDP, as
shown in Fig. [T We will overview the flow of information
processing in this approach as follows.

Event Flow Segmentation: Our object recognition ap-
proach is driven by raw events from the AER sensor. However,
it is still a daunting task to explore how to use each single
event as a source of meaningful information [7[]. In addition,
due to the high temporal resolution of the sensor, the time
intervals between two successive events can be very small
(100ns or less). For the efficiency of computation and energy
use, existing works [7]], [10] heuristically partition events into
multiple segments and then perform the feature extraction and
recognition based on these segments. We maintain an event
queue to store the input events waiting to be sent to the
next layer, and meanwhile apply the motion symbol detection
(MSD) [10]] to adaptively partition the events according to
their statistical characteristics, which is more flexible than the
partition methods based on fixed time slices or fixed event
numbers. Events from the AER sensor are sent concurrently
to the event queue and MSD. MSD consists of a leaky

integrate-and-fire (LIF) neuron and a peak detection unit. The
neuron receives the stimuli of events and then updates its total
potential. The peak detection is applied to locate temporal
peaks on the neuron’s total potential. A peak is detected when
many events have occurred intensively, which indicates enough
information has been gathered. Therefore, once the peak is
detected, events in the event queue emitted before the peak
time will be sent as a segment to the next part.

Multiscale Spatio-Temporal Feature (MuST): The events
are sent to the S1 layer, which consists of neurons having their
own scale of receptive field and responding best to a certain
orientation. S'1 neurons accumulate the responses which reflect
the strength of spatial features. The timing information of
events is also recorded in the responses of S1 neurons because
of the spontaneous leakage of neurons. Each neuron associates
to one pixel in the sensor and neurons of the same receptive
scale and orientation are organized into one feature map. Each
feature map in S1 is divided into adjacent non-overlapping 2
X 2 neuron regions and the max neuron responses in each
region reach the C'1 layer. The neuron responses (features) in
C1 layer are coded into the form of spikes for recognition.
The strength of the feature is in a logarithm manner mapped
to the timing of spike by temporal coding, and multiscale
features having the same orientation and position in C'1 feature
maps are fused as a spike-train flowing to one encoding
neuron, forming the MuST representation of AER events for
recognition.

Recognition with STDP: The encoding neurons emit spikes
to excite the learning neurons of the SNN. According to
STDP, the relative timing of spikes of the presynaptic encoding
neuron and postsynaptic learning neuron triggers the synaptic
weight adjustment during training. The spikes from one learn-
ing neuron also inhibit the other learning neurons. This lateral
inhibition prevents neurons from learning the same MuST
pattern. After training, each learning neuron will be assigned
a class label based on its sensitivity to patterns of different
classes. The final recognition decision for an input pattern is
determined by averaging the firing rates of learning neurons
per class and choosing the class with the highest average firing
rate.

III. MULTISCALE SPATIO-TEMPORAL FEATURE

The current theory of the cortical mechanism has been
pointing to a hierarchical and mainly feedforward organization
[10]. In the primary visual cortex (V1), two classes of func-
tional cells — simple cells and complex cells are founded [26].
Simple cells respond best to stimuli at a particular orientation,
position and phase within their relatively small receptive fields.
Complex cells tend to have larger receptive fields and exhibit
some tolerance with respect to the exact position within their
receptive fields. Further, plasticity and learning certainly occur
at the level of inferotemporal (IT) cortex and prefrontal cortex
(PFC), the top-most layers of the hierarchy [27].

Inspired by the visual processing in the cortex, we introduce
the following mechanisms in our recognition approach: 1)
We model the object recognition a hierarchy of S1 layer,
C1 layer, encoding layer and learning layer. 2) MuST feature



extraction consists of S1 and C'1 layer, composed of simple
cells and complex cells respectively. Simple cells combine the
input with a bell-shaped tuning function to increase feature
selectivity and complex cells perform the max pooling oper-
ation to increase feature invariance. We use LIF neurons to
model the simple and complex cells. The LIF model has been
used widely to simulate biological neurons and is inherently
good at processing temporal information. The responses of the
neurons just reflect the strength of spatio-temporal features
with selectivity and invariance. We also propose a coding
mechanism from the temporal and spatial perspectives, aiming
to form a feature spike representation to better exploit the
information in raw events for recognition. 3) The STDP
rule models the learning at the high layer of the hierarchy
and learns sophisticated features of objects, which will be
described in detail in the next section.

In this section, we will propose the multiscale spatio-
temporal feature representation of the raw AER events.

A. Spatio-Temporal Feature Extraction

We conduct the feature extraction using bio-inspired hi-
erarchical network composed of LIF neurons with a certain
receptive scale and orientation, which takes into account both
the temporal and spatial information encapsulated in AER
events. This network contains two layers named S1 layer and
C1 layer, mimicking the simple and complex cells in primary
visual cortex V'1 respectively. An event-driven convolution is
introduced in neurons of the S1 layer, and a max-pooling
operation is used in the C'1 layer.

1) S1 layer: Each event in the segment is sent to the S1
layer, in which the input event is convolved with a group
of Gabor filters [10]. The function of Gabor filter can be
described with the following equation:

X222 on
G(Az,Ay;o, ), 0) = eXp(—T)COS(TX) (1
X = Az cosf + Aysin 0 2)
Y = —Azxsinf + Aycosd 3)

where Az and Ay are the spatial offsets between the pixel
position (z,y) and the event address (e;, e,), 7y is the aspect
ratio. The wavelength A\ and effective width o are parameters
determined by scale s. Each filter models a neuron cell that
has a certain scale s of receptive field and responds best to a
certain orientation #. Each neuron associates to one pixel in the
sensor and neurons of the same receptive scale and orientation
are organized into one feature map. The responses of neurons
in feature maps are initialized as zeros, then updated by
accumulating each element of the filters to the maps at the
position specified by the address of each event. The response
of the neuron at position (z,y) and time ¢ in the map of
specific scale s and orientation # can be described as:
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Fig. 2. TIllustration of coding mechanism. Four blue squares denote the C1
feature maps of four different scales having the orientation of 45°. Four
responses having same position in these four feature maps are chosen for
illustration. These responses are converted to spikes by the logarithm coding
function and then be fused into a spike-train. The lighter a pixel looks
in the feature map, the higher is its response value, and the earlier is its
corresponding spike timing.

where E/(t) denotes the set of events which are emitted before
the time ¢ in the current segment, 1{.} is the indicator function,
X(ez) = [ex — s,ex + s] and YV(ey) = [ey, — s,ey + ]
denote the receptive field of the neuron, and 7., denotes
the decay time constant. Since the parameters ¢ and A in
function G are determined by s, we herein use o(s) and A(s)
instead. This computation process can also be explained in
another way. When the address of the current event e is in the
receptive fields of the neuron, the response r(z, y, t; s, 6) of the
neuron is increased by G(Ax, Ay; s, 0). Otherwise, the neuron
response keeps decaying exponentially. The decay dynamics
of the response are:
dr(z,y,t;s,0)
dt
With the exponential decay, the impact of earlier events is
reduced on the current responses, and the precise timing
information of each event can be captured in the responses.
2) C1 layer: Each feature map in S1 layer is divided into
adjacent non-overlapping 2 x 2 cell regions, namely S1 units.
The responses of C'1 cells are obtained by max pooling over
the responses in S1 units. The pooling operation causes the
competition among S1 cells inside a unit, and high-response
features (considered as representative features) will reach the
C'1 maps. After the pooling operation, the number of cells in
C'1 maps is 1/4 of that in S1 maps. This pooling operation
decreases the number of required neurons in latter layers and
makes the features locally invariant to size and position.

Tleak = —T(m,y,t;s,e) (5)

B. Coding to Spike-Trains

The spatio-temporal features in C'1 maps will be coded to
spike-trains. A spike carries the information of its timestamp
and address. We propose a coding mechanism to convert the
strength of feature to the spike timing by a natural logarithm
function of temporal coding, and to map the position of feature
to the address of spike by multiscale fusion. This procedure is
illustrated in Fig. 2] and the details are described as follows.

The feature responses in C'1 maps are used to generate spike
timings by latency coding scheme [[14], [15]]. Features with the



maximum response values, which are considered to activate
the spike more easily, correspond to the minimum latency and
will fire early; features with smaller values will fire later or
even not fire.

We focus on finding an appropriate coding function in order
to fully utilize the information contained in features for the
following recognition. We randomly choose 1000 samples
from MNIST-DVS dataset, and show the distribution of C1 re-
sponses in Fig. 3] It can be seen that the distribution of features
is heavily skewed. Linear coding functions are used by many
existing works [10], [28]] to convert these features to spikes for
simplicity, but such functions cannot change the distribution
of data and thus the temporal distribution of feature spikes are
still skewed. This skewed distribution of feature spikes will
lead to two problems: 1) higher-response features have less
impact on recognition process. It is because the distribution of
feature spikes affects the recognition process. The spikes of
higher-response features are more sparsely distributed so that
receptive neurons (learning neurons in our approach) are hard
to accumulate responses high enough to emit spikes (because
of the leakage of neurons). Therefore, the information in these
high-response features cannot be completely transmitted to
the receptive neurons and cannot be fully utilized by the
recognition process. 2) Considering that the information of
features in SNN is contained in the timings of feature spikes,
the features are considered similar if the timings of their spikes
are close. Therefore, it is difficult to distinguish two features
whose spikes are densely distributed in a short time window.

To solve these problems, feature responses in our approach
are in a logarithm manner inversely mapped to spike timings.
For one specific feature response depicted as r within the C'1
layer, the corresponding spike timing #,pir. can be computed
as follows:

tspike = C(r) = u —vlin(r) (6)

where v and v are normalizing factors ensuring that the
spikes fire in the predefined time window t,, C' denotes
the coding function of response r. The settings of u and v
are as follows: u = ty, In(rmae)/(I0(rmaz) — In(rm,)) and
v = ty/(In(rmaz) — I0(rmin)), where 7,4, is the maximum
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Fig. 3. The distribution of C'1 feature responses on MNIST-DVS dataset. Each
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Fig. 4. One reconstructed image and its MuST pattern. Left: reconstructed
image of the digit “5” from the MNIST-DVS dataset. Black pixel denotes
there is no event at this position and white pixel denotes there is at least one
event at this position. Right: the corresponding MuST pattern.

feature response in the training set, 7,,;, is the user-defined
minimum threshold, less than which the responses are set to
be ignored. Section [V| will show the effects of this natural
logarithm coding function.

We then attach the address information of features to Equa-
tion (6) and obtain Equation (7). The spikes that converted
from feature responses r at the position (z,y) in the feature
maps are written as:

tspike = C(T|.’I}, Yy, S, @) =u— vln(r)

7
st. re{rlry =2,ry =y,rs € S,19 € O} ™

where r, and 7y denote the scale and orientation of r, r, and
r, denote the position of r in feature map, S is a set of values
of scale s, © is a set of values of orientation 6.

Unlike artificial neurons each of which represents informa-
tion as a real value, a spiking neuron can convey multiple
signals in the form of a spike-train, which is more flexible and
more informative. Considering this characteristic of spiking
neurons, certain features can be fused to make more efficient
use of neurons and form a compact representation. Inspired
by [27] where features of neighboring scales are combined
together, in our implementation, feature spikes of multiple
scales having the same position and orientation are fused to
a spike-train, sharing the same spike address. That is, each
encoding neuron is in charge of the conversion of multiscale
C1 features. The spike-train that is converted from feature
responses 7 having position (x,y) and orientation 6 is com-
prised of a set of ¢spix. in Equation , where © = {0}. The
following experiments in Section [V] will provide the analyses
and effects of this multiscale fusion method.

Through this encoding scheme, each input segment has
its own MuST representation. Fig. [d] shows a reconstructed
image of an event segment in MNIST-DVS dataset [4]], and
its corresponding MuST representation.

IV. RECOGNITION WITH SPIKE-TIMING-DEPENDENT
PLASTICITY

In this part, a network of spiking neurons (SNN) is devel-
oped to perform object recognition with MuST. SNN simulates
the fundamental mechanism of human brain and is good at
processing spatio-temporal information. STDP is used here as
the unsupervised learning rule of SNN. Every neuron naturally
becomes sensitive to one or some similar input spike patterns



through STDP rather than approaching the desired status as
in supervised learning. Due to the flexibility of STDP, it is
more suitable for our real-world recognition tasks. We will
describe the network design and unsupervised learning method
as follows.

A. Network Design

The input stimuli of this network are the MuST spike-
trains the encoding neurons emit. Encoding neurons are fully
connected to the learning neurons. These synaptic connections
are excitatory and will be adjusted in training procedure. Each
of the learning neurons inhibits all other ones by inhibitory
synapses with the short delay ¢4 and the weights of inhibitory
synapses are set to the predefined value w;,;. This connec-
tivity implements lateral inhibition. Once a learning neuron
fires a spike, the inhibitory synapses transmit the stimuli to
inhibit other learning neurons. The network design enables
each neuron to represent one prototypical pattern or an average
of some similar patterns, and prevents a large number of
neurons from representing only a few patterns.

During training, the weights of all excitatory synapses are
firstly initialized with random values and are updated using
STDP. When the training is finished, we assign a class to each
neuron, based on its highest response to the different classes
over one presentation of the training set. Only in this class
assignment step are the labels being used. For the training
of the network, we do not use any label information. During
the testing phase, the predicted class for the input pattern is
determined by averaging the firing rates of neurons per class
and then choosing the class with the highest average firing
rate.

B. STDP Learning Rule

STDP is a biological process that adjusts the weights of
connections between neurons. Considering both the encoding
and learning neurons emit multiple spikes, we employ the
triplet STDP model [29] which is based on interactions of
relative timing of three spikes (triplets). Besides, triplet STDP
has shown its computational advantage over standard STDP
since it is sensitive for input patterns consisting of higher-
order spatiotemporal spike pattern correlations [30].

LIF model is chosen to describe the neural dynamics [19].
The membrane voltage V' of the neuron is described as:

dVv

T
where 7 is the postsynaptic neuron membrane time constant,
Viest the resting membrane potential, F.,. and F;,; the equi-
librium potentials of excitatory and inhibitory synapses, and g,
and g; the conductance variables of excitatory and inhibitory
synapses, respectively. The conductance is increased by the
synaptic weight w at the time a presynaptic spike arrives,
otherwise the conductance keeps decaying exponentially. If the
synapse is excitatory, the decay dynamics of the conductance
ge are:

rest — V + ge(Eeacc - V) + gi (Einh - V) ®)

dge
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Fig. 5. Two conditions of the triplet STDP rule. Left: synaptic depression
is induced using one postsynaptic trace when the presynaptic spike arrives.
Right: synaptic potentiation is induced using the post- and pre-synaptic traces
when the postsynaptic spike arrives.

where 7,4 is the time constant of an excitatory postsynaptic
potential; if the synapse is inhibitory, g; is updated using the
same equation but with the time constant of the inhibitory post-
synaptic potential 74;. When the neuron’s membrane potential
is higher than its threshold V., the neuron will fire a spike
and its membrane potential will be reset to V,..sc:. An adaptive
membrane threshold [[19], [31]] is employed to prevent single
learning neuron from dominating the response pattern. When
the neuron fires a spike, the threshold V};, will be increased
by Vpius. Otherwise the threshold Vi, is described as:

d‘/thr
dt

where V; denotes the predefined membrane threshold. By
incorporating such method, the more spikes a neuron fires,
the higher its membrane threshold will be.

The weight dynamics are computed using synaptic traces
which model the recent spike history. Each synapse keeps
tracks of one presynaptic trace ap.. and two postsynaptic
traces Qpos¢ and apost2. For simplicity, we use the Nearest-
Spike interaction. As shown in Fig.[5] every time a presynaptic
spike arrives at the synapse, a,,. is assigned to 1; otherwise
apre decays exponentially. The decay dynamic of the trace
Apre 18:

Tthr =Vi = Vinr (10)

Ta’ B dapre
pre dt

where 7, is the time constant of trace a,.. The postsynaptic
traces apos: and apost2 Work the same way as the presynaptic
trace but their assignments are triggered by a postsynaptic
spike and they decay with the time constant 7,,,,, and 7,,,.,,
respectively. When a presynaptic spike arrives at the synapse,
the weight is updated based on the postsynaptic trace:

(1)

= —Qpre

A'LU = A_ a/post (1 2)

where A~ is the learning rate for presynaptic spike. When a
postsynaptic spike arrives at the synapse the weight change
Aw is:

Aw = A+0Jpreapost2 (13)

where AT is the learning rate. Since the weights are not
restricted in a range, weight normalization [32], which keeps
the sum L of the synaptic weights connected to each learning
neuron unchanged, is used to ensure an equal use of the
neurons:

Wi 5

L (14)
> Wy
k=1

Wiy =



Fig. 6. Some reconstructed images from the used datasets. (a): POKER-DVS dataset. (b): AER Posture dataset (rows from top to bottom represent BEND,
SITSTAND and WALK respectively). (c): GESTURE-DVS dataset. (d): MNIST-DVS dataset. (e): NMNIST dataset.

where w;; is the synaptic weights from encoding neuron i to
learning neuron j, w;; is the normalized w;;, n. is the number
of encoding neurons.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
approach on AER datasets and compare our approach with
other AER recognition methods.

A. Datasets

Five different datasets are used in this paper to analyze the
performance, i.e., POKER-DVS dataset [7[], [33], MNIST-DVS
dataset [4]], NMNIST dataset [23]], AER Posture dataset [[10]]
and GESTURE-DVS dataset. Fig. [f] shows some samples of
these five datasets.

1) POKER-DVS dataset: It contains 100 samples divided
from an event stream of poker card symbols with a spatial
resolution of 32 x 32. It consists of four symbols, i.e., club,
diamond, heart and spade.

2) MNIST-DVS dataset: It is obtained with a DVS sensor
by recording 10,000 original handwritten images in MNIST
moving with slow motion. Due to the motion during the
recording of MNIST-DVS dataset, the digit appearances in this
dataset have far greater variation than MNIST dataset. Thus,
the recognition task of MNIST-DVS is more challenging than
that of MNIST. The full length of each recording is about
2000 ms and the spatial resolution is 28 x 28.

3) N-MNIST dataset: it is obtained by moving an ATIS
camera in front of the original MNIST images. It consists
of 60,000 training and 10,000 testing samples. The spatial
resolution is 34 x 34.

4) AER Posture dataset: It contains 191 BEND action,
175 SITSTAND action and 118 WALK action with a spatial
resolution of 32 x 32.

5) Gesture-DVS dataset: We collect this dataset to further
verify the robustness of our approach. We firstly made a fist
above the scope of DVS sensor, and then swung the hand down
to deliver a gesture. We recorded the events triggered by the

hand moving down. The dataset contains three gestures, i.e.,
rock (a closed fist), paper (a flat hand), and scissor (a fist with
the index finger and middle finger extended, forming a V).
Each gesture is delivered 40 times in total and the recording
of each time has a duration of 50 ms. The events are captured
by the DVS sensor with a resolution of 128 x 128 pixels and
scaled to 32 x 32 pixels in the data preprocessing.

B. Benchmark Methods

We compare our approach with other three recently pro-
posed AER recognition methods. The first one was proposed
by Zhao et al. [[10], which extracts the features through a
convolution-based network and performs recognition through
a tempotron classifier. Tempotron classifier is a supervised
learning rule of SNN which specifies the desired status of
firing or not for each neuron. The second one named BOE was
proposed by Peng et al. [7], which uses a probability-based
method for feature extraction and a support vector machine
with linear kernel as the classifier. The third one named HFirst
was proposed by Orchard et al. [[12]], which employs a spiking
hierarchical feature extraction model and a classifier based on
spike times. We obtain the source codes of these benchmark
methods from their authors.

C. Experiment Settings

The experiments are run on a workstation with two Xeon
E5 2.1GHz CPUs and 128GB RAM. We use MATLAB to
simulate Event Flow Segmentation and MuST, the BRIAN
simulator [34] to implement SNN for recognition.

We randomly partition the used dataset into two parts for
training and testing. The result is obtained over multiple runs
with different training and testing data partitions. We report the
final results with the mean accuracy and standard deviation.
For fair comparison, the results of methods listed in TABLEm
are obtained under the same experimental settings. The results
of benchmark methods are from the original papers [7], [10],
or (if not in the papers) from the experiments using the code
[7], 1100, [12] with our optimization.



RECOGNITION PERFORMANCE ON FIVE DATASETS.

TABLE I

MNIST-DVS
Model POKER-DVS 100 ms | 900 ms | Tall Tength NMNIST | AER Posture | GESTURE-DVS

Zhao’s [10 93.00% 76.86% 82.61% 88.14% 85.60% 99.48% 90.50%

BOE [7 93.00% 74.60% 78.74% 72.04% 70.43% 98.66% 88.97%

HFirst |12 94.00% 55.77% 61.96% 78.13% 71.15% 94.48% 84.75%

Our Work 99.00% 79.25% 83.30% 89.96% 89.70% 99.58% 95.75%
TABLE II 2) On MNIST-DVS dataset: This dataset has 10,000 sym-
THE PARAMETERS OF GABOR FILTERS. bols, 90% of which are randomly selected for training and
— 3 3 = 3 the remaining ones are used for testing. The performance is
offective width o %) 50 73 36 averaged over 10 runs. The experiments are conducted on
wavelength A 1.5 2.5 3.5 4.6 recordings with the first 100 ms, 200 ms and full length (about

orientation 6 0°, 45°, 90°, 135°
aspect ratio vy 0.3

The constant parameter settings in our approach are summa-
rized here. We choose four orientations (0°, 45°, 90°, 135°)
and a range of sizes from 3 x 3 to 9 x 9 pixels with strides
of two pixels for Gabor filters. The detailed settings of Gabor
filters are listed in TABLE [I[Il These parameter settings have
been proved solid on the task of visual feature capturing, and
inherited in many works [I0], [12]}, [28]. The time constant
of feature response Tjeqi 1S set according to the time length
of the symbol in each dataset. The 7;.q; for POKER-DVS,
MNIST-DVS, NMNIST, AER Posture, and GESTURE-DVS
dataset is set to 10 ms, 100 ms, 30 ms, 100 ms, and
50 ms, respectively. The time window ¢,, and threshold 7,
in coding function are set as 500 ms and 0.2 respectively. The
parameters of neuron model in the recognition layer are set as
follows: Viyest = —65mV, Ecpe = 0mV, B = —100 MV,
100 ms, V3 = —63.5 mV, Ve = 0.07 mV,
Tehr = 1e7 ms. The parameters in STDP are set as follows:
Tapre = 20 MS, Tapost = 30 MS, Tapost2 = 40 ms, AT = 0.1,
A~ = 0.001. The other parameters in recognition layer are
set as follows. The inhibitory weight w;, is set as 2.4 and
the delay time ¢4 is set as 0.3 ms. According to the number
of samples, the number of learning neurons for POKER-DVS,
MNIST-DVS, NMNIST, AER Posture, and GESTURE-DVS
dataset are set as 60, 700, 1200, 600, and 60. Due to different
spatial resolutions, the parameter L in weight normalization is
set as 37.5 for MNIST-DVS dataset, 54.0 for NMNIST dataset,
and 47.0 for POKER-DVS dataset, AER Posture dataset, and
GESTURE-DVS dataset.

T =

D. Performance on Different AER Datasets

1) On POKER-DVS dataset: For each category of this
dataset, 90% are randomly selected for training and the others
are used for testing. We obtain the average performance by
repeating the experiments 100 times.

Our approach gets the recognition accuracy of 99.00% on
average, with a standard deviation of 3.84%. TABLE E] shows
that our approach outperforms Zhao’s method [10], BOE
and HFirst by a performance margin of 6.00%, 6.00%
and 5.00% respectively.

2000 ms) respectively.

Fig.[7]shows the correct recognition rates on recordings with
100 ms of each digit along the diagonal and the confusions
anywhere else. Digit 1 gets the highest accuracy of 96.67%
because of its simple stroke. Confusions occur mostly between
digit 7 and 9. As can be noticed in Fig. [6] the difference
between the two digits is that there is an extra horizontal
stroke in 9, which is connected to the above stroke. Hence,
the learning neurons representing 9 are likely to fire when
the input pattern is 7. Overall, our approach achieves the
recognition accuracy of 79.25%, 83.30% and 89.96% on the
recordings of 100 ms, 200 ms and full length. We can see that
our performance becomes better with the longer recordings.
Further, our approach consistently outperforms other methods
on recordings with every time length in TABLE [

3) On NMNIST dataset: This dataset is inherited from
MNIST, and has been partitioned into 60,000 training samples
and 10,000 testing samples by default. MNIST-DVS and
NMNIST datasets are both derived from the original frame-
based MNIST dataset. Compared with MNIST-DVS dataset
recorded by moving the MNIST images with slow motion,
NMNIST dataset is captured by moving the AER sensor. The
obtained event streams in two datasets are not the same.

Our approach gets the recognition accuracy of 89.70%.
TABLE [I| shows that the recognition performance of our
approach is higher than that of Zhao’s method [10], BOE
and HFirst [12]. In addition, compared with Iyer & Basu’s

0 |91.66 790
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» 2 70
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E 4 50
-% 5 40
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o 1 2 3 4 5 6 7 8 9
Actual digit

Fig. 7. Average confusion matrix of the testing results over 10 runs of MNIST-
DVS 100 ms dataset.



unsupervised model [22] on NMNIST, which achieves the
accuracy of 80.63%, our approach can give higher accuracy
of 89.70%.

4) On AER Posture dataset: In this dataset, we randomly
select 80% of human actions for training and the others for
testing. The experiments are repeated 10 times to obtain the
average performance. The results are listed in TABLE [l

The recognition accuracy obtained by our approach is
99.58%. Our approach has a performance that is comparable
to Zhao’s [|10], higher than BOE [7|] and HFirst [[12].

5) On Gesture DVS dataset: This dataset has 3 categories,
each with 40 samples. For each category, 90% samples are
randomly selected for training and the others are for testing.
We perform the experiments 100 times and average the per-
formance. In this dataset, the position of the hand in each
sample is not constant and some portion of the player’s
forearm is sometimes recorded. These randomnesses increase
the difficulties of the recognition task of this dataset.

Our approach achieves the recognition accuracy of 95.75%,
with a standard deviation of 5.49%. TABLE [I] shows that our
approach outperforms Zhao’s method [10], BOE [7] and HFirst
[12] by a performance margin of 5.25%, 6.78% and 11.00%
respectively.

E. Analyses of the MuST

In this section, we carry out experiments to analyze the
effects of MuST from two aspects: the temporal coding
function and the spatial fusion method. The experiments are
conducted on POKER-DVS dataset, AER Posture dataset ,
1,000 samples of MNIST-DVS 100ms dataset and GESTURE-
DVS dataset. For each dataset, the experiment settings are the
same as the previous section.

TABLE III
ACCURACY WITH LINEAR CODING FUNCTION AND NATURAL LOGARITHM
CODING FUNCTION.

Method POKER Posture MNIST GESTURE
Linear Coding  95.25% 96.69% 73.30% 95.25%
Log Coding  99.00% 99.58 % 76.90% 95.75%

1) Effects of the temporal coding function: We compare the
performance of the approach using conventional linear coding
function [[10]], [28]] and the proposed natural logarithm coding
function. The linear coding function is set as follows: tsp;xe =
—ar+b, where a = t,,/Tmaq. and b = t,,. As shown in TABLE
the proposed logarithm coding function achieves higher
performance than the linear one on three datasets.

As reported in Fig. |8 using linear coding function, feature
spikes which are emitted early has a quite sparse temporal
distribution. For example, the linear coding function generates
only approximately 8% spikes before 400 ms. The feature
spikes with sparse distribution are hard to accumulate potential
of the learning neurons high enough to emit spikes. Thus, the
information in these feature spikes cannot be transmitted to
the learning neurons. As the temporal distribution of spikes

'Due to the space limit, names of the dataset are abbreviated accordingly.
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Fig. 8. Spike timing distributions with linear coding function and natural
logarithm coding function on MNIST-DVS 100ms dataset. Each bin has a
nonoverlapping temporal span of 20 ms, and the time window ¢, is 500 ms.
The height of each bin indicates the average proportion of the spike timings in
the corresponding time span. The natural logarithm coding function evens the
distribution of the timings of feature spikes. The information entropy H;near
and Hj,g are 2.21 and 3.99, respectively.

becomes denser, potential of the learning neuron becomes
higher and emits more spikes gradually. According to the
STDP learning, the synaptic weight is updated when there
is a presynaptic spike or a postsynaptic spike. Therefore, the
learning and the recognition is mostly affected by the feature
spikes emitted later. As can be seen in Fig. [§] the proposed
logarithm coding function evens the temporal distribution of
spikes, so that the features can be used equally to a large
extent.

The analysis can also be given in another aspect. Consid-
ering that the information in SNN is represented by the spike
timings, we evaluate the information carried by the feature
spikes generated by these two coding functions using informa-
tion entropy of the spikes. The information entropy with the
higher value means the corresponding feature representation
contains more information of the features. The information
entropy is calculated as:

H ==Y pilog,p

3

(15)

where p; denotes the portion of spikes located within the i-th
temporal bin. The information entropy H,,, of feature spikes
generated by natural logarithm coding function is 3.99, which
is higher than Hj;y,.,, generated by linear coding function
with 2.21. This suggests that the obtained MuST feature
representation is more informative and the proposed natural
logarithm coding function conveys more information of the
features into the spikes, which contributes to the recognition
using SNN.

2) Effects of the spatial fusion method: In our approach,
the spatial features of AER events are extracted from two
aspects, i.e., scales and orientations. There exist four spatial
fusion options for features, i.e., multiscale fusion, multi-
orientation fusion, no fusion and full fusion. We will compare
our approach with those using full fusion, multi-orientation
fusion and no fusion instead of multiscale fusion to provide the
analyses. Multiscale fusion fuses features of multiple scales
having same orientation 6 and position (z,y) in feature maps



TABLE IV
ACCURACY AND REQUIRED PARAMETERS WITH FOUR FUSION METHODS.

Dataset Accuracy Params
POKER-DVS
Multiscale Fusion 99.00% 0.43M
Multi-Orientation Fusion 94.50% 0.43M
No Fusion 96.63% 1.72M
Full Fusion 85.50% 0.11M
AER Posture
Multiscale Fusion 99.58 % 4.6"M
Multi-Orientation Fusion 99.00% 4.67TM
No Fusion 92.17% 17.57M
Full Fusion 90.56% 1.44M
MNIST-DVS
Multiscale Fusion 76.90 % 4.34M
Multi-Orientation Fusion 57.97% 4.34M
No Fusion 75.62% 15.87M
Full Fusion 54.64% 1.46M
GESTURE-DVS
Multiscale Fusion 95.75% 0.43M
Multi-Orientation Fusion 90.83% 0.43M
No Fusion 73.25% 1.72M
Full Fusion 80.58% 0.11M

into a spike-train for an encoding neuron, which is comprised
of a set of ¢s, in Equation (7) where S = {3,5,7,9}
and © = {6}. Multi-orientation fusion fuses features of
multiple orientations having same scale s and position (z,y)
into a spike-train, which is comprised of t,,;r. in Equation
where S = {s} and © = {0°,45°,90°,135°}. No fusion
does not fuse any feature spike, and the feature spike having
scale s, orientation € and position (x,y) can be expressed
using Equation (7) where S = {s} and © = {6}. Full fusion
fuses all feature spikes having the same position (x,y) into a
spike-train, that is comprised of ¢p;r. in Equation (7) where
S = {3,5,7,9} and © = {0°,45°,90°,135°}. TABLE
reports the recognition accuracy and the required number of
parameters of these four methods. We will give the analyses
via 3 comparisons:

First, both multi-orientation fusion and multiscale fusion
fuse the features along their corresponding aspect, and require
the same number of parameters since the number of scales
and orientations are the same in our settings. But multi-
orientation fusion yields a lower performance, as shown in
TABLE An important factor to affect the result of these
two fusion methods is the correlation among data sources.
A high correlation between features implies features contain
similar information, while a lower feature correlation means
that features have richer diversity. It is expected that highly
correlated features are fused together to one neuron, while
low correlation features are separated to different neurons, so
that learning neurons can distinguish various patterns of the
fused spikes more easily.

We use the correlation coefficient (CC) to measure the
correlation and randomly choose 1000 samples of MNIST-
DVS 100ms dataset for illustration. For the i-th sample, CC
between scales is obtained by averaging the Pearson CCs of
pairwise scale maps having the same orientations:

ng mNsg Mg

2.2 2. plr(s,0),r(s',0))

CCZ _ 0=1s=ls'=s5+1
s M

(16)
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Fig. 9. The normalized histograms of correlation coefficient (CC), and
their fitted probability density functions. Each CC value is derived from a
pair of response series of different scales or of different orientations, and
the distribution consists of CCs for every possible pair. Each bin has a
nonoverlapping span of 0.02, and the height of each bin indicates the density
of CC values in the corresponding span. CC between orientations is on average
lower than CC between scales.

where r(s,0) represents the vector of C'1 responses at scale
s and orientation 6, p(A,B) denotes Pearson correlation
coefficient between vector A and vector B, M = ny (f)
denotes the number of pairs of feature vectors. CC between
orientations is obtained in the same way but with pairwise
orientation maps having the same scales. We can see from
Fig. [} CC between orientations is on average lower than
CC between scales. Specifically, there are only about 3% of
values of CC between scales less than (0.5, but approximately
74% of CC between orientations less than 0.5. It demonstrates
that features of different orientations have lower correlation
than those of different scales. Multi-orientation fusion brings
together diverse information into one neuron to express, and
separates similar information to different neurons to express.
Therefore, the recognition network are hard to learn the spike
patterns, which results in a lower performance.

Second, we notice that the method without fusion maintains
relatively high accuracies on three datasets but requires larger
number of parameters in recognition part. Without fusion, each
encoding neuron represents a specific spatio-temporal feature.
As shown in TABLE this method will require larger com-
putation resource. Nevertheless, multiscale fusion can achieve
a competitive result with more efficient resource usage, which
is well suited for resource-constrained neuromorphic devices.

Third, full fusion fuses all the spatio-temporal features of
a position and obtains the worst result on three datasets. The
fusion degree of full fusion is higher than other three fusion
methods. Although it requires least computation resource,
this method faces severe limitation of feature expression and
therefore has a poor recognition accuracy.

VI. CONCLUSION

In this paper, we propose an unsupervised recognition
approach for AER object. The proposed approach presents a
MuST representation for encoding AER events and employs



STDP for object recognition with MuST. MuST exploits the
spatio-temporal information encapsulated in the AER events
and forms a feature representation that contributes to the latter
recognition. Experimental results show the effects of MuST
from both temporal and spatial perspectives. MuST, with even
temporal distribution, has been shown informative and can
improve the performance of recognition. MuST also fuses
highly correlated features, forming a compact spike repre-
sentation, which consumes less computational resource while
still maintaining comparable performance. The recognition
process employs a SNN trained by the triplet STDP, which
does not require a teaching signal or setting the desired status
of neurons. Compared with other state-of-the-art supervised
benchmark methods, our approach yields comparable or even
better performance on five AER datasets, including a new
dataset named GESTURE-DVS that further verifies the ro-
bustness of our approach.
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